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Abstract

This paper analyzes the impact of ongoing �nancial and economic integration on banks�

common exposure to shocks and on banking sector systemic risk. For that, we study

the evolution of correlations between large international banks�asset-to-debt ratios over

1993-2006 and compute a systemic risk index for the same period. We �nd that banks�

common exposure to shocks has signi�cantly decreased until 2000 and rapidly increased

afterwards. Systemic risk follows a totally di¤erent pattern. No trend emerges and,

instead, we observe two peaks: one in 1998 (LTCM and Russian crisis) and one in 2002-

2003 (stock market downturn). These �ndings suggest that, contrary to a widespread

belief, higher correlations between banks do not necessarily induce higher systemic risk.

We then provide evidence that systemic risk is mainly driven by banks�individual risk-

taking rather than by their common exposure to risks.

Keywords: Systemic risk, Co-movements, Banking sector, International integration.
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1 Introduction

Worldwide, the banking sector has gone through profound transformations over the last

decades. Technical progress in �nancial engineering and in communications technolo-

gies as well as global deregulation policies have signi�cantly modi�ed the international

�nancial landscape. In Europe, the launch of the Euro has contributed additionally

to accelerate these changes.1 An obvious outcome of these developments is an ac-

celeration of international �nancial markets integration. At the �rm level, �nancial

institutions � and large banks in particular � now pro�t from a much easier ac-

cess to a wider range of geographical markets and �nancial instruments. At the same

time, some studies �nd enhanced synchronization in real activity� i.e., deeper economic

integration� worldwide.2

The structural changes in the environment in which �nancial institutions operate

have raised concern about an increase in systemic risk due to banks becoming more and

more exposed to the same risk factors, i.e., due to an increase in the banks�common

exposure to shocks. Yet, from a theoretical point of view, it is neither clear what

overall impact on banks�common exposure to shocks and on systemic risk should be

expected nor how banks�common exposure to shocks is related to systemic risk in the

banking sector. Enhanced synchronization in business cycles worldwide reduces the

set of diversi�able risks available to banks. This increases banks� individual risk as

they become more vulnerable to shocks. In addition, the probability that the banks

are exposed to the same risk factors� or to risk factors that are highly correlated with

each other� increases. In other words: the banks�common exposure to shocks, i.e.,

the risk at the system level, increases. As both the risk at the system level and banks�

individual risk rise due to deeper economic integration worldwide, the latter leads to

higher systemic risk in the banking sector.

1See Baele et al. (2004).
2See, e.g., De Nicolò and Tieman (2006).
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In contrast to higher correlation of business cycles, access to a wider range of

markets and products widens the available set of diversi�able risks for individual banks.

This has two possible consequences for the banks and the banking system as a whole,

respectively. First, banks may use these new investment and �nancing opportunities

to diversify their portfolio. If all banks choose to diversify, they are all exposed to

the same risk factors. The banking sector as a whole becomes more homogeneous, the

banks�common exposure to shocks increases.

Diversi�cation, however, gives rise to higher monitoring costs. Therefore� instead

of diversi�cation� banks may, second, also choose to specialize in a certain �eld that

appears promising. In doing so, banks are exposed to di¤erent risk factors. The

banking system as a whole becomes more heterogeneous, the banks�common exposure

to shocks decreases. Thus, depending on whether the banks in a banking system use

their access to a wider range of market and products to rather diversify or to specialize,

their common exposure to shocks may increase or decrease.

The overall impact of access to a wider range of markets and products on sys-

temic risk is similarly indeterminate. If banks choose to use the additional investment

and �nancing opportunities to diversify, their individual risk and therefore� ceteris

paribus� the systemic risk increase. At the same time, however, diversi�cation leads

to an increase in the banks�common exposure to shocks. The banks in the system are

all exposed to the same risk factors, which is harmful in terms of systemic risk. Hence,

while diversi�cation leads to a decrease in each bank�s individual risk, it increases the

risk at the system level. The analoguous holds for the case when banks choose to spe-

cialize: Their individual risk increases while the risk at the system level decreases. As

in the case with the banks�common exposure to shocks, the overall impact on systemic

risk is di¢ cult to determine a priori. This ambiguity remains even in the case where

it is known if banks have rather chosen to diversify� i.e., if their common exposure

to shocks has increased� or to specialize� i.e., if their common exposure to shocks
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has decreased. It is not obvious how banks� common exposure to shocks is related

to systemic risk. To summarize: From a theoretical point of view, it remains unclear

(i) whether the observed structural changes in the banking sector�s environment have

increased or decreased banks�common exposure to shocks, (ii)whether they have in-

creased or decreased systemic risk and (iii) how common exposure and systemic risk

are interrelated.

In this paper, we try to clear up these ambiguities with empirical data by studying

a panel of large international banks over a period running from 1993 through to 2006.

Concretely, we intend to provide an answer to the following questions: (1) what was the

impact of international� both economic and �nanciel� integration on banks�common

exposure to shocks between 1993 and 2006? (2) What was the impact of international

integration on systemic risk in the international banking sector between 1993 and 2006?

(3) Is there an empirical link between common exposure to shocks and systemic risk

during the period under consideration? As already pointed out above, the �rst two

questions are not identical. Monnin (2004) also shows with a simple numerical example

that a higher common exposure to shocks does not necessarily imply higher systemic

risk. Indeed, an increase in common exposure can be compensated by a decrease in

banks� total exposure, making the overall systemic risk to decrease. This situation

occurs, for example, when two banks switch from independent risky strategies (no

common exposure, very high individual risk) to a common safe strategy (complete

common exposure, but to a very low risk).

To estimate the impact of international integration on common exposure, we analyse

the evolution of the co-movements � i.e. correlation �between banks�asset-to-debt

ratios (AD ratios henceforth). As shown in Section 2.1, shocks to AD ratios sum up

both shocks to banks�assets and liabilities as well as their impact on each other. AD

ratio movements can thus be considered as a good summary of movements in banks�

overall condition. A high (low) correlation between AD ratios suggests that both
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banks are similarly (di¤erently) a¤ected by shocks and thus that they have a high

(low) common exposure to shocks.

To estimate the impact of international integration on systemic risk, we compute

a systemic risk index based on Lehar (2005) and study its evolution during the period

1993-2006. Lehar�s index measures the probability of observing a systemic crisis�

de�ned as a given number of simultaneous bank defaults� in the banking sector at a

given point in time. We �nally try to see if there is a link between the evolution of

banks�common exposure (i.e. correlation between AD ratios) and systemic risk.

Several studies have analyzed co-movements in banks� characteristics. DeNicolo

and Kwast (2002) �nd a signi�cant rise in stock return correlations between large

US banking institutions during the 1990s. In a similar study for the European Union,

Schröder and Schüler (2003) show that the correlations between 13 national bank stock

indices rose signi�cantly in the last years. Brasili and Vulpes (2005) draw a similar con-

clusion when studying the correlations between European banks�distance-to-defaults.

Hawkesby, Marsh and Stevens (2005) analyze the correlations between equity returns

(and between credit default swaps premia) for a sample of European and US large

and complex �nancial institutions (LCFI). They �nd a relatively high degree of co-

movements in asset prices of LCFIs compared to a control group of non-�nancials.

However, their results also show that a considerable degree of heterogeneity remains

between di¤erent sub-groups of the sample: There exists, e.g., a divide between Eu-

ropean and US banking institutions. The general conclusion from these studies is

that co-movement between banks has increased in the last decade, which suggests that

banks are becoming increasingly similar with time and face more and more the same

risks. Most of these studies conjectured that the observed increase in co-movements

leads to higher systemic risk.

Our paper di¤ers from the previous studies in two ways: �rstly, we use a new

method based on Ledoit, Santa-Clara and Wolf (2003) to estimate the joint dynamic
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of the AD ratios as a whole (i.e. for all banks at the same time), whereas previous stud-

ies concentrated on the dynamic between pairs of banks. The resulting time-varying

covariance matrix can then be used directly in the computation of the systemic risk in-

dex as well as for computing the evolution of correlation between banks. Secondly, and

this is our main contribution, we study in detail the link between common exposure

and systemic risk. We assess if a higher common exposure to shocks (i.e. higher corre-

lation) is associated with higher or lower systemic risk or if it does not play any role for

systemic risk. As mentioned before, other studies often claim that higher correlation

yields to higher systemic risk, without formally checking this assumption.

The main results of our analysis are the followings. Firstly, we �nd that the cor-

relation between banks�AD ratios decreases in the �rst part of the sample period,

and increases after 2000. This suggests that banks have rather specialized� and thus

reduced their common exposure to shocks� than diversi�ed their portfolios in response

to changes in the banking sector environment until 2000. After this date, however,

the banks seem to become increasingly similar and their common exposure rises. This

�nding holds for the whole sample as well as for di¤erent sub-groups (namely North

America and European Union). However, the degree of common exposure di¤ers be-

tween these groups. Correlations between North-American banks tend to be higher

than between their European counterparts. Co-movements between US and European

banks are far less pronounced than within each regional sub-group, suggesting that

these two groups are (at least partially) exposed to di¤erent shocks.

Secondly, in contrast to the correlation analysis, we do not �nd any signi�cant

trend in the systemic risk index. The latter is rather characterized by two peaks at

the end of 1998 and at the end 2002 and the beginning of 2003. These two periods

correspond to two well-known episodes of high level of stress on the banking sector:

the LTCM and the Russian crisis at the end of 1998 and a persistent downturn on

stock market in 2002-2003. Taking a closer look on di¤erent sub-groups, we �nd that
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the high level of systemic risk in 2002-2003 is mainly attributable to European banks

su¤ering additionally from bad economic conditions in the European economy. In the

US sample, the crisis period 2002-2003 is less pronounced but an additional (however

less explicit) crisis period is detected around 1994-1995.

Thirdly, our results point out that correlation between banks is not a reliable mea-

sure of systemic risk. The link between correlation and our systemic risk index is weak

and its direction can change depending on the period considered. On the contrary, the

distance-to-default, which is a combination of AD ratio�s volatility and level, turns out

to be a very reliable factor explaining the systemic risk index. In other words, sys-

temic risk seems to be the consequence of each banks�individual risk taking (i.e., its

distance-to-default) rather than of the banks�common exposure to shocks (correlation).

This �nding warns against viewing systemic risk as a pure correlation phenomenon and

highlights the danger of high and volatile leverage at the individual bank level. Note,

however, that once the e¤ects of the distance-to-default are taken into account, we �nd

that correlation is positively associated with systemic risk. In other words, for a given

level of individual risk, a higher common exposure implies a higher systemic risk.

The paper is structured as follows: Section 2 explains the methodology used to esti-

mate the correlation dynamics and the systemic risk index. The data used is described

in Section 3. Section 4 studies the correlation dynamics between large international

banks�AD ratios. Section 5 presents the estimated systemic risk index and compares

its evolution with the correlation dynamics. Section 6 gives our conclusions and rec-

ommendations for banking sector supervisors.

2 Methodology

As mentioned in the previous section, we need two ingredients to answer the questions

at the centre of this paper: the evolution of the correlations between the banks�AD

ratios and the one of the systemic risk index. To get them, we proceed in four steps:
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(1) we make some assumptions about bank asset and debt dynamics, (2) we use these

assumptions to recover the AD ratios from observable equity and debt data using

Merton�s method,3 (3) we estimate the joint dynamic of the AD ratios, including the

dynamic of their covariances, using a multivariate GARCH model and (4) we use the

estimated dynamic to compute the systemic risk index. The next four sections describe

these steps in detail. In addition, the next section shows why shocks to AD ratios sum

up both shocks to bank assets and debts as well as their e¤ects on each others.

2.1 Asset and debt dynamic

The AD ratio is de�ned as the ratio between the asset market value of a bank and its

debt face value. Unfortunately, asset market values are not directly observable, but,

following Merton (1974), they can be estimated by modelling the bank�s equity as a call

option on the bank�s assets. However, to recover the AD ratios from observed equity

prices with Merton�s technique, we have to assume that asset market values and debt

face values follow a multivariate Itô process such as

264dAt

dDt

375 =
264At 0

0 Dt

375
264�A
�D

375 dt+
264At 0

0 Dt

375
264�AA �AD

�DA �DD

375
264dwA
dwD

375 (1)

We have that dAt and dDt are (N � 1) vectors containing the instantaneous change

in assets Ait and debts D
i
t of all banks, respectively. N is the number of banks. At and

Dt are (N �N) matrices containing the assets Ait and the debts Di
t in their respective

diagonals, all other elements being zeros. �A and �D are (N � 1) vectors regrouping

the constant instantaneous growth rate of banks�assets and debts, respectively. dwA

and dwD (N � 1) are vectors of independent Wiener processes. They represent the

individual shocks to assets and debts of each bank at time t. Finally �AA, �AB, �BA

3The AD ratios are not directly observable because the asset market value is not directly observ-
able.
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and �BB are (N �N) matrices which regroup the instantaneous responses of assets

and debts to the di¤erent shocks. For example, �ijAD (the ij-th element of �AD) is the

instantaneous response of the bank i asset value to a shock in bank j debt.

The diagonals of the matrices �AA and �DD are the direct responses of the bank�s

assets and debt to their own shocks. The diagonal of the matrix �AD (�DA) is the

direct response of a bank�s assets (debt) to a shock a¤ecting its own debt (assets).

All other elements are the indirect responses of a bank�s assets and debt to shocks

a¤ecting other banks�assets and debt. They represent the contagion e¤ects between

banks through interlinkages. Note that we do not assume any symmetrical response

between banks or between asset and debts. For example, the correlation between assets

and debt can be di¤erent according to whether the shock a¤ects the assets or the debt.

Similarly, the response of bank i to a shock to bank j can be di¤erent from a bank j�s

response to bank i�s shock.

Without loss of generality (see Appendix A), we can rewrite equation (1) in the

reduced form

dzt = �dt+�dw (2)

where

��0 = 


zt is the (n� 1) vector regrouping the log AD ratios zit = ln (Ait=D
i
t), � is a (n� 1)

vector of instantaneous drifts in log AD ratios and 
 is the (n� n) variance-covariance

matrix between instantaneous changes in log AD ratios. As shown in Appendix A, the

matrix � sums up all interactions between banks�assets and debts.
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2.2 Recovering AD ratios from equity prices

Merton (1974) �rst suggested to model the bank�s equity as a call option on the bank�s

assets to compute the bank�s default probability estimated by market participants.

This method can also be used to recover the bank�s AD ratio from the equity price.

Merton�s method is based on the fact that if, at debt�s maturity time t+ T , the value

of the bank�s assets is smaller than its debt (Ait+T < D
i
t+T ), then it is not rational for

the shareholders to exercise the option, i.e., they will make the bank default. If the

bank defaults, the value of the equity is then zero. Thus Merton�s model states that

the value of bank i�s equity at time t+ T is:

Eit+T = max
�
Ait+T �Di

t+T ; 0
�

(3)

where Eit is the bank�s stock price.

An equity with such payo¤s is similar to an exchange option4. If both the assets

and the debt are log normally distributed, as stated in Equation (1), its initial value

can easily be computed (Margrabe 1978) and is equal to:

Eit = A
i
t� (d1)�Di

t� (d2) (4)

with

d1 =
zit +

�
�2
zit
=2
�
T

�zit

p
T

d2 = d1 � �zit
p
T

where � (�) is the cumulative normal distribution and �2
zit
is the conditional variance of

4Exchange options are sometimes also referred to as options to exchange one asset for another.
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the log AD ratio. Dividing both sides of Equation (4) by Di
t yields

X i
t = Z

i
t� (d1)� � (d2) (5)

where X i
t is the equity-to-debt ratio of bank i at time t and Z

i
t is its AD ratio at time

t. Using Itô�s lemma, we have that

�xitX
i
t = �zitZ

i
t� (d1) (6)

where �2
xit
is the conditional variance of the log equity-to-debt ratio.

Bank i�s debt Di
t and equity price E

i
t are directly observable. With them, we can

form the equity-to-debt ratio X i
t and compute its conditional variance �

2
xit
. With X i

t

and �xit known, we are left with two unknown variables in Equation (5) and (6): the

AD ratio Zit and its conditional variance �zit . The AD ratio Zit can be recovered by

simultaneously solving Equation (5) and (6) using a numerical iterative process.5,6

Note that this method gives the correct AD ratio only if the market participants

correctly interpret the information they have about the banks. In particular, they

should understand correctly the inter-dependence between banks and integrate it in

their valuation. Note also that this method is not the only one that can be used to

recover the AD ratio.7 However, Hovakimian and Kane (2000) show that the di¤erences

in the AD ratio valuations given by these di¤erent methods are small.

5Note that only the "marginal" variance of the equity-to-debt ratios is necessary to recover the
AD ratios. In particular, this technique does not require to know the correlations between the banks�
equities (see Zhou (2001) for another illustration with a bivariate model). Therefore, this technique
can be applied separately to each bank.

6Other techniques are available to recover the market asset value. Duan (1994) estimates it by
maximizing a likelihood function. Vassalou and Xing (2004) use an iterative process that does not
require the second equation.

7See for example, Bichsel and Blum (2004) for a model without stochastic debt, Ronn and Verma
(1986) for a model with forbearance or Saunders and Wilson (1995) for a model with an in�nite-
maturity put.
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2.3 Estimation of the AD ratio joint dynamics

The next step is to estimate the dynamic process in Equation (2) with empirical data.

We choose to model the AD ratio dynamic with a multivariate GARCH model (M-

GARCH). The main advantage of this kind of model is that it allows for time-varying

variances and covariances. This is necessary in our context since we are interested in

the evolution of the correlation through time.

The equivalent of Equation (2) in discrete time is:

�zt = �z + ut (7)

ut � N (0;Ht)

where �zt is a (N � 1) vector containing the changes in log AD ratios �zit, �z is

a (N � 1) vector of constants, ut is a (N � 1) vector of white noise residuals and Ht

denotes the (N �N) conditional variance-covariance matrix of the residuals. We use

the diagonal Vech model (Bollerslev, Engle and Wooldridge 1988) speci�cation for the

dynamic of Ht. In this model, the conditional covariance h
ij
t between bank i and bank

j depends only on the past covariance and the past residuals:

hijt = !ij + �iju
i
t�1u

j
t�1 + �ijh

ij
t�1 (8)

The model has the property that when two banks experience trouble at the same

time, their correlation increases and they will tend to move together in the future. This

property is important as it captures the empirical �nding that the correlation between

banks seems to increase during bad periods. Yet, correlation will also increase when

both banks are hit by a positive shock; i.e., the covariances behave symetrically.
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In matrix form, Equation (8) has the following representation

Ht = C+A
 ut�1u0t�1 +B
Ht�1 (9)

where the coe¢ cient matrices C, A and B are (N �N) matrices regrouping the

parameters !ij, �ij and �ij, respectively. The symbol 
 denotes the Hadamar product

of two matrices.8 The covariance matrix Ht has some distinctive characteristics to be

respected by the estimation method. First, Ht is symmetric implying that C, A and

B must also be symmetric. Secondly, Ht is a positive semide�nite matrix and thus,

any estimation of it must also be positive semide�nite.

A natural way to estimate Ht and the coe¢ cient matrices C, A and B seems to

use maximum likelihood estimates as it is usually done for univariate GARCH models.

Unfortunately, this is not feasible because (i) the parameters are too numerous and

so intricately linked that existing optimization algorithms do usually not converge,

and (ii) maximum likelihood estimation does not necessarily give positive semide�nite

covariance matrices. To cope with this second problem, econometricians usually impose

additional conditions on the model coe¢ cients to ensure that the matrix Ht is positive

semide�nite.9 In addition to the fact that such restrictions might not make sense from

an economic point of view, Kroner and Ng (1998) have shown that M-GARCH results

are very sensitive to di¤erent speci�cations.

We choose to follow a di¤erent approach to estimate the coe¢ cient matrices C,

A and B: the Flexible M-GARCH method developed by Ledoit, Santa-Clara and

Wolf (2003). This procedure has the advantage to solve both problems previously

mentioned without imposing a priori restrictions on the coe¢ cients. It is based on

a decentralized estimation of the coe¢ cients. Ledoit et al. propose to estimate the

coe¢ cient matrices C, A and B in two steps. In the �rst step, each coe¢ cient of the

8The Hadamar product is the elementwise product of two matrices: U
V = (uijvij).
9See Ding and Engle (2001) for a recent comparison of the restrictions used by di¤erent models.
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matrix is independently estimated with a univariate or bivariate GARCHmodel. Thus,

the estimation of a large matrix is reduced to several univariate and bivariate problems

for which conventional univariate and bivariate GARCH estimation techniques are easy

to apply. As indicated above, the resulting estimated coe¢ cient matrices Ĉ, Â and B̂

will not necessarily ensure the variance-covariance matrix to be positive semide�nite.

Thus, in a second step, Ledoit et al. apply a result from Ding and Engle (2001)

stating that positive semide�nite coe¢ cient matrices are a su¢ cient condition to yield

(almost surely) a positive semide�nite variance-covariance matrix. The second part of

the procedure is thus to �nd the positive semide�nite matrices ~C, ~A and ~B that are

the closest to the Ĉ, Â and B̂ initial matrices.10 The coe¢ cient matrices ~C, ~A and ~B

given by the Flexible M-GARCH estimation are then used to compute the conditional

variance-covariance dynamic with Equation (8) and, in the next step, to compute the

systemic risk index.

2.4 Construction of the systemic risk index

Our systemic risk index follows Lehar (2005). The index is an estimation of the prob-

ability of a systemic banking crisis at time t. In this paper, a systemic crisis is de�ned

as follows:

De�nition 1 A systemic crisis occurs when a percentage � of the banking system be-

comes insolvent within the next k periods.

De�nition 1 requires another de�nition, which speci�es under which conditions a

bank defaults.

De�nition 2 The bank i defaults if the market value Ait of its assets falls below the

face value Di
t of its debt within the next k periods (i.e. A

i
t+j < D

i
t+j for at least one

j 2 [0; k] or equivalently Zit+j < 1 for at least one j 2 [0; k]).
10The positive semide�nite matrice X, which is the closest from the initial matrice Y, can be found

by using a simple algorithm developped by Sharapov (1997).
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Given De�nitions 1 and 2, the systemic risk index can be expressed as:

It (�) = Pr

"
NX
i=1

�itb
i
t > �

#
(10)

where N is the number of banks, �it is the weight
11 of bank i in the banking system at

time t and

bit =

8><>: 1 if Ait+j < D
i
t+j for at least one j 2 [0; k]

0 otherwise

bit is a dummy variable that takes the value 1 if bank i goes bankrupt in the next k

periods. There are various ways to determine a bank�s weight �it in the banking sector

(e.g. equal weight, proportion of a bank�s assets in the total banking sector�s assets,

proportion of a bank�s interbank deposits in the total system, etc.). We chose to give

an equal weight to each bank.

Unfortunately, it is not possible to compute analytically the probability of a sys-

temic crisis. To estimate it, we proceed with a Monte-Carlo simulation based on the

estimated AD ratio joint dynamics described in section 2.3. An alternative would have

been to use approximation techniques such as the one proposed by Carmona and Dur-

rleman (2004). The Monte-Carlo simulation, yet, has the advantage of being easier and

faster to implement and more �exible for further developments (e.g. modi�cation of

the dynamic or explicit modelling of contagion e¤ects). A description of the simulation

algorithm to estimate the systemic risk index is given in Appendix B. We set k = 12

(one year) in this paper.

11The individual weights are normalized such that
PN

i=1 �i = 1.

14



3 Data

The data needed to compute the correlation between AD ratios and to construct the

systemic risk index consist of individual banks�balance sheet data (debt) and market

information (equity prices). Data on debt is taken from Bloomberg while equity prices

stem from Datastream. As data on debt is not available on a monthly basis, quarterly

and� for some banks� yearly data have been transformed into monthly data by linear

interpolation.

We constructed two di¤erent datasets. The �rst dataset comprises monthly data

on 27 large international banks from November 1992 until June 2006 (long sample).12

The second dataset (short sample) comprises data on a total of 39 large international

banks� including the 27 institutions already represented in the �rst dataset� from

June 1997 until June 2006.13

4 Common exposure to shocks

To get an idea of how banks�common exposure to shocks has evolved in time, we try

to identify a potential common trend in AD ratio correlations between pairs of banks.

A high AD ratio correlation indicates that two banks are both equally a¤ected by a

shock, i.e., that they have a high common exposure to shocks. Thus, if we observe

a common upward trend in all correlations, we can conclude that, in the aggregate,

banks�common exposure has increased and that banks have become more similar.

We can get a �rst idea on the trend in correlation by observing the evolution of the

average correlation (cf Figure 1). In both samples, the average correlation decreases

until about 2000 and then increases regularly. This pattern is also observed in the

average correlation between pairs of North American banks, pairs of European Union

12The long sample consists of banks from: Germany (3), France (1), Italy (2), Netherlands (2),
Spain (2), Sweden (2), Switzerland (1), UK (3), USA (2), Canada (5), Australia (4).

13The short sample consists of banks from: Belgium (3), Germany (3), France (2), Italy (3),
Netherlands (2), Spain (2), Sweden (2), Switzerland (1), UK (5), USA (7), Canada (5), Australia (4).
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Figure 1: Correlation between AD ratios (left: long sample, right:
short sample)
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banks and between pairs of banks from each sub-group. This is a �rst indication that,

in the aggregate, banks�common exposure to shocks has decreased until about 2000

and then increased.

To study more precisely this hypothesis, we estimate the common trend to all

correlations in a panel data analysis. We then test for a break in the slope of the

common trend. Concretely, we estimated the following system of equations

yijt = 
 + �t+ u
ij + "ijt (11)
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Table 1: Test for a break in the common trend and estimated slopes
of the trend
Sample Region supF -

stat
p-value Break

date

 � before

break
� after
break

1993-2006 World 1604.05 <1% 2000.04 0.5918 -0.0034 0.0033
European Union 491.46 <1% 1999.12 0.6742 -0.0043 0.0040
North America 100.82 <1% 2000.06 0.6845 -0.0031 0.0026
Cross 362.65 <1% 2000.01 0.5593 -0.0032 0.0028

1997-2006 World 644.99 <1% 1999.10 0.2488 -0.0026 0.0027
European Union 114.28 <1% 1999.08 0.2308 -0.0025 0.0027
North America 199.37 <1% 2001.11 0.3084 -0.0011 0.0049
Cross 276.64 <1% 1999.12 0.2698 -0.0028 0.0030

All co e¢ cients are sign�cant at a 1% con�dence level. A supF-statistics greater than 16.64 ind icates that the null hypothesis of no
break is rejected at a 1% con�dence level.

where yijt is a logit transformation
14 of the correlation between bank i and j at time t, 


is the average (logit) correlation, � is the slope of the common trend, uij is a �xed e¤ect

particular to each pair and "ijt is a independant heteroskedastic error term, which is

normally distributed with variance �2ij. We then test the hypothesis of a break at time

t0 in the slope � of the trend. We used the test developed by Bai and Perron (1998 and

2003) which simultaneously estimates the most probable break date and then tests if

the break is statistically signi�cant. We do the estimation and the test for both sample

and for the entire set of correlations, for correlations between North American banks,

for correlations between EU banks and for correlations between North American and

EU banks. The results are presented in Table 1.

The estimated break dates lie between August 1999 and June 2000 (with an ex-

ception of a break date of November 2001 for the North American banks in the short

sample). It indicates that a change in banks�common exposure occurred around the

beginning of this century. Before this date, the trends are negative, which implies

that the common exposure to shocks had a tendency to decrease. This suggests that,

during this period, banks have rather chosen to specialize than to diversify their porto-

14More precisely, yijt = ln
�
qijt =

�
1� qijt

��
where qijt = (cor (i; j) + 1) =2. This transformation

insure that yijt is distributed over ]�1; +1[ whereas the correlation is bounded between �1 and 1.
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folios. After 2000, the trends reverse and common exposure to shocks increases, hinting

at increasing similarities or interdependencies between banks. An increase in banks�

co-movements since 1999 is also documented by Brasili and Vulpes (2005).

This trend reverse is observed in both regions and between these regions. Figure 2

displays the estimated trend for correlation between North American banks, between

EU banks and between banks of each region.15 Except for the end of the sample, the

correlation between North American banks is higher than between EU banks. North

American banks seem to be more commonly exposed to shocks, or more homogeneous,

than EU banks. The correlation between EU and North American banks is the lowest,

indicating that banks from di¤erent regions are less commonly exposed to shocks or

more heterogeneous. This result is in line with Hawkesby, Marsh and Stevens (2005),

who �nd a high degree of heterogeneity between both sub-groups and a higher cor-

relation between US banks. Note �nally that the slope of the EU banks is steeper

in both phases. EU banks have specialized more strongly during the pre-2000 period

and then have become more similar than North American banks, to the point that the

correlation between EU banks seems higher now than between US banks.

5 Evolution of systemic risk

Do the changes observed in the banking industry in the past years have any impact on

systemic risk? In particular, does the increase in common exposure to shocks observed

since 2000 generate a higher systemic risk? To answer these questions, we constructed

a set of indices of systemic risk. These indices are based on Lehar (2005). They re�ect

the probability to observe a systemic crisis in the banking sector (cf. Section 2.4). We

computed a global systemic risk index for all the banks in our sample and two regional

sub-indices, one for North American banks and one for EU banks. For all three regions

15The trend for the short sample are not presented here but can be obtained by the authors. The
conclusions are similar.
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Figure 2: Estimated common trends in AD ratios correlation (long sam-
ple, in logit tranformed units)
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(World, North America, EU), we computed two indices: one for which a default of 10%

of the banking sector triggers a crisis, one for which 20% of the banking sector must

default to trigger a crisis. We computed these 6 indices for both samples (cf. Section

3), which makes a total of 12 systemic risk indices. These indices are presented in

Figure 3.

The global index points out two periods of high systemic risk: at the end of 1998

and at end 2002 until beginning 2003. These two episodes correspond to the LTCM and

Russian crisis in 1998 and to the stock market downturn in 2002-2003. The systemic

risk during the rest of the sample is less acute. The 1998 peak is observed in both the US

and the EU sub-indexes. The EU banks seem to have been more a¤ected than the North

American banks in 2002-2003, probably because they were also facing bad economic

conditions at that time. In the US banking system, a period of higher systemic risk is

also observed in 1994-1995, which translates by a slightly higher systemic risk in the

global index.
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Figure 3: Systemic risk index (left: long sample, right: short sample)
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Table 2: Trend in the systemic risk index
Sample Index Trend before 2000 Trend after 2000
1993-2006 World 10% -0.0196** 0.0109

World 20% -0.0233** 0.0034
North America 10% 0.0075 -0.0110
North America 20% 0.0018 -0.0079
EU 10% 0.0031 0.0019
EU 20% 0.0022 0.0142

1997-2006 World 10% -0.0151 -0.0076
World 20% -0.0435 0.0012
North America 10% -0.0223 -0.0343**
North America 20% -0.0397 -0.0118**
EU 10% -0.0120 -0.0030
EU 20% -0.0299 -0.0004

* (**) ind icates that the co e¢ cient is sign i�cant at a 5% (1% ) con�dence level. The p ercentage asso ciated
to each index corresp onds to the prop ortion of the banking system that need to defau lt to trigger a crisis
(e.g .World 10% corresp onds to the system ic risk index for which a 10% of the banking system has to defau lt
to trigger a crisis).

5.1 Trends in the systemic risk index

A quick look at Figure 3 suggests that the path of the systemic risk index is very

di¤erent from the evolution of banks�common exposure to shocks presented in Figure

1. The latter has a distinct V-shape, whereas the former is characterized by two peaks

of higher systemic risk for the banking sector. This visual impression is con�rmed when

we try to �t a trend with a break to the systemic risk index at the beginning of 2000

(which corresponds to the break date observed in the correlation trend). The results

of this regression are presented in Table 2. Since the index is a probability bounded

between 0 and 1, we estimate the coe¢ cients with a logit regression using weighted

least squares as suggested by Greene (2000).16

Most indices do not display any signi�cant trend. Only the global and the North

American systemic risk indices seem to have signi�cantly decreased before 2000 in

the long sample and after 2000 in the short sample, respectively. Furthermore, no

signi�cant break date is detected by the Bai and Perron test for any of the indices.

This result contrasts with the unambiguous trends and breaks observed in the AD ratio

16All regressions in this section are made using this method.
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correlation: While a clear V-shaped trend appears in the dynamic of banks�common

exposure to shocks, no apparent trend is detected in the systemic risk index�pattern .

Moreover, the slope of the signi�cant trend observed after 2000 for the North American

systemic risk index does not correspond to the sign that one would a priori expect (i.e.

the systemic risk decreases whereas the common exposure to shocks increases).

Many other studies record similar results as ours for banks�common exposure to

shocks or banks�co-movements. Most of them conclude, without explicitly checking it,

that an increase in co-movements induces a higher systemic risk. However, given our

results for the systemic risk index, the existence of the link between co-movements or

common exposure to shocks and systemic risk is ambiguous. The next section studies

this question in more detail.

5.2 Are common exposure and systemic risk related?

The results of the previous section raise questions about the existence of a link be-

tween banks�common exposure to shock (i.e. AD ratio correlations) and systemic risk

in the banking sector. Do common exposures really play a role for systemic risk? How

can we interpret a change in common exposure in terms of systemic risk? From the

construction of the systemic risk index (see Section 2.4), it is obvious that three ele-

ments determine its value: 1) the correlation structure between banks�AD ratios, 2) the

volatilities of the AD ratios and 3) the level of the AD ratios. While the �rst component

captures the systemic characteristics of a banking sector, the last two components are

bank-speci�c. Combined in the distance-to-default17, they describe bank�s individual

risk taking. The systemic risk index is a function of these systemic and bank-speci�c

dimensions. Unfortunately, we do not know the exact form of this function. We can

guess though that it is likely to be non linear.

To get an idea about each factor�s in�uence on the systemic risk index, we compute

17The distance-to-default is equal to the level of the AD ratio divided by its volatility.
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the rank correlation between the systemic risk index and (i) the banks�AD ratio corre-

lations and (ii) the banks�distance-to-default. The rank correlation statistics are pre-

ferred to the traditional (linear) correlation (Pearson coe¢ cient) because they measure

the link between two variables independently of the form taken by the function linking

them. We use both the Spearman rank-order correlation coe¢ cient and the Kendall

measure of correlation to compute the rank correlation.18 We start by computing the

rank correlation between the average correlation (or average distance-to-default) and

the systemic risk index. Note, however, that it is di¢ cult to adequately re�ect the

complete correlation structure (or distance-to-default structure) in one single measure

such as the average. In particular, it is possible that the systemic risk index might

be mainly in�uenced by extreme values of correlations or distance-to-defaults (i.e., by

banks that are extremely commonly exposed or extremely close to default). To check

for that, we also use the 75% (25%) and the 90% (10%) percentiles of the correla-

tions (distance-to-defaults). The evolution of the average and centiles of correlations

and distance-to-defaults are displayed in Figure 4. The rank correlation between the

systemix risk index and these di¤erent measures are presented in Table 3.19

The results for the rank correlation show that the link between systemic risk and

banks�common exposure (i.e., AD ratio correlation) is ambiguous. A positive relation-

ship is identi�ed in the long sample, while the same relationship appears to be negative

in the short sample. On the opposite, the link between systemic risk and distance-to-

default is always negative. Moreover, the rank correlation between systemic risk and

distance-to-default is always stronger than the one between systemic risk and common

exposure. We thus draw the following main conclusion: Low distance-to-default is a

much stronger and much more reliable sign of systemic risk than high correlation. The

e¤ect of banks�common exposure to shocks on systemic risk is weaker and can even

18Spearman rank-order correlation coe¢ cient measures the linear correlation between the ranks of
each observation. Kendall�s � is even more nonparametric since it uses the relative ordering of the
data, wihtout assuming any linear relation at any point of its computation.

19We present the results for the World index only. The results for the regional systemic risk indices
can be obtained by the authors. The conclusions do not di¤er from those presented here.
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Figure 4: Evolution of the AD correlations and the distance-to-
defaults (left: long sample, right: short sample)
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Table 3: Rank correlation between the systemic risk index and differ-
ent factors
Sample Index Factor Correlation Distance-to-default

Spearman
coe¢ cient

Kendall�s
tau

Spearman
coe¢ cient

Kendall�s
tau

1993-2006 World 10% Average 0.2369 0.1620 -0.8587 -0.6833
75% percentile 0.2874 0.1949 -0.8549 -0.6752
90% percentile 0.4291 0.2880 -0.9046 -0.7429

World 20% Average 0.3041 0.2254 -0.7880 -0.6379
75% percentile 0.3310 0.2464 -0.7553 -0.6093
90% percentile 0.4731 0.3518 -0.8008 -0.6470

1997-2006 World 10% Average -0.3510 -0.2339 -0.9348 -0.7919
75% percentile -0.3424 -0.2319 -0.9375 -0.7976
90% percentile -0.3041 -0.2159 -0.8984 -0.7256

World 20% Average -0.0618 -0.0472 -0.7630 -0.5939
75% percentile -0.0579 -0.0429 -0.7730 -0.6097
90% percentile -0.0470 -0.0401 -0.6837 -0.5238

The fourth (�fth) column gives the Sp earman (Kendall) co e¢ cient b etween di¤erent system ic risk ind ices and the m ean, 75% centile
and 90% centile of the correlation b etween banks� AD ratio . The sixth (seventh) column gives the Sp earman (Kendall) co e¢ cient
b etween di¤erent system ic risk ind ices and the m ean, 25% centile and 10% centile of the banks� distance to defau lt.

change direction depending on the period.

The strong link between distance-to-default and systemic risk is illustrated by Fig-

ure 5, in which a logit transformation of the systemic risk index is plotted against

AD ratio correlation (left) and distance-to-default (right), respectively. Clearly, the

dispersion with the distance-to-default is smaller than with correlation. Interestingly,

with this transformation, the link between the systemic risk and the distance-to-default

seems to be relatively linear.

Table 4 presents the results of a linear regression of the (logit of the) systemic

risk index on the AD ratio correlation and on the distance-to-default, respectively.

The coe¢ cient on the distance-to-default is signi�cantly negative in all speci�cations.

The degree of correspondance (coe¢ cient of partial correlation R2) between the index

and the estimated regression is very high (mostly over 80%). The results from the

regression with correlation are less convincing: We have a very low coe¢ cients of

partial correlation (with the exception of the 90% centile in the long sample) and in

the short sample, most coe¢ cients are not signi�cant.
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Table 4: Regression of the systemic risk index on correlation and
distance-to-default

World 10% World 20%
Sample Regressor Coe¢ cient R2 Coe¢ cient R2

1993-2006 Mean correlation 7.6496* 0.0396 17.4344** 0.1416
75% centile of correlations 10.4503** 0.1271 20.1928** 0.3220
90% centile of correlations 15.8976** 0.5599 25.3561** 0.7423
Mean distance-to-default -0.5073** 0.7761 -0.8087** 0.8164
25% centile of distance-to-defaults -0.6618** 0.8601 -1.1114** 0.8683
10% centile of distance-to-defaults -0.9528** 0.8545 -1.4776** 0.7810

1997-2006 Mean correlation -4.1073 0.0234 -0.4085 0.0001
75% centile of correlations -3.2653 0.0306 -0.3175 0.0001
90% centile of correlations -3.6337* 0.0473 0.0664 0.0000
Mean distance-to-default -0.5672** 0.8735 -0.9852** 0.8830
25% centile of distance-to-defaults -0.7476** 0.8908 -1.2656** 0.8935
10% centile of distance-to-defaults -1.0445** 0.7599 -1.9254** 0.7650

* (**) ind icates that the co e¢ cient is sign i�cant at a 5% (1% ) level.

Not surprisingly, these regression results coincide with those obtained from the

rank correlation analysis. The common exposure (i.e., AD ratio correlation) is a poor

predictor of the systemic risk index and the direction of its relation changes depending

on the period. The distance-to-default, by contrast, explains well the systemic risk

index. This di¤erence in precision is illustrated by Figure 6. In each panel, the actual

systemic risk index is compared with a proxy given by a linear function of one of the

two factors (i.e., common exposure and distance-to-default, respectively). The match

between the systemic risk index and its proxy based on the 10% percentile of distance-

to-default is striking (right and lower panel of Figure 6). Taking distance-to-default as

a proxy for measuring systemic risk seems to give a fairly good and easily obtainable

estimation of it.

However, while the distance-to-default seems to be the main factor driving the

systemic risk, the common exposure might account for the portion of the systemic risk

index that is not explained by the distance-to-default. To check that, we compute the

rank correlation between the common exposure and the residuals of a regression of

the systemic risk index on the distance-to-default. The idea is to check if a positive
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Figure 5: Systemic risk index vs. AD correlations (left) or distance-
to-default (right) (long sample)
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Figure 6: Estimated systemic risk index (long sample)
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residual (i.e., an "excess" of systemic risk given what is estimated by distance-to-

default) is associated with a high or a low common exposure. The rank correlations

are presented in Table 5.

Table 5: Rank correlation with residuals
Sample Residuals from equation using: Factor Spearman

coe¢ cient
Kendall�s
tau

Long Mean distance-to-default Mean correlation 0.6468 0.4638
75% perc. correlation 0.5845 0.4142
90% perc. correlation 0.5158 0.3677

10% perc. distance-to-default Mean correlation 0.3944 0.2752
75% perc. correlation 0.3476 0.2366
90% perc. correlation 0.3079 0.2079

Short Mean distance-to-default Mean correlation 0.6509 0.4540
75% perc. correlation 0.6185 0.4166
90% perc. correlation 0.5300 0.3683

10% perc. distance-to-default Mean correlation 0.4914 0.3428
75% perc. correlation 0.4630 0.3211
90% perc. correlation 0.3757 0.2565

The results show that residuals are positively correlated with common exposure.

For example, the Spearman rank correlation between the mean AD ratio correlation

and the systemic risk left unexplained by the mean distance-to-default (residuals of the

regression of the systemic risk on the mean distance-to-default) is 0.65. This degree of

correlation is signi�cantly higher than between common exposures and the systemic risk

index (cf. Table 3), suggesting that the e¤ect of common exposures on the unexplained

part of systemic risk is greater than on the systemic risk itself. We also see that the

rank correlations are all positive. This means that, once the distance-to-default is taken

into account, a higher common exposure always induces a higher systemic risk.

To conclude, we �nd that the systemic risk dynamic does not match the dynamic

observed for banks�common exposure. This indicates that common exposure is prob-

ably not the main factor explaining systemic risk. Indeed, further analysis reveals

that the banks�distance-to-defaults, which describes banks�individual risk taking, is

the main driving force. However, we �nd that common exposures explain relatively
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well the part of systemic risk left "unexplained" by the distance-to-default. We also

�nd that, once the distance to default is taken into account, higher common exposure

induces higher systemic risk.

Note that we have also tried to disentangle the e¤ect of the distance-to-default

between the AD ratios level, which represents the reserves that the banks can use to

absorb shocks, and its volatility, which measures the risk of their investments. We found

that both elements are of equal importance to explain the evolution of the systemic

risk. The volatility plays a signi�cant role in explaining the observed peaks whereas

the AD ratios level is more relevant in other time.

6 Conclusion

This paper answers two questions. The �rst one is: how has banks�common exposure

to shocks evolved in the last decade in response to the changes observed in international

banking sector�s environment? To answer this question, we estimate the correlations

between large international banks�asset-to-debt (AD) ratios over 1993-2006 with the

Flexible M-GARCH approach developed by Ledoit, Santa-Clara and Wolf (2003). We

�nd a decreasing trend until 2000 followed by an increasing trend. This suggests that

during the nineties, banks (or at least some of them) have taken advantage of the

new technologies and markets available to them to pursue their own business strategy

and to di¤erentiate from the others, thus reducing their common exposure. Since 2000,

however, the banks�common exposure to shocks increased rapidly, which could indicate

that they adopt increasingly similar strategies or markets. This �nding is also robust

for di¤erent sub-groups of the sample.

The paper�s second question concerns the impact of these trends on systemic risk

in the banking sector. From a theoretical point of view, ongoing �nancial market

integration and rising cross-border activities may have both favourable and adverse

e¤ects on the stability of the banking system. To explore this question empirically, we
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construct a systemic risk index based on Lehar (2005) where systemic risk is de�ned

as the probability of a joint failure of a critical number of banks. In contrast to the

correlation analysis, no clear trend emerges. Instead, we observe two peaks in the end

of 1998 (LTCM and Russian crisis) and in 2002-2003 (stock market downturn), the

latter mainly hurting European banks.

The di¤erent patterns observed for banks�common exposure and for the systemic

risk contrasts with the widespread view that systemic risk increases with banks�co-

movement. Our further results con�rm that correlation between AD ratios is not a

reliable measure for systemic risk. Instead, we �nd that the distance-to-default is the

main driver of the systemic risk index. Once this distance-to-default is taken into

account, however, correlation is positively associated with systemic risk.

These �ndings have two direct consequences for supervisory authorities: �rst, they

show that systemic risk cannot be viewed as a pure correlation phenomenon. Instead,

they highlight the danger of high and volatile leverage. According to our results, the

main driver of systemic risk is the size of the risks taken by each bank individually

(re�ected by their distance-to-default) rather by their common exposure to shocks

(i.e. AD ratio correlation). Thus, supervisors concerned by systemic stability should

�rst concentrate on making sure that banks are not taking disproportionate risks before

trying to reduce inter-linkage or to enforce diversi�cation in the banking sector. Second,

from the monitoring point of view, co-movements between banks seem to be a spurious

measure of systemic risk. Taken individually, it gives, in the best case, a weak signal

about systemic risk or, in the worst case, a signal of wrong direction. To be useful and

unambiguous about the evolution of systemic risk, co-movement must be interpreted

in combination with distance-to-default.
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A Reduced form asset un debt dynamic

Developping each equation of the system
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which are both Itô processes where �Ai =
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. Using Itô�s formula, we get that

d lnAit =
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�
dt+ �AidwAi

d lnDi
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To get the dynamic of dzit, note that z
i
t = lnA

i
t � lnDi

t, which implies that dz
i
t =

d lnAit � d lnDi
t. Using the two previous equations in this expression gives

dzit = �
i
zdt+ �zidwzi
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where

�iz = �iA � �iD �
1
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We can see that the dynamic of the AD ratio sums up the instantaneous growth rate of

the bank�s asset and debts as well as all interactions with shocks to its own and other

banks�assets and debts.

Regrouping this equation for all the banks in one single system yields

dzt = �dt+�dw

B Simulation algorithm

To compute the systemic crisis index It (�), we start the simulation at time t with the

vector of AD ratio zt and the estimated covariance matrix Ht. The simulation uses the

following algorithm:

1. Generate a vector et containing N independent standard white noises. et simu-

lates the independent shocks to the AD ratios.

2. Generate the vector ut from the vector et with a Choleski decomposition of the

variance-covariance matrix Ht. ut is the total e¤ect of the di¤erent individual

shocks et on each AD ratio.

3. Generate the new vector zt+1 = zt +�zt+1 with Equation (7).

4. For each bank, check if zit+1 < 0 (insolvency condition). If bank i becomes

insolvent, set bit = 1.
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5. Check if there is a systemic crisis, i.e. if
PN

i=1 �
i
tb
i
t > �. Stop the algorithm if

there is a systemic crisis.

6. If there is no systemic crisis, compute the new variance-covariance matrix Ht+1

with Equation (9), the vector ut generated in Step 2 and the estimated coe¢ cient

matrices ~C, ~A and ~B.

7. Repeat Steps 1 to 6 k times.

For each period, repeat this algorithmM times. The probability of a systemic crisis

is then estimated by the number of times that the algorithm has stopped over M .
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