# Information Shocks, Liquidity Shocks, Jumps, and Price Discovery — Evidence from the U.S. Treasury Market

George J. Jiang

University of Arizona

Ingrid Lo

Bank of Canada

**Adrien Verdelhan** 

**Boston University** 

September 2008

## **Motivation**

- Jumps: large discontinuous price changes
- Jumps are important: compared to continuous price changes, jumps have distinctly different implications for the valuation of derivative securities, risk management, as well as portfolio allocation.
- Bond price jumps (US Treasury market):
  - 2005-2006, 60 out of 477 trading days have jumps for 2-year note,
    63 out of 477 trading days have jump for 10-year note
  - Size: Mean absolute jump 0.08% compared to return standard deviation 0.007% in 2-year note. The largest jump on the upside is 0.24% and the downside is -0.17%

# This paper studies ...

- The relation between jumps in treasury bond prices and pre-scheduled news announcements/events
  - Step 1: Statistically identify jumps intradaily using jump detection test recently developed in the literature.
  - Step 2: Examine
    - ♦ to what extent jumps are driven by pre-scheduled events
    - ♦ whether jumps are also related to other market variables

# This paper further studies ...

- What drives price jumps?
  - Liquidity withdrawal before announcements
  - Explanatory power: liquidity shock (e.g. order withdrawal) vs news surprise
- Post jump price discovery:
  - How do jumps affect price discovery process?
  - Compare post-jump price information of OF with price information of OF when there are no jumps at announcements

# Summary of Findings

- Majority of jumps occur during pre-scheduled announcements/events
- Identify a more extensive list of announcements related to jumps
- Announcement surprise is an imperfect indicator of price jumps
- $\uparrow$  Liquidity shock  $\rightarrow$  more jumps,  $\uparrow$  jump return
- Post jump: jumps serves as a dramatic form of price discovery and post jump order flow has less information

### Data: Limit Order Book

- Almost all active issue treasuries goes through electronic limit order book since 2003
- US treasury bond data from BrokerTec (60-65% trading volume).
- No market maker: traders submit limit orders or marketable limit order. Limit order submitters could post "iceburg" (hidden) order. The orders remain in the market until matched or cancelled
- Market closes at 5:30 PM EST and then reopen at 7:00 PM EST. We use data from 7:30 a.m. EST to 5:00 p.m. EST. Sample period: Jan. 2, 2005 to Dec. 29, 2006. Exclude days with early closing.
- Consists of over 465.5 million observations and 10.9 million transactions

### Sample Mean of Variables (Table I)

|              | Volume    | Spread | $Depth^{Best}$ | $Depth^{All}$ |
|--------------|-----------|--------|----------------|---------------|
|              | (billion) | (tick) | (million)      | (million)     |
| 2-year note  | 27.45     | 1.06   | 637.72         | 5122.56       |
| 5-year note  | 24.69     | 1.18   | 119.30         | 1238.48       |
| 10-year note | 22.76     | 1.13   | 120.93         | 1520.08       |

• Spread: tick size 1/128 for 2- and 5-year note, 1/64 for 10-year note

### Data: Macroeconomic Data

- Expectations and realizations of 33 macroeconomic news announcements from Bloomberg, auction time of 2-, 3-, 5- and 10-year note and testimony of Semiannual Monetary Policy Report and Economic Outlook
- Expectation from median of market participants survey
- Standardized news surprise is defined as

$$S_{kt} = \frac{A_{kt} - E_{kt}}{\hat{\sigma}} \tag{1}$$

where

- $A_{kt}$  = actual value of the announcement,
- $E_{kt}$  = median of forecasts for news k on day t

- 
$$\hat{\sigma}$$
 = sample standard deviation of  $A_{kt} - E_{kt}$ 

# Data: Macroeconomic News

| Business Inventories     | Capacity Utilization      | Nonfarm Payrolls           |
|--------------------------|---------------------------|----------------------------|
| Chicago PMI              | Construction Spending     | Consumer Confidence        |
| Consumer Credit          | Consumer Price Index      | Durable Goods Orders       |
| Existing home sales      | FOMC Rate Decision        | Factory Orders             |
| GDP Annualized Advance   | GDP Annualized Final      | GDP Annualized Preliminary |
| Housing Starts           | ISM service               | Industrial Production      |
| Initial Jobless Claims   | Leading Indicators        | Minutes of FOMC Meeting    |
| Monthly budget Statement | NAPM                      | NY Empire State Index      |
| New Home Sales           | Personal Consumption Exp. | Personal Income            |
| Producer Price Index     | Retail Sales              | Trade balance              |
| Philadelphia Fed Index   | ADP Payrolls              | Current Account            |

### Statistical Test of Jumps: Identify Jump Days

- Employ 2 jump testing approaches: "bi-power variation" (hereafter BPV) approach by Barndorff-Nielsen, and Shephard (2004, 2006), and the "variance swap" (hereafter SWV) approach by Jiang and Oomen (2007).
- Bi-power variation test:

$$\frac{V_{(0,1)}\sqrt{N}}{\sqrt{\Omega_{BPV}}} \left(1 - \frac{BPV_N}{RV_N}\right) \xrightarrow{d} \mathcal{N}(0,1).$$
 (2)

where

$$BPV_N = \frac{1}{\mu_1^2} \sum_{i=1}^{N-1} |r_{\delta,i+1}| |r_{\delta,i}|,$$

• Variance Swap Test

$$\frac{V_{(0,1)}N}{\sqrt{\Omega_{SwV}}} \left(1 - \frac{RV_N}{SwV_N}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1) \tag{3}$$

where

$$SwV_N = 2\sum_{j=1}^{N} \left( R_{\delta,j} - r_{\delta,j} \right) = 2\sum_{j=1}^{N} R_{\delta,j} - 2\ln\left(S_1/S_0\right),$$
 (4)

 Identify jump days from 5-min. returns at 1% critical level i.e. if the tests statistics of both approaches are significant, we reject the null hypothesis of no jumps.

### Statistical Test of Jumps: Identify Jump Returns

- Step 1: Let  $\{r_1, r_2, \cdots r_N\}$  be return observations. If the jump test statistic  $JS_0$  is significant, record  $JS_0$  and continue to Step 2.
- Step 2: Replace each return observation by the median return  $(r_{md})$ , and perform jump test on return series  $\{r_1, \cdots, r_{i-1}, r_{md}, r_{i+1}, \cdots, r_N\}$ .  $JS^{(i)}, i = 1, 2, \cdots, N$  are recorded.
- Step 3: Compute the differences of the test statistic in Step 1 and Step 2, i.e.,  $JS_0 - JS^{(i)}$ ,  $i = 1, 2, \dots, N$ . Return j is identified as a jump return if  $JS_0 - JS^{(j)}$  has the highest value among all returns [likelihood criterion]
- Step 4: Replace the identified jump,  $r_j$ , by the median,  $\{r_1, \dots, r_{j-1}, r_{md}, r_{j+1}, \dots, r_N\}$ . Go to Step 1.
- Bid-ask bounce: Jumps have to be larger than twice the tick size.

# Jumps at Announcement vs Other Jumps (Table IV)

| Bond                                                      | Ν      | Mean (abs.)     | Median (abs.)   | Max    | Min    | StdDev |  |  |  |
|-----------------------------------------------------------|--------|-----------------|-----------------|--------|--------|--------|--|--|--|
| Panel A: Jumps Associated with Pre-Scheduled Announcement |        |                 |                 |        |        |        |  |  |  |
| 2-year note                                               | 63     | 0.08            | 0.07            | 0.24   | -0.17  | 0.09   |  |  |  |
| 3-year note                                               | 70     | 0.13            | 0.11            | 0.28   | -0.28  | 0.14   |  |  |  |
| 5-year note                                               | 65     | 0.17            | 0.14            | 0.40   | -0.41  | 0.19   |  |  |  |
| 10-year note                                              | 58     | 0.28            | 0.24            | 0.70   | -0.64  | 0.31   |  |  |  |
| 30-year note                                              | 59     | 0.47            | 0.42            | 0.94   | -1.01  | 0.51   |  |  |  |
| Panel B: Jump                                             | os Not | Associated with | n Pre-Scheduled | Announ | cement |        |  |  |  |
| 2-year note                                               | 6      | 0.05            | 0.05            | 0.07   | -0.07  | 0.05   |  |  |  |
| 3-year note                                               | 4      | 0.09            | 0.09            | 0.12   | -0.09  | 0.09   |  |  |  |
| 5-year note                                               | 7      | 0.11            | 0.10            | 0.18   | -0.12  | 0.10   |  |  |  |
| 10-year note                                              | 5      | 0.24            | 0.24            | 0.26   | -0.35  | 0.25   |  |  |  |
| 30-year note                                              | 17     | 0.61            | 0.27            | 2.13   | -3.55  | 1.04   |  |  |  |

#### Overlapping Jumps: Announcement Jumps vs Other Jumps (Table IV)

|                                                                           | 2-year note | 3-year note | 5-year note | 10-year note | 30-year bond |  |  |  |  |
|---------------------------------------------------------------------------|-------------|-------------|-------------|--------------|--------------|--|--|--|--|
| Panel C: Overlapping Jumps Associated with Pre-Scheduled Announcement     |             |             |             |              |              |  |  |  |  |
| 2-year note                                                               | 63          |             |             |              |              |  |  |  |  |
| 3-year note                                                               | 46          | 70          |             |              |              |  |  |  |  |
| 5-year note                                                               | 41          | 47          | 65          |              |              |  |  |  |  |
| 10-year note                                                              | 35          | 41          | 42          | 58           |              |  |  |  |  |
| 30-year bond                                                              | 29          | 32          | 37          | 41           | 59           |  |  |  |  |
| Panel D: Overlapping Jumps Not Associated with Pre-Scheduled Announcement |             |             |             |              |              |  |  |  |  |
| 2-year note                                                               | 6           |             |             |              |              |  |  |  |  |
| 3-year note                                                               | 2           | 4           |             |              |              |  |  |  |  |
|                                                                           | 0           | 0           | -           |              |              |  |  |  |  |

| 5-year note  | 2 | 3 | 7 |   |    |
|--------------|---|---|---|---|----|
| 10-year note | 1 | 1 | 2 | 5 |    |
| 30-year bond | 1 | 1 | 2 | 6 | 17 |

#### Intra-day Jump Distribution



#### Market Activities around Jumps(1)





#### Market Activities around Jumps(2)





### Liquidity Shocks vs News Surprise (1) (Table VI)

|          | 2-year note |       |       | 5-year note |       |       | 10-year note |         |       |       |       |         |
|----------|-------------|-------|-------|-------------|-------|-------|--------------|---------|-------|-------|-------|---------|
| shk      | shk         | sur   | ret   | $N_{j}$     | shk   | sur   | ret          | $N_{j}$ | shk   | sur   | ret   | $N_{j}$ |
| 1(low)   | 0.739       | 0.168 | 0.012 | 1           | 0.898 | 0.176 | 0.035        | 3       | 0.852 | 0.192 | 0.056 | 0       |
|          | 0.694       | 0.647 | 0.023 | 3           | 0.841 | 0.629 | 0.059        | 5       | 0.832 | 0.685 | 0.069 | 1       |
|          | 0.695       | 1.635 | 0.030 | 6           | 0.762 | 1.531 | 0.063        | 4       | 0.863 | 1.728 | 0.099 | 4       |
| 2        | 1.412       | 0.193 | 0.014 | 1           | 1.631 | 0.203 | 0.034        | 1       | 1.484 | 0.203 | 0.056 | 5       |
|          | 1.441       | 0.682 | 0.017 | 3           | 1.618 | 0.720 | 0.045        | 4       | 1.484 | 0.654 | 0.086 | 5       |
|          | 1.424       | 1.751 | 0.023 | 7           | 1.646 | 1.792 | 0.061        | 6       | 1.500 | 1.541 | 0.089 | 5       |
| 3 (high) | 2.872       | 0.176 | 0.026 | 8           | 3.045 | 0.162 | 0.058        | 8       | 2.748 | 0.140 | 0.087 | 5       |
|          | 2.899       | 0.653 | 0.028 | 7           | 3.055 | 0.657 | 0.069        | 11      | 2.744 | 0.623 | 0.106 | 8       |
|          | 2.747       | 1.421 | 0.029 | 5           | 2.952 | 1.495 | 0.072        | 8       | 2.795 | 1.524 | 0.133 | 13      |

• Shk: depth shock

$$shk = \frac{depth_{t-1}^{overall} - \frac{1}{5}\sum_{j=2}^{6} depth_{t-j}^{overall}}{\sigma_{depth}},$$
(5)

•  $N_j$  number of jumps

### Liquidity Shocks vs News Surprise (2)

• Control for announcements surprise in Probit model for jumps

$$P(jump_{t}|annou) = f(\alpha + \beta_{vola}V_{t-1} + \beta_{Sprdshk}Sprdshk_{t-1} + \beta_{Hidshk}Hidshk_{t-1} + \beta_{Dpthshk}Dpthshk_{t-1} + \beta_{OF}|OF_{t-1}| + \beta_{OB}|OB_{t-1}| + \Sigma_{j=1}^{J}\gamma_{j}|Sur_{j,t}|)$$
(6)

where

$$- V_{t-1} = \sum_{i=1}^{6} (\ln p_{t-i} - \ln p_{t-(i+1)})^2$$

$$- Sprdshk_{t-1} = (spread_{t-1} - \frac{\sum_{j=2}^{6} spread_{t-j}}{5})/\sigma_{sprd}$$

$$- |OB_{t-1}| = |depth_{ask,t-1}^{overall} - depth_{bid,t-1}^{overall}|/\mu_{|OB|}$$

$$- |OF_{t-1}| = |buytrades - selltrades|/\mu_{|OF|}$$

#### Information Shocks vs Liquidity Shocks - 2-year note (Table VII)

|                      | Without ne | ws surprise | With news | surprise |
|----------------------|------------|-------------|-----------|----------|
|                      | Estimate   | P-Value     | Estimate  | P-Value  |
| $eta_{volatility}$   | 1.9022     | 0.0277      | 2.3463    | 0.0141   |
| $eta_{sprdshk}$      | 0.1319     | 0.2767      | 0.2267    | 0.1459   |
| $eta_{ OF }$         | 0.1647     | 0.1814      | 0.2067    | 0.1255   |
| $eta_{ OB }$         | -0.1351    | 0.2880      | -0.0071   | 0.9592   |
| $eta_{dpthshk}$      | -0.4327    | 0.0625      | -0.4999   | 0.0700   |
| $eta_{hidshk}$       | 0.1275     | 0.3851      | 0.2651    | 0.1202   |
| Consumer Price Index |            |             | 0.9283    | 0.0038   |
| Retail Sales         |            |             | 20.9118   | 0.0075   |
| New Home Sales       |            |             | 0.7584    | 0.0723   |
| Joint                | 13.29      | 0.04        | 17.02     | 0.01     |

#### Information Shocks vs Liquidity Shocks - 5-year note (Table VII)

|                            | Without net | ws surprise | With news | surprise |  |
|----------------------------|-------------|-------------|-----------|----------|--|
|                            | Estimate    | P-Value     | Estimate  | P-Value  |  |
| $eta_{volatility}$         | 0.8525      | 0.0025      | 1.2545    | 0.0001   |  |
| $eta_{sprdshk}$            | 0.2101      | 0.0499      | 0.1395    | 0.3748   |  |
| $eta_{ OF }$               | 0.0035      | 0.9771      | -0.3693   | 0.0574   |  |
| $eta_{ OB }$               | -0.0411     | 0.7820      | -0.0759   | 0.6560   |  |
| $eta_{dpthshk}$            | -0.4160     | 0.0672      | -0.9294   | 0.0012   |  |
| $eta_{hidshk}$             | 0.0564      | 0.6559      | 0.1010    | 0.4982   |  |
| ISM index                  |             |             | 0.6835    | 0.0563   |  |
| Change in Nonfarm Payrolls |             |             | 1.2072    | 0.0070   |  |
| Retail Sales               |             |             | 14.7421   | 0.0693   |  |
| Joint                      | 14.76       | 0.03        | 24.85     | 0.00     |  |

#### Information Shocks vs Liquidity Shocks - 10-year note (Table VII)

|                            | Without ne | ews surprise | With news | /s surprise |  |
|----------------------------|------------|--------------|-----------|-------------|--|
| $eta_{volatility}$         | 0.7883     | <.0001       | 0.8383    | <.0001      |  |
| $eta_{sprdshk}$            | 0.2497     | 0.0341       | 0.1600    | 0.3397      |  |
| $eta_{ OF }$               | 0.0065     | 0.9677       | 0.0286    | 0.8806      |  |
| $\beta_{ OB }$             | -0.3822    | 0.0303       | -0.4453   | 0.0437      |  |
| $eta_{dpthshk}$            | -0.4570    | 0.0520       | -0.8180   | 0.0064      |  |
| $eta_{hidshk}$             | 0.0310     | 0.7981       | 0.0213    | 0.8798      |  |
| ISM index                  |            |              | 0.9075    | 0.0314      |  |
| Change in Nonfarm Payrolls |            |              | 1.0169    | 0.0276      |  |
| Retail Sales               |            |              | 21.6375   | 0.0064      |  |
| Joint                      | 37.56      | 0.00         | 34.01     | 0.00        |  |

#### Price Discovery after Jumps

- Literature compares the the impact of order flow on announcement vs non-announcement days (Balduzzi, Elton and Green (2001), Green (2004), Pasquariello and Vega (2007), Menkveld, Sarkar and van de Wel (2008))
- Extend the literature:
  - Compare the informational role of order flow after announcement with jumps to that without jumps
  - Relatively silent on how informative order flow is after a significant price change

#### Price Discovery:

### Announcement with Jumps vs Announcement No Jumps (Table VIII)

|                   | 15-min   |         | 30-min    |         |  | 1-hour   |         |  |
|-------------------|----------|---------|-----------|---------|--|----------|---------|--|
|                   | Estimate | P-value | Estimate  | P-value |  | Estimate | P-value |  |
| 2-year note       | •        |         |           |         |  |          |         |  |
| α                 | 0.223    | 0.680   | 0.032     | 0.920   |  | 0.214    | 0.242   |  |
| $lpha_{jump}$     | -0.002   | 0.999   | -0.497    | 0.497   |  | -0.250   | 0.549   |  |
| $eta^{OF}$        | 0.019    | <.0001  | 0.018     | <.0001  |  | 0.016    | <.0001  |  |
| $eta_{jump}^{OF}$ | -0.007   | 0.016   | -0.005    | 0.013   |  | -0.004   | 0.002   |  |
| $adj - R^2$       | 0.124    |         | <br>0.145 |         |  | 0.151    |         |  |

# Conclusion

- We examine price jumps using the high frequency data of the U.S. Treasury securities market from 2005 to 2006. Majority of jumps occur during prescheduled announcements
- Announcement surprise is not always indicative of price jumps
- Liquidity shock is predictive of price jumps, even after controlling for announcement surprises
- Post jump price process: jumps serve as a dramatic form of price discovery and post jump OF carries less information