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ASSET PRICES IN A TIME SERIES MODEL WITH PERPETUALLY
DISPARATELY INFORMED, COMPETITIVE TRADERS

KENNETH KASA, TODD B. WALKER, AND CHARLES H. WHITEMAN

Abstract. This paper develops a dynamic asset pricing model with persistent
heterogeneous beliefs. The model features competitive traders who receive idiosyn-
cratic signals about an underlying fundamentals process. We adapt Futia’s (1981)
frequency domain methods to derive conditions on the fundamentals that guarantee
noninvertibility of the mapping between observed market data and the underlying
shocks to agents’ information sets. When these conditions are satisfied, agents must
‘forecast the forecasts of others’. The paper provides an explicit analytical charac-
terization of the resulting higher-order belief dynamics. These additional dynamics
can explain apparent violations of variance bounds and rejections of cross-equation
restrictions.

JEL Classification Numbers: G12, D82

1. Introduction

The standard present value model has a difficult time explaining several features
of observed asset prices. From the perspective of this model, prices seem to be
excessively volatile. The model’s cross-equation and Granger causality restrictions
are typically rejected as well. As a result, the linear present value model has all but
disappeared from serious academic research on asset pricing.1 This paper returns to
that framework, and argues that informational heterogeneity can account for many
of the model’s apparent empirical shortcomings. In particular, we make one simple
change to the standard present value model–we assume fundamentals consist of a sum
of orthogonal components, and that individuals observe different pieces of this sum.
The presence of asymmetric information places rational investors into a situation

Date: May 18, 2007.
We would like to thank Tim Cogley, Ron Michener, Bart Taub, Pierre-Olivier Weill and seminar

participants at NYU, the Federal Reserve Board, UC Davis, Indiana University, VPI, UNC, and
the Atlanta Fed for helpful discussions. Support from the National Science Foundation under grant
SES85-10505 is gratefully acknowledged. This paper subsumes and extends Walker and Whiteman’s
Equilibrium Volatility and Heterogeneity in a Simple Asset Pricing Model and Kasa’s Asset Pricing
with Heterogeneous Beliefs: A Frequency Domain Approach.
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where they must ‘forecast the forecasts of others’ (see, Townsend (1983), Singleton
(1987)). We demonstrate how the resulting higher-order belief dynamics can reconcile
standard present value models with several apparent empirical anomalies.

Of course, this is not the first paper to study the role of asymmetric information
in asset markets, nor is it the first to study higher-order beliefs.2 However, our ap-
proach is the first to combine several key ingredients. First, our model is dynamic, it
features persistent heterogeneous beliefs, and the equilibrium is stationary. Following
Grossman and Stiglitz (1980), most existing work on asset pricing with asymmetric
information is confined to static, or finite-horizon models. Although this is a useful
abstraction for some theoretical questions, it is obviously problematic when it comes
to empirical applications. There has been some work devoted to dynamic extensions
of the Grossman-Stiglitz framework (see, e.g., Wang (1993)), but following Gross-
man and Stiglitz, this literature postulates hierarchical information structures, with
‘informed’ and ‘uninformed’ traders. Again, this assumption has its uses, but from
our perspective it ‘throws the baby out with the bath water’, since it eliminates the
forecasting the forecasts of others problem (Townsend (1983)). Our model postulates
a more natural symmetric information structure.

Second, our approach features signal extraction from endogenous prices. This dis-
tinguishes our work from the flood of recent work on global games and imperfect
common knowledge (Morris and Shin (1998, 2000, 2003)). Although this literature
has made important contributions to our understanding of higher-order beliefs, it is
not directly applicable to asset pricing, since it abstracts from asset markets. As
Atkeson (2000) notes, prices play an important role in aggregating information, and
it remains to be seen how robust the work on global games is to the inclusion of asset
markets.3

Third, our approach delivers an analytical solution, with explicit closed-form ex-
pressions for the model’s higher-order belief dynamics. Although this may seem like
a minor contribution given the power of computation these days, it turns out that
analytical solutions are extremely useful in models featuring an infinite regress of
higher-order beliefs. Numerical methods in this setting are fraught with dangers. In
particular, they require prior knowledge of the relevant state vector. As first noted
by Townsend (1983), it is not at all clear what the state is when agents forecast
the forecasts of others. Townsend argued that the logic of infinite regress produces
an infinite-dimensional state. He short-circuited the infinite regress and obtained a
tractable numerical solution by assuming that information becomes common knowl-
edge after a (small) number of periods. This truncation strategy has since been

2See Brunnermeier (2001) for a nice overview of the existing literature.
3Recent work by Angeletos and Werning (2005) incorporates signal extraction from prices into

the Morris-Shin framework. However, their model is essentially static. Moreover, their informational
assumptions preclude even the possibility that prices could be fully revealing. In contrast, our work
focuses directly on the conditions required for a non-revealing equilibrium.
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applied by a number of subsequent researchers (see, e.g., Singleton (1987) and Bac-
chetta and van Wincoop (2006)). However, recent work by Pearlman and Sargent
(2005) and Walker (2007) demonstrates that numerical approaches can be quite mis-
leading. Pearlman and Sargent, employing a clever ‘guess and verify’ strategy based
on the incorporation of lagged forecast errors in the state, showed that Townsend’s
model in fact produces an equilibrium that is fully revealing, and that Townsend’s
higher-order belief dynamics are entirely an artifact of his numerical methods. Walker
(2007) does the same thing for Singleton’s asset pricing version of Townsend’s model.
Using the same approach as this paper, he obtains an analytical solution without
truncation, and shows that the equilibrium is in fact fully revealing.

Our approach adapts and extends the frequency domain methods of Futia (1981).
These methods exploit the power of the Riesz-Fischer Theorem. This theorem allows
us to transform a difficult time-domain/sequence-space signal extraction problem into
a much easier function space problem. Rather than guess a state vector and then solve
a Kalman filter’s Riccati equation, a frequency domain approach leads to the con-
struction of Blaschke factors. Finding these Blaschke factors is the key to solving the
agents’ signal extraction problems.4 In general, finding Blaschke factors is no easier
than solving Riccati equations. However, a key innovation in our approach is to work
backwards from postulated Blaschke factors to the supporting set of fundamentals.
This reverse engineering strategy allows us to isolate necessary conditions for the ex-
istence of a heterogeneous beliefs equilibrium. The advantages gained from knowing
these conditions cannot be overestimated. For example, recent work by Makarov and
Rytchkov (2006) also applies frequency domain methods to a linear present value
asset pricing model. In contrast to our approach, they begin by postulating a time
series process for fundamentals, and then search for an equilibrium price process. In-
terestingly, they argue that a finite-state equilibrium does not exist. However, their
fundamentals specification does not satisfy our existence condition, which perhaps
explains why they are unable to find a finite-state equilibrium.

Besides Makarov and Rytchkov (2006), the only other paper we are aware of that
applies frequency domain methods to asset pricing is the recent work of Bernhardt,
Seiler, and Taub (2005). Like us, they analyze a dynamic model with symmetric,
heterogeneously informed traders. However, their work differs from ours in two im-
portant respects. First, following Kyle (1985), they focus on the strategic use of
information when individual traders influence asset prices, which are set in a compet-
itive dealership market. In contrast, our model is Walrasian. While strategic issues
are interesting, and of great practical importance, they add an additional layer of com-
plexity to the already difficult problem of characterizing higher-order belief dynamics.
Second, the complexity of their model requires numerical methods. This gives rise
to the above noted difficulties associated with guessing correct functional forms and

4Kasa (2000) uses frequency domain methods to solve Townsend’s model. He comes to the same
conclusion as Pearlman and Sargent (2005).
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appropriate state vectors. It also makes it difficult to distinguish higher-order belief
dynamics from the strategic use of private information.

Our model’s solution takes the form of a nonfundamental (i.e., noninvertible)
moving-average representation, mapping the underlying shocks to agents’ informa-
tion sets to observed prices and fundamentals. Using Blaschke factors, one can easily
convert this to a Wold representation. The (statistical) innovations of the Wold
representation turn out to be complicated moving averages of the entire histories
of the underlying (economic) shocks. These moving averages encode the model’s
higher-order belief dynamics. A key virtue of our approach is that this equilibrium
representation can be taken to the data in a direct, quantitative way. In contrast, ex-
isting work on higher-order beliefs is purely qualitative. This allows us to revisit past
empirical failures of linear present value asset pricing models. We ask the following
question - Suppose asset markets feature heterogeneous beliefs, but an econometri-
cian mistakenly assumes agents have homogeneous beliefs. What will he conclude?
One might think, based on the conditioning down arguments of Hansen and Sargent
(1991a) and Campbell and Shiller (1987), that this would not create any problems.
Interestingly, this is not the case. Conditioning down does not work here. The ar-
guments of Hansen-Sargent and Campbell-Shiller apply to situations where agents
and econometricians have different information sets. They do not apply in general to
situations where there is informational heterogeneity among the agents themselves.
This is because the law of iterated expectations does not apply to the average beliefs
operator (Allen, Morris, and Shin (2005), Morris and Shin (2003)). We show that
present value models with heterogeneous beliefs can easily produce violations of stan-
dard variance bounds and rejections of cross-equation restrictions. This sounds a note
of caution when interpreting previous rejections of present value models. Perhaps it
is not the constant discount rate that is the problem, but rather the (usually implicit)
assumption of homogeneous beliefs, or equivalently, a fully revealing equilibrium.

The remainder of the paper is organized as follows. The next section outlines
Futia’s model. Futia showed how to solve the model in two cases: (i) when the
equilibrium is fully revealing, and (ii) when information sets are hierarchical, so that
some agents know strictly more than others. He showed that the hierarchical equi-
librium may or may not be fully revealing. Section 3 shows how to solve the model
in the more realistic case of symmetric, yet disparate, information sets. Rather than
working from posited laws of motion for the fundamentals, our strategy is to work
backwards from an assumed nonrevealing equilibrium to the supporting stochastic
process for fundamentals. For comparison purposes, Section 4 briefly considers a full
information benchmark. Section 5 constructs the equilibrium Wold representation
and discusses the model’s empirical implications. Section 6 contains an application
to the foreign exchange market, and Section 7 concludes by discussing some extensions
and applications.
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2. A Model of Trade in Shares of a Risky Asset

2.1. Model. The model we work with below follows Futia’s (1981) ‘Land Specula-
tion in Hilbert Space’ setup closely. By working within the context of a well-defined
Hilbert space, we are ruling out phenomena like bubbles and sunspots. All stochastic
processes are restricted to be square-summable (potentially with discounting), and all
equilibria are restricted to lie in the space spanned by square-summable linear combi-
nations of past innovations to market fundamentals, which may, however, be a larger
space than the space spanned by the history of observed market data. In his model,
Futia considers investment in a single durable asset in fixed total supply. Demand
for the asset arises from two sources; a time- and state-varying nonspeculative com-
ponent (i.e., liquidity traders), and from competitive, price-taking speculators. The
presence of liquidity traders adds noise to the model, and serves to break the no-trade
theorem that would otherwise apply in Futia’s hierarchical information setup. It is
assumed that nonspeculative demand never exceeds total supply, and the residual,
denoted ft, is interpreted as ‘market fundamentals.’ Each investor has a demand for
the asset given by,

qi
t = Ei

tpt+1 − β−1pt (2.1)

where β−1 = (1+r) > 1 is interpreted as the opportunity cost of funds. The important
thing to note here is that conditional expectations are indexed by agents, recognizing
the fact that information sets differ. Equation (2.1) simply says that demand is an
increasing function of the difference between the expected capital gain on the asset
and the opportunity cost of the funds. It is not infinite, however, due to risk aversion.
In fact, equation (2.1) can be derived from a simple portfolio choice problem in which
agents have exponential (CARA) preferences and a one-period investment horizon.
From this perspective, equation (2.1) implicitly normalizes to unity the product of
the coefficient of absolute risk aversion and the (constant) conditional variance of the
price.5

Equating aggregate speculative demand to aggregate speculative supply delivers
the following market-clearing condition:

pt = β

∫ 1

0

Ei
tpt+1di − βft (2.2)

where it has been assumed that there is a measure one continuum of speculative
traders. Notice, following Singleton (1987), that the market price of the risky asset
depends on a weighted average of the market participants’ forecasts of pt+1. Thus
each agent’s forecast of pt+1 depends on his forecast of the market-wide weighted

5Whiteman (1989) shows how to solve the model with the conditional variances retained. Doing
so would complicate the algebra, but would not change the results qualitatively.
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average forecast of pt+2, and so on.6 Evidently, there is an infinite regress in expecta-
tions, a problem encountered in a different context by Townsend (1983). Townsend
and Singleton “broke” the infinite regress by completely revealing the state of the
economy, albeit with a lag. Such divine revelation leaves only a few objects unknown
at any date, and makes the regress problem manageable. In this paper, the infinite
regress problem is never broken (it is treated just like any other equilibrium prob-
lem) and there is no divine revelation; special assumptions about the nature of the
informational heterogeneity keep the problem manageable.

Given a stochastic process for the fundamentals, and assuming rational expecta-
tions, equation (2.2) determines the equilibrium stochastic process for prices. Note,
however, that with the appropriate definition of ft, (2.2) is quite general. For exam-
ple, with −ft defined as dividends, it becomes a present value model for stock prices;
with −ft defined as the difference between national money supplies and income levels
it becomes the monetary model of exchange rates; with −ft defined as a short-term
interest rate it becomes the expectations hypothesis of the term structure; and so on.

In the analysis that follows, we consider two cases of this model. The first case
assumes that fundamentals are latent from (not observed by) traders. This is the
setup of Futia (1981). The second case assumes that net supply is identically equal to
zero (i.e., no liquidity traders), and fundamentals are observable. This model follows
the interpretation of the present value model for stock prices. The models have similar
informational structures and lead to the same empirical conclusions for asset prices.

2.2. Information. In specifying the nature of uncertainty and the structure of infor-
mation, we assume that the world is driven by an m-vector of serially and mutually
independent Gaussian N(0,1) random variables εt = (ε1t, ..., εmt). Admissible random
variables are linear combinations of current, past, and future values of {εt} that have
square-summable coefficients. The set H of all admissible random variables is a well-
known Hilbert space; ft, pt, E

i
t(·) ∈ H for all t. We also restrict equilibria to lie in H,

which explicitly rules out bubbles and sunspot equilibria.
The common information at date t consists of past values of the price of the risky

asset. The space spanned by square-summable linear combinations of past values of
pt is denoted by Hp(t). The exogenous private information set of agent i at time
t is a subset U i

t of H satisfying U i
t ⊆ U i

t+1; U i
t is the space spanned by square-

summable linear combinations of current and past values of the variables other than
pt seen by agent i. Let Jt denote the space spanned by all exogenous information at

6As recently emphasized by Allen, Morris, and Shin (2005), the law of iterated expectations
does not in general apply to the average expectations operator. One can interpret this result using
Hansen and Sargent (1991a) notion of an ‘exact’ rational expectations model. Traditional homoge-
nous beliefs present value models are examples of exact models. Although agents may have more
information than econometricians, there are no ‘missing fundamentals’ from these models. In con-
trast, models with heterogeneous beliefs are ‘inexact’, since higher-order beliefs in effect become
missing fundamentals.
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time t contained in the model (∪∞
i=1U

i
t ). Given these assumptions, the conditional

expectations are given by

Ei
tpt+1 = Π[pt+1|U i

t

∨
Hp(t)], (2.3)

where Π denotes linear least squares projection, and X
∨

Y is standard notation
for “the linear space spanned by X and Y .” We now define a rational expectations
equilibrium (REE).

Definition 2.1. A rational expectations equilibrium is a stochastic process {pt} for
the price of the risky asset which satisfies (2.2) with conditional expectations formed
according to (2.3) and pt ∈ Jt

∨
Hp(t).

The last condition is what Futia referred to as the ‘no divine revelation’ clause.
That is, the equilibrium price cannot rely on information that originates from outside
of the model. The equilibrium price must lie in the space spanned by past prices and
the exogenous information known by the traders.

Definition 2.2. The REE is symmetric if it is a rational expectations equilibrium in
which all agents make identical forecasts,

Ei
tpt+1 = Ej

t pt+1, ∀ i and j.

Notice that by observing “action” in the market, agents may glean information not
in their own private information sets that helps predict market fundamentals. To
preserve the asymmetric information structure in equilibrium, it must be the case
that privately held information is not revealed by observation of current and past
prices.

Agents in the model have asymmetric information regarding the stochastic process
of fundamentals, ft. Without loss of generality, we assume fundamentals consist of
the sum of orthogonal components:

ft =
m∑

i=1

ai(L)εit. (2.4)

It will be assumed that ai(L) is a polynomial (of possibly infinite order) in nonnegative
powers of the lag operator L, with square summable coefficients, and that ai(z) 6= 0
for any |z| ≤ 1 and ai(z) 6= aj(z) for any i 6= j. The orthogonal shocks are assumed to
be serially uncorrelated with Eεitεjs = 0 for all i 6= j, and constitute the fundamental
economic building blocks of the model, implying the price process will be square
summable sequences of {εi}.

We assume there are two types of speculative traders. Type 1 traders costlessly
observe realizations of ε1t, while type 2 traders costlessly observe realizations of ε2t.
Without loss of generality, we assume equal shares of the two types of traders. This
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allows us to write (2.2) as

pt = β

{
1

2
E1[pt+1|Hp(t)

∨
Hε1 (t)] +

1

2
E2[pt+1|Hp(t)

∨
Hε2(t)]

}
− βft. (2.5)

Of course when fundamentals are observable, each traders’ conditional expectation
will include Hf (t).

3. Constructing a Nonrevealing Equilibrium

One of the main contributions of the paper is to establish conditions under which
the disparate expectations of (2.5) are preserved in a dynamic equilibrium. As men-
tioned above, the usual approach for solving rational expectations models (i.e., pa-
rameterize a conjectured law of motion, apply the Kalman filter to evaluate the
conditional expectations, and then match coefficients) cannot be employed due to
the complications of infinite regress. In models with asymmetric information, other
traders’ forecasts of future prices affect the current price of the asset, and therefore
these forecasts are relevant state variables. But in a dynamic setting, this relevant
state variable would become infinitely large because traders must forecast the average
forecast of the average forecast of ..., ad infinitum.

In solving the model, we apply the following solution method. First, each trader
uses all available information at time t to form beliefs about the current price pro-
cess. Second, every trader behaves optimally and the conditional expectation of pt+1

will be calculated via Wiener-Kolmogorov optimal prediction formulas. Third, the
appropriate form of equation (2.5) is then used to impose market clearing. In solving
the subsequent fixed-point problem, we appeal to the Riesz-Fischer Theorem and de-
rive the solution in the frequency domain. However, this process will only generate
a candidate equilibrium price process. Traders will surely condition on past prices,
so the candidate is in fact a rational expectations equilibrium provided it does not
reveal any additional information beyond what was initially assumed.

We consider two separate assumptions about the fundamentals. First we assume
aggregate fundamentals are unobservable. This is perhaps most descriptive of macroe-
conomic applications, e.g., present value models of the exchange rate, where relevant
aggregate fundamentals may not be known or reported.7 It turns out that prices must
be revealing in the case when there are just two trader-types. To support a heteroge-
neous beliefs equilibrium with observed aggregate fundamentals, we therefore extend
the analysis to three trader-types.

7Engel and West (2005) argue that unobserved fundamentals appear to be necessary to reconcile
present value models with observed exchange rates. Hamilton and Whiteman (1985) argue that
the mere possibility of unobserved fundamentals vitiates standard bubbles tests. Interestingly, our
results suggest a likely candidate for ‘missing fundamentals’, i.e., higher-order beliefs.
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3.1. Latent Fundamentals. We begin with Futia’s set-up. Aggregate fundamentals
are

ft = a1(L)ε1t + a2(L)ε2t,

where the polynomials a1(L) and a2(L) are taken as given (subject to some restrictions
given below). While no trader sees aggregate fundamentals directly, each type of
trader sees a stochastic process that is correlated with ft; specifically, type 1 traders
see realizations of ε1t, while type 2 traders see ε2t. In equilibrium, the information set
of type 1 traders is given by current and past values of the stochastic process ε1t, pt,
having the moving average representation[

ε1t

pt

]
=

[
1 0

π1(L) π2(L)

] [
ε1t

ε2t

]

xt = M(L)εt. (3.1)

where the π1(L) and π2(L) polynomials are to be determined from the equilibrium
conditions of the model.

If the equilibrium is to be nonrevealing, it must be the case that the πi(L) poly-
nomials are noninvertible (in non-negative powers of L). Otherwise, an agent of one
type equipped with basic statistical knowledge (e.g., knowledge of VARs) could in-
fer the other type of agent’s information from observations of the price and his own
shock realizations. That is, if the πi(L) polynomials were invertible, Hε1 (t)

∨
Hp(t)

and Hε1(t)
∨

Hε2(t) would coincide, and the equilibirum would reveal agent 2’s infor-
mation to agent 1. This noninvertibility restriction corresponds to the assumption
that π1(z) and π2(z) have zeroes inside the unit circle. Thus to preserve asymmetric
information in equilibrium we must seek and find equilibrium pricing polynomials of
the form

πi(L) = (L − λ)[ρi + Lgi(L)] (3.2)

where we now require |λ| < 1, and that the (ρi + zgi(z)) functions are analytic and
without zeroes inside the unit circle.8 That is, we assume the pricing function has a
single zero inside the unit circle and seek a λ, ρi, and gi(L) that satisfies the above
conditions.

The following lemma ensures that pricing functions of the form (3.2) imply that
by observing current and past prices and current and past realizations of ε1t, type 1
traders will not be able to infer ε2t, the private information of type 2 traders.

Lemma 3.1. The moving average representation given by (3.1) and (3.2) is not a
fundamental (Wold) representation.

Proof. A necessary and sufficient condition for (3.1) to be a Wold representation is
that the space spanned by past observables xt must be equivalent, in the mean square

8We can relax the assumption that π1 and π2 have the same zero (λ) at the cost of losing
Proposition 1 below. The upside is that the analogue of Assumption 1 would be more easily met.
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sense, to the space spanned by εt. This requires M(L) to have a one-sided inverse in
non-negative powers of L. A necessary condition for the existence of this inverse is
that the determinant of M(L) cannot have any zeros inside the unit circle. By direct
calculation,

det M(L) = (L − λ)[ρ2 + Lg2(L)]

has a zero inside the unit circle at λ. �

If type 1 traders do not observe ε2t directly, what information do they possess
in evaluating the conditional expectation? Type 1 traders have information set
Hp(t)

∨
Hε1(t), and therefore any information gleaned from the past sequences of

{ε1t} and the price process {pt} will be used to evaluate the conditional expectation.
While pt and ε1t can be expressed as a square-summable linear combination of current
and past values of ε1t and ε2t, the converse is not true; Hε1(t)

∨
Hε2(t) spans a larger

space than Hε1(t)
∨

Hp(t). Therefore, in order to evaluate the expectations of type 1
traders, we need to restrict attention to the subspace generated by Hp(t)

∨
Hε1(t).

There are two ways to do this. The first is to work directly with the subspace seen
by the agent by employing Blaschke factors to “flip zeros” outside the unit circle. The
second is to work with the larger information set involving current and past values of
ε2t and then project this into Hε1(t)

∨
Hp(t). Both ways are instructive.

The direct method involves employing Blaschke factors to find the unique (up to a
constant) fundamental representation associated with (3.1), which is given by

[
ε1t

pt

]
=

[
1 0

(L − λ)[ρ1 + Lg1(L)] (L − λ)[ρ2 + Lg2(L)]

] [
1 0
0 1−λL

L−λ

]

︸ ︷︷ ︸

[
1 0
0 L−λ

1−λL

] [
ε1t

ε2t

]

︸ ︷︷ ︸
xt = M∗(L) ε∗t (3.3)

The Blaschke factor [(L− λ)/(1 − λL)] transforms representation (3.1) into a funda-
mental representation. If we define

e2t ≡
[

L − λ

1 − λL

]
ε2t, (3.4)

then for type 1 traders, knowledge of {pt} is equivalent to knowledge of {e2t}, and
not {ε2t}. Moreover, notice that from (3.4), it is apparent that knowledge of current
and past ε2t is sufficient for e2t, but that the inverse of the Blaschke factor does not
possess a valid expansion in and on the unit circle in L due to the pole at L = |λ|.
However, by setting F = L−1, it is easy to see that the Blaschke factor does have a
valid inverse in the forward operator F

[
F − λ

1 − λF

]
e2t = ε2t, ε2t = (L−1 − λ)

∞∑

j=0

λje2,t+j.

In other words, ε2t carries information about future e2’s.
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The parameter λ may be interpreted as an information wedge. Notice that if
|λ| > 1, (3.1) becomes a fundamental representation and asymmetric information
will not be preserved in equilibrium. By observing current and past prices, traders
of both types will be able to infer the information of the other type by applying
VAR analysis. If |λ| < 1, then the equilibrium prices will not reveal information.
The subsequent excess volatility result discussed in Section 5 hinges upon the price
process being a nonrevealing equilibrium.

The conditional expectations (2.5) can then be found by using Wiener-Kolmogorov
optimal prediction formulas. That is,

E(xt+1) = L−1[M∗(L) − M(0)∗]ε∗t

E1[pt+1|Hp(t)
∨

Hε1(t)] = [ρ1 + (L − λ)g1(L)]ε1t

+

[
ρ2 + (L − λ)g2(L) − ρ2(1 − λ2)

1 − λL

]
ε2t (3.5)

The second way to determine the needed conditional expectation involves using
a ‘conditioning down’ argument. First, project pt+1 onto the space Hε1(t)

∨
Hε2(t).

That is, assume (counterfactually) that agents directly observe realizations of the
underlying shocks, ε1t and ε2t. Subsequently, we will condition down by ‘subtracting
off’ the appropriate orthogonal complements.9 From the orthogonality of ε1 and ε2,
and the Wiener-Kolmogorov prediction formula we have the projection onto the larger
space given by:

E[pt+1|Hε1(t)
∨

Hε2(t)] = L−1[π1(L) − π1(0)]ε1t + L−1[π2(L) − π2(0)]ε2t

= [ρ1 + (L − λ)g1(L)]ε1t + [ρ2 + (L − λ)g2(L)]ε2t (3.6)

As before, since |λ| < 1, then Hε1(t)
∨

Hε2(t) is a larger space than Hε1(t)
∨

Hp(t),
and we need to condition down (i.e., project onto the subspace Hε1(t)

∨
Hp(t)).

Clearly, the first term on the right-hand side of (3.6) can be retained, since type
1 traders observe ε1t. The second term, however, needs to be modified. Due to Beurl-
ing’s Theorem, Blaschke factors play a fundamental role in constructing orthogonal
projections and invariant subspaces of analytic functions.10 Our required projection
follows as a special case of the following theorem:

9Although we cautioned earlier that the law of iterated expectations does not apply to the average
expectations operator, it certainly does apply to each individual’s forecasting problem.

10Invariant subspaces can be thought of as playing the role of eigenvectors in infinite dimensional
function spaces. Just as it helps to visualize the action of a matrix by visualizing its projections onto
orthogonal eigenvectors, it helps to visualize the action of a z-transform by visualizing its (shift)
invariant subspaces. Loosely speaking, Beurling’s theorem tells us that shift invariant subspaces of
analytic functions consist of Blaschke products. (See theorem 3.9 of Radjavi and Rosenthal (1973)
for a statement and proof of Beurling’s theorem).
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Theorem 3.2 (Theorem 3.14 in Radjavi and Rosenthal (1973)). Let D denote the
open unit disk, H2 denote the Hardy space of square integrable analytic functions on
D. If λ1 · · ·λn are in D and if

φ(z) =

n∏

j=1

λj − z

1 − λ̄jz
(3.7)

then the orthogonal complement of φH2 in H2, H2 	 φH2, has dimension n. Con-
versely, every invariant subspace of S (i.e., a shift operator) of co-dimension n has
this form.

The function φ(z) in (3.7) is an example of a Blaschke product. Note that |φ(z)| = 1
on D, implying that multiplication by φ(z) is norm-preserving. The theorem implies
that in our case, with n = 1, the part of Hε2(t) that cannot be written as a linear
combination of current and past e2t is unidimensional–a single square summable linear
combination of current and past values of ε2t. In particular, Theorem 3.2 yields the
following result:

Lemma 3.3. The projection E[pt+1|Hε2(t)] = [ρ2 +(L−λ)g2(L)]ε2t has the following
orthogonal decomposition:

[ρ2 + (L − λ)g2(L)]ε2t =

[
h(L)

L − λ

1 − λL

]
ε2t +

constant

1 − λL
ε2t (3.8)

where h(L) is an analytic function in D with zeroes outside D.

Proof. We begin with the decomposition of ε2t itself into a component that can be
written in terms of e2t =

[
L−λ
1−λL

]
ε2t and another orthogonal to it:

ε2t = K(L)

[
L − λ

1 − λL

]
ε2t + M(L)ε2t (3.9)

where K(L) and M(L) are one-sided polynomials in the lag operator with square-
summable coefficients. Orthogonality is enforced by the requirement that M(L)ε2t =
ε2t − K(L)

[
L−λ
1−λL

]
ε2t be orthogonal to e2t = L−λ

1−λL
ε2t, e2t−1 = L−λ

1−λL
ε2t−1, e2t−2, etc.

Thus

EM(L)ε2te2t−j =
1

2πi

∮
M(z)z−j(z − λ)

1 − λz

dz

z
= 0, j = 0, 1, 2, ...

Direct calculation using the residue calculus yields the restrictions M(λ) = M0/(1 −
λ2) and Mj = λMj−1 for j ≥ 1. This implies M(L) = M0/(1−λL). This immediately
gives (3.8) for some h(z). It is straightforward to verify the orthogonality of the two
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components on the RHS of (3.8) for any analytic h(z)11:
(

h(z)
z − λ

1 − λz
,

1

1 − λz

)
=

1

2πi

∮
h(z)

z − λ

1 − λz
· 1

1 − λz−1

dz

z

=
1

2πi

∮
h(z)

z − λ

1 − λz
· z

z − λ

dz

z

=
1

2πi

∮
h(z)

1

1 − λz
dz

= 0 (by Cauchy’s integral formula)

�
The usefulness of the decomposition in Lemma 3.3 derives from the fact that it
isolates exactly what type 1 traders cannot infer about ε2t from observations of market
data. To determine the constant, simply equate both sides at L = λ, which gives
the constant as ρ2(1 − λ2). The orthogonal decomposition yields the conditional
expectations.

Lemma 3.4. Given the hypothesized pricing functions in (3.2), the conditional ex-
pectations of type 1 traders are given by:

E[pt+1|Hp(t)
∨

Hε1(t)] = [ρ1 +(L−λ)g1(L)]ε1t +

[
ρ2 +(L−λ)g2(L)− ρ2(1 − λ2)

1 − λL

]
ε2t

(3.10)
and the conditional expectations of type 2 traders are given by:

E[pt+1|Hp(t)
∨

Hε2(t)] =

[
ρ1 +(L−λ)g1(L)− ρ1(1 − λ2)

1 − λL

]
ε1t +[ρ2 +(L−λ)g2(L)]ε2t

(3.11)

At this point it is useful to compare (3.10) and (3.11) to (3.6). Notice how condi-
tioning down onto the observable subspaces requires us to ‘subtract’ the orthogonal
complement of the subspace generated by a Blaschke factor constructed with the
presumed noninvertible root, λ. It is also useful to compare (3.10) and (3.11). The
following proposition demonstrates how the asymmetric information structure can
lead to ‘overreaction’ in financial markets.

Proposition 3.5. Traders respond ‘more aggressively’ to realizations of other traders’
(unobserved) signals.

Proof. This can be seen by differencing (3.10) and (3.11),

E1
t pt+1 − E2

t pt+1 =
1 − λ2

1 − λL
(ρ1ε1t − ρ2ε2t) . (3.12)

11For Hilbert space aficionados, notice that the second term on the right-hand side of (3.8) is a
reproducing kernel for H2, since for any f ∈ H2 we have (f(z), (1 − λz)−1) = f(λ). This is not
accidental.
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�

At any given point in time, the forecasts of the two traders differ as a function
of the histories of their observed signals. Hence, the trader who has received higher
signals (on average) tends to forecast higher prices. Interestingly, traders respond
‘more aggressively’ to realizations of other traders’ (unobserved) signals. For exam-
ple, if trader 2’s signals have been larger on average, trader 1 will have lower price
forecasts (remember, prices respond negatively to the εi’s, since they represent shocks
to supply). Moreover since knowledge of the other traders’ signals is only obtainable
by observing publicly-available prices, this result is tantamount to overreaction to
public signals (Allen, Morris, and Shin (2005)). As we will see, this overreaction to
public signals generates ‘excess volatility’.

The third step in the solution process is to impose the equilibrium condition (2.5)
and solve the subsequent fixed-point problem. Doing this yields:

Proposition 3.6. Under Assumption 3.7 (given below), there exists a unique het-
erogeneous beliefs rational expectations pricing function for the model given in (2.5),
with z-transforms given by:

π1(z) =(z − λ)

[
2a1(λ) +

z

z − β

{
−2a1(λ) +

β

z − λ

[
2a1(λ) − a1(z)− a1(λ)(1 − λ2)

1 − λz

]}]

(3.13)

π2(z) =(z − λ)

[
2a2(λ) +

z

z − β

{
−2a2(λ) +

β

z − λ

[
2a2(λ) − a2(z)− a2(λ)(1 − λ2)

1 − λz

]}]

(3.14)

and |λ| < 1 given implicitly by the equation: 2λa1(λ) = β[a1(β) + a1(λ)(1 − λ2)/(1 −
λβ)].

The proof is by construction. Notice that it is sufficient to verify the result for π1(z),
due to symmetry. The equilibrium condition (2.5) and conditional expectations (3.10)
and (3.11) gives

(L − λ)(ρ1 + Lg1(L))ε1t = β

[
ρ1 + (L − λ)g1(L) − 1

2

ρ1(1 − λ2)

1 − λL

]
ε1t − βa1(L)ε1t.

Assuming that this expression holds for all realizations of ε1t, the coefficients on ε1s

must match for every s. In lieu of solving this infinite sequential problem, one can
solve an equivalent functional problem by invoking the Riesz-Fischer Theorem and
examining the corresponding power series equalities12

(z − λ)(ρ1 + zg1(z)) = β

[
ρ1 + (z − λ)g1(z) − 1

2

ρ1(1 − λ2)

1 − λz

]
− βa1(z). (3.15)

12The Appendix provides more detail concerning this solution method.



ASSET PRICES IN A TIME SERIES MODEL... 15

Evaluating (3.15) at z = λ immediately delivers the unknown constant, ρ1 = 2a1(λ).
To determine λ in terms of the exogenous parameter, plug in ρ1, divide both sides by
z − λ, and then collect terms. This yields,

(z − β)g1(z) = −2a1(λ) +
β

z − λ

[
2a1(λ) − a1(z) − a1(λ)(1 − λ2)

1 − λz

]
(3.16)

Notice that the right-hand side is analytic by construction (i.e., the singularity at λ
has been ‘removed’). Since g1(z) has been assumed to be analytic, the right-hand
side of (3.16) must be zero when evaluated at z = β. Evaluating the right-hand side
at z = β and setting it to zero gives us the following equation characterizing λ

2λ = β

[
a1(β)

a1(λ)
+

1 − λ2

1 − λβ

]
, (3.17)

which is a slight re-arrangement of the equation given in 3.6. Notice that in general
λ will depend on a1(z), and thus we can expect a different λ when solving the fixed
point equation for π2(z). Since we’ve postulated a common λ for both π1(z) and
π2(z), we impose the following assumption.13

Assumption 3.7. There exists a unique |λ| < 1 with λ 6= β, that solves the two
equations:

2λ = β[ai(β)/ai(λ) + (1 − λ2)/(1 − λβ)] i = 1, 2

A trivial case where this is generally satisfied is when the dynamics of the two
unobserved components are the same (i.e., when a1(L) = a2(L)). However in order
to avoid a stochastic singularity in the bivariate representation for prices and fun-
damentals, this case is ruled out. Moreover a1(L) and a2(L) cannot both be AR(1)
processes, since in this case there is only one unique AR root for any given λ. How-
ever, it is not difficult to find representations satisfying Assumption 3.7. For example,
an ARMA(1,1) will satisfy the condition.

Finally, we can determine g1(z) by dividing both sides of (3.16) by z−β (remember,
by construction, the singularity at β has just been removed by the appropriate choice
of λ). Given g1(z), λ, and ρ1, the expression for π1(z) given by (3.13) follows from
plugging into π1(z) = (z − λ)(ρ1 + zg1(z)).

3.2. Observable Fundamentals. Although some asset markets might be well de-
scribed by unobserved aggregate fundamentals, in other cases it makes more sense to
assume aggregate fundamentals are observed. A leading example would be the prices
of individual stocks and bonds, where earnings and dividends are widely reported.14

13A common λ in the price process is not required for the results presented in Section 5; thus
Assumption 1 is not, in general, restrictive. Assumption 3.7 is the bivariate generalization of Futia’s
(1981) Theorem 6.1.

14Remember, we are imposing a constant discount rate from the outset, so the usual difficulty of
identifying the macroeconomic determinants of stochastic discount factors do not apply here.
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The next result shows that when aggregate fundamentals are observed, equilibrium
prices must be revealing, i.e., a heterogeneous beliefs equilibrium does not exist.

Proposition 3.8. With just two trader types, there does not exist a heterogeneous
beliefs Rational Expectations Equilibrium if aggregate fundamentals are observable.
Prices must be fully revealing.

Proof. Suppose Type 1 traders observe (pt, ft, ε1t) and Type 2 traders observe (pt, ft, ε2t).
Then Type 1 effectively observes a2(L)ε2t. Since pt also depends on the history of
ε2t, the first corollary on p. 101 of Hoffman (1962) implies {pt, a2(L)ε2t} spans Hε2(t)
unless a2(z) and π2(z) have identical noninvertible roots. However, a2(λ) 6= 0 by the
existence condition given in Assumption 3.7. �

There are several ways we could modify the model to support a heterogeneous
beliefs equilibrium. The most natural is to simply add more trader-types. The two
trader-type specification is very special, since in this case the number of types exactly
matches the number of aggregate observables. We now show that with more than
two types a heterogeneous beliefs equilibrium can be robustly supported even when
aggregate fundamentals are common knowledge.

Suppose now that fundamentals (2.4) are comprised of three orthogonal compo-
nents,

ft = a1(L)ε1t + a2(L)ε2t + a3(L)ε3t

and that the asymmetric information is the same as the previous section. That is,
type 1 traders costlessly observe ε1t, type 2 traders costlessly observe ε2t, and type
3 traders costlessly observe ε3t. Conjecturing the same pricing function for each
component as before then implies the following observer system for type 1 traders,



ε1t

ft

pt


 =




1 0 0
a1(L) a2(L) a3(L)

(L − λ)[ρ1 + Lg1(L)] (L − λ)[ρ2 + Lg2(L)] (L − λ)[ρ3 + Lg3(L)]







ε1t

ε2t

ε3t




yt = H(L)εt

Type 1 traders use this system to compute,

E1(pt+1|Hp(t)
∨

Hf (t)
∨

Hε1(t)) = E1(pt+1|Hε1(t)
∨

He2(t)
∨

He3(t)),

Notice that this now entails the use of two (identical) Blaschke factors, one mapping
ε2t to e2t, and another mapping ε3t to e3t. A completely symmetric argument applies
to traders 2 and 3.

Of course, the existence condition in Assumption 3.7 must be modified to reflect
the presence of the additional component. We now have
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Assumption 3.9. There exists a unique |λ| < 1 with λ 6= β, that solves the three
equations:

3λ = β[ai(β)/ai(λ) + 2(1 − λ2)/(1 − λβ)] i = 1, 2, 3

In general, this is a more restrictive condition, but again, it is not hard to find
examples that satisfy it. Given Assumption 3.9, the entire analysis goes through as
before, with nearly identical pricing functions.15. The only real difference is that now
the overall price process consists of the sum of three symmetric pricing functions.
Hence, in what follows we focus on the latent fundamentals case, recognizing that
any results obtained can be translated to the observed fundamentals case, assuming
the somewhat more restrictive existence condition in Assumption 3.9.

4. Equilibrium with Homogeneous Beliefs

To interpret the heterogeneous beliefs equilibrium given by equations (3.13) and
(3.14), it is useful to consider the benchmark case of homogeneous beliefs. The
appropriate modification of Assumption 3.7 allows for a fully revealing equilibrium.

Assumption 4.1. There exists a |λ| > 1 that solves the two equations:

2λ = β[ai(β)/ai(λ) + (1 − λ2)/(1 − λβ)] i = 1, 2

Given Assumption 4.1, the mapping in (3.1) has a one-sided inverse and by observ-
ing equilibrium prices, traders are able to infer the fundamental shocks ε1t and ε2t.
Traders will then guess the equilibrium price to be of the form

πs
i (L)εit = [ρi + Lhi(L)]εit

where the superscript s reminds us that we are solving for a fully revealing, symmetric,
equilibrium. Using this in (3.2) now delivers the fixed point conditions:

ρi + zhi(z) = βhi(z) − βai(z) i = 1, 2 (4.1)

Collecting terms gives,

(z − β)hi(z) = −ρi − βai(z) (4.2)

Removing the singularity at z = β then determines, ρi = −βai(β). Substituting this
back into (4.2) then gives

hi(z) =
−β

z − β
[ai(z)− ai(β)]

which finally gives us:

15The 2’s appearing in (3.13) and (3.14) become 3’s, and the ai(λ)(1−λ2) terms become 2ai(λ)(1−
λ2)



18 KENNETH KASA, TODD B. WALKER, AND CHARLES H. WHITEMAN

Proposition 4.2. Given Assumption 4.1, there exists a homogeneous beliefs rational
expectations equilibrium given by:

πs
i (z) = −β

{
ai(β) +

z

z − β
[ai(z) − ai(β)]

}
i = 1, 2 (4.3)

Although it may not be immediately apparent, equation (4.3) is a familiar result–
in a fully revealing, homogeneous expectations equilibrium, asset prices have an in-
novation variance that is increasing in the persistence of the fundamentals. To see
this, note that

Et−1pt = h1(L)ε1t−1 + h2(L)ε2t−1

=
−βL

L − β
{[a1(L) − a1(β)]ε1t + [a2(L) − a2(β)]ε2t}

Using this with (4.3) then yields

pt = Et−1pt − βa1(β)ε1t − βa2(β)ε2t. (4.4)

Hence, price innovations represent the capitalized value of the innovations to funda-
mentals.

Equation (4.3) is useful because it facilitates interpretation of the heterogeneous
expectations equilibrium in equations (3.13) and (3.14). Maintaining comparability
between the two equilibria requires a given stochastic process that is consistent with
both a heterogeneous and a homogeneous expectations equilibrium. Clearly, this will
not be true in general because what is needed is a specification that is simultaneously
consistent with Assumptions 3.7 and 4.1. We state this explicitly as:

Assumption 4.3. There exist a1(L) and a2(L) polynomials that simultaneously sat-
isfy Assumptions 3.7 and 4.1.

This delivers the following relationship between heterogeneous expectations and ho-
mogeneous expectations equilibria.

Proposition 4.4. Given Assumption 4.3, there exists both a heterogeneous expec-
tations equilibrium and a homogeneous expectations equilibrium, with z-transforms
related as follows:

πi(z) = πs
i (z) + ai(λ)(1 − λ2) · β

z − β

(
β

1 − λβ
− z

1 − λz

)
i = 1, 2 (4.5)

where the πs
i (z) are given by (4.3), and |λ| < 1 is given by (3.17).

The proof is again by construction. By using the equation characterizing λ in
(3.17), one can simplify equations (3.13) and (3.14) to obtain (4.5). As a consistency
check, one can verify that πi(λ) = 0.

The first term on the right-hand side of (4.5) tells us how prices respond to observ-
able shocks to fundamentals. The second term then exhibits the additional dynamics
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induced when the shocks to fundamentals are unobservable, and traders must ‘fore-
cast the forecasts of others’. That is, the second term captures in a clear and precise
way the higher-order belief dynamics associated with a heterogeneous beliefs equilib-
rium. By canceling the common root at z = β, it is clear that higher-order beliefs
exhibit AR(1) dynamics, with a persistence given by λ. Interestingly, Woodford
(2003) obtains a qualitatively similar result in a quite different setup.16

It is clear from (4.5) that higher-order beliefs generate additional price volatility.
One manifestation of this is the following,

Corollary 4.5. Heterogeneous beliefs amplify the initial response of asset prices to
innovations in fundamentals.

Proof. Evaluate (4.5) at z = 0. This yields

πi(0) = πs
i (0) − βai(λ) · 1 − λ2

1 − λβ
< πs

i (0)

which verifies the result since responses to supply shocks are negative. �

Before turning to empirical implications, it is worthwhile working through an ex-
plicit numerical example. If nothing else, this will at least verify that the various
assumptions imposed can be satisfied with reasonable specifications of the fundamen-
tals. To illustrate the heterogeneous beliefs dynamics, we plot asset price impulse
response functions. The orthogonality of the two fundamentals components allows
us to proceed on a shock-by-shock basis. Without loss of generality, we consider the
case of ε1t shocks.

When solving for a heterogeneous beliefs equilibrium it is easier to work backwards
from a pre-specified λ to a supporting fundamentals process than it is to start with
fundamentals, and then check whether they are consistent with the existence of a
heterogeneous beliefs equilibrium. Therefore, let λ = 0.5, and assume that a1(L)
takes the form (L − φ1)/(1 − γ1L), with |φ1| < 1 and |γ1| < 1. Hence, a1(L) is
noninvertible. Since we are confining our attention to ε1t shocks, we don’t need
to take a stand on a precise specification of a2(L), other than assume it satisfies
Assumption 2. At a minimum, this means its noninvertible root cannot equal φ1. To
be specific, we assume φ1 = 0.83 and β = 0.90. Plugging these into (3.17), one can
readily verify that γ1 must equal 0.476. Finally, given these values for (λ, φ1, γ1, β),
we can use (4.5) to generate and compare the impulse response functions for the
heterogeneous and homogeneous beliefs equilibria. We can also plot their differences,
which are the higher-order belief dynamics associated with the heterogeneous beliefs
equilibrium.

The following plots illustrate the asset price response to a one-unit shock in ε1t. To
make the results more comparable to standard asset pricing models, where dividends

16When aggregate fundamentals are observed (and so there are 3 trader types), the higher-order
beliefs term in (4.5) is slightly altered, i.e., a(λ) becomes 2a(λ).
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are the fundamentals, we’ve multiplied the responses by minus one, so that prices
increase following an innovation.
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Figure 1: Impulse Response and Higher-Order Belief Dynamics

These plots clearly reveal the additional volatility and persistence induced by het-
erogeneous information and higher-order belief dynamics. Notice that the initial price
response is more than twice as large in the heterogeneous beliefs equilibrium. In ad-
dition, the effects are persistent.

5. Empirical Implications

This section addresses the following question - Suppose the world is described by
a heterogeneous expectations equilibrium, but an econometrician who, unlike the
agents, observes fundamentals and interprets the data as if it were generated from
a homogeneous expectations equilibrium. What kind of inferential errors could re-
sult? We focus on two empirical results that have been common in the asset pricing
literature: (1) violations of variance bounds, and (2) rejections of cross-equation re-
strictions.17

17It may seem odd to assume the econometrician observes fundamentals but traders do not.
However, as noted in section 3, by adding more traders, the unobserved fundamentals case becomes
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5.1. Variance Bounds. Figure 1 and Corollary 4.5 suggest that higher-order belief
dynamics will generally make asset prices appear to be ‘too volatile’ relative to their
fundamentals. One of the main contributions of this paper is the ability to quan-
tify the degree of excess volatility associated with higher-order belief dynamics. One
way of doing this is to show that heterogeneous beliefs equilibria can violate stan-
dard variance bounds inequalities. Violations of these bounds are a robust empirical
finding.

Variance bounds are based on the idea that observed asset prices should be less
volatile than their perfect foresight counterparts (i.e., the subsequent realization of
discounted future fundamentals). Since prices represent expectations of discounted fu-
ture fundamentals, it makes sense that they should be smoother than the realizations
of discounted future fundamentals. To show that heterogeneous beliefs equilibria can
violate variance bounds, it therefore suffices to show that the variance of observed
prices can exceed the variance of perfect foresight prices. The following proposition
shows that this is indeed possible if λ (the persistence of higher-order belief dynamics)
is sufficiently close to β.

Proposition 5.1. If fundamentals are ARMA(1,1) (ie., ai(L) = (1−φiL)/(1−γiL)),
then asset prices violate the standard variance bound whenever λ is sufficiently close
to β and φi and γi are sufficiently small.

Proof. Given orthogonality, it is sufficient to consider only one of the two components.
Without loss of generality, we focus on the variance associated with ε1t. First note
that the z-transform of the perfect foresight price associated with this component is
given by:

πpf
1 (z) = −β(1 − βz−1)−1a1(z)

Using Parseval’s formula, we can evaluate its variance as

var(ppf
1 ) =

1

2πi

∮
πpf

1 (z)πpf
1 (z−1)

dz

z

=
β2

2πi

∮
(1 − φ1z)(1 − φ1z

−1)

(1 − γ1z)(1 − γ1z−1)(1 − βz)(1− βz−1)

dz

z

=
β2

(β − γ1)(1 − γ1β)

[
(β − φ1)(1 − φ1β)

1 − β2
− (γ1 − φ1)(1 − φ1γ1)

1 − γ2
1

]

= β2 (1 − φ1γ1)(1 − φ1β) + (φ1 − β)(φ1 − γ1)

(1 − γ1β)(1− β2)(1 − γ2
1)

essentially equivalent to the observed fundamentals case. From the perspective of an econometrician
who does not observe any of the εit’s, and who only observes market data (ft, pt), the observed
fundamentals case can be made to mimic the unobserved fundamentals representation by appropriate
choice of the of the ai(L) functions (which produces a convenient solution of a spectral factorization).
Section 6 provides an example.
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Next, letting κ(z) denote the z-transform of the higher-order belief dynamics (i.e., the
second term on the right-hand side of (4.5)), we can write the variance of observed
asset prices as:

var(p1) =
1

2πi

∮
πs

1(z)πs
1(z

−1)
dz

z
+

1

2πi

∮
κ(z)κ(z−1)

dz

z
+

2

2πi

∮
πs

1(z)κ(z−1)
dz

z

=

(
β(1− φ1β)

1 − γ1β

)2
(1 − xγ1)(1 − x/γ1)

1 − γ2
1

+

(
β(1− φ1λ)

(1 − λβ)(1 − γ1λ)

)2

(1 − λ2)

+2
β2(1 − λ2)(1 − φ1β)(1− φ1λ)(1 − xλ)

(1 − γ1β)(1− λβ)(1 − γ1λ)2

where x = φ1(1 − βγ1)/(1 − βφ1), and where the second line again uses the residue

theorem. Setting λ = β and γ1 = φ1 = 0 yields var(ppf
1 ) = β2/(1− β2) and var(p1) =

β2/(1 − β2) + 3β2 > var(ppf
1 ). The proof follows by continuity. �

This result has a very intuitive interpretation. The heterogenous beliefs equilibrium
(4.5) contributes an additional component to the asset price which constitutes addi-
tional ‘fundamentals.’ Traders don’t just care about their own expectations of future
fundamentals, they also care about, and try to forecast, other traders’ expectations
about fundamentals. It is this additional component that leads to the violation of the
variance bound. If these higher-order beliefs were incorporated into fundamentals,
then asset prices would indeed satisfy the variance bound.
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Figure 2 demonstrates violations of the variance bound for specific parameter
values. Assuming fundamentals follow an ARMA(1,1) process with AR coefficient
ρ = 0.5, Figure 2 plots the variance of the heterogenous beliefs price divided by the
variance of the perfect foresight price by changing the MA component of fundamentals
to satisfy Assumption 1 (i.e., to ensure a heterogeneous beliefs equilibrium exists).
As the degree of asymmetric information (λ) approaches β = 0.98, the variance of the
heterogeneous beliefs price process is 19 times as large as the perfect foresight price.

5.2. Cross-Equation Restrictions. The Rational Expectations revolution ushered
in many methodological changes. One of the most important concerned the way
econometricians identify their models. Instead of producing zero restrictions, the
Rational Expectations Hypothesis imposes cross-equation restrictions. Specifically,
parameters describing the laws of motion of exogenous forcing processes enter the
laws of motion of endogenous decision processes. In fact, in a oft-repeated phrase,
Sargent dubbed these restrictions the ‘hallmark of Rational Expectations’. Hansen
and Sargent (1991b) and Campbell and Shiller (1987) proposed useful procedures for
testing these restrictions. It so happens that when these tests are applied to present
value asset pricing models, they are almost uniformly rejected, and in a resounding
way. There have been many responses to these rejections. Some interpret them as
evidence in favor of stochastic discount factors. Others intepret them as evidence
against the Rational Expectations Hypothesis. Looking on the bright side, Campbell
and Shiller (1987) argue that a model can still be useful even when its cross-equation
restrictions are statistically rejected. We offer yet another response. We show that
rejections of cross-equation restrictions may reflect an informational misspecification,
one that presumes a revealing equilibrium and homogeneous beliefs when in fact
markets are characterized by heterogeneous beliefs.

To study the model’s cross-equation restrictions, we need to derive its Wold rep-
resentation. We can do this by following the steps outlined in Hansen and Sargent
(1991b), which are based on the results in Rozanov (1967). The theoretical moving-
average representation is given by,

[
ft

pt

]
=

[
a1(L) a2(L)
π1(L) π2(L)

] [
ε1t

ε2t

]
(5.1)

where the pricing functions, π1(L) and π2(L), are given by equations (3.13) and (3.14).
Assuming a heterogeneous beliefs equilibrium, and defining the vectors xt = (ft, pt)

′

and εt = (ε1t, ε2t)
′, write the MA representation as

xt = A(L)εt.

By construction, A(L) does not have a one-sided inverse in positive powers of L due
to the root inside the unit circle. Although not essential, we assume λ is the only
root inside the unit circle, and impose the following assumption.



24 KENNETH KASA, TODD B. WALKER, AND CHARLES H. WHITEMAN

Assumption 5.2. Write the determinant of A(z) as |A(z)| = (z − λ)∆(z), where
∆(z) is given by

∆(z) = a1(z)π̃2(z) − a2(z)π̃1(z)

where π̃i(z) = ρi+zgi(z). Then ∆(z) is a nonzero analytic function with roots outside
the unit circle.

Since equal ai(z)’s generate equal gi(z)’s, this assumption requires the components
to have different stochastic structures, which avoids stochastic singularities in the
bivariate representation.

The lack of a one-sided inverse prevents traders from inferring the signals of other
traders. The basic idea behind a Wold representation is to ‘flip’ this root outside the
unit circle. This can be accomplished by post-multiplying A(L) by the product of
two orthogonal matrices, and then pre-multiplying the shock vector by the transposes
of these same matrices. This gives us,

xt = [A(L)WB(L)][B(L−1)′W ′εt]

= A∗(L)ε∗
t (5.2)

where W is a scalar orthogonal matrix and B(L) is a Blaschke matrix that flips the
root from z = λ to z = λ−1. These matrices are given by

B(z) =




1−λz
z−λ

0

0 1


 W =

1√
1 + η2




−η 1

1 η


 (5.3)

where η = a2(λ)/a1(λ). Notice that B(z)B(z−1)′ = I on |z| = 1 and WW ′ =
I. By construction, A∗(L) is invertible, so the observable VAR representation is
A∗(L)−1xt = ε∗t . A key point here is that the residuals, ε∗t , are not the innovations to
agents’ information sets, εt. Instead, what is estimated are the linear combinations
defined by B(L−1)′W ′εt. These encode the model’s higher-order belief dynamics.
Although these linear combinations are mutually and serially uncorrelated by con-
struction, they span a strictly smaller information set. Hence, the variance of εt is
smaller than the variance of ε∗t .
Performing the matrix multiplication in (5.2) delivers the following Wold representation:




ft

pt


 =




(
1−λL
L−λ

)
[w11a1(L) + w21a2(L)] w12a1(L) + w22a2(L)

(
1−λL
L−λ

)
[w11K(a1(L)) + w21K(a2(L))] w12K(a1(L)) + w22K(a2(L))







ε∗1t

ε∗2t




(5.4)

where wij are the elements of the W matrix in (5.3) and K(·) defines the Rational
Expectations pricing operator given by Proposition 3.6, i.e., πi(z) = K(ai(z)). We
can use this to state two results, one pertaining to the case where the econometrician
is alert to the possible existence of heterogeneous beliefs, and one pertaining to the
case where the econometrician ignores the potential for heterogeneous beliefs.
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As noted by Hansen and Sargent (1991a), Rational Expectations can be interpreted
as placing restrictions across the rows of a model’s moving average representation.
In our case this means elements of the second row are exact functions of the corre-
sponding elements of the first row. From the results in Hansen and Sargent (1991b),
it is not too surprising that these restrictions continue to apply even in models with
heterogeneous beliefs, as long as the econometrician employs the correct pricing func-
tions.

Proposition 5.3. Standard cross-equation restriction tests are valid even when the
model features heterogeneous beliefs, as long as the econometrician is aware of this
possibility, and uses the correct pricing functions.

Proof. The proof follows directly from the fact that K is a linear operator. That is,

K(wija1(L) + wmna2(L)) = wijK(a1(L)) + wmnK(a2(L))

where wij and wmn are arbitrary scalars. Hence, the bottom row of (5.4) is an exact
function of the first. (The Blaschke factors in the first column can be folded into the
definitions of the ai(L) polynomials). �

This is good news in the sense that it suggests standard testing procedures can be
employed when evaluating models with heterogeneous beliefs.18 The bad news is that
ignoring the presence of heterogeneous beliefs can produce misleading results.

Proposition 5.4. Standard cross-equation restriction tests, which falsely presume a
common information set, can produce spurious rejections.

Proof. From the results in section 4, we can decompose the heterogeneous beliefs
pricing operator, K, into a traditional symmetric pricing operator, Ks, and a higher-
order beliefs operator, Kh, so that K = Ks + Kh. Neglecting heterogeneous beliefs
amounts to dropping the Kh component of the pricing operator. Evidently, if there are
heterogeneous beliefs, so that πi(L) = K(ai(L)), then cross-equation restriction tests
based on the false assumption of homogeneous beliefs can produce strong rejections
when Kh(ai(L)) is ‘big’ (in the operator sense). �

6. An Application to the Foreign Exchange Market

One of the intriguing findings of empirical asset pricing research is that similar re-
sults are obtained in all asset markets, whether it be stocks, bonds, foreign exchange,
or real estate. This suggests that something basic, or fundamental, is missing from
standard asset pricing models. We’ve argued that higher-order beliefs can in prin-
ciple provide this missing element. To make this argument persuasive, however, it
is important to go beyond the hypothetical, and show that this story holds water

18However, note that without modification the clever VAR testing strategy of Campbell and
Shiller (1987) will not be valid, since it relies on the validity of the law of iterated expectations,
which does not apply in models featuring higher order beliefs.
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quantitatively, for empirically plausible specifications of fundamentals. To do this we
need to narrow our focus to a particular asset market.

Foreign exchange has been an especially challenging market to understand, and so
in this section we use our model to address some puzzling features of exchange rates.
Engel and West (2005) provide a recent discussion of the empirical shortcomings of
linear present value exchange rate models. They focus on the fact that most exchange
rates are well approximated by random walks, even though monetary fundamentals
are not. They show that this puzzle can be explained if fundamentals have a unit root
component, and the model’s discount rate is close to unity. They also argue that once
allowance is made for the possibility of ‘missing fundamentals’, the model can also
account reasonably well for exchange rate volatility and Granger causality findings.
This second result is particularly interesting from the perspective of our work, since
our model suggests that higher-order belief dynamics provide a natural candidate for
these missing fundamentals. It turns out that higher-order beliefs can also generate
near-random walk exchange rate behavior, even when fundamentals are stationary.

Our starting point is the following Uncovered Interest Parity condition, modified
to allow for heterogeneous beliefs:

st =

∫ 1

0

Ei
tst+1di − (it − i∗t )

≡
∫ 1

0

Ei
tst+1di − ft (6.1)

The standard monetary model then uses money demand equations and a PPP con-
dition to substitute out the interest differential in terms of relative money supplies
and income. Although we could do this as well, we’re going to instead regard the
interest differential as the exogenous fundamental. This is empirically plausible, given
the fact that Central Banks target the interest rate rather than the money supply,
although the exogeneity assumption rules out feedback from the exchange rate to
the interest rate. This is an attractive assumption also because it maps readily into
our previous framework, and as we’ll see, generates straightforward predictions for
Uncovered Interest Parity regressions.

Since it is implausible to assume that interest rates are unobserved, from our pre-
vious results we know that for a heterogeneous beliefs equilibrium to exist, there
must be at least three trader types. Thus, we postulate the following unobserved
components specification for ft,

ft = a1(L)ε1t + a2(L)ε2t + a3(L)ε3t

where it is assumed that a type-i trader observes (st, ft, εit). Given that β = 1 here,
the existence condition in Assumption 3.9 takes the following form

λ = 2 + ai(1)/ai(λ) i=1,2,3 (6.2)
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To make things as simple as possible we assume that the noninvertible root, λ, co-
incides with a common autoregressive root in the fundamentals process. We further
suppose that each component is ARMA(1,2), so that for example we have:

a1(L) =
1 + a1L + a2L

2

1 − λL

To avoid singularities, we need to assume the MA coefficients differ across components.
However, given orthogonality, we can just focus on one of the components. Although
it is not essential to assume a common autoregressive root, which also coincides
with the noninvertiable root of the price process, it does simplify the analysis, and
highlights the role of higher-order beliefs in generating random walk exchange rate
behavior.

The existence condition in (6.2) implies the following restriction between the MA
coefficients, a1 and a2

a1 = −
[
3 + a2[1 + λ2(2 − λ)] − λ

1 + λ(2 − λ)

]
(6.3)

Given this, we obtain the following heterogeneous beliefs pricing function

π(L) = −
[
(1 + a1 + a2)/(1 − λ) + 2a(λ) · (1 + λ) + (a1 + a2)L + a2L

2

1 − λL

]
(6.4)

Now, the empirical challenge is to specify a fundamentals process that is persistent
(since observed interest differentials are persistent), but not as persistent as a random
walk, and at the same time produce a near-random walk exchange rate process. To
do this, we let the higher-order beliefs parameter be close to unity, i.e., λ = .99, and
then try setting a2 = −0.3. The existence condition (6.3) then implies a1 = −.707.
Given these parameter values, we get the following spectral densities for the exchange
rate and fundamentals:
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It is apparent that the exchange rate is far more persistent than the interest differ-
ential. This becomes clearer if plot the spectral densities of their first-differences:
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Note that the predicted exchange rate is not exactly a random walk, since its first-
differenced spectrum is not flat, but at the same time, it is clear that higher-order
beliefs have the effect of allocating spectral power to the lower frequency ranges.
In fact, we can see just how important higher-order beliefs are by exploiting the
decomposition in equation (4.5), which allows us to plot separately the higher-order
beliefs spectrum and the overall price spectrum:
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Clearly, the exchange rate is being driven almost entirely by higher-order belief
dynamics. We think this result provides a nice complement to the near-random walk
result of Engel and West (2005).

Besides the random walk nature of exchange rates, another troublesome feature
of the foreign exchange market is that fact that Uncovered Interest Parity does not
hold, and attempts to link these deviations to observable risk premia have not been
very successful. In fact, not only does Uncovered Interest Parity not hold, it doesn’t
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even get the sign right! That is, regressions of ex post exchange rate changes (defined
as the price of foreign currency) on domestic minus foreign interest rate differentials
produce negative coefficient estimates. Interestingly, our model can explain devia-
tions from Uncovered Interest Parity. To see this, we must derive the model’s Wold
representation for (st, it − i∗t ). Since the econometrician does not observe any of the
εit’s, this involves two steps. First, we must perform a spectral factorization to reduce
the 3-dimensional equilibrium representation of section 3.2 into a 2-dimensional rep-
resentation. Second, we must then convert this to a Wold representation by flipping
roots, as described in section 5.2. Note that if we assume a1(L) ≡ a2(L), then the
factorization step becomes trivial. We just need to define a new shock, ε1t +ε2t. From
the perspective of the econometrician, the system remains nonsingular, since he only
observes (st, it− i∗t ). The advantage from doing this is that we can now directly apply
the results from section 5.2 to obtain the Wold representation. In particular, letting
xt = (it − i∗t , st), we get (5.2) as the Wold representation, with B(z) and W defined
exactly as in (5.3).

To derive the model’s implications for UIP regressions, we just need to calculate
the following projection

P [xt+1|Hx(t)] = [A∗(L)L−1]+A∗(L)−1xt (6.5)

with A∗(L) given by (5.4). UIP imposes the restriction that the bottom row of this
matrix is equal to (1, 1). Exploiting the linearity of the pricing operator, we can write
A∗(L) as

A∗(L) =




α1(L) α2(L)

K(α1(L)) K(α2(L))




where K(·) defines the Rational Expectations pricing operator as before, and the
αi(L) functions are the linear combinations of the ai(L) functions defined in (5.4).
Note that given our previous assumptions, each of these is ARMA(1,2), with identical
autoregressive roots. After a little algebra, we then get the following two restrictions:

α1K(α2) − α2K(α1) = K(α2)[K(α1) − K(α1)0]L
−1 − K(α1)[K(α2) − K(α2)0]L

−1

α1K(α2) − α2K(α1) = −α2[K(α1) −K(α1)0]L
−1 + α1[K(α2) − K(α2)0]L

−1

One can readily verify that with homogeneous beliefs these conditions are satisfied,
since from the (symmetric) Rational Expectations fixed point condition we have
[K(α) − K0]L

−1 = K(α) + α. However, by comparing (3.6) to (3.10) and (3.11),
we can see that this is no longer true when higher-order beliefs are present, due to
the additional ρ(1 − λ2)/(1 − λL) functions. The implications for UIP are not ob-
vious. What is clear is that standard UIP regressions will be misspecified, since the
bottom-row elements are in general not simply scalars, but lag polynomials. This
will produce a complex omitted variable bias. Intuitively though, since risk is not an
issue here, to explain a negative slope coefficient traders must on average expect an
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appreciation following an interest rate increase. This could occur if the omitted lag
polynomial produces a hump-shaped impulse response function.

7. Conclusion

For more than twenty years now, economists have been rejecting linear present
value models of asset prices. These rejections have been interpreted as evidence in
favor of time-varying risk premiums. Unfortunately, linking these risk premiums to
observable data has proven to be quite challenging. Promising approaches for meeting
the challenge involve introducing incomplete markets and agent heterogeneity into the
models.

This paper has suggested that a different sort of heterogeneity, an informational
heterogeneity, offers an equally promising route toward reconciling asset prices with
observed fundamentals. Unfortunately, heterogeneous information does not automat-
ically translate into heterogeneous beliefs, and it is only the latter that generates
the ‘excess volatility’ that is so commonly seen in the data. The hard work in the
analysis, therefore, is deriving the conditions that prevent market data from fully
revealing the private information of agents in dynamic settings. We have argued that
frequency-domain methods possess distinct advantages over time-domain methods in
this regard. The key to keeping information from leaking out through observed as-
set prices is to ensure that the mappings between the two are ‘noninvertible’. These
noninvertibility conditions are easy to derive and manipulate in the frequency domain.

Our results demonstrate how informational heterogeneity can in principle explain
well-known empirical anomalies, such as excess volatility and rejections of cross-
equation restrictions. Ever since Townsend (1983) and Singleton (1987), (or in fact,
ever since Keynes!) economists have suspected that higher-order beliefs could be re-
sponsible for the apparent excess volatility in financial markets. Our results at last
confirm these suspicions. Although we believe we have made substantial progress,
there are still many avenues open for future research. Two seem particularly impor-
tant. First, our existence conditions place restrictions on fundamentals. It remains to
be seen, however, whether heterogeneous beliefs equilibria can be supported with em-
pirically plausible specifications for fundamentals. We are optimistic that they can,
since the restrictions are fairly generic, but verification of this conjecture remains
the subject of future research. Second, the analysis here rests heavily on linearity.
However, most macroeconomic models feature nonlinearities of one form or another.
It is not at all clear whether standard linearization methods are applicable in mod-
els featuring higher-order beliefs. Resolving this issue will be important for future
applications.



ASSET PRICES IN A TIME SERIES MODEL... 31

8. Appendix: Frequency Domain Techniques

This appendix offers a brief introduction to the frequency domain techniques used
to solve the model. In lieu of matching the infinite sequence associated with the
fixed-point (3.15), we employ the following theorem and solve for a functional fixed
point.
Theorem (Riesz-Fischer): Let {cn} be a square summable sequence of complex num-
bers (i.e.,

∑∞
n=−∞ |cn|2 < ∞). Then there exists a complex-valued function, g(ω),

defined for ω ∈ [−π, π], such that

g(ω) =
∞∑

j=−∞

cje
−iωj (8.1)

where convergence is in the mean-square sense

lim
n→∞

∫ π

−π

∣∣∣∣∣
n∑

j=−n

cje
−iωj − g(ω)

∣∣∣∣∣

2

dω = 0

and g(ω) is square (Lebesgue) integrable
∫ π

−π

|g(ω)|2dω < ∞

Conversely, given a square integrable g(ω) there exists a square summable sequence
such that

ck =
1

2π

∫ π

−π

g(ω)eiωkdω (8.2)

The Fourier transform pair in (8.1) and (8.2) defines an isometric isomorphism
(i.e., a one-to-one onto transformation that preserves distance and linear structure)
between the space of square summable sequences, `2(−∞,∞), and the space of square
integrable functions, L2[−π, π]. The sequence space, `2, is referred to as the ‘time
domain’ and the function space, L2, is referred to as the ‘frequency domain’. The
equivalence between these two spaces allows us to work in whichever is most conve-
nient. A basic premise of this paper is that in models featuring heterogeneous beliefs,
the frequency domain is analytically more convenient.

In the context of linear prediction and signal extraction, it is useful to work with
a version of Riesz-Fischer theorem that is generalized in one sense and specialized in
another. In particular, it is possible to show, via Poisson’s integral formula, that the
statement of the theorem applies not only to functions defined on an interval (the
boundary of the unit circle), but to analytic functions defined within the entire unit
circle of the complex plane. However, when extending the theorem in this way we
exclude functions with Fourier coefficients that are nonzero for negative k. That is,
we limit ourselves to functions where c−k = 0 in equations (8.1) and (8.2). This turns
out to be useful, since it is precisely these functions that represent the ‘past’ in the
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time domain. A space of analytic functions in the unit disk defined in this way is
called a Hardy space, with an inner product defined by the contour integral,

(g1, g2) =
1

2πi

∮
g1(z)g2(z)

dz

z
.

Rather than postulate a functional form and match coefficients, we solve for a sin-
gle analytic function which represents, in the sense of the Riesz-Fischer theorem, this
unknown pricing function. The approach is still ‘guess and verify’, but it takes place
in a function space, and it works because the Riesz-Fischer theorem tells us that
two stochastic processes are ‘equal’ if and only if their z-transforms are identical as
analytic functions inside the (open) unit disk. The real advantage of this approach
stems from the ease with which it handles noninvertibility (i.e., nonrevealing infor-
mation) issues. Invertibility hinges on the absence of zeroes inside the unit circle
of the z-transform of the observed market data. By characterizing these zeroes, we
characterize the information revealing properties of the equilibrium.
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