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1. Introduction 

 

Recent difficulties have drawn attention to the risk management practices of institutional investors in 

general and defined benefit pension plans in particular. A perfect storm of adverse market conditions 

around the turn of the millennium has devastated many corporate defined benefit pension plans. Negative 

equity market returns have eroded plan assets at the same time as declining interest rates have increased 

market-to-market value of benefit obligations and contributions. In extreme cases, this has left corporate 

pension plans with funding gaps as large as or larger than the market capitalization of the plan sponsor. 

For example, in 2003, the companies included in the S&P 500 and the FTSE 100 index faced a cumulative 

deficit of $225 billion and £55 billion, respectively (Credit Suisse First Boston (2003) and Standard Life 

Investments (2003)), while the worldwide deficit reached an estimated 1,500 to 2,000 billion USD 

(Watson Wyatt (2003)). For some companies, pension deficit is (much) larger than market cap, a well-

known example being the United Airlines with a pension fund deficit amounting to $ 9.8 billion by mid 

2005 with a market cap well under one billion.1 

 

That institutional investors in general, and pension funds in particular, have been so dramatically affected 

by recent market downturns can be taken as an indication that asset allocation strategies implemented in 

practice may not be consistent with a sound liability risk management process. In particular, it has often 

been argued that the kinds of asset allocation strategies implemented in practice, which used to be heavily 

skewed towards equities in the absence of any protection with respect to their downside risk, were not 

consistent with a sound liability risk management process. According to an annual survey conducted by 

LCP (Lane, Clark & Peacock Actuaries & Consultants), it turns out that by 1992, % holdings in equities 

by pension funds were 75% in the UK, 47% in the US, 18% in the Netherlands and 13% in Switzerland. In 

2001, midway through the bear market, pension funds had 64% of their total assets in equities in the UK, 

60% in the US, 50% in the Netherlands, and 39% in Switzerland. As a result of such a domination of 

equities, the increase in liability value that followed decrease in interest rates was only partially offset by 

the parallel increase in the value of the bond portfolio. 

 

One question that naturally arises is whether the crisis could have been avoided by better asset allocation 

decisions. Another related question is whether it is possible to improve in the current situation and help 

solve the pension fund crisis by sound asset allocation practices. Academic research on asset allocation in 

the presence of liability constraints (also known as asset-liability management) has focused on extending 

Merton’s intertemporal selection analysis (see Merton (1969, 1971)) to account for the presence of 

                                                 
1 Declared by PBGC on 22 Jun. 2005, on a hearing held by the U.S. House Subcommittee on Aviation.  
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liability constraints in the asset allocation policy. A first step in the application of optimal portfolio 

selection theory to the problem of pension funds has been taken by Merton (1990) himself, who studies 

the allocation decision of a University that manages an endowment fund. In a similar spirit, Rudolf and 

Ziemba (2004) have formulated a continuous-time dynamic programming model of pension fund 

management in the presence of a time-varying opportunity set, where state variables are interpreted as 

currency rates that affect the value of the pension’s asset portfolio. Also related is a paper by Sundaresan 

and Zapatero (1997), which is specifically aimed at asset allocation and retirement decisions in the case of 

a pension fund. Also related is a recent paper by Binsbergen and Brandt (1995) who study an optimal 

allocation problem in the presence of liability constraints in a discrete-time setting, with an emphasis on 

how various regulations with respect to the valuation of liabilities impacts investment decisions. 

 

In a nutshell, the main insight from this strand of the literature is that the presence of liability risk induces 

the introduction of a specific hedging demand component in the optimal allocation strategy, as typical in 

intertemporal allocation decisions in the presence of stochastic state variables. On the other hand, one key 

ingredient that is somewhat missing in the existing literature is how would the presence of hard constraints 

on the funding ratio (loosely defined as the ratio of the market value of assets over some liability) affect 

the optimal strategy.  

 

The introduction of funding ratio constraints is not only an obviously desirable feature from a risk 

management standpoint, but has also been the focus of recent regulation in most developed countries. For 

example, in the United States, the Pension Benefit Guaranty Corporation (PBGC), which provides a 

partial insurance of pensions, charges a higher premium to funds reporting a funding level of under 90% 

of current liabilities, thus providing strong incentives for maintaining the funding ratio over that minimum 

90% threshold. In the UK, there was a formal general Minimum Funding Requirement (MFR) that came 

into effect in 1995, which eventually was replaced in the 2004 Pensions Bill with a scheme-specific 

statutory funding objective to be determined by the sponsoring firm and fund trustees. A regulatory 

requirement over a minimum funding ratio rule is also present in other European countries, e.g., in 

Germany where Pensionskassen and Pensionsfonds must be fully funded at all times to the extent of the 

guarantees they have given, in Switzerland where the minimum funding level is 100%, with an incentive 

to conservative management (investment in equities, for example, is limited to 30% of total assets for 

funds with less than 110% coverage ratio), or in the Netherlands where the minimum funding level is 

105% plus additional buffers for investment risks. 
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This paper introduces a continuous-model for intertemporal allocation decisions in the presence of 

liabilities. We cast the problem in an incomplete market setting where liability risk is not spanned by 

existing securities so as to account for the presence of non-hedgeable (e.g., actuarial) sources of risk in 

liability streams. Using the martingale approach, where we treat the liability portfolio as a natural 

numeraire, we provide explicit solutions in the unconstrained, as well as when explicit or implicit funding 

ratio constraints are imposed. In the unconstrained case, we confirm that the optimal strategy involves a 

fund separation theorem that legitimates investment in the standard efficient portfolio and a liability 

hedging portfolio, which is consistent with existing research on the subject, and also rationalizes some so-

called liability-driven investment (LDI) solutions recently launched by several investment banks and asset 

management firms. Our main contribution is to show that the constrained solution, on the other hand, 

involves a dynamic, as opposed to static, allocation to the standard efficient portfolio and a liability 

hedging portfolio. These strategies are reminiscent of CPPI portfolio insurance strategies which they 

extend to a relative (with respect to liabilities) risk context. From a technical standpoint, one additional 

contribution of this paper is to present a new example of the usefulness of change of numeraire 

techniques, heavily used in asset pricing problems, in the context of a portfolio allocation problem. 

 

Because of its focus on asset allocation decisions with a liability benchmark, our paper is also strongly 

related to dynamic asset allocation models with performance benchmarks. Single-agent portfolio 

allocation models with benchmark constraints include notably Browne (2000) in a complete market 

setting, or Tepla (2001) who also includes constraints on relative performance. Another formally related 

paper is Brennan and Xia (2002) who study in an incomplete market setting asset allocation decisions 

when an inflation index is used as a numeraire. Equilibrium implication of the presence of performance 

benchmarks are discussed in Cuoco and Kaniel (2003), Gomez and Zapatero (2003), or Basak, Shapiro 

and Tepla (2002). Our paper is also related to the literature on portfolio decisions with minimum target 

terminal wealth, including Grossman and Vila (1989), Cox and Huang (1989), Basak (1995), or Grossman 

and Zhou (1996). 

 

The rest of the paper is organized as follow. In section 2, we introduce a formal continuous-time model of 

asset-liability management. In section 3, we solve the problem in an incomplete market setting and in the 

absence of explicit or implicit constraints on the funding ratio. In section 4, we introduce such constraints 

and derive the optimal allocation strategy in a complete market setting. We also present a series of 

numerical illustrations. In section 5, we present a conclusion as well as suggestions for further research, 

while technical detailed and proofs of the main results are relegated to as dedicated appendix. 



 5

 

 

2. A Continuous-Time Model of Asset-Liability Management 

 

In this section, we introduce a general model for the economy in the presence of liability constraints. Let 

[0,T] denote the (finite) time span of the economy, where uncertainty is described through a standard 

probability space (Ω,A,P) and endowed with a filtration { }0; ≥tFt , where AF ⊂∞

 

 and 0F  is trivial, 

representing the P-augmentation of the filtration generated by the n-dimensional Brownian 

motion ( )nWW ,...,1 . 

 

2.1. Stochastic Model for Asset Prices 

 

We consider n risky assets, the prices of which are given by : 

nidWdtPdP
n

j

j
tiji

i
t

i
t ,...,1 ,

1
=








+= ∑

=

σµ  

 

We shall sometimes use the shorthand vector notation for the expected return (column) vector 

( ) nii ,....,1
'
== µµ  and matrix notation ( )

njiij ,....,1, =
= σσ  for the asset return variance-covariance matrix. We 

also denote 1=(1,…,1)’ a n-dimensional vector of ones and by ( ) nj
jWW ,....,1

'
==  and the vector of 

Brownian motions. A risk-free asset, the 0th asset, is also traded in the economy. The return on that asset, 

typically a default free bond, is given by rdtPdP tt
00 = , where r is the risk-free rate in the economy.  

 

We assume that r, µ  and σ  are progressively-measurable and uniformly bounded processes, and that σ

 is a non singular matrix that is also progressively-measurable and bounded uniformly.2 For some 

numerical applications below, we will sometimes treat these parameter values as constant. 

 

Under these assumptions, the market is complete and arbitrage-free and there exists a unique equivalent 

martingale measure Q. In particular, if we define the risk premium process ( )1tttt r−= − µσθ 1 , then we 

                                                 
2 More generally, one can make expected return and volatilities of the risky assets, as well as the risk-free rate, 
depend upon a multi-dimensional state variable X. These states variables can be thought of various sources of 
uncertainty impacting the value of assets and liabilities. In particular, one may consider the impact of stochastic 
interest rate on the optimal policy. 
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have that the process ( ) 







−−= ∫ ∫

t t

ssss dsdWtZ
0 0

''

2
1exp,0 θθθ  is a martingale, and Q is the measure with a 

Radon-Nikodym density ( )tZ ,0  with respect to the historical probability measure P (see for example 

Karatzas (1996)). 

 

By Girsanov theorem, we know that the n-dimensional process defined by ( )
00

0
≥

≥ 







+= ∫

t

t

stt
Q

t dsWW θ  is a 

martingale under the probability Q.3 The dynamics of the price process can thus be written as: 

( )dtdWrdtdWrdt
P

dP
t

Q
t

t

t θσσ ++=+=    (1) 

 

2.2. Stochastic Model for Liabilities 

 

We also introduce a separate process that represents in a reduced-form manner the dynamics of the present 

value of the liabilities: 









++= ∑

=

ε
εσσµ tL
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n

j
jLLtt dWdWdtLdL ,

1
,  

 

where ( )εtW  is a standard Brownian motion, uncorrelated with W, that can be regarded as the projection 

residual of liability risk onto asset price risk and represents the source of uncertainty that is specific to 

liability risk, emanating from various factors such as uncertainty in the growth of work force, uncertainty 

in mortality and retirement rates, etc.  

 

The integration of the above stochastic differential equation gives ( ) ( )TtTtLL LtT ,, ηη= , with: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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3 This is provided that the Novikov condition ∞<
















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

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T

tt dtE
0

'
0 2

1exp θθ  holds, which is the case for example when 

all parameter values are bounded functions of t, and of course as a trivial specific case when all parameter values are 
constant. 



 7

 

When 0, =εσ L , then we are in a complete market situation where all liability uncertainty is spanned by 

existing securities. Because of the presence of non-financial (in particular actuarial) sources of risk, such a 

situation is not to be easily expected in practice, and the correlation between changes in value in the 

liability portfolio and the liability-hedging portfolio (i.e., the portfolio with the highest correlation with 

liability values) is always strictly lower than one for all pension plans.4  

 

if such a hypothetical perfect liability-hedging asset is present in the market place, and assuming for 

example it is the nth asset, we then have nL µµ = , jnjL ,, σσ = for all j=1, …, n, and 0, =εσ L . In general 

however, 0, =εσ L  and the presence of liability risk that is not spanned by asset prices induces a specific 

form of market incompleteness. The following proposition provides an explicit characterization of the set 

of equivalent martingale measures in the presence on non-spanned liability risk. 

 

Proposition 1  

 

The set of all measures under which discounted prices are martingales, where the risk-free asset is used a 

numeraire, is given by: 

( ) ( ) ( )






 ×=∃= ,tZ,tZt

dP
dQ s.t.  θQ; A LL 00  

 

with: 

( )

( ) ( ) ( ) 







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




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∫ ∫

∫ ∫
t t
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2
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2
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2
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As ( )εtW  is a standard Brownian motion uncorrelated to W, a convenient multiplicative separation of asset 

price and liability risk-adjustments exists. On the one hand, the market price for risk process ( ) 0≥ttθ  solely 

affects the asset return process and has no impact on the reward for pure liability risk. On the other hand, 

                                                 
4 It should be noted that investment banks have recently started to issue customized OTC derivatives (interest rate 
and inflation swaps for the hedging of financial risk, as well as mortality bonds for the hedging of actuarial risks) 
which are aimed at improving the match between assets and liabilities.  
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the process ( )( ) 0≥tL tθ , which can be interpreted as the market price for liability risk, does not affect the 

return process. The absence of pure liability risk implies that there exists a replicating portfolio Lw  such 

that tLt PwL '=  and we then have ( ) ( )dtdWwrdtdWwrdt
L

dL
tL

Q
tL

t

t θσσ ++=+= ''  with ''
LLw σσ = .  

 

When 0, ≠εσ L , we have that: 

( ) ( )dtdWdtdWrdtdWdWrdt
L

dL
LtLtL

Q
tL

Q
tL

t

t LL θσθσσσ ε
εε

++++=++= ,
'

,
'   (2) 

 

We have that LLLL r θσθσµ
ε,

' ++= , or ( )θσµ
σ

θ
ε

'

,

1
LL

L
L r −−= . It is only if 0=Lθ

 

that we have 

θσµ '
LL r +=  in order to ensure the absence of arbitrage opportunities. 

 

2.3. Objective and Investment Policy 

 

The investment policy is a (column) predictable process vector ( )( ) 01
' ,..., ≥= tnttt www  that represents 

allocations to risky assets, with the reminder invested in the risk-free asset. We define by w
tA  the asset 

process, i.e., the wealth at time t of an investor following the strategy w starting with an initial wealth 0A .  

 

We have that: ( ) 







+−=

t

t

t

tw
t

w
t P

dP
w

B
dB

wAdA ''.1 1 , or: ( )( )[ ]t
w
t

w
t dWwdtrwrAdA σµ '' +−+= 1 .  

 

We now introduce one important state variable in this model, the funding ratio, defined as the ratio of 

assets to liabilities: ttt LAF = .5 A pension trust has a surplus when the surplus is greater than zero 

(funding ratio > 100%), fully funded when it is zero (funding ratio = 100%), and under funded when it is 

less than zero (funding ratio < 100%). In an asset-liability management context, what matters is not the 

value of the assets per se, but how the asset value compares to the value of liabilities. This is the reason 

why we suggest using the value of liabilities as a numeraire portfolio in a later section. This is also the 

                                                 
5 In practice, there exists an ambiguity over whether the liability value is based on using a fixed arbitrary discount 
rate, or whether a fair value is taken. 
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reason why it is natural to assume that the (institutional) investor’s objective is written in terms of relative 

wealth (relative to liabilities), as opposed to absolute wealth: ( )[ ]Tw
FUE0max . 

 

Using Itô’s lemma, we can also derive the stochastic process followed by the funding ratio under the 

assumption of a strategy w: ( )2
322

11
t

t

w
t

t
w
t

t
t

t

w
tw

t
tt

w
tw

t dL
L
A

dLdA
L

dL
L
A

dA
LL

A
ddF +−−=








= , which yields 

( )( )( ) ( ) ( ) ( )( )dtdtdtwdWdWdtdWwdtrwr
F

dF
LLLLtLtLLtw

t

w
t 2

,
'

,
' ''' ε

ε
ε σσσσσσσµσµ ++−++−+−+=  1 , or 

( ) ( )( ) ( ) ε
εε σσσσσµσσσµ tLtLLLLLLw

t

w
t dWdWwdtrwdtr

F
dF

,
'2

,
' '' −−+−−+++−= 1 . 

 

For later use, let us define the following quantities as the mean return and volatility of the funding ratio 

portfolio, subject to a portfolio strategy w: 

( ) ( )( )

( ) ( )( ) 2
1

2
,

'''

2
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'
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σσσσσσ

σσµσσσµµ
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w
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w
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−−+++−≡
 

 

 

3. Solution in the absence of Constraints on the Funding Ratio 

 

In this section, we solve the optimal asset allocation problem in the presence of liability risk using the 

martingale, or convex duality, approach to portfolio optimization.6 

 

3.1. Equivalent Martingale Measures when the Liability Portfolio is used as a Numeraire 

 

Define as t
i

t
i

t LPP =ˆ

 

 the time t value of the asset i when the liability portfolio is used as a numeraire. 

 

Proposition 2 

 

                                                 
6 It can easily be checked that this solution is identical to the one obtained using the dynamic programming approach. 
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The set of all probability measures under which prices relative to the liability portfolio (i.e., in an 

economy where the liability portfolio is used as the numeraire portfolio) are martingales is given 

by: ( ) ( ) ( )






 ×=∃= ,tξ,tξt

dP
dQ

 s.t.  θ; QA L
L

LLL 00 , with: 

( ) ( ) ( ) ( )

( ) ( ) ( )


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
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Here ( ) ( ) ( )1sss Lσθκ −= , and ( ) ( ) ( )1sss LLL εσθκ ,−=  are the risk premia associated with asset price 

risk, and pure liability risk, respectively.  

 

Proof: In the Appendix. 

 

Again, there are an infinite number of equivalent martingale measures unless 0, =εσ L .  

 

3.2. Solution to the Optimization Problem 

 

Solving the optimal allocation problem via a martingale approach involves a two step process. In a first 

step, one determines the optimal asset value among all possible values that can be financed by some 

feasible trading strategy. The second step is to determine the portfolio policy financing the optimal 

terminal wealth. In a complete market setting, the uniqueness of the equivalent martingale measure allows 

for a simple static budget constraint. In this incomplete market setting, we show that a similar line of 

reasoning applies, based on the fact that the investor can vary the asset value across states of the world 

represented by the uncertainty spanned by existing securities. The uncertainty that is specific to liability 

risk, because it is independent from asset price uncertainty, induces some form of incompleteness that 

does not directly affect the asset allocation decision.7  

 

                                                 
7 A formally similar situation can be found in Brennan and Xia (2002) analysis of portfolio selection in the presence 
of non-spanned inflation risk. 
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Hence the program reads :





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
, where ( )tA  is financed 

by a feasible trading strategy with initial investment 0A . 

 

Theorem 1 

 

The optimal terminal funding ratio is given by : 
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The indirect utility function reads 
( ) ( )Ttg
F

J t
t ,

1

1

γ

γ

−
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, with: 
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The optimal portfolio strategy is: ( ) ( ) ( ) Lrw σσ
γ

µσσ
γ

11* '11'1 −−








−+−= 1 . 

 

Proof: In the Appendix. 

 

We thus obtain a two funds separation theorem, where the optimal portfolio strategy consists of holding 

two funds, one with weights ( ) ( )
( ) ( )11'

1
r

rwM
−
−

= −

−

µσσ
µσσ

1

1

'
'  and another one with weights ( )

( ) L

L
Lw

σσ
σσ
1

1

'
'

−

−

=
1'

, the 

rest being invested in the risk-free asset. 

 

The first portfolio is the standard mean-variance efficient portfolio. Note that the amount invested in that 

portfolio is directly proportional to the investor’s Arrow-Pratt coefficient of risk-tolerance 
γ
1

=−
FF

F

FJ
J

 

(the inverse of the relative risk aversion). This makes sense: the higher the investor’s (funding) risk 

tolerance, the higher the allocation to that portfolio will be. 
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In order to better understand the nature of the second portfolio, it is useful to remark that it is a portfolio 

that minimizing the local volatility w
Fσ  of the funding ratio. To see this, recall that the expression for the 

local variance is given by ( ) ( )( ) 2
1

2
,

''' '' 2 εσσσσσσ LLL
w
F ww +−−= , which reaches a minimum for 

( ) Lw σσ 1* ' −= , with the minimum being 2
,εσ L . As such, it appears as the equivalent of the minimum 

variance portfolio in a relative return-relative risk space, also the equivalent of the risk-free asset in a 

complete market situation where liability risk is entirely spanned by existing securities ( 02
, =εσ L ). 

Alternatively, this portfolio can be shown to have the highest correlation with the liabilities. As such, it 

can be called a liability-hedging portfolio, in the spirit of Merton (1971) intertemporal hedging demands. 

Indeed, if we want to maximize the covariance Lw σσ'  between the asset portfolio and the liability 

portfolio L, under the constraint that wwA ''2 σσσ = , we obtain the following Lagrangian: 

( )2''' AL wwwL σσσλσσ −−= . Differentiating with respect to w yields: w
w
L

L σλσσσ '2−=
∂
∂ , with a 

strictly negative second derivative function. Setting the first derivative equal to zero for the highest 

covariance portfolio leads to the following portfolio, which is indeed proportional to the liability hedging 

portfolio ( ) ( ) LLw σσ
λ

σσσσ
λ

11 '
2
1'

2
1 −− ==  . It should also be noted, as is well-known, that when 1=γ , 

i.e., in the case of the log investor, the intertemporal hedging demand is zero (myopic investor).  

 

3.3. Improvement in Investor’s Welfare due to Complete versus Incomplete Markets 

 

Note that in the complete market case, 0, =εσ L , and ( )Ttg ,  becomes: 

( ) ( )

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
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
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Therefore, the increase in investor’s welfare that emanates from completing the market is given by: 

 

( )
( ) ( ) ( )( ) ( )








−






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−−=
−

−
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2
, 2

21exp εεε σγγσκσγ  

 



 13

Here we recall that ( ) ( )LHL
L

LL
L

LL r µµ
σ

θσµ
σ

θκ
εε

−=−−==
,

'

,

11  is the risk premium for pure liability risk, 

with LHµ  is the expected return on the liability-hedging portfolio, and r the risk-free rate.  

 

 

4. Dynamic Portfolio Strategies 

 

4.1. Solution to the Problem with Constraints 

 

We have seen in the previous section that the optimal strategy consists of holding two funds, in addition to 

the risk-free asset, the standard mean-variance portfolio and the liability hedging portfolio. The 

proportions invested in these two funds are constant and given by ( ) ( )
γ
µσσ 11' r−−1'  and ( ) Lσσ

γ
1'11 −









− 1 , 

respectively. 

 

The assumption of a static optimal portfolio strategy involving the standard mean-variance efficient 

portfolio and the liability-hedging portfolio is only justified under extreme assumptions such as a constant 

opportunity set and CRRA utility. It would certainly be desirable to introduce stochastic interest rates. 

This is because the most important source of uncertainty in an ALM problem is interest rate uncertainty. 

Indeed, time-variation of interest rates have a direct impact on the present value of liabilities; they also 

have a direct impact on bond prices. One can show that this will induce a demand for a so-called interest 

rate hedging portfolio. In particular, the above results can actually be extended in a rather straightforward 

manner to a setup with stochastic Vasicek interest rates. As expected, we then obtain for the optimal 

strategy a three-fund separation theorem with the introduction of a separate hedging portfolio for interest 

rate risk. 

 

In what follows, we consider an interesting extension where the optimal strategy involves a dynamic 

rebalancing of the two afore-mentioned portfolios, even in the absence of a stochastic opportunity set. The 

ingredient that we introduce is the presence of constraints on the funding ratio, which, as recalled in the 

introduction, are dominant in pension funds’ environment.  

 

To account for the presence of regulatory or otherwise constraints on the funding ratio, one might e 

tempted to consider the following program : 
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such that k
L
A

T

T ≥  almost surely. One problem with such explicit constraints, as argued by Basak (2002) 

in a different context, is that marginal indirect utility from wealth discontinuously jumps to infinity 

 

So as to provide a smoother taking into account of the presence of constraints on the funding ratio, we 

instead consider in what follows a program with implicit constraints:  
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Here k again is interpreted as a minimum funding ratio requirement and is assumed to be such that 0Fk ≤  

(otherwise, it will not be feasible to ensure the respect of the constraint). In this program, marginal utility 

goes smoothly to infinity at the minimum funding ratio. Also note that we consider the complete market 

case in what follows. In the incomplete market setup, the presence of a non hedgeable source of risk will 

make it impossible for the (implicit) constraint to hold almost surely.  

 

Hence our program reads :
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


, where ( )tA  is 

financed by a feasible trading strategy with initial investment ( )0A . 

 

Theorem 2 

 

In the complete market case, the optimal terminal funding ratio is given by : 
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
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The indirect utility function reads: 
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γ

γγ ξξξ
γ

−

−
−

−











+











 +

−
=

1
1111 ,,,

1
1 kTtTtkTtEFJ ttt  

 

The optimal portfolio strategy is:  

( ) ( ) ( ) L
ss F

kr
F
kw σσ

γ
µσσ

γ
11* '111'11 −−
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


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Proof: In the Appendix. 

 

For a given value of the risk-aversion parameter, it should be note that that the investment in the log-

optimal portfolio is lower than in the absence of liability constraints since 11 <







−

tF
k

 and it is 

decreasing as the funding ratio decreases towards the threshold level. The recommendation is therefore for 

pension plans in better financial situation to take more aggressive policies, while plans in worsening 

situations should undertake less aggressive policies. 

 

It should also be noted that the fraction of wealth allocated to the optimal growth portfolio 

( ) ( )
( ) ( )11'

1
r

rwm
−
−

= −

−

µσσ
µσσ

1

1

'
'  is given by : ( ) ( ) ( ) ( ) ( )tt

t

t
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F
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−

−
=








−

− −−

γ
µσσ

γ
µσσ 11'11' 11 '' . 

 

Therefore, if we define the floor as tkL , i.e., the value of liability that is consistent with the constraint, and 

the cushion as kLAt − , then we obtain that the investment in the growth optimal portfolio is always equal 

to a constant multiple m of the difference between the asset value and the floor. That constant coefficient 

is ( ) ( )
γ
µσσ 11' rm −

=
−1' . 

 

This is strongly reminiscent of CPPI (constant proportion portfolio insurance) strategies, which the present 

setup extends to a relative risk management context.8 While CPPI strategies are designed to prevent final 

terminal wealth to fall below a specific threshold, extended CPPI strategies are designed to protect asset 
                                                 
8 CPPI strategies have originally been introduced by Black and Jones (1987) and Black and Perold (1992). 
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value not to fall below a pre-specified fraction of some benchmark value. This result rationalizes and 

extends the so-called contingent optimisation technique, a concept introduced by Leibowitz and 

Weinberger (1982ab) with no theoretical justification (see also Amenc et al. (2005) for the benefits of 

dynamic asset allocation strategies in the context of the management of downside risk relative to a 

benchmark).9 

 

On the other hand, it should be noted that the fraction of wealth allocated to the liability hedging portfolio 

( )
( ) L

L
Lw

σσ
σσ
1

1

'
'

−

−

=
1'

 is given by ( )
( )

( )



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−

ttt
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L kLAA
γσσ

σσ 1
'
'

1

1

1
. The investment in the liability-hedging portfolio 

is always equal to a constant multiple m’ of the difference between the asset value and the cushion divided 

by the coefficient of risk-aversion. The multiplier coefficient is ( )
( ) L

Lm
σσ
σσ
1

1

'
'' −

−

=
1

. 

 

These strategies have a model-free, built-in element of optimality, which is intuitively related to the fact 

that they allow pension funds to protect their current funding ratio while giving them access to upside 

potential (and hence the hope for reduction of contributions). 

 

4.2. Numerical Illustrations 

 

In what follows, we present a set of illustrations of the benefits of dynamic allocation strategies in asset-

liability management.  

 

Our illustrations are based on a stylized pension fund problem, where the liabilities are assumed to take on 

a simple form that consists of a series of 20 annual inflation-protected pension payments of equal real 

value normalized at $100. 

 

To check for the performance of various competing strategies, we use a standard model for 

generating stochastic scenarios for risk factors affecting asset and liability values; and we 

generate a set of 1,000 scenarios for interest rates, inflation rate, equity prices as well as real 

estate prices, when needed. ALM models are typically chosen so as to represent actual behaviors 

                                                 
9 The author has collected anecdotic evidence that various firms have started offering services that are similar in 
spirit to the solution of the optimal portfolio selection problem we consider here. In particular, we refer to State 
Street Global Advisors (SSgA)’s so-called Dynamic Risk Allocation Model (DRAM), as well as AXA-Investment 
Manager (Axa-IM)’s Dynamic Contingent Immunization strategies. 
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as best as possible and parameters are chosen so as to be consistent with long-term estimates. The 

next step involves using some optimization technique to find the set of optimal portfolios. 

 

In terms of stochastic scenario simulation, one typically distinguishes between three main risk factors 

affecting asset and liability values: interest rate risk (or, more accurately, interest rate risks since there are 

more than one risk factor affecting changes in the shape of the yield curve), inflation risk, and stock price 

risk. In the illustrations that follow in, we have used a standard model, borrowed from Ahlgrim, D'Arcy 

and Gorvett (2004), including as key features a two-factor mean-reverting process for real interest rates, a 

one-factor mean-reverting process for inflation rate, a Markov regime switching model for excess return 

on equity (excess return). The model is and can be written as:10 

( )
( )
( )
( ) x

t
s
x

s
xtttt

ttt

l
tltllt

r
trttrt

dWdtbdtrSdS

dWdtbad

dWdtlbadl

dWdtrladr

σπ

σππ

σ

σ

π
πππ

+++=

+−=

+−=

+−=

 

 

Here rt (respectively, πt) is the real short-term rate (respectively, inflation rate) at date t, ar (respectively, 

aπ) the speed of mean reversion of the short-term rate (respectively, inflation rate), lt (respectively, bπ) is 

the long-term mean value of the short-term rate (respectively, inflation rate), and σr (respectively, σπ) is 

the volatility of the short-rate (respectively, inflation rate). This model assumes a particular two-factor 

process for the real rate so as to account for the non-perfect correlation between bonds of different 

maturities. In particular, it assumes that the long-term mean value lt of the short-term rate is also 

stochastically time-varying, with a speed of mean reversion denoted by al, a long-term mean value 

denoted by bl) and a volatility denoted by σl. By contrast the long-term mean value of the inflation rate is 

assumed to be a constant. Here rW , lW  and πW  are three (correlated) standard Brownian motions 

representing uncertainty driving the three risk-factors. Beside, a Markov-regime switching model is 

assumed for equity returns, with bx, the (state-dependent) excess expected return (over the nominal rate 

( )ttr π+ ) and σx, the (state-dependent) stock volatility. Here sW is a standard Brownian motion 

representing uncertainty driving stock returns, and is correlated to rW , lW  and πW . The introduction of 

                                                 
10 Other competing models can of course be used in ALM simulations and optimization, but there are mostly consistent in spirit 
with this particular model, which we have chosen because it represents a standard example of a state-of-the-art ALM model which 
is made available for public use by the Casualty Actuarial Society (CAS) and the Society of Actuaries (SOA) (see reference list 
for exact references of the paper and a web site where the paper can be downloaded). 
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a Markov regime-switching model is motivated by the desire to fit important empirical characteristics of 

equity returns, such as the presence of fat-tails and stochastic volatility with volatility clustering effects. 

The basic idea is that returns are not drawn from a single normal distribution; rather there are two 

distributions at work generating the returns observed. The equity returns distribution is assumed to jump 

between two possible states, usually referred to as regimes, denoted by x=1 and x=2 and interpreted as a 

low and a high volatility regimes. A transition matrix controls the probability of moving between states. 

 

The parameter values are given in exhibit 1. 

 

Real interest Parameter value 

mean reversion speed for short rate process 1 

volatility of short rate process 0.01 

mean reversion speed for long-term mean value 0.1 

volatility of long-term mean value 0.0165 

long-term mean reversion level for long-term mean value 0.028 

correlation between short-rate and long-term mean value 0.5 

Inflation  

mean reversion speed for inflation process 0.4 

volatility of inflation process 0.04 

long-term mean reversion level for inflation 0.048 

correlation between inflation and short-term interest rate -0.3 

Equity model – Regime switching  

(monthly) mean equity excess return in state 1 0.008 

(monthly) volatility of equity return in state 1 0.039 

(monthly) mean equity excess return in state 2 -0.011 

(monthly) volatility of equity return in state 2 0.113 

Equity model - Regime switching probabilities  

probability of staying in state 1 0.989 

probability of switching from state 1 to state 2 0.011 

probability of staying in state 2 0.941 

probability of switching from state 2 to state 1 0.059 

Exhibit 1: Parameter values – borrowed from Ahlgrim, D'Arcy and Gorvett (2004) 
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It should be noted that this model is not consistent with the model used in Sections 2 and 3 when deriving 

the optimal solutions. In particular, because of an attempt to obtain analytical solutions, our base model 

had a constant interest rate and did not incorporate regime switching patterns in terms of equity returns. 

The illustrations below actually suggest that simple strategies designed in the context of a very stylized 

model prove to be rather effective when transposed in a more complex environment. 

 

We take parameter values that are identical to those in Ahlgrim, D'Arcy and Gorvett (2004); who calibrate 

the model with respect to long time-series. Other choices of parameter values can of course be adopted 

and their implementation would be straightforward. 

 

4.2.1. Cash-Flow Matching Strategy 

 

One natural solution for meeting the liability constraints consists of buying equal amounts of zero-coupon 

inflation protected securities (TIPS) with maturities ranging from 1 year to 20 years, assuming they exist 

(alternatively, OTC interest rate and inflation swap can be used to complement existing cash instruments 

so as to generate a perfect match with liabilities, here a stream of 20 annual $100 payments). This equally-

weighted portfolio of TIPS is the practical implementation of the liability matching portfolio introduced at 

a conceptual level in section 3. 

 

Using the afore-mentioned stochastic model, and associated parameter values, we generate random paths 

for the price of 20 zero-coupon TIPS with maturities matching expected payment dates. We find the 

present value of liability-matching portfolio, denoted as L(0), and we obtain L(0) = 1777.15. As we can 

see the performance is poor, and the burden of contributions is very high: the amount of money needed to 

generate 20 annual $100 payments is not much smaller than 20x100. This is due to the fact that rates are 

typically very low. The client needs a very high current contribution to sustain his/her future consumption 

needs. 

 

On the other hand, one key advantage of this approach, which represents an extreme positioning in the 

risk-return space, is that the distribution of surplus at date 20 is trivially equal to 0. There is no possible 

deficit (nor surplus), because the present value of the future liability payments has been invested in a 

perfect replicating portfolio strategy. 
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In this context, it is reasonable, unless in the presence of an extremely (infinitely) high risk aversion, to 

add risky asset classes to enhance the return and decrease the pressure on contributions, at the costs of 

introducing a risk of mismatch between assets and liabilities. This is what we turn to next. 

 

4.2.2. Surplus Optimization Strategies 

 

We now generate stochastic scenarios also for nominal bonds and stocks. We then start with same initial 

amount L(0), and find the best fixed-mix strategy that consists of investment in stocks, bonds and liability-

matching portfolio (regarded as a whole) so as to generate an efficient frontier in a surplus space based on 

optimizing the trade-off between expected surplus and variance of the surplus (see the blue line in exhibit 

2). Of course, as underlined in section 3, the minimum risk portfolio corresponds to 100% investment in 

the liability-matching portfolio (corresponding to point A in exhibit 2). Formally, we assume that the asset 

portfolio is liquidated each year, a liability payment is made, and the remaining wealth is invested in 

optimal portfolio; in scenarios such that the remaining wealth is not sufficient for making the promised 

liability payment, we assume that borrowing at the risk-free rate is performed so as to make up for the 

difference. We estimate probabilities of not meeting the objectives (probability of a deficit), which are 

reported in exhibit 3, and also plot the distribution of surplus at date 20 for a few points on the efficient 

frontier (see exhibit 4). As can be seen in exhibit 2, increasing the allocations to stocks and nominal 

bonds, which have a long-term performance higher than that of inflation-protected bonds but are not as a 

good a match with respect to liabilities, lead to higher value of the expected surplus, and therefore to 

average contribution savings, but also to an increased volatility of the surplus and an increased probability 

of the deficit. 

 

For comparison purposes, we also perform the same exercise and design the efficient frontier when the 

liability-matching portfolio is not available in the menu of asset classes (see the green line in exhibit 2). 

The improvement induced by the introduction of a liability-matching portfolio is spectacular, as can be 

seen by a simple comparison between point A and A’ or B and B’. Regarding point B and B’ for instance, 

one can see in exhibit 3 that for the same level of expected surplus (€376.78), the volatility of the surplus 

is increased by more than 50% when the liability-matching portfolio is not available (640.24 versus 

423.65). The risk reduction benefits are also spectacular when risk is measured in terms of probability of a 

deficit or expected shortfall. Intuitively, such a dramatic improvement in investor’s welfare is related to 

the fact that it is only through the completion of the menu of asset classes that arises from the introduction 

of a dedicated liability-matching portfolio that the investor’s specific objective and constraints as well as 

related risk exposures are fully taken into account.  
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Of course, the difference between optimal portfolios in the presence and in the absence of a liability-

matching portfolio is decreasing with the investor’s risk-aversion: risk-seeking investors do not seek to 

enjoy the benefits of liability protection and mostly invest in stocks and bonds anyway. 

 

 
Exhibit 2: Efficient frontier in a mean-variance surplus space 

 

stocks bonds Liab-PF
A 0% 0% 100% 0.00 0.00 0.00% 0.00 (0.00%) 1777.15 0.00%
B 19% 22% 59% 376.78 423.65 15.50% 204.45 (11.50%) 1556.99 12.39%
C 43% 41% 16% 1130.33 1478.91 18.70% 427.92 (24.08%) 1314.07 26.06%
D 52% 45% 3% 1507.11 2093.77 19.60% 502.64 (28.28%) 1233.58 30.59%
A' 10% 90% 0% 0.00 508.92 36.60% 432.34 (24.33%) 1777.15 0.00%
B' 20% 80% 0% 376.78 640.24 25.20% 385.97 (21.72%) 1556.99 12.39%
C' 43% 57% 0% 1130.33 1500.11 19.30% 457.69 (25.75%) 1314.07 26.06%
D' 51% 49% 0% 1507.11 2094.78 20.00% 499.21 (28.09%) 1233.58 30.59%

relative 
Contribution 
Saving p.a.

expected shortfallweights expected 
Surplus

volatility of 
surplus Prob(S<0)

necessary 
nominal 

contribution 

 
Exhibit 3: Allocation strategies and risk-return indicators; all values are given as present values at initial 
date (based on a L(0)=1777.15 initial investment); losses relative to L(0) are reported in parentheses for 
expected shortfall); the relative contribution saving corresponds to the increase (in percentage) in initial 
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investment that should have been taken place with a given strategy so as to generate an expected surplus 
equal to zero. 

 

These ALM optimization exercise consists of finding the portfolios that are optimal from standpoint of 

protecting the investors’ liabilities. A pure asset management (AM) exercise, on the other hand, focuses 

on designing the portfolios with the optimal risk-return trade-off. Of course, nothing guarantees that AM 

efficient portfolios will be efficient from an ALM perspective (and vice-versa); in particular, the focus is 

on nominal return from an AM perspective, while it is on real return from an ALM perspective. To test for 

the ALM performance of AM efficient portfolios, we have conducted the following experiment. We first 

find the standard (Markowitz efficient) frontier based on horizon returns, i.e., the portfolios that achieves 

the lowest level of volatility (across scenarios at horizon) for a given expected return (across scenarios at 

horizon). We then plot these portfolios (in green) in the (expected surplus-volatility of the surplus) ALM 

space (see exhibit 5). 
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Exhibit 4: AM and ALM efficient frontiers in a mean-variance surplus space 

 

From exhibit 5, we can check that a portfolio efficient in an AM sense is indeed not necessarily efficient 

in an ALM sense, and vice-versa. Hence, not taking into account liability constraints leads to potentially 

severe inefficiencies from the investor’s standpoint.  

 

We now turn to dynamic portfolio strategies. 
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4.2.3. Dynamic LDI Strategies 

 

In testing the implementation of the dynamic LDI strategies, the performance portfolio is taken to be the 

stock-bond portfolio with the highest Sharpe ratio (with our choice of parameter values, and a 4% risk-free 

rate, we obtain the following portfolio: 28.5% in stocks and 71.5% in bonds), while the liability-matching 

portfolio is the afore-mentioned portfolio invested in the 20 zero-coupon TIPS with maturities matching 

expected payment dates.  

 

We consider the extended CPPI strategy introduced in section 4. We consider 6 variants of the strategy, 

with the level of protection k=90%, or k=95%, and the multiplier value m=2, 3 and 4. The results are 

reported in exhibits 6 to 9, where we present the performance of the various dynamic strategies and 

compare them to the performance of their static counterpart. The static counterpart of a given dynamic 

portfolio strategy is defined as the strategy involving constant (fixed-mix) allocation to the portfolio with 

highest Sharpe ratio and liability-matching portfolio that matches the initial allocation of the 

corresponding dynamic strategy. For example, when k=95% and m=4, the initial allocation to the 

liability-matching portfolio (respectively the highest Sharpe ratio portfolio) is given by 1-(1-k)m=80% 

(respectively, 20%). The static counterpart of the extended CPPI strategy with parameters k=95% and 

m=4 is therefore a fixed-mix strategy with a constant 80%-20% allocation to liability matching portfolio 

and performance-seeking portfolio. 

 

dynamic CPPI expected Surplus volatility of surplus Prob(S<0) necessary nominal 
contribution p.a.

relative Contribution 
Saving p.a.

m=2 k=0.90 121.97 188.42 25.20% 66.45 (3.74%) 1694.19 4.67%
m=3 k=0.90 184.75 326.33 30.20% 97.21 (5.47%) 1658.70 6.66%
m=4 k=0.90 203.97 388.70 36.60% 119.11 (6.70%) 1646.97 7.33%

static CPPI expected Surplus volatility of surplus Prob(S<0) necessary nominal 
contribution p.a.

relative Contribution 
Saving p.a.

m=2 k=0.90 99.39 110.72 14.90% 80.80 (4.55%) 1706.70 3.96%
m=3 k=0.90 153.12 174.95 15.90% 119.84 (6.74%) 1673.88 5.81%
m=4 k=0.90 209.74 245.63 16.80% 158.93 (8.94%) 1642.37 7.58%

expected shortfall

expected shortfall

 
Exhibit 6: risk-return indicators for extended CPPI strategies for a level of guarantee k=90%, as well as 

for their static counterpart; all values are given as present values at initial date (based on a L(0)=1777.15 
initial investment); losses relative to L(0) are reported in parentheses for expected shortfall); the relative 

contribution saving corresponds to the increase (in percentage) in initial investment that should have been 
taken place with a given strategy so as to generate an expected surplus equal to zero. 
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dynamic CPPI expected Surplus volatility of surplus Prob(S<0) necessary nominal 
contribution p.a.

relative Contribution 
Saving p.a.

m=2 k=0.95 58.48 88.18 25.10% 32.75 (1.84%) 1734.51 2.40%
m=3 k=0.95 94.38 175.82 29.90% 48.12 (2.71%) 1711.43 3.70%
m=4 k=0.95 115.40 240.19 36.80% 58.48 (3.29%) 1698.24 4.44%

static CPPI expected Surplus volatility of surplus Prob(S<0) necessary nominal 
contribution p.a.

relative Contribution 
Saving p.a.

m=2 k=0.95 48.38 52.58 14.10% 40.43 (2.27%) 1741.04 2.03%
m=3 k=0.95 73.55 80.93 14.30% 61.46 (3.46%) 1723.66 3.01%
m=4 k=0.95 99.39 110.72 14.90% 80.80 (4.55%) 1706.70 3.96%

expected shortfall

expected shortfall

 
Exhibit 7: risk-return indicators for extended CPPI strategies for a level of guarantee k=95%, as well as 

for their static counterpart; all values are given as present values at initial date (based on a L(0)=1777.15 
initial investment); losses relative to L(0) are reported in parentheses for expected shortfall); the relative 

contribution saving corresponds to the increase (in percentage) in initial investment that should have been 
taken place with a given strategy so as to generate an expected surplus equal to zero. 

 

As can be seen in exhibit 6 and in exhibit 7, most dynamic strategies allow for significantly lower 

expected shortfall numbers as well as higher expected surplus (and hence higher contribution savings) 

when compared to their static counterparts. On the other hand, they tend to generate a higher volatility. 

Also, the probability of a deficit is rather large with dynamic strategies, which aim at avoiding all deficit 

beyond the minimum threshold (90% or 95%), as opposed to minimizing the probability to face such a 

relatively low deficit. In essence, dynamic ALM strategies generate asymmetric surplus distributions, as in 

confirmed by exhibit 8 and 9, where the various surplus distributions are presented. We also note, as 

expected, that increasing the guaranteed level k and decreasing the multiplier value m lead to more 

conservative strategies, with less potential for surplus performance and lower risk. 

 

 
Exhibit 8: Distribution of the final surplus/deficit for extended CPPI strategies for a 90% guarantee level. 
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Exhibit 9: Distribution of the final surplus/deficit for extended CPPI strategies for a95% guarantee level. 

 

Overall, the results reported in exhibits 6 to 9 show very significant risk management benefits that arise 

from dynamic strategies.  
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5. Conclusion and Extensions 

 

In this paper, we have considered an intertemporal portfolio problem in the presence of liability 

constraints. Using the value of the liability portfolio as a natural numeraire, we have found that the 

solution to this problem was cast in terms of non-myopic strategies involving dynamic rebalancing of 

several funds including in particular.  

 

The contribution of the paper is to show, both from a theoretical standpoint and an empirical standpoint, 

that a static investment in two "funds", the standard optimal growth portfolio and a liability hedging 

portfolio, is optimal in the absence of constraints on the funding ratio (fund separation theorem). On the 

other hand, a dynamic strategy in these two funds, leading to a convex relative payoff reminiscent of 

portfolio insurance strategies that they extend to a relative risk context, is optimal in the presence of 

funding ratio constraints. Such extended liability insurance strategies have a model-free, built-in element 

of optimality, which is the fact that they allow pension funds to protect their current funding ratio (a more 

sexy proposal indeed when it is higher than 100%) while giving them access to upside potential (and 

hence the hope for reduction of contributions). In contrast, pure liability hedging strategies, i.e., cash-flow 

matching or duration matching strategies, which are represented in our framework by a 100% investment 

in the liability hedging portfolio strategy (consistent with infinite risk aversion), also protect the funding 

ratio but do not allow for upside potential. On the other hand, investment in a well diversified portfolio of 

risky assets (consistent with risk aversion equal to 1, the log case) offers access to performance potential 

but does not protect the funding ratio. Finally, arbitrary fixed-mix strategies (e.g., 70% in bonds and 30% 

in stocks) such as the ones used in practice appear as downgraded versions of the two-fund portfolio 

strategies, where the "safe" part of the portfolio (bonds) is not as correlated to liabilities as the pure 

liability portfolio (unless the liability hedging portfolio happens to be 100% in bonds), and the "risky" 

part, (stock) is not as optimal as the growth optimal portfolio (unless the optimal growth portfolio happens 

to be 100% invested in stocks). 

 

Our work can be extended in a number of directions. First, it would be desirable to introduce an integrated 

model of asset-liability management. The goal there would be to derive the optimal solution in a 

continuous-time fully integrated model, with contribution and borrowing decisions included, as well as 

their impact on optimal capital structure of the firm. Another possible extension would involve examining 

the impact of the presence of liability constraints from an equilibrium perspective. This would go along 

the lines of Basak (1995) study of the impact of portfolio insurance strategies on asset prices.  
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8. Appendices 

 

Proof of Proposition 2 

 

Using Itô’s lemma, and the processes for the return on the assets and liability give in (1) and (2), we have 

that: 
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This can also be written as 

( ) ( )( ) ( )( )dtdWdtdWI
P
Pd

LLtLLtnL
t

t
ε

ε
ε σθσσθσσ ,,ˆ

ˆ
−+−−+−= 1   (3) 



 30

 

Here nI  is defined as the (nxn) identity matrix. We can also re-write equation (3) as 

( ) ε
ε

σσσ ,
,ˆ

ˆ
LL Q
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Q
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t
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We now look for the measure under which prices are martingales when the liability value is used as a 

numeraire. Using Girsanov theorem, we know that ( ) 0≥t
Q

t
LW  and ( ) 0

,
≥t

Q
t

LW ε  are, respectively, a n-

dimensional and a 1-dimensional martingales under the probability QL with a Radon-Nikodym derivatives 

with respect to the original probability P defined as the product of the following two stochastic integrals:11 
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where ( ) ( ) ( )1ttt Lσθκ −= , and ( ) ( ) 1εσθκ ,LLL tt −= . 

 

Proof of Theorem 1 

 

The Lagrangian for this problem is: 
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or: 

                                                 
11 This is again because the Brownian motion driving pure liability risk uncertainty is orthogonal to the Brownian 
motion driving asset price uncertainty. 
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The first order conditions read: 

( ) ( )( )
( ) ( )

( )






=
















−

−

Tt
Tt

ETt
Tt

E
TtL

A

L

L
t

L
t

t

T

,
,

,
,
1

, 1

*

η
ξ

λξ
ηη γ

γ

  (A-1) 

and: 
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From (A-1), we obtain: 
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Substituting (A-3) into (A-2), we solve for λ  
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which we substitute back into (A-3) to obtain the optimal terminal asset value : 
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or equivalently in terms of optimal terminal funding ratio: 
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The indirect utility function is: ( ) ( )
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We therefore obtain that the indirect utility function is separable in the funding ratio: 
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Standard calculation of expectation of an exponential of a Gaussian variable gives the following results (in 

the case of constant parameters): 
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To derive the optimal portfolio strategy, we introduce the following notation for any t<T, and for s>t:  
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The stochastic terms in sG  come from the stochastic terms in 
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Identifying the terms in front of the multi-dimensional Brownian motion driving asset prices sdW , we 

have that ( ) '' 1' κ
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Proof of Theorem 2 (Complete Market Case) 

 

The Lagrangian for this problem is: 
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The first order conditions read: 
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From (B-1), we obtain: 
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Hence the horizon funding ratio equals that of the unconstrained case plus a riskless amount k. 

 

Substituting (B-3) into (B-2), we solve for λ . 
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which we substitute back into (B-3) to obtain the optimal terminal asset value : 
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The indirect utility function is: 
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TF  from (B-4) in this equation, we get: 
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To derive the optimal portfolio strategy, note that for any t<T, and for s>t we have that: 
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The stochastic terms in sF  come from the stochastic terms in ( )( ) γξ
1

, −st . Using Ito’s lemma, we obtain: 
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which is also equal to:  
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Identifying the terms in front of the multi-dimensional Brownian motion driving asset prices sdW , we 
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kw , an equation we can solve for the optimal portfolio weights: 
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