How Arbitrage-Free is the Nelson-Siegel Model?

Laura Coroneo, Ken Nyholm, Rositsa Vidova-Koleva

Bank of Canada Conference on Fixed Income Markets
September 2008

Introduction

In this paper we show that the Dynamic Nelson-Siegel term structure model is arbitrage-free in a statistical sense

- ▶ The Nelson-Siegel model is widely used in practice
 - by fixed-income managers
 - by Central Banks
 - the ECB publishes daily a Svensson-Soderlind yield curve
 - and RMA (ECB) uses a regime-switching extension of the Nelson-Siegel model in its foreign reserves management
- Four reasons for its success:
 - it is easy to estimate
 - it provides an intuitive interpretation of yields (level, slope, curvature)
 - it recovers yields for all maturities
 - and it empirically fits data well in- and out-of-sample

Introduction

However, from a theoretical view point, the Nelson-Siegel model:

- ▶ is not arbitrage-free (Bjork and Christensen (1999))
- and it does not belong to the family of affine models (Diebold, Ji and Li (2004))

The affine class of no-arbitrage term structure models:

- ▶ is the preferred choice in the academic literature
- it precludes arbitrage opportunities among yields observed at different maturities
- and it also produces good in- and out-of-sample fit to observed yields

Introduction

In this paper we address the following questions:

- how much should we worry about the Nelson-Siegel model not being arbitrage-free by construction?
- how significant (in a statistical sense) is the difference between the estimates of the Nelson-Siegel model and the an Affine Arbitrage-free model?
- in other words: what is the added value of the no-arbitrage constraints?

General Framework of a Term Structure Model

$$y_{t,\tau} = a_{\tau} + b_{\tau} X_t + \epsilon_{t,\tau},$$

- \triangleright $y_{t,\tau}$ yields at time t for maturity τ
- X_t vector of yield curve factors (common across maturities)
- $ightharpoonup a_{\tau}$ constant
- \blacktriangleright b_{τ} yield curve factor loadings
- $ightharpoonup \epsilon_{t,\tau}$ measurement error
- Nelson-Siegel and Affine No-Arbitrage Models impose different assumptions on a_T , b_T and X_t

Nelson-Siegel Model

$$y_{t,\tau} = a_{\tau}^{NS} + b_{\tau}^{NS} X_t^{NS} + \epsilon_{t,\tau}^{NS}$$

where

$$\begin{split} a_{\tau}^{N\!S} = & 0 \\ b_{\tau}^{N\!S} = & \left[1 \quad \frac{1 - \exp(-\lambda \tau)}{\lambda \tau} \quad \frac{1 - \exp(-\lambda \tau)}{\lambda \tau} - \exp(-\lambda \tau) \right] \end{split}$$

- ightharpoonup time to maturity
- λ decay parameter
- $ightharpoonup X_t^{NS} = [$ level, slope, curvature]

Affine No-Arbitrage Model

$$y_{t,\tau} = a_{\tau}^{NA} + b_{\tau}^{NA} X_t^{NA} + \epsilon_{t,\tau}^{NA}$$

- ▶ state equation: $X_t^{NA} = \mu + \Phi X_{t-1}^{NA} + u_t$
- market price of risk: $\Lambda_t = \lambda_0 + \lambda_1 X_t^{NA}$
- ▶ short rate equation: $r_t = a_1^{NA} + b_1^{NA} X_t^{NA} + v_t$
- no-arbitrage restrictions:

$$\begin{split} A_{\tau+1} = & A_{\tau} + B_{\tau}' \left(\mu - \Sigma \; \lambda_0\right) + \frac{1}{2} B_{\tau}' \Sigma \Sigma' B_{\tau} - A_1, \qquad a_{\tau}^{N\!A} = -\frac{A_{\tau}}{\tau} \\ B_{\tau+1}' = & B_{\tau}' \left(\Phi - \Sigma \; \lambda_1\right) - B_1', \qquad \qquad b_{\tau}^{N\!A} = -\frac{B_{\tau}}{\tau} \end{split}$$

Our framework

$$y_t = a^{NA} + b^{NA} \hat{X}_t^{NS} + \epsilon_t^{NA}, \quad \epsilon_t^{NA} \sim N(0, \Omega)$$

- relying on a yield-block-resampling approach we generate multiple yield curve data sets
- we use the factors estimated from the Nelson-Siegel model, \widehat{X}_{i}^{NS} , in the no-arbitrage affine model ...
- ▶ to estimate a^{NA} and b^{NA} that satisfy the no-arbitrage restrictions
- in this way we generate empirical confidence intervals for the no-arbitrage loadings
- we then test whether \widehat{a}^{NA} and \widehat{b}^{NA} are significantly different from a^{NS} and b^{NS}

Our framework

Three sets of tests are used to assess whether the NS model is compatible with the no-arbitrage restrictions

1. first using the empirical confidence intervals:

$$H_0^1 : \widehat{a}_{\tau}^{NA} = a_{\tau}^{NS} = 0$$

$$H_0^2 : \widehat{b}_{\tau}^{NA}(1) = b_{\tau}^{NS}(1)$$

$$H_0^3 : \widehat{b}_{\tau}^{NA}(2) = b_{\tau}^{NS}(2)$$

$$H_0^4 : \widehat{b}_{\tau}^{NA}(3) = b_{\tau}^{NS}(3)$$

- 2. then looking at the in-sample performance of the NS factors with and without the arbitrage constraints
- and finally by looking at the out-of-sample forecast performance of the NS factors with and without the arbitrage constraints

Introduction General Framework Our framework Data E

Data

Figure: Zero-coupon yields

Data

- ▶ US monthly zero-coupon yields from 1970:1 to 2000:12
- Maturities 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120 months (Francis Diebold's homepage)

Table: Summary statistics for selected maturities

au	mean	std dev	min	max	$\rho(1)$	$\rho(2)$	$\rho(3)$	$\rho(12)$
3	6.75	2.66	2.73	16.02	0.97*	0.94*	0.91*	0.71*
12	7.2	2.57	3.11	15.82	0.97*	0.94*	0.91*	0.74*
24	7.46	2.44	3.78	15.65	0.98*	0.94*	0.92*	0.75*
60	7.84	2.25	4.35	15.01	0.98*	0.96*	0.94*	0.79*
84	7.99	2.18	4.35	14.98	0.98*	0.96*	0.94*	0.78*
120	8.05	2.14	4.44	14.93	0.98*	0.96*	0.94*	0.78*

Estimation

- for the Nelson-Siegel model we follow Diebold and Li (2006): fix $\lambda = 0.0609 \longrightarrow \widehat{X}_t^{NS}$
- ▶ the estimation of the affine No-arbitrage model follows (Ang, Piazzesi and Wei (2006))
 - First step:
 - VAR in the NS factors, $X_t^{NS} = \mu + \Phi X_{t-1}^{NS} + u_t$
 - ▶ OLS of the short rate (1-month yield), $r_t = a_1^{NA} + b_1^{NA} X_t^{NS} + v_t$
 - Second step:
 - min SSR to estimate the market price of risk parameters, λ_0 and λ_1
 - compute the no-arbitrage loadings \hat{a}^{NA} and \hat{b}^{NA}
 - Last step:
 - to account for the two-step procedure, confidence intervals around \hat{a}^{NA} and \hat{b}^{NA} constructed using resampling

In-sample fit

$\overline{\tau}$	mean	RMSE	MAD	$\rho(1)$	$\rho(6)$				
3	0.027	0.114	0.013	0.274	0.159				
12	0.046	0.122	0.015	0.586	0.127				
24	-0.040	0.073	0.005	0.493	0.044				
60	-0.053	0.096	0.009	0.655	0.312				
120	0.002	0.140	0.020	0.699	0.345				

Residuals from no-arbitrage model

3	0.080	0.132	0.018	0.448	0.219
12	- 0.019	0.109	0.012	0.514	0.147
24	-0.041	0.071	0.005	0.491	0.134
60	0.004	0.100	0.010	0.688	0.350
120	-0.060	0.144	0.021	0.705	0.464

Test

	Intercept		Level		Slope		Curvature	
 au	a^{NS}	\hat{a}^{NA}	$b^{NS}(1)$	$\widehat{b}^{NA}(1)$	$b^{NS}(2)$	$\widehat{b}^{NA}(2)$	$b^{NS}(3)$	$\hat{b}^{NA}(3)$
3	0.00	0.00	1.00	0.99	0.91	0.89	0.08	0.10
12	0.00	0.01	1.00	1.00	0.71	0.72	0.23	0.26
24	0.00	0.00	1.00	1.00	0.53	0.53	0.29	0.27
30	0.00	0.00	1.00	1.01	0.46	0.46	0.30	0.26
36	0.00	-0.01	1.00	1.01	0.41	0.41	0.29	0.25
48	0.00	-0.01	1.00	1.00	0.32	0.32	0.27	0.23
60	0.00	-0.01	1.00	1.00	0.27	0.26	0.24	0.21
84	0.00	0.00	1.00	1.00	0.19	0.19	0.19	0.19
120	0.00	0.01	1.00	0.99	0.14	0.13	0.14	0.18

▶ Estimated \hat{a}^{NA} and \hat{b}^{NA} are close to a^{NS} and b^{NS}

Test

Laura Coroneo, Ken Nyholm, Rositsa Vidova-Koleva

Out-of-sample forecast

Further results

- ightharpoonup generate h = 1, 6, 12-steps ahead iterative forecasts
- ▶ project the yield curve factors forward using the estimated VAR parameters $\hat{X}_{t+h|t}^{NS} = \sum_{s=0}^{h-1} \hat{\Phi}^s \hat{\mu} + \hat{\Phi}^h \hat{X}_t^{NS}$
- compute out-of-sample yield forecasts for the two models, given the projected factors

$$\begin{split} \hat{y}_{t+h|t}^{NS} &= b^{NS} \hat{X}_{t+h|t}^{NS} \\ \hat{y}_{t+h|t}^{NA} &= \widehat{a}^{NA} + \widehat{b}^{NA} \hat{X}_{t+h|t}^{NS} \end{split}$$

- Evaluation period 1994:01 to 2000:12
- ► The benchmark is the random walk

Introduction General Framework Our framework Data E

Out-of-sample forecast

Mean Squared Forecast Errors

	1-m	ahead	6-m	ahead	12-m ahead	
au	NS	NA	NS	NA	NS	NA
3	0.91	0.89	0.72	0.70	0.64	0.63
12	1.01	1.00	0.80	0.81	0.64	0.65
24	1.09	1.11	0.80	0.80	0.67	0.67
30	1.04	1.04	0.80	0.78	0.68	0.67
36	0.99	0.98	0.80	0.78	0.70	0.69
48	0.98	0.98	0.84	0.81	0.76	0.73
60	1.10	1.04	0.88	0.85	0.81	0.79
84	1.08	1.08	0.91	0.91	0.87	0.86
120	1.08	1.32	1.02	1.08	1.00	1.05

MSFE relative to the random walk

Conclusion

What is the added value of the no-arbitrage constraints (for US data)?

- ► The factor loadings of the no-arbitrage model are not statistically different from the Nelson-Siegel ones, at a 95% confidence level
- ► The no-arbitrage constraints do not significantly improve the performance of the Nelson-Siegel factors

Our results suggest that the Nelson-Siegel model is compatible with the no-arbitrage constraints.