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Residential mortgage credit risk
• Economically significant - $11 trillion 
• Limitations of the existing hedging tools

– Mortgage insurance contracts
• Limited capitalization of mortgage insurers
• Only the first loss position

– Securitization 
• Bundling of securitization and guarantee
• Agency securitization is only for conformable loans

– Currently traded OTC derivative contracts (ABX.HE) 
and house price derivatives (CME) 

• Basis risk



New instruments may improve the 
efficiency of the system

• Example: ARMs held as whole loans - $3 trillion
– No need for dynamic hedging (+)
– Loss reserves versus marked-to-market (+)
– Selling is less consequential (+)
– Overexposure to regional fluctuations (-)
– Worse capital requirement than securities (-)

• Hedging without the drawbacks of existing ones
– Help depositories hold whole loans and enjoy of 

smaller capital requirements and diversification



Contribution

• Propose derivatives based on the credit losses 
of a reference mortgage pool
– Do not have the same limitations as mortgage 

insurance and securitization
• Analyze the basis risks of these contracts

– Theoretical analysis (simulations of a theoretical 
model of default)

– Empirical analysis (LoanPerformance data) 
– Standard measure of basis risk (adjusted-R2)
– Benchmark basis risk with house-price derivatives



Summary of Conclusions

• Static hedges in simulations with 
– Loss based index (R2 = 86%)
– House-price index (R2 = 32%)

• Static hedges in empirical analysis with 
– Loss based index (adj-R2 = 17%)
– House-price index (adj-R2 = 10%)

• Simple dynamic hedges with house-price index
– In simulations (R2 = 46%)
– In empirical analysis (adj-R2 = 12%)



Related Literature

• House-price index to hedge credit risk
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• House-price index use by consumers
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The Hedged Variable
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• Let the credit loss of a mortgage i at time t be

• Where                   are the loss severity and the balance 
of origination of mortgage i

• The loss per unpaid original balance is of a portfolio is 

• N is the number of loans at the origination of the portfolio



The Hedge Ratios
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• Dynamic hedge - buy      contracts at time t of a contract 
that generates the cash flow      at t +1
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• Static hedge - buy       contracts at time zero of a contract 
that generates the cash flow     for all t between 1 and T.

• Minimize the variance of the hedged portfolio cash flows
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The Hedge Instruments and Effectiveness
• A derivative with cash flows based on the credit losses 

of a reference pool
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• A derivative paying the appreciation in the house-price 
index between t-1 and t 
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• Analyzing hedging effectiveness
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Simulations
• Simulate a portfolio of 1,000 loans and a 

reference pool with 10,000 loans
• Property values 

– follow a geometric Brownian motion 
– correlated with a house-price index. (ρ = 50%)

• Mortgage default happens when house 
price drops below a certain level D 

• Estimate the hedging effectiveness 
regression for each simulation



Simulation – Table 1

1 2 3
INTERCEPT 0.0004 2.7E-06 3.1E-06

(7.65) (0.14) (0.16)
HPI -0.0057 -5.6E-05

(-4.99) (-0.14)
INDEX 0.9802 0.9795

(57.90) (55.70)
R2 0.0683 0.8639 0.8643
Adjusted-R2 0.0683 0.8639 0.8639



Improving HPI performance

• Losses are non-linear function of AGE
– Control for AGE and AGEDUM (dummy =1 if 

AGE smaller than 9 months, zero otherwise)
– HPI hedge ratio change with AGE and AGEDUM

• Mortgage loans are like put options on HPI
– HPI hedge ratio change with CHPIDUM (dummy 

= 1 if cumulative HPI since origination is smaller 
than -1% and zero otherwise)



Simulation – Table 1
4 5 6 7 8 9

INTERCEPT 0.0010 7.5E-06 8.7E-06 0.0003 0.0003 0.0009
(11.34) (0.18) (0.20) (7.77) (7.89) (12.88)

HPI -0.0053 -6.0E-05 -0.0039 -0.0118 -0.0116
(-5.61) (-0.15) (-3.37) (-4.77) (-6.03)

INDEX 0.9808 0.9797
(48.95) (46.56)

AGE x AGEDUM 0.0003 -8.7E-06 -8.2E-06 0.0003
(4.49) (-0.26) (-0.25) (5.42)

AGE -3.5E-06 -2.4E-08 -2.8E-08 -3.4E-06
(-8.46) (-0.13) (-0.15) (-9.85)

HPI x CHPIDUM -0.0093 -0.0017 -0.0061
(-2.67) (-0.75) (-1.74)

AGE x HPI 4.3E-05 4.5E-05
(3.82) (5.07)

AGEDUM x HPI -0.0057 -0.0044
(-2.92) (-2.81)

R2 0.3199 0.8669 0.8673 0.1123 0.2133 0.4569
Adjusted-R2 0.3161 0.8662 0.8662 0.1098 0.2067 0.4492



Data
• LoanPerformance Data 

– More than 4 million securitized subprime 
mortgages originated from 1997 to 2006 

– Origination balance, LTV, FICO, credit grade, 
losses due to REO or short sale

• OFHEO house-price indexes
– Repeat sale, quarterly, state indexes



Empirical Analysis

• LHS – losses of a pseudo portfolio
– Pseudo portfolio - all the loans in a given pool with a 

given origination year and state
• RHS 

– INDEX of losses of a reference pool with all 
mortgages in a given state and origination year

– OFHEO HPI
– AGE, AGEDUM, CHPIDUM
– Lagged INDEX and HPI
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Empirical Results – Static Hedging
1 2 3 4 5 6 7 8

INTERCEPT 0.0012 0.0001 0.0001 0.0012 0.0001 0.0007 0.0002 0.0001
(3.08) (0.30) (0.30) (2.97) (0.28) (0.38) (0.01) (0.00)

HPIt 0.0096 0.0064 0.0429 0.0083 0.0028
(-0.05) (-0.08) (0.21) (0.11) (0.10)

INDEXt 0.8464 0.8643 1.0240 1.0310 1.0361
(1.91) (1.94) (0.83) (1.60) (1.58)

HPIt-1 -0.0429
(-0.24)

HPIt-2 -0.0116
(-0.02)

HPIt-3 0.0065
(-0.17)

INDEXt-1 -0.0978
(-0.17)

INDEXt-2 0.0533
(0.16)

INDEXt-3 -0.1797
(-0.02)

AGE x AGEDUM 5.4E-05 -1.4E-05 -1.5E-05
(1.05) (-0.11) (-0.13)

AGE -5.7E-06 -7.3E-06 -7.5E-06
(0.34) (0.22) (0.22)

R2 0.0450 0.1306 0.1767 0.1274 0.2354 0.1616 0.2206 0.2479
Adjusted-R2 0.0450 0.1306 0.1500 0.0356 0.1564 0.1054 0.1685 0.1697
Obs. 49 49 49 49 49 49 49 49



Empirical Results – Dynamic Hedging
9 10

INTERCEPT 0.0012 0.0005
(3.13) (0.25)

HPIt -0.0281 -0.1823
(-0.44) (-0.47)

HPI x CHPIDUM 0.1109 0.0404
(0.75) (0.41)

AGE x AGEDUM 7.0E-05
(1.01)

AGE 6.5E-07
(0.40)

AGE x HPI 0.0047
(0.27)

AGEDUM x HPI 0.0069
(0.52)

R2 0.0845 0.2574
Adjusted-R2 0.0547 0.1197
Obs. 49 49



Conclusion

• Derivatives based on loss-based indexes
– May allow depositories to achieve the 

economic benefits of hedging while holding 
portfolios of whole loans

– The basis risk of static hedges made with 
these derivatives is smaller than the basis risk 
made with simple dynamic hedges using HPI

• Further research to improve the hedge 
effectiveness of loss-based indexes



Improving Hedge Effectiveness

Use weights to match reference pool 
characteristics to pseudo pool
– Partition loans in both reference and pseudo 

into categories by the following
• Origination year, state (aggregated), Origination 

amount>$75 k, Fixed vs. ARM, ARM 2-28, Investor, 
Cashout, LTV>=80, FICO>=630, Risk Class B, and 
Risk Class C 

– Base index on weighted reference pool losses
• Weight = Ratio of origination amounts in pseudo 

pool to reference pool by category



Preliminary Results
• Weights

– Number of pseudo pools: 1266
– Distribution of non-zero weights across pools

• Mean: 0.04 
• 95 percentile: 0.16
• 99 percentile: 0.55

• Regression of pseudo pool losses on weighted 
reference pool losses
– Average R2: 0.33 

• Regression of summed pseudo pool losses on 
summed weighted reference pool losses
– Average R2: 0.85


