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Abstract

This paper proposes a dynamic model to estimate the credit loss distribution of the ag-
gregate portfolio of loans granted in a banking system. We consider a sectorial approach
distinguishing between corporates and individuals. The evolution of their default fre-
quencies and the size of the loans portfolio are expressed as functions of macroeconomic
conditions as well as unobservable credit risk factors, which capture contagion effects be-
tween sectors. In addition, we model the distributions of the Exposures at Default and
the Losses Given Default. We apply our framework to the Spanish banking system, where
we find that sectorial default frequencies are not only affected by economic cycles but also
by a persistent latent factor. Finally, we identify the riskier sectors and perform stress
tests.
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1 Introduction

During the last years, a more volatile and dynamic financial environment has caused

an increasing concern about the stability of banking systems. In this sense, it is widely

agreed that credit risk is one of the variables that are more directly related to financial

stability. Indeed, the Basel II framework has put forward the need of measuring this type

of risk accurately. As a consequence, there has been a number of papers that estimate

the credit loss distributions of the loans portfolios of different countries.1

These papers generally follow a top-down approach by analysing the banking sector

as a whole. Most of them also emphasise the need of assessing the variability of credit

risk across different sectors. In addition, since the early works of Wilson (1997a,b), most

subsequent studies relate changes in the probabilities of default to changes in macroeco-

nomic conditions (see also Demchuk and Gibson, 2006). Specifically, it is usually assumed

that, conditional on the macroeconomic explanatory variables, defaults are independent

across sectors. However, this assumption might yield strongly biased results if a relevant

factor is omitted. What is more important, on top of macroeconomic variables, there

might exist some credit risk factors that induce contagion across sectors, but which we

cannot directly observe. This issue has already been a cause of concern in the litera-

ture. Unfortunately, most of the empirical research has generally focused on either large

corporates or publicly traded instruments, such as bonds or stock returns. For instance,

Schuermann and Stiroh (2006) have found an important presence of “hidden risk factors”

in U.S. banks stock returns, while Duffie, Eckner, Horel, and Saita (2006) have noticed

that the effects of these factors on the correlation of defaults might be larger if they are

persistent. However, much less is known about the presence of latent factors in the credit

loss distribution of loans.

This paper proposes a credit risk model that allows for the presence of persistent

latent factors. We express loans losses in terms of four stochastic components: default

frequencies, the size of the loans portfolio, the exposures at default and the losses given

1To cite a few examples, Boss (2002) has developed a credit risk model for Austria, Virolainen (2004)
has considered the case of Finland, Misina, Tessier, and Dey (2006) have analysed the Canadian loans
portfolio, Drehmann (2005) and Drehmann, Patton, and Sorensen (2006) have studied the credit loss
distribution in the U.K., while Pesaran, Schuermann, Treutler, and Weiner (2006) have considered an
international credit risk model.
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default. The importance of modelling the size of the loans portfolio has been traditionally

neglected. However, it is necessary to take into account this variable if we want to study

the total losses of a banking system, and not just those due to a fixed number of loans.

For each of the economic sectors in which we arrange the loans, we assume that changes in

the default frequencies and the total number of loans are a function of past observations

of the dependent variables, a set of observable characteristics, some potentially persistent

common latent factors and one idiosyncratic component. The effect of observable factors

is to introduce correlation between different loans due to clearly identifiable shocks, such

as a fall in GDP growth. In contrast, the latent components will generate contagion effects

that are orthogonal to the observable events. Conditional on default, the loss given default

and the exposure at default are initially assumed to be independent of default rates and

the size of the credit market, although they are allowed to have a different distributional

shape for each sector. With the exception of Madan and Unal (2006) in the context of

deposit insurance, the literature has paid little attention to the distribution of exposures

at default. However, we believe that it is necessary to account for the variability of

exposures within each sector in order to correctly describe the heterogeneity of loans.

Specifically, we employ either the Inverse Gaussian or the Gamma distribution. Both

are flexible distributions whose statistical properties can be exploited to reduce by a

considerable amount the computational demands of our model. Additionally, we propose

a generalisation in which these distributions can change as a function of the observable

macroeconomic factors. Finally, we consider the usual Beta distribution to describe the

loss given default (see e.g. Gupton and Stein, 2002).

We use our model to estimate the credit loss distribution of the Spanish banking

system. We have quarterly loan data from 1984.Q4 to 2006.Q4, obtained from the Spanish

Credit Register. This database contains information on every loan granted in Spain

with an exposure above e6,000. Since this threshold is very low, we can safely assume

that we have data on virtually every loan granted in Spain. Hence, we use high quality

loan data at a frequency at which it is not usually available. In this sense, it is worth

remarking that we are able to obtain actual default rates from our database. In contrast,

most of the literature usually relies on bankruptcy rates, which are imperfect proxies of
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defaults.2 We consider 10 corporate sectors plus one group for mortgages and another one

for consumption loans. We first estimate a simple model with changes in GDP growth and

three-month interest rates as our macroeconomic factors. Then, we obtain the credit loss

distribution by simulating losses from our model under the current economic conditions

and under some stressed scenarios. Interestingly, we are able to identify a persistent

unobservable factor that generates dependence between sectorial default frequencies, and

an analogous effect on the growth of the number of loans. These factors remain significant

when we reestimate our model with an augmented set of macroeconomic characteristics.

We also determine which sectors are riskier, and compare our model with simpler versions

that have been previously implemented. In this sense, we show that latent factors are

crucial to capture the empirical correlations between sectorial default frequencies. In

addition, we assess the out-of-sample stability of our model. Finally, we explore the

relationship between exposures at default and macroeconomic conditions, where we find

that they tend to be higher on average during recessions than during expansions. This

result is consistent with the findings of Jiménez, López, and Saurina (2007), who find,

also for the Spanish loan market, that a higher usage rate of credit lines during recessions

induces higher exposures at default in these periods.

In summary, we believe that our paper provides some important contributions to

the literature. Firstly, this paper introduces unobservable common shocks in a credit

risk model of loans losses. Secondly, the paper takes advantage of the use of a very

rich dataset which contains precise information about almost all the loans granted in

the Spanish economy. In particular, we are able to model the distribution of exposures

at default, as well as the loan market dynamics. In addition, we consider an extensive

sectorial structure that includes mortgages and consumption loans. Thirdly, our results

show that value at risk can be significantly underestimated if contagion effects between

sectors are not allowed. Finally, we dramatically reduce the computational demands of

our model by exploiting its statistical properties.

The rest of the paper is organised as follows. We describe our model in the next section,

and discuss the estimation of its parameters in Section 3. In Section 4, we consider an

empirical application to Spanish loan data. Finally, concluding remarks and directions

2See the discussion by Duffie, Eckner, Horel, and Saita (2006)
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for future research are suggested in Section 5.

2 The credit risk model

We are interested in modelling credit risk in an economy with K sectors. We will

consider a sample of T periods of data. In this context, the losses due to a loan i from

sector k can be decomposed at any time period t as

Li,k,t = Di,k,tLGDk,tEADi,k,t,

where Di,k,t is a binary variable that equals 1 in case of default and 0 otherwise, while

LGDk,t ∈ (0, 1) and EADi,k,t > 0 are, respectively, the loss given default and the exposure

at default. We will denote the proportion of non-performing loans in sector k at time t as

pkt, i.e. the ratio of the number of loans in default to the total number of loans in each

sector. This variable is usually known as default frequency. Hence, the losses from sector

k at time t can be expressed as

Lk,t =

nk,t∑
i=1

Li,k,t = LGDk,tSk(pktnk,t), (1)

where nk,t is the total number of loans in sector k and

Skt =

bpktnk,tc∑
i=1

EADi,k,t. (2)

where bpktnk,tc rounds pktnkt to the nearest integer. Without loss of generality, we have

assumed that the first loans in the sum (1) are those that default. We have also supposed

that the losses given default are homogeneous in each sector because this type of infor-

mation is rarely available for loans at a more disaggregated level. If we assume that the

probability of default is constant in each sector, pkt will converge to the probability of

default of sector k as nkt grows to infinity. However, for small nkt, they will not necessarily

coincide.

The main dynamic features of our model are introduced with a joint model for pkt and

nkt. In order to work with variables with support on the whole real line, we transform the

default frequencies by means of the probit functional form ykt = Φ−1(pkt), where Φ−1(·) is

the inverse of the standard normal cumulative distribution function. Alternatively, a logit
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model could also be adopted. For every sector, we define the growth of the number of loans

as ∆nkt = log(nkt)− log(nkt−1), while the changes in the transformed default frequencies

are defined as ∆ykt = ykt − ykt−1.
3 We propose the following vector autoregression for

these variables:

∆nkt = α1,k +

q∑
j=1

ρ1,j∆nkt−j +
r∑

j=1

γ ′
1,jxt−j + β1,kf1,t + u1,kt, (3)

∆ykt = α2,k +

q∑
j=1

ρ2,j∆ykt−j +
r∑

j=1

γ ′
2,jxt−j + β2,kf2,t + u2,kt. (4)

In consequence, the evolution of ∆nkt and ∆ykt depends on their previous history, a set of

m observable characteristics xt, two unobservable common factors, f1,t and f2,t, and the

idiosyncratic shocks u1,kt ∼ N(0, σ2
1k) and u2,jt ∼ N(0, σ2

2k), for j, k = 1, · · · , K. These

idiosyncratic terms are assumed to be iid jointly Gaussian and independent from the

common shocks. In addition, we only allow for correlation between the two idiosyncratic

terms from the same sector, i.e. cov(u1,kt, u2,jt) = 0 for k 6= j.

We consider the following vector autoregressive structure for the observable factors:

xt = δ0 +
s∑

j=1

Ajxt−j + vt, (5)

where vt ∼ N(0,Ω). To ensure the identification of the model, we assume that f1t only

affects (3), whereas f2t can only influence default frequencies. However, we allow for

correlation between these factors. In particular, if we define the vector ft = (f1t, f2t)
′, the

dynamics of ft can be expressed in terms of the following VAR(1) model:

ft = Rf t−1 + wt. (6)

where

R =

[
φ1 0
0 φ2

]
.

and wt is Gaussian with zero mean and

V (wt) =

[
1 − φ2

1 ρ
√

(1 − φ2
1)(1 − φ2

2)

ρ
√

(1 − φ2
1)(1 − φ2

2) 1 − φ2
2

]
. (7)

3We specify our model in first differences because the levels are usually nonstationary in this type of
applications (see e.g. Boss, 2002, and our empirical application). However, it will be straightforward to
rewrite our model in levels if necessary.
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Hence, φi is the first order autocorrelation of fi,t, for i = 1, 2, and ρ is the conditional

correlation between f1,t and f2,t. Since ft is unobservable, we have to fix its scale to ensure

the identification of the model. This is why we have parametrised (7) so that the latent

factors have unit unconditional variances. In addition, we assume that cov(vt,wt) = 0,

which implies that the latent factors are orthogonal to the observable characteristics.

Hence, these unobservable components introduce a source of contagion between sectors

that cannot be attributable to the observable shocks. Giesecke and Weber (2004) show

that these effects may be caused by the interaction of firms with their business partners,

while Kiyotaki and Moore (1997) argue that the relationship between credit limits and

asset prices can create a transmission mechanism by which shocks will persist and spill

over to other sectors. Nevertheless, our approach is focused on empirically assessing the

existence of latent factors, without precluding or favouring any of these explanations.

Finally, we will suppose that, conditional on default and the current macroeconomic

conditions, LGDk,t are random Beta variates, while EADi,k,t are independent Inverse

Gaussian or Gamma variates.4 We will first suppose that the parameters of these distri-

butions are constant over time but possibly different for each sector. This implies that

their distributions do not depend on the cycle. Later on, we will extend this model by

allowing the mean of EADi,k,t to depend on the macroeconomic factors. Specifically, if we

denote the mean of the exposures at default in sector k and period t as µkt, we propose

the following parametrisation:

µkt = µkt−1 exp

[
ηk + ϕ′

kvt−1 −
1

2
ϕ′

kΩϕk

]
(8)

where ηk captures a time trend, vt−1 is the lagged vector of innovations in equation (5)

and Ω is its covariance matrix. Thus, we allow µkt to be influenced by the same shocks

that affect xt. Of course, if ϕk = 0 we are back in the static setting. The time trend

component turns out to be important for estimation purposes. For example, in a context

of historically decreasing exposures, this component will be negative. However, when we

compute the credit loss distribution, we will assume no particular trend by setting this

parameter to zero. In consequence, it is important to include the term ϕ′
kΩϕk/2 in (8)

4We have compared the empirical performance of these two distributions with other potential candi-
dates. Our results show that the Gamma and the Weibull yield a similar empirical fit, while the shapes
generated by the IG are similar to those of the log-normal. These results are available on request. How-
ever, we will not consider the Weibull nor the Log-normal because they are not closed under aggregation.
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to ensure that

E

[
exp

[
ϕ′

kvt−1 −
1

2
ϕ′

kΩϕk

]]
= 1.

This result, which is a consequence of the normality of vt, ensures the constancy of the

unconditional mean of (8) when ηk is set to zero. It is also possible to consider a dynamic

parametrisation of the distribution of the loss given default (see Bruche and González-

Aguado, 2006). However, due to lack of data in our application, we will not be able to

explore this extension.

3 Estimation and simulation of the model

To estimate the parameters in (3) and (4), we need to use the Kalman filter to deal

with the unobserved factors. The intuition of this procedure is as follows. To evaluate

the likelihood at each period t, we first compute the expected value of the factors given

the information available up to time t − 1:

ft|t−1 = E(ft|{∆ns, ∆ys,xs}1≤s≤t−1),

where ∆ns = (∆n1,s, · · · , ∆nK,s)
′ and ∆ys = (∆y1,s, · · · , ∆yK,s)

′. In addition, since ft|t−1

is a noisy estimate of the true realisation ft, we also need to measure the uncertainty of

this estimate:

Pt|t−1 = V [ft|{∆ns, ∆ys,xs}1≤s≤t−1)] .

Finally, the estimation procedure consists basically in treating (3) and (4) as a pure

vector autoregressive model, by using the series of ft|t−1 as if they were actually observed.

However, we must adjust the variance of the model with Pt|t−1 to account for the fact

that ft|t−1 is not equivalent to the true realisation ft(see e.g. Hamilton, 1994, for a formal

discussion).

Interestingly, as new data arrives, we can update our previous estimates of the realisa-

tions of the factors, and obtain more accurate ones. For example, given the whole sample

of data, we can estimate the evolution of the latent factors as:

ft|T = E(ft|{∆ns, ∆ys,xs}1≤s≤T ).

To identify the factors, we need at least two sectors. In fact, the more sectors we

have, the more precise our estimates of ft will be. Hence, latent factors are particularly
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valuable in models with many sectors, since they allow for rich dynamics and correlation

structures without requiring too many parameters.

As we have remarked, we consider two possible distributions for EADi,k,t: the Inverse

Gaussian (IG) and the Gamma distribution. For each sector, we choose the one that best

fits the data from the sector. Their parameters are estimated by maximum likelihood,

where their density functions can be expressed as:

fIG (EADi,k,t = x; µk, λk) =

(
λk

2πx3

)1/2

exp

[
− λk

2µ2
kx

(x − µk)
2

]
(9)

fGamma(EADi,k,t = x; νk, τk) =
(x/τk)

νk/2−1

2νk/2Γ(νk/2)τk

exp

(
−x

2τk

)
(10)

We will denote these distributions as IG(µk, λk) and Gamma(νk, τk), respectively. In the

IG case µk is the mean, and µ3
k/λk is the variance, whereas for the Gamma distribution

the mean is νkτk and the variance νkτ
2
k . The subindices indicate that these parameters

are sector specific. As we show in the empirical application, both distributions provide

a good fit of the data, although the IG generally outperforms the Gamma. In addition,

it can be shown that sums of iid IG or Gamma variates remain within the same family

(see Johnson, Kotz, and Balakrishnan, 1994). Due to this property, we can express the

distribution of Skt in closed form for a given number of defaults bpktnktc. Specifically, it

can be shown that the distribution of Skt conditional on the number of defaults at t is

a IG[bpktnktcµk, bpktnktc2 λk] in the IG case, while it is a Gamma(bpktnktc νk, τk) in the

Gamma case. From this result, we can express the distribution of the sum of EAD’s given

only the information known at t − s by means of the following sum:

f(Skt| It−s) =
∞∑
i=0

g(Skt| pktnkt = i, It−s) Pr(bpktnktc = i| It−s) (11)

where g(Skt| bpktnktc = i, It−s) is the conditional density function of Skt given i defaults oc-

curring at t, while It−s denotes the information known at t−s. Finally, Pr(bpktnktc = i| It−s)

is the probability of i defaults occurring at t given It−s.

Unfortunately, we cannot compute (11) in closed form because it is extremely difficult

to obtain the exact values of Pr(bpktnktc = i| It−s) due to the dynamic features of the

model followed by pkt and nkt. Moreover, when we consider the dynamic parametrisation

(8) for the means of exposures at default, we will only be able to express g(Skt| pktnkt =

i, It−s) in closed form for s = 1. Due to this complexity, we will have to compute the
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credit loss distribution by simulation. However, the IG and the Gamma distributions

offer important computational advantages. In particular, thanks to their properties, we

do not need to simulate individual exposures at default, but just their sum Skt, which will

severely speed up the computation of the credit loss distribution.

4 Empirical application

We use loan data from the Credit Register of the Bank of Spain (CIR). This database

records monthly information about all the loans granted by credit institutions in Spain

(commercial banks, savings banks, credit cooperatives and credit finance establishments)

for a value above e6,000. Although the database offers a wider amount of information,

we will focus on the particular details directly related to our application (see Jiménez

and Saurina, 2004, and Jiménez, Salas, and Saurina, 2006, for a thorough description).

In particular, the database reports the amount drawn and available for each loan, and

whether its borrower is an individual or a company. In the latter case, the specific eco-

nomic sector to which the borrower belongs is reported as well. There is also information

available about the state of the loans. Every new loan is assigned a code which only

changes if its situation deteriorates or if it matures. A loan that is expected to fail in the

near future is classified as “doubtful”. If the loan eventually defaults, every month the

database reports the time elapsed since its default. In particular, we will know whether

it has been in default from 3 to 6, 6 to 12, 12 to 18, 18 to 21, or more than 21 months.

From the CIR, we have obtained quarterly series from 1984.Q4 to 2006.Q4 of sectorial

default frequencies (pkt), the total number of loans per sector (nkt) and the exposures of

the defaulting loans. Most papers usually focus on corporate loans. Typically, this is due

to lack of available data on loans to individuals. However, we believe that loans to indi-

viduals, and specially mortgages, play an important role in the credit loss distribution of

banks. In consequence, we consider 2 sectors for individuals and 10 corporate sectors. For

individuals, we consider one group of mortgages and another one for consumption loans.

For corporate loans, we define the following economic sectors: (1) Agriculture, livestock

and fishing; (2) Mining; (3) Manufacture; (4) Utilities; (5) Construction and real estate;

(6) Commerce; (7) Hotels and restaurants; (8) Transport, storage and communications;

(9) Renting, computer science and R&D. Finally, those companies that cannot be classi-
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fied in any of the previous sectors are gathered in an additional group denoted as Other

Corporates (10). However, we remove from the database all the companies from the

financial sector, because of their particular characteristics.

In each quarter, we compute the default rates as the ratio of the number of loans that

have been in default from 3 to 6 months to the total number of loans in each sector.

This definition is consistent with the Basel II framework. Those loans that have been in

default for more than 6 months are left out because they were already considered in one

of the previous quarters. Thus, only newly defaulted loans are considered at each period.

Additionally, we have also obtained the individual exposures of the non-performing loans

for every quarter.

Figure 1 (a) shows the historical evolution of default frequencies. For the sake of

comparability, we represent in Figures 1 (c) and 1 (d) the quarterly series of the Spanish

GDP annual growth and the 3-month real interest rates, respectively.5 We can observe

an increasing trend of default frequencies in all sectors from the end of the 1980s until

almost the mid 1990s. This period coincides with a strong recession in the Spanish

economy which had its trough in 1993, as we can check in Figure 1 (c). In addition,

interest rates also increased from 4% in 1988 to values above 8% in the first half of

the 1990’s. Loans to construction companies and hotels were more affected than the

rest in this recession, with default frequencies peaking at 4%. In contrast, the default

frequencies of mortgages reached 1.5% at the worst moment of the recession. From 1995

to the present, economic conditions have steadily improved, except for a brief period from

2000 to 2001. Interest rates have experienced a sharp decline in the last decade due to

the convergence and integration in the European Monetary Union, and GDP growth has

remained positive and less volatile than in the past (see Mart́ın, Salas, and Saurina, 2005,

for a more detailed analysis). As a consequence, during this expansionary period default

frequencies have dropped to the lowest historical values in the sample. Under the current

conditions, hotels and communications are the two sectors with higher default frequencies.

In comparison, defaults in the construction sector are remarkably low at the moment.

Figure 1 (b) shows the quarterly series of the total number of loans in each sector.

The loan market size has steadily grown in all sectors during the sample period under

5Following the methodology of Davidson and MacKinnon (1985), we have obtained real interest rates
from the nominal rates and inflation.
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analysis. From this impressive growth it is not difficult to conclude that assuming a

constant number of loans could yield inaccurate results. In addition, if we take a closer

look at this figure, we can see that the rate of growth decreased for almost all sectors in

the first half of the previous decade, that is, during the last recession. In consequence,

the evolution of these variables seems to be correlated with the economic cycle. However,

this conjecture will have to be confirmed with more formal results.

4.1 A simple model with two macroeconomic factors

We will start with a simple model that only considers two macroeconomic factors: the

quarterly change in real GDP growth and the variation of three-month real interest rates.6

We employ these two factors because they are generally regarded in the literature as the

most important macroeconomic determinants of credit risk fluctuations. In addition, in

this first set of estimations, we will assume that the parameters of the distribution of the

exposures are constant over time.

Default frequency and market size growth. Let us consider the estimation of (3)

and (4).7 We will introduce the lags 2, 3 and 4 of our two macroeconomic variables. To

save parameters, we do not include the first lag, because we obtain insignificant estimates

for this lag once the subsequent 3 lags are considered. The intuition of this result relies

in the definition of default: not meeting the scheduled payments for at least one quarter.

In consequence, the default frequencies of period t are related to borrowers who originally

became insolvent in period t− 2. In this sense, it seems reasonable that we do not obtain

significant sensitivities with respect to the first lag of the observable factors. As for the

autoregressive structure, we consider the effect of the first lag of the dependent variables,

as well as a seasonal effect by means of the fourth lag. Finally, we consider three dummies

whose values are 1 in 1988.Q1, 1988.Q4 and 1996.Q2, respectively, and zero otherwise.8

These dummies are intended to capture the effects of historical exogenous changes in the

6A similar analysis has been conducted with nominal interest rates yielding similar results, which are
available on request.

7Prior to estimation, we have conducted a series of unit root tests on the data (see Breitung and
Pesaran, 2005, for a review of this literature). Our results have shown us that we need to model default
rates and the total number of loans in first differences to ensure their stationarity.

8The first dummy only affect mortgages, the second dummy affects mortgages and consumption loans,
whereas the third dummy affects all sectors.
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database (see Delgado and Saurina, 2004, for a formal justification).

The estimates of the default frequency model are shown in Table 1, whereas analo-

gous results for the evolution of the size of the credit portfolio can be found in Table 2.

Intuitively, an increase in GDP growth tends to reduce default frequencies and induce an

expansion of the loan market. This is why we observe that GDP growth generally has a

negative impact on the variation of default frequencies and a positive effect on the growth

of the credit market. As Table 1(a) shows, the effect of GDP on default frequencies seems

to be more important for most sectors, with the first two lags being highly significant

in many of them. Nevertheless, mining and utilities react less to the cycle, while some

sectors seem to respond more slowly to aggregate shocks. For instance, we only observe a

significant effect on R&D and mortgages two quarters after a shock to GDP has occurred.

In Table 2(a), we can observe that the effect of GDP on the size of the credit market

is smaller, although it is still significant for manufacture, construction, commerce, and

R&D.

As for interest rates, higher values generally tend to increase default frequencies, with

significant coefficients for agriculture, hotels and communications. However, the overall

effect of higher interest rates on the size of the loan industry is less clear. In some cases,

they may even strengthen its growth. Nevertheless, from a theoretical point of view, it

is unclear how interest rates should affect the growth of the number of loans. On the

one hand, higher interest rates will reduce the demand of loans. On the other hand,

on the supply side banks will have incentives to grant more loans if interest rates rise.

Nevertheless, the effect of interest rates seems to be less important than the impact of

GDP. This may well be due to the fact that, until very recently, most Spanish borrowers,

either corporates or individuals, preferred fixed to variable interest rates. For instance,

in 1992 only 26.11% of the credit granted in Spain was linked to variable interest rates.

This proportion has steadily increased in subsequent years, reaching 55.02% in 2000, and

74.47% in 2005. However, the predominant fixed interest rates for most of our sampling

period have surely weakened the impact of interest rates variations in our model.

The last column of Tables 1(a) and 2(a) report the loadings of the unobservable factors.

Although we consider two latent factors, we have explained in Section 2 that f2t only

affects default frequencies, whereas f1t exclusively alters the size of the credit portfolio. As
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we can see, we obtain significant estimates for both factors in all sectors. In addition, we

find a significant correlation of −0.473 between f1t and f2t (see Table 3). In consequence,

a high value of f2t in a given quarter will induce an increase in default frequencies in

all sectors. Moreover, through the negative correlation with f1t, it will tend to cause

a reduction in the growth of the loan market. Likewise, a low (negative) value of f1t

would produce a similar effect. Hence, f1t and f2t are able to capture a presence of

contagion between sectors that the observable factors cannot account for.9 Furthermore,

the time series structure of these factors also deserves some attention. Table 3 shows the

autoregressive structure of the observable and unobservable factors. As we can observe,

f2t has a significant first order autocorrelation of 0.198. Hence, since shocks to f2t tend to

persist through time, their effect on default frequencies will die away slowly. In contrast,

f1t has a significant negative autocorrelation of −0.193. In consequence, the effect of

a shock to f2t will tend to be reverted in the following periods. For the observable

factors, we find a positive (first order) autocorrelation for interest rates, and a negative

autocorrelation for GDP growth.

We report the remaining parameters of the model in the lower panels of Tables 1 and

2. The first column of Table 2 (b) shows the positive and highly significant intercept

terms that we obtain for the market size growth, which are consistent with the expansion

of the loan market already documented in Figure 1 (b). These intercepts are negative

but statistically insignificant for default frequencies, as Table 1 (b) shows. The second

column of Table 1 (b) shows that the marginal effect of lagged default frequencies from the

previous quarter is negative, whereas the seasonal effect (third column) is positive when

it is significant. In contrast, both terms are generally positive in the market size equation.

Finally, we can observe in the last columns of both tables that the correlation between the

idiosyncratic terms from the same sector are generally negative in the significant cases.

Hence, shocks that increase the growth of the number of loans in a particular sector tend

to be correlated with declines in the rate of defaults from the same sector.

These results can be compared with the estimates reported in Tables 4 and 5, which

correspond to a restricted version of our model, where no latent factors are considered.

GDP and interest rates have a qualitatively similar impact in this model. However,

9Notice that the latent factors are independent from the observable factors by construction.
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the absence of latent factors causes an increase in the absolute correlations between the

idiosyncratic terms of default frequencies and loan market growth in each sector (see the

last column of Tables 4 (b) and 5 (b)).

Exposure at default. For each sector, we estimate the parameters of the static specifi-

cations of the IG and the Gamma distributions by maximum likelihood. Since we assume

that these parameters remain constant over time, we focus on the current situation. Hence,

we only use the exposures of the loans that defaulted in 2006 to fit the parameters of these

distributions. Prior to estimation, we have adjusted the data for inflationary effects. In

Figures 2 and 3 we compare for each sector the empirical fit at the right tail of the IG

and the Gamma with a Kernel estimate of the empirical density. Except for mortgages,

the IG distribution provides a better fit in all sectors. In consequence, we will model

the exposures of non-performing mortgages with the Gamma distribution and employ the

Inverse Gaussian in the remaining cases.

Loss given default. Unfortunately, we do not have data on the loss given default of

the loans in our database. However, Spanish banks have reported the historical average

loss given default for corporate, consumption and mortgage loans to the QIS5.10 Using

this data, we choose the parameters of the Beta distribution so that the mean loss given

default is 35% for corporates, 25% for consumption loans and 15% for mortgages. Finally,

we choose 20% as the standard deviation in the three cases, which is close to the values

reported by Altman, Resti, and Sironi (2004).

Credit loss distribution. We estimate the credit loss distribution by simulating losses

from our model. For each quarter of the horizon that we consider, we first obtain draws

of the total number of loans and the default rates per sector. In particular, we use (3)

and (4), where we sample the idiosyncratic terms from their joint Gaussian distribution,

and generate the draws of the observable and latent common factors by means of (5)

and (6), respectively. In these simulations, we set to zero the unconditional means of

the changes of default frequencies, since a positive (negative) intercept would imply that

default frequencies would tend to 1(0) in the long run. Thus, our restriction rules out

10Fifth Quantitative Impact Study of the Basel Committee on Banking Supervision.
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these extreme cases. Finally, given the total number of defaults, we can generate random

replications of (2) and the loss given default from their respective distributions. To ensure

the stability of our results, we obtain one million simulated losses from our model.

We report descriptive statistics of the credit loss distribution in Table 6 for the model

with latent factors. Specifically, we focus on the expected loss, the Value at Risk (VaR)

at the 99.9% level and the unexpected loss, defined as the difference between the first two

measures. We consider three different time horizons: 1, 3 and 5 years.11 We can see that,

due to higher uncertainty, the three measures increase more than proportionately as the

horizon increases. In terms of expected losses, consumption loans is the riskiest group for

short horizons, followed by construction and manufacture. However, for longer horizons

mortgages and specially construction also have high expected losses. These three sectors

are also the riskiest ones in terms of unexpected losses, specially for long horizons. Again,

the VaR of the construction sector seems to grow relatively more with the horizon than

in the other cases. This is due to the strong dependence of this sector on cyclical effects,

as we already observed in Tables 1 and 2.

Table 7 reports analogous results for the model without latent factors. The differences

between sectors are qualitatively similar in this model. For instance, construction and

consumption loans are still the riskiest categories. In addition, if we view each sector

individually, there are not large quantitative discrepancies between the two models. If

anything, it seems that the model without latent factors yields higher sectorial losses.

However, as the last row of the table shows, total unexpected losses are much lower in this

model, specially for longer horizons. This is due to the fact that we are underestimating

contagion effects across sectors when we do not consider the unobservable factors. For

example, the unexpected loss at a three year horizon is about 15% larger in the model with

latent factors than in the model with only observable explanatory variables. Graphically,

we perform a similar comparison in Figure 4, where we plot the total credit loss densities

for the two models. Again, we can observe that the model that allows for unobservable

factors has fatter tails.

11These horizons start at the end of December 2006, because we are conditioning on the final date of
our sample. For instance, three-year horizon losses add all losses that occur up to three years after the
start date.
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4.2 Extensions and robustness checks

To begin with, we will determine whether we are still able to identify contagion through

latent factors when we consider a richer set of observable explanatory variables. Specifi-

cally, we will consider, as an additional common factor, the spread between three-month

and six-year interest rates. This variable, related to the slope of the term structure of

interest rates, will affect all sectors. Moreover, we consider six additional variables that

will only have an impact on those sectors that are more related to these characteristics.

In particular, we allow the change in the unemployment rate to affect consumption loans

and mortgages; gross value added of market services will affect communications, hotels

and commerce; gross value added of industry will affect manufacture and mining; and

the gross value added series of agriculture, energy and construction will affect agriculture,

utilities and construction, respectively. The coefficients obtained with this specification

are displayed in Tables 8 and 9. We can observe some significant values for the impact of

the spread variable, specially in the evolution of the growth of the number of loans. Specif-

ically, a steepening of the term structure seems to induce an expansion of the number of

loans in some sectors. Unfortunately, at least in terms of statistical significance, most of

the sectorial factors yield somewhat unsatisfactory results. Nevertheless, in spite of the

additional factors, we still obtain highly significant factor loadings for the unobservable

effects.

We will now compare the ability of the three different specifications of the VAR model

to fit the empirical correlations between default frequencies.12To do so, we compute the

fitted residuals of the default frequencies in (4) for the three cases. That is, we compute

εkt(θ̂T ) = ∆ykt − E(∆ykt−1|It−1; θ̂T ) for k = 1, · · · , K, where the expectation is based

on the information known at time t − 1 and the maximum likelihood estimates of the

parameters, denoted by the vector θ̂T . The specification that does not include latent fac-

tors assumes that these fitted residuals are uncorrelated because in this case intersectorial

correlations are only captured by the observable common characteristics, which are part

of the information set It−1. In contrast, the model with latent factors introduces a fac-

torial structure for these correlations: cov(εit(θ̂T ),εjt(θ̂T ))=β2,iβ2,j. We test in Table 10

12For the sake of brevity, we focus only on default frequencies. However, we have obtained similar
results with the residuals of the equation for the number of loans, which are available upon request.
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whether the empirical correlations of the fitted residuals are equal to those hypothesised

by each of these specifications. As we can observe in Panel (a), most correlations are not

adequately captured when latent factors are neglected. In contrast, Panels (b) and (c)

show that these unobservable effects are able to yield a very accurate fit of the empirical

residual correlations. Although these results show the good in-sample performance of our

model, we are also interested in assessing its out of sample reliability. We will consider the

period from 2004.Q1 to 2006.Q4 for this analysis. Hence, we need to reestimate the three

specifications of our VAR model using only data up to 2003.Q4. With these estimates,

we again compute the fitted residuals of (4), but in this case we will also consider those

of (3). We could use these residuals to compute tests analogous to those of Table 10.

However, since we only have 12 periods, these tests will have low power. Thus, we prefer

to follow a different approach in this case. In particular, we standardise the residuals

with the inverse of the Cholesky factorisation of their hypothesised covariance matrices

under each specification. The resulting values should be iid standard normal under the

correct specification. We check this hypothesis in Table 11 by means of a Kolmogorov

test. This table shows that the null can be easily rejected when we do not consider latent

factors, but it can no longer be rejected once these factors are included. Hence, this result

confirms the out-of-sample stability of our model.

Finally, we will explore the linkages between aggregate macroeconomic shocks and

the distribution of exposures at default. We have estimated by maximum likelihood the

parameters of the IG distribution, substituting (8) for µk in (9). Although we have also

estimated an analogous model with the Gamma distribution, we do not report the results

for this model due to its poorer empirical fit. For the sake of parsimony, we will only

consider the effect of the innovations to GDP growth and real interest rate variations.

The results are displayed in Table 12. As expected, the estimated means at the end

of our sample period, displayed in the first column of Table 12, reflect the differences

between the loan sizes across sectors. Specifically, loans to individuals, either mortgages

or consumption loans, are characterised by small mean exposures when compared to the

much larger sizes of loans to corporates. As for corporates, the more capital intensive

sectors have larger mean exposures. For instance, utilities is a sector with relatively few

but very large loans. We can also observe in the second column that the time trend
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coefficients are generally negative though small in magnitude. Imposing ηk = 0 in these

estimations would have yielded unstable estimates of the factor loadings. Specifically, the

interest rates would then be forced to capture the time effects, because of their decreasing

historical trend (see Figure 1d). In the third column, we can observe that GDP generally

has a negative and significant effect. In consequence, higher GDP growth will tend to

reduce the magnitude of exposures at default on average. Conversely, these exposures will

be higher during economic downturns. As for interest rates, we generally obtain positive

coefficients. Hence, higher interest rates tend to increase the means of the exposures.

These results are consistent with the use of credit lines as a liquidity management tool by

firms, as Jiménez, López, and Saurina (2007) show. Moreover, the observed dependence of

EAD on the business cycle can reinforce the pro-cyclicality of the Basel II framework. The

impact of Basel II on pro-cyclicality has been extensively debated in the literature.13The

main conclusion is that the minimum capital requirements computed under the Internal

Ratings Based (IRB) approach will be more risk-sensitive under Basel II, increasing during

recessions and falling as the economy enters expansions. Thus, this will make the lending

decisions of banks more pro-cyclical, which, in turn, will amplify the economic cycle. In

this sense, our results support the concerns of this literature about the strong relationship

between economic cycles and credit risk. However, the global impact of Basel II on the

financial stability of the banking system is an issue beyond the scope of this paper.

4.3 Stress tests

We will end this empirical study by assessing the consequences of a strong shock to

either GDP or interest rates. We follow the standard practice in stress testing exercises

and introduce artificial shocks in the vector of innovations of the factors (see (5)). In

particular, we stress our model with a 3-standard deviation shock that occurs in the

first quarter of the period under study. We consider separate shocks to each of the two

macroeconomic factors that we stress. The GDP shock will be negative, whereas the

interest rate shock will be positive. Thus, these tests are designed to induce a recession

in both cases.

As in the previous sections, we will start with our baseline model, in which GDP

13See for instance Goodhart (2005), Goodhart and Taylor (2005), Gordy and Howels (2006), Kashyap
and Stein (2004) and Ayuso, Pérez, and Saurina (2004)
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and interest rates are the only observable characteristics. We report in Table 13 the

percentage change in the expected loss and the VaR caused by these shocks. The effect of

the GDP shock is similar for most sectors, although it is relatively larger for manufacture,

construction and mortgages, and smaller for utilities. In contrast, due to its poorer

explanatory power, the interest rate shock causes more heterogeneous responses. In Table

14, we compare these results with the ones obtained from our two extensions. In the first

extension we assess the effect of including the augmented set of macroeconomic factors,

while in the second one we analyse the impact of modelling the dynamics of the mean of the

exposures at default. In both cases, we allow for the presence of latent factors, although

in the latter extension we only consider our specification with two observable factors. In

addition, we assume that the unconditional means of the exposures at default will remain

constant over time.14 The two models that use a static distribution for exposures at

default yield fairly close results. Indeed, both seem to respond more to a GDP shock

than to an interest rate shock. For example, at a three-year horizon, the expected loss

and the value at risk increase by 17% under the GDP shock, but only by 5-7% under the

interest rate shock. This result is a direct consequence of the much higher explanatory

power of GDP in the VAR models of Tables 1, 2 and 8.

In contrast, we find larger effects when we allow for time varying means of exposures

at default. Although the expected loss and the VaR under normal conditions are similar

for short horizons, we now obtain fatter tails at the five-year horizon, where VaR reaches

e50 billion. We also find a higher sensitivity to the GDP and interest rate shocks. These

larger losses are mainly due to two sources. Firstly, exposures at default deteriorate as the

economy worsens, whereas in the previous models they remained unaltered. Secondly, we

have introduced correlation between default frequencies and exposures at default, since

both of them are influenced by the same macroeconomic factors. For instance, increments

in default frequencies due to a lower GDP growth are reinforced with higher exposures

at default. In consequence, the overall effect is fatter tails and larger responses to stress

tests of the same magnitude.

14Hence, we directly simulate from (8), by imposing ηk = 0, because we do not expect that the
downward trend documented in Table 12 will persist in the future.
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5 Conclusions

We develop a flexible model to estimate the credit loss distribution of the loans port-

folio in a national banking system. We classify the loans in sectors, and model default

frequencies, individual exposures at default, losses given default and the total number of

loans in each sector. This latter variable has not been previously considered in the liter-

ature. However, we believe that the growth of the credit industry may have important

effects on total credit losses, specially for medium and long term horizons. We propose

a dynamic model for default frequencies and the growth of the credit industry, using as

explanatory variables a set of macroeconomic factors. As a distinguishing feature of our

approach, we also allow for the presence of unobservable common factors. These fac-

tors are able to capture contagion effects between sectors, which are orthogonal to the

observable macroeconomic conditions. Both observable and unobservable variables are

modelled with a vector autoregressive structure. In addition, we model the loss given de-

fault with a Beta distribution. Finally, we fit the distributions of the exposures at default

with the Gamma and the Inverse Gaussian distributions, where we propose a dynamic

parametrisation that relates their expected values to macroeconomic shocks.

In the second part of the paper we apply our model to analyse the loss distribution of

the total credit portfolio of Spanish banks. We use quarterly loan data from the Spanish

Credit Register. Our database starts in 1984.Q4 and ends in 2006.Q4. It contains infor-

mation on every loan granted in Spain with an exposure above e6,000. Hence, we are able

to analyse the whole Spanish loan market. We consider 10 corporate sectors. Further-

more, we also investigate the role of consumption loans and mortgages in the credit loss

distribution by including an additional group for each of these categories. We first study

a simple model that uses the quarterly changes in GDP growth and the variation in three-

month real interest rates as the only macroeconomic explanatory variables. Exposures are

modelled in a static setting for each sector with the Inverse Gaussian distribution, except

for mortgages, where we employ the Gamma because of its better fit. We estimate the

parameters by maximum likelihood and obtain the credit loss distribution for the 1, 3 and

5 year horizons by simulation. Despite the analytical complexity of our model, we show

that we can generate extremely fast simulations by exploiting the statistical properties of
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the Gamma and the Inverse Gaussian distributions. In particular, we compute for each

sector the expected loss, the unexpected loss and the value at risk of credit losses. We

also estimate the density function of losses. Our results show that credit losses in the

Spanish economy are mainly due to the manufacture, construction, consumption loans

and mortgages. The result for the latter two sectors should be interpreted in absolute

terms. Despite the typically low losses given default and exposures at default in loans to

individuals, there is such a large number of loans in these groups that they are one of the

main sources of credit risk in Spain. At the other extreme, mining and utilities are the

sectors with lower absolute risk in Spain. We compare our results with the losses gener-

ated by a simpler model that does not take into account the presence of “hidden” factors.

Although the two models provide similar results for sectorial losses viewed separately, ag-

gregate or total losses are larger in the more general setting, due to the higher correlation

between sectors introduced by the latent factors. In this sense, we show by means of in

and out-of-sample specification tests that latent factors capture the intersectoral correla-

tions very accurately, whereas a model with only observable explanatory variables misses

important contagion effects. Furthermore, we are also able to find a significant impact of

macroeconomic cycles on the distribution of exposures at default.

Finally, we perform two stress tests to assess the sensitivity of credit losses to macro

shocks. In particular, we assess the separate effects of a sudden drop in GDP growth and

a sharp increase in interest rates. Both shocks occur in just one quarter, and they have a

magnitude of three standard deviations. Overall, stressed GDP has a stronger effect than

the interest rate shock. However, we obtain a higher sensitivity once we account for the

dependence of exposures at default on the cycle.

A fruitful avenue for future research would be to integrate this credit risk model with

market risk and operational risk models, as Rosenberg and Schuermann (2006) propose.

It would also be interesting to combine our model with one for the interbank market, such

as those developed by Goodhart (2005) and Elsinger, Lehar, and Summer (2006). These

types of general models could be extremely helpful in providing analytical systemic risk

measures.
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Bruche, M. and C. González-Aguado (2006). Recovery rates, default probabilities and

the credit cycle. CEMFI Working Paper No. 0612.

Davidson, R. and J. G. MacKinnon (1985). Testing linear and loglinear regressions against

Box-Cox alternatives. Canadian Journal of Economics 18, 499–517.

Delgado, J. and J. Saurina (2004). Riesgo de crédito y dotaciones a insolvencias. Un
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Table 1
Model for default frequencies with GDP, interest rates and latent factors

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f2t

Agriculture -1.133∗∗ -1.129∗∗ -0.432 -0.281 1.453∗∗ -0.336 3.335∗∗

Mining -1.162 -1.248 0.122 0.291 0.316 -1.094 5.791∗∗

Manufacture -1.515∗∗ -1.740∗∗ -0.862∗ 0.383 0.668 -0.469 4.447∗∗

Utilities -0.097 0.087 -0.494 0.073 0.647 -0.847 5.129∗∗

Construction -0.958∗∗ -0.988∗ -0.875∗∗ 0.702 0.093 0.259 3.411∗∗

Commerce -1.267∗∗ -1.213∗∗ -0.606 -0.198 0.712 -0.119 4.038∗∗

Hotels -1.304∗∗ -0.826 -0.141 -0.101 1.849∗∗ -0.348 4.038∗∗

Communications -0.953∗∗ -1.053∗∗ -0.857∗ 0.138 1.125∗∗ -0.435 3.673∗∗

R&D -0.403 -1.421∗∗ -1.486∗∗ 0.156 -0.187 -0.096 3.697∗∗

Other Corp. -0.331 -0.888∗ -0.256 0.644 0.881∗ -0.242 3.191∗∗

Cons. loans -0.840∗∗ -1.026∗∗ -0.526 0.020 0.604 0.219 3.261∗∗

Mortgages -0.805 -1.608∗∗ -1.329∗∗ 0.364 0.022 0.029 1.668∗∗

(b) Dynamics

α ∆yk,t−1 ∆yk,t−4 corr(u1k,t, u2k,t)
Agriculture -0.605 -0.362∗∗ 0.215∗∗ 0.429∗∗

Mining -1.080 -0.327∗∗ -0.074 0.017
Manufacture -0.554 -0.329∗∗ -0.013 0.084
Utilities -1.122 -0.377∗∗ -0.135 0.058
Construction -0.368 -0.079 0.176∗∗ -0.354∗∗

Commerce -0.459 -0.237∗∗ 0.038 0.052
Hotels -0.395 -0.340∗∗ -0.003 0.145
Communications -0.420 -0.317∗∗ 0.120∗ 0.319∗∗

R&D -0.494 -0.160∗∗ 0.070 -0.116
Other Corp. -0.625 -0.219∗∗ 0.141∗ -0.322∗∗

Cons. loans -0.594 -0.277∗∗ -0.030 -0.304∗∗

Mortgages -0.520 0.049 0.058 -0.162

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of
the VAR model, and the columns labelled ∆yk,t−1 and ∆yk,t−4 denote the effect of lagged observations
of the dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic
residuals that affect the same sector.
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Table 2
Model for the growth of the number of loans with GDP, interest rates and latent factors

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f1t

Agriculture 0.250 0.171 0.189 -0.200 0.059 -0.078 1.258∗∗

Mining 0.197 -0.249 0.038 -0.056 -0.064 0.226 1.375∗∗

Manufacture 0.383∗∗ 0.062 0.120 -0.072 -0.074 0.090 1.600∗∗

Utilities 0.246 -0.110 -0.097 -0.863∗∗ 0.562 -0.499 1.211∗∗

Construction 0.321∗ 0.086 0.137 -0.240 0.068 -0.126 1.470∗∗

Commerce 0.463∗∗ 0.127 0.072 0.086 -0.201 0.158 1.793∗∗

Hotels 0.210 -0.070 0.063 0.023 0.027 -0.242 1.991∗∗

Communications 0.126 0.537 0.424 0.621 -0.113 0.141 2.069∗∗

R&D 0.623∗∗ 0.225 -0.059 -0.055 -0.096 -0.201 1.591∗∗

Other Corp. -0.902∗∗ -0.805∗ 0.205 0.359 -0.261 0.544 1.019∗∗

Cons. loans 0.029 0.058 0.522∗ 0.514 0.311 0.042 0.781∗∗

Mortgages 0.155 0.038 0.116 0.756∗∗ -0.516 -0.118 0.589∗

(b) Dynamics

α ∆nk,t−1 ∆nk,t−4 corr(u1k,t, u2k,t)
Agriculture 1.309∗∗ 0.308∗∗ 0.130 0.429∗∗

Mining 0.917∗∗ 0.293∗∗ 0.081 0.017
Manufacture 0.659∗∗ 0.374∗∗ 0.186∗∗ 0.084
Utilities 1.199∗∗ 0.194∗ -0.191∗ 0.058
Construction 1.002∗∗ 0.575∗∗ 0.249∗∗ -0.354∗∗

Commerce 0.846∗∗ 0.447∗∗ 0.289∗∗ 0.052
Hotels 1.303∗∗ 0.286∗∗ 0.488∗∗ 0.145
Communications 0.908∗∗ 0.514∗∗ 0.252∗∗ 0.319∗∗

R&D 1.579∗∗ 0.314∗∗ 0.416∗∗ -0.116
Other Corp. 1.649∗∗ 0.477∗∗ 0.094 -0.322∗∗

Cons. loans 2.465∗∗ 0.094∗ 0.033 -0.304∗∗

Mortgages 2.681∗∗ -0.023 0.235∗∗ -0.162

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of the
VAR model, and the columns labelled yk,t−1 and yk,t−4 denote the effect of lagged observations of the
dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic residuals
that affect the same sector.
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Table 3
Dynamics of the factors

Intercept First lag Second lag Conditional covariance matrix
GDP INT f1t f2t

GDP 0.035 -0.425∗∗ -0.056 1.259∗∗

INT -0.094 0.549∗∗ -0.511∗∗ -0.117 0.933∗∗

f1t 0 -0.193∗ 0 0 0 1
f2t 0 0.198∗ 0 0 0 -0.473∗∗ 1

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by 100.
GDP and INT denote, respectively, the changes of GDP growth and three-month real interest rates.
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Table 4
Model for default frequencies with GDP and interest rates

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f1t

Agriculture -1.058∗∗ -1.105∗∗ -0.326 -0.096 1.349∗∗ -0.067 0.000
Mining -0.984 -1.171 0.205 0.685 0.251 -0.949 0.000
Manufacture -1.509∗∗ -1.613∗∗ -0.686 0.646 0.681 -0.430 0.000
Utilities -0.076 0.071 -0.394 0.451 0.390 -0.491 0.000
Construction -0.783∗ -0.712 -0.770∗ 1.190∗∗ -0.308 0.593 0.000
Commerce -1.203∗∗ -1.029∗∗ -0.431 0.069 0.702 -0.073 0.000
Hotels -1.273∗∗ -0.688 -0.017 0.155 1.714∗∗ -0.156 0.000
Communications -0.745∗ -0.800 -0.652 0.567 0.999∗ -0.218 0.000
R&D -0.207 -1.364∗∗ -1.454∗∗ 0.412 -0.428 0.178 0.000
Other Corp. -0.290 -0.840∗ -0.192 0.736 0.766 -0.013 0.000
Cons. loans -0.650∗ -0.893∗∗ -0.418 0.308 0.472 0.452 0.000
Mortgages -0.825 -1.654∗∗ -1.440∗∗ 0.530 -0.224 0.103 0.000

(b) Dynamics

α ∆yk,t−1 ∆yk,t−4 corr(u1k,t, u2k,t)
Agriculture -0.311 -0.329∗∗ 0.467∗∗ 0.061
Mining -0.985 -0.338∗∗ -0.002 -0.360∗∗

Manufacture -0.375 -0.237∗∗ 0.146 -0.458∗∗

Utilities -1.010 -0.357∗∗ -0.053 -0.103
Construction -0.156 0.047 0.393∗∗ -0.256∗∗

Commerce -0.278 -0.131 0.253∗∗ -0.431∗∗

Hotels -0.287 -0.301∗∗ 0.118 -0.227∗∗

Communications -0.254 -0.244∗∗ 0.382∗∗ 0.083
R&D -0.352 -0.125 0.264∗∗ -0.103
Other Corp. -0.450 -0.203∗ 0.306∗∗ -0.242∗∗

Cons. loans -0.405 -0.239∗∗ 0.174 -0.025
Mortgages -0.553 0.034 0.105 -0.141

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of
the VAR model, and the columns labelled ∆yk,t−1 and ∆yk,t−4 denote the effect of lagged observations
of the dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic
residuals that affect the same sector.
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Table 5
Model for the growth of the number of loans with GDP and interest rates

(a) Explanatory variables

GDPt−2 GDPt−3 GDPt−4 INTt−2 INTt−3 INTt−4 f2t

Agriculture 0.282 0.174 0.146 -0.223 -0.008 -0.114 0.000
Mining 0.198 -0.212 -0.044 -0.086 -0.111 0.201 0.000
Manufacture 0.455∗∗ 0.166 0.095 -0.155 -0.111 -0.016 0.000
Utilities 0.242 -0.085 -0.112 -0.832∗∗ 0.486 -0.471 0.000
Construction 0.392∗∗ 0.124 0.122 -0.299 0.017 -0.243 0.000
Commerce 0.514∗∗ 0.208 0.022 0.011 -0.232 0.019 0.000
Hotels 0.211 -0.088 -0.023 -0.018 0.004 -0.347 0.000
Communications 0.220 0.712∗ 0.465 0.787∗ -0.109 0.050 0.000
R&D 0.794∗∗ 0.460∗ -0.052 -0.152 -0.045 -0.415 0.000
Other Corp. -0.913∗∗ -0.843∗ 0.152 0.328 -0.265 0.538 0.000
Cons. loans 0.012 0.021 0.531∗ 0.505 0.312 -0.023 0.000
Mortgages 0.162 0.041 0.121 0.730∗∗ -0.463 -0.153 0.000

(b) Dynamics

α ∆nk,t−1 ∆nk,t−4 corr(u1k,t, u2k,t)
Agriculture 1.197∗∗ 0.208∗ 0.293∗∗ 0.061
Mining 1.103∗∗ 0.063 0.173∗ -0.360∗∗

Manufacture 0.622∗∗ 0.159 0.413∗∗ -0.458∗∗

Utilities 1.332∗∗ 0.112 -0.191 -0.103
Construction 0.791∗∗ 0.461∗∗ 0.522∗∗ -0.256∗∗

Commerce 0.688∗∗ 0.261∗∗ 0.547∗∗ -0.431∗∗

Hotels 1.010∗∗ 0.171∗ 0.643∗∗ -0.227∗∗

Communications 0.813∗ 0.446∗∗ 0.410∗∗ 0.083
R&D 1.085∗∗ 0.115 0.685∗∗ -0.103
Other Corp. 1.782∗∗ 0.443∗∗ 0.088 -0.242∗∗

Cons. loans 2.383∗∗ 0.071 0.084 -0.025
Mortgages 2.648∗∗ -0.033 0.251∗∗ -0.141

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDPt−i and INTt−i for i = 2, 3, 4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. α is the intercept of the
VAR model, and the columns labelled yk,t−1 and yk,t−4 denote the effect of lagged observations of the
dependent variables. “corr(u1k,t, u2k,t)” refers to the correlation between the two idiosyncratic residuals
that affect the same sector.

29



T
ab

le
6

D
es

cr
ip

ti
ve

st
at

is
ti

cs
of

th
e

cr
ed

it
lo

ss
di

st
ri

bu
ti

on
.

M
od

el
w

it
h

G
D

P,
in

te
re

st
ra

te
s

an
d

la
te

nt
fa

ct
or

s

E
xp

ec
te

d
lo

ss
V

aR
(9

9.
9%

)
U

ne
xp

ec
te

d
lo

ss
1

ye
ar

3
ye

ar
s

5
ye

ar
s

1
ye

ar
3

ye
ar

s
5

ye
ar

s
1

ye
ar

3
ye

ar
s

5
ye

ar
s

A
gr

ic
ul

tu
re

38
.3

2
12

8.
39

24
4.

97
12

4.
45

53
4.

22
12

81
.4

1
86

.1
3

40
5.

83
10

36
.4

3
M

in
in

g
5.

65
19

.4
1

37
.2

6
26

.0
4

11
6.

48
28

4.
98

20
.3

9
97

.0
7

24
7.

72
M

an
uf

ac
tu

re
28

5.
39

92
9.

76
16

97
.4

5
94

8.
88

38
63

.2
0

83
79

.9
9

66
3.

49
29

33
.4

4
66

82
.5

4
U

ti
lit

ie
s

4.
09

14
.1

3
27

.0
9

26
.4

3
91

.8
5

21
7.

93
22

.3
4

77
.7

1
19

0.
84

C
on

st
ru

ct
io

n
31

8.
00

11
53

.5
3

23
44

.9
6

10
51

.2
1

51
13

.9
6

13
16

2.
55

73
3.

21
39

60
.4

3
10

81
7.

59
C

om
m

er
ce

18
9.

87
63

8.
15

12
03

.0
9

60
9.

49
25

22
.9

1
56

61
.0

9
41

9.
62

18
84

.7
6

44
58

.0
0

H
ot

el
s

32
.1

0
11

4.
78

23
2.

83
11

0.
14

49
7.

27
12

32
.3

2
78

.0
3

38
2.

49
99

9.
49

C
om

m
un

ic
at

io
ns

36
.8

8
12

6.
52

24
6.

08
12

2.
23

56
0.

86
13

99
.8

5
85

.3
5

43
4.

33
11

53
.7

8
R

&
D

68
.3

9
25

2.
79

53
2.

46
23

5.
98

11
67

.6
2

31
40

.4
4

16
7.

59
91

4.
82

26
07

.9
9

O
th

er
C

or
p.

33
.9

7
12

1.
02

24
5.

51
11

1.
12

53
6.

74
14

11
.0

8
77

.1
4

41
5.

72
11

65
.5

7
C

on
s.

lo
an

s
40

8.
74

14
12

.7
2

27
19

.8
5

16
92

.6
2

68
70

.9
8

15
18

6.
85

12
83

.8
8

54
58

.2
6

12
46

6.
99

M
or

tg
ag

es
25

7.
88

97
5.

90
21

16
.6

8
15

68
.6

6
85

99
.3

0
25

02
7.

81
13

10
.7

8
76

23
.4

1
22

91
1.

12
T
ot

al
16

79
.2

9
58

87
.1

1
11

64
8.

23
38

89
.0

4
17

44
3.

22
43

71
5.

87
22

09
.7

5
11

55
6.

11
32

06
7.

64

N
ot

es
:

re
su

lt
s

in
m

ill
io

ns
of

eu
ro

s.
T

he
un

ex
pe

ct
ed

lo
ss

is
de

fin
ed

as
th

e
di

ffe
re

nc
e

be
tw

ee
n

th
e

V
aR

(9
9.

9%
)

an
d

th
e

ex
pe

ct
ed

lo
ss

.
St

at
is

ti
cs

ob
ta

in
ed

fr
om

1
m

ill
io

n
si

m
ul

at
io

ns
of

th
e

cr
ed

it
ri

sk
m

od
el

.

30



T
ab

le
7

D
es

cr
ip

ti
ve

st
at

is
ti

cs
of

th
e

cr
ed

it
lo

ss
di

st
ri

bu
ti

on
.

M
od

el
w

it
h

G
D

P
an

d
in

te
re

st
ra

te
s

E
xp

ec
te

d
lo

ss
V

aR
(9

9.
9%

)
U

ne
xp

ec
te

d
lo

ss
1

ye
ar

3
ye

ar
s

5
ye

ar
s

1
ye

ar
3

ye
ar

s
5

ye
ar

s
1

ye
ar

3
ye

ar
s

5
ye

ar
s

A
gr

ic
ul

tu
re

39
.1

1
13

1.
01

25
4.

02
12

4.
82

56
6.

39
15

05
.6

7
85

.7
1

43
5.

38
12

51
.6

5
M

in
in

g
5.

81
19

.5
9

37
.2

1
25

.6
8

11
0.

27
26

3.
80

19
.8

7
90

.6
8

22
6.

59
M

an
uf

ac
tu

re
29

3.
13

95
2.

26
17

42
.0

0
94

8.
98

39
44

.3
7

87
69

.6
2

65
5.

85
29

92
.1

1
70

27
.6

2
U

ti
lit

ie
s

4.
16

14
.2

4
27

.2
6

26
.5

5
92

.1
3

21
5.

66
22

.3
9

77
.8

9
18

8.
40

C
on

st
ru

ct
io

n
33

5.
68

12
76

.9
4

27
20

.4
9

10
92

.1
9

60
99

.1
2

18
17

5.
05

75
6.

50
48

22
.1

8
15

45
4.

56
C

om
m

er
ce

19
4.

19
64

9.
47

12
26

.3
9

61
0.

49
25

85
.4

1
60

25
.7

1
41

6.
31

19
35

.9
3

47
99

.3
2

H
ot

el
s

32
.6

5
11

6.
01

23
3.

56
11

0.
08

50
0.

78
12

53
.1

5
77

.4
3

38
4.

77
10

19
.5

9
C

om
m

un
ic

at
io

ns
36

.4
9

12
3.

76
24

6.
24

12
0.

14
60

4.
35

17
50

.3
4

83
.6

5
48

0.
59

15
04

.0
9

R
&

D
69

.2
5

25
5.

10
54

3.
98

23
4.

30
12

19
.3

8
35

32
.8

1
16

5.
05

96
4.

28
29

88
.8

3
O

th
er

C
or

p.
34

.4
9

12
2.

97
25

1.
52

11
1.

14
54

7.
53

15
07

.9
3

76
.6

6
42

4.
56

12
56

.4
1

C
on

s.
lo

an
s

42
3.

79
14

87
.2

2
28

90
.9

2
17

19
.5

6
72

69
.9

1
16

73
4.

72
12

95
.7

7
57

82
.6

9
13

84
3.

80
M

or
tg

ag
es

25
9.

55
98

3.
23

21
44

.1
5

15
55

.1
9

87
43

.7
4

25
72

0.
14

12
95

.6
4

77
60

.5
1

23
57

5.
99

T
ot

al
17

28
.2

8
61

31
.8

2
12

31
7.

74
36

61
.0

7
16

05
8.

23
41

02
4.

64
19

32
.7

9
99

26
.4

2
28

70
6.

91

N
ot

es
:

re
su

lt
s

in
m

ill
io

ns
of

eu
ro

s.
T

he
un

ex
pe

ct
ed

lo
ss

is
de

fin
ed

as
th

e
di

ffe
re

nc
e

be
tw

ee
n

th
e

V
aR

(9
9.

9%
)

an
d

th
e

ex
pe

ct
ed

lo
ss

.
St

at
is

ti
cs

ob
ta

in
ed

fr
om

1
m

ill
io

n
si

m
ul

at
io

ns
of

th
e

cr
ed

it
ri

sk
m

od
el

.

31



T
ab

le
8

M
od

el
w

it
h

la
te

nt
fa

ct
or

s,
G

D
P,

in
te

re
st

ra
te

s,
sp

re
ad

an
d

si
x

se
ct

or
ia

l
eff

ec
ts

(a
)

D
ef

au
lt

fr
eq

ue
nc

ie
s

G
D

P
t−

2
G

D
P

t−
3

G
D

P
t−

4
IN

T
t−

2
IN

T
t−

3
IN

T
t−

4
SP

R
t−

2
SP

R
t−

3
SP

R
t−

4
SE

C
t−

2
SE

C
t−

3
SE

C
t−

4
f 2

t

A
gr

ic
ul

tu
re

-0
.9

27
∗∗

-1
.0

98
∗∗

-0
.4

73
0.

59
7

0.
31

6
0.

42
1

0.
67

2
-1

.0
25

0.
73

1
0.

03
8

0.
03

5
-0

.0
36

3.
32

0∗
∗

M
in

in
g

-0
.8

82
-0

.8
43

0.
64

7
0.

83
5

-0
.9

69
-1

.4
07

0.
93

5
-2

.0
19

-0
.4

36
0.

00
4

-0
.5

51
-0

.5
86
∗

5.
12

1∗
∗

M
an

uf
ac

tu
re

-1
.3

53
∗∗

-1
.4

58
∗∗

-0
.5

93
0.

65
2

0.
00

8
-0

.9
31

0.
26

7
-1

.1
69

-0
.9

32
-0

.1
25

-0
.2

08
∗

-0
.1

85
∗

4.
02

9∗
∗

U
ti

lit
ie

s
-0

.4
08

0.
40

6
-0

.7
12

-1
.5

36
2.

41
1

-3
.2

11
∗∗

-1
.1

91
1.

23
5

-2
.5

66
∗∗

-0
.1

42
0.

19
1

-0
.3

13
4.

91
8∗
∗

C
on

st
ru

ct
io

n
-0

.7
94
∗

-0
.5

33
-0

.8
52
∗

0.
76

0
0.

35
1

-0
.3

45
0.

26
2

0.
15

9
-0

.7
78

-0
.1

92
∗

-0
.0

03
-0

.0
75

3.
16

0∗
∗

C
om

m
er

ce
-1

.1
61
∗∗

-1
.1

99
∗∗

-0
.9

04
∗∗

0.
31

5
-0

.0
32

-0
.1

55
0.

65
6

-0
.8

54
-0

.1
65

-0
.0

89
0.

44
5∗

0.
07

3
3.

85
6∗
∗

H
ot

el
s

-1
.2

08
∗∗

-0
.5

06
-0

.3
31

0.
23

3
1.

82
4∗

-0
.0

63
0.

05
4

0.
04

7
0.

37
4

-0
.6

94
0.

24
7

0.
39

3
4.

12
2∗
∗

C
om

m
un

ic
at

io
ns

-0
.8

24
∗

-1
.1

32
∗∗

-1
.1

30
∗∗

1.
18

3
-0

.1
56

0.
16

8
1.

04
9

-1
.1

14
0.

56
9

-0
.0

23
0.

33
5

0.
27

5
3.

66
5∗
∗

R
&

D
-0

.4
60

-1
.2

89
∗∗

-1
.3

29
∗∗

-0
.8

18
0.

68
5

-0
.6

66
-1

.2
48

0.
63

0
-0

.7
91

-
-

-
3.

63
2∗
∗

O
th

er
C

or
p.

-0
.3

17
-0

.8
77
∗

-0
.1

81
0.

02
9

1.
13

4
0.

14
0

-1
.2

77
∗

0.
12

0
0.

26
5

-
-

-
3.

27
0∗
∗

C
on

s.
lo

an
s

-0
.8

57
∗∗

-1
.0

01
∗∗

-0
.5

73
0.

17
2

0.
75

6
-0

.2
92

0.
47

2
0.

18
0

-0
.5

72
0.

02
1

0.
21

6
-0

.5
80

3.
19

3∗
∗

M
or

tg
ag

es
-0

.8
82

-1
.7

53
∗∗

-1
.5

06
∗∗

1.
78

1∗
0.

09
4

-0
.6

94
2.

73
4∗
∗

0.
14

3
-0

.5
09

-0
.9

11
-0

.3
47

0.
16

6
1.

86
0∗
∗

(b
)

G
ro

w
th

of
th

e
nu

m
be

r
of

lo
an

s
G

D
P

t−
2

G
D

P
t−

3
G

D
P

t−
4

IN
T

t−
2

IN
T

t−
3

IN
T

t−
4

SP
R

t−
2

SP
R

t−
3

SP
R

t−
4

SE
C

t−
2

SE
C

t−
3

SE
C

t−
4

f 1
t

A
gr

ic
ul

tu
re

0.
18

7
0.

17
5

0.
19

9
-0

.1
94

0.
39

0
-0

.3
36

0.
19

1
0.

36
9

-0
.1

97
0.

02
8

0.
02

3
0.

01
7

1.
24

6∗
∗

M
in

in
g

0.
11

8
-0

.3
03

0.
02

3
-0

.0
41

0.
30

5
0.

00
0

0.
23

8
0.

42
2

-0
.0

28
0.

07
2

-0
.0

51
-0

.0
36

1.
30

2∗
∗

M
an

uf
ac

tu
re

0.
28

4∗
0.

03
2

0.
10

6
-0

.1
08

0.
39

6
-0

.2
99

0.
24

6
0.

51
0∗
∗

-0
.2

31
0.

05
5∗

-0
.0

38
-0

.0
13

1.
51

6∗
∗

U
ti

lit
ie

s
0.

27
9

-0
.1

03
-0

.2
11

0.
15

9
0.

13
3

-0
.8

62
∗

1.
58

8∗
∗

-0
.3

53
-0

.4
27

0.
07

6
0.

03
4

-0
.0

11
1.

09
5∗
∗

C
on

st
ru

ct
io

n
0.

21
4

0.
02

9
0.

11
1

-0
.2

53
0.

38
6

-0
.4

83
∗

0.
18

7
0.

35
2

-0
.2

99
0.

01
2

0.
00

0
0.

07
0∗
∗

1.
36

4∗
∗

C
om

m
er

ce
0.

35
1∗
∗

0.
17

4
0.

17
7

-0
.0

73
0.

45
5

-0
.3

46
0.

05
6

0.
71

4∗
∗

-0
.4

41
∗∗

0.
00

3
-0

.1
62
∗∗

0.
05

2
1.

71
1∗
∗

H
ot

el
s

0.
06

3
0.

09
8

-0
.0

81
-0

.2
93

1.
13

4∗
∗

-1
.3

99
∗∗

0.
22

6
1.

07
3∗
∗

-0
.9

92
∗∗

-0
.2

85
0.

21
2

0.
06

3
1.

77
4∗
∗

C
om

m
un

ic
at

io
ns

0.
02

4
0.

59
5

0.
29

8
1.

11
2∗

-0
.4

34
-0

.3
11

0.
91

8
-0

.3
07

-0
.5

74
-0

.1
56

0.
12

5
0.

52
3∗

1.
95

0∗
∗

R
&

D
0.

58
5∗
∗

0.
23

8
-0

.0
85

0.
06

2
0.

35
9

-0
.4

26
0.

34
5

0.
63

2∗
0.

01
8

-
-

-
1.

49
4∗
∗

O
th

er
C

or
p.

-0
.8

40
∗∗

-0
.8

54
∗

0.
07

8
1.

33
4∗
∗

-0
.9

75
0.

62
6

1.
40

7∗
∗

-0
.5

25
0.

14
3

-
-

-
1.

05
6∗
∗

C
on

s.
lo

an
s

-0
.0

10
0.

06
7

0.
50

3∗
0.

55
1

0.
52

7
-0

.1
91

0.
22

1
0.

25
7

-0
.1

86
0.

01
0

0.
00

9
-0

.0
41

0.
72

0∗
∗

M
or

tg
ag

es
0.

17
7

0.
02

4
0.

06
4

0.
85

1∗
-1

.3
43
∗∗

0.
26

0
-0

.2
51

-0
.7

97
∗

0.
19

6
-0

.2
20

0.
07

8
0.

20
8

0.
77

9∗
∗

N
ot

es
:

T
w

o
as

te
ri

sk
s

in
di

ca
te

si
gn

ifi
ca

nc
e

at
th

e
5%

le
ve

l,
w

hi
le

on
e

as
te

ri
sk

de
no

te
s

si
gn

ifi
ca

nc
e

at
th

e
10

%
le

ve
l.

P
ri

or
to

es
ti

m
at

io
n,

th
e

de
pe

nd
en

t
an

d
th

e
ex

pl
an

at
or

y
va

ri
ab

le
s

ha
ve

be
en

m
ul

ti
pl

ie
d

by
10

0.
G

D
P

t−
i,

IN
T

t−
i,

SP
R

t−
i
fo

r
i
=

2,
3,

4
de

no
te

,r
es

pe
ct

iv
el

y,
th

e
eff

ec
t

of
la

gg
ed

ob
se

rv
at

io
ns

of
G

D
P

gr
ow

th
,
th

e
va

ri
at

io
n

of
th

re
e-

m
on

th
re

al
in

te
re

st
ra

te
s,

an
d

th
e

sp
re

ad
be

tw
ee

n
si

x-
ye

ar
an

d
th

re
e-

m
on

th
in

te
re

st
ra

te
s

on
th

e
de

pe
nd

en
t

va
ri

ab
le

s.
E

xc
ep

t
fo

r
R

&
D

an
d

O
th

er
C

or
p.

,e
ac

h
se

ct
or

is
ad

di
ti

on
al

ly
al

lo
w

ed
to

de
pe

nd
on

an
ad

di
ti

on
al

se
ct

or
ia

lv
ar

ia
bl

e,
w

ho
se

eff
ec

ts
ar

e
re

po
rt

ed
in

th
e

co
lu

m
ns

SE
C

t−
i.

SE
C

de
no

te
s

gr
os

s
va

lu
e

ad
de

d
by

se
ct

or
fo

r
co

rp
or

at
es

an
d

th
e

un
em

pl
oy

m
en

t
ra

te
fo

r
co

ns
um

pt
io

n
lo

an
s

an
d

m
or

tg
ag

es
.

32



T
ab

le
9

D
yn

am
ic

s
of

th
e

fa
ct

or
s

M
od

el
w

it
h

la
te

nt
fa

ct
or

s,
G

D
P,

in
te

re
st

ra
te

s,
sp

re
ad

an
d

si
x

se
ct

or
ia

l
eff

ec
ts

In
te

rc
ep

t
F
ir

st
la

g
Se

co
nd

la
g

G
D

P
0.

02
9

-0
.4

30
∗∗

0.
01

7
IN

T
-0

.0
96

0.
53

4∗
∗

-0
.5

59
∗∗

SP
R

0.
01

8
-0

.0
68

-0
.1

65
∗

G
V
A

A
g
ri

c
u
lt

u
re

0.
29

0
0.

16
1∗

0.
05

7
G

V
A

In
d
u
st

ry
0.

09
4

-0
.2

14
∗∗

-0
.0

30
G

V
A

E
n
e
rg

y
0.

07
7

0.
49

1∗
∗

0.
14

5
G

V
A

C
o
n
st

ru
c
ti

o
n

0.
30

6
0.

15
4∗

-0
.0

76
G

V
A

S
e
rv

ic
e
s

0.
05

8
-0

.2
81
∗∗

-0
.0

52
U

ne
m

pl
oy

m
en

t
-0

.0
16

0.
25

5∗
∗

0.
12

4
f 1

t
0.

00
0

-0
.2

91
∗∗

0.
00

0
f 2

t
0.

00
0

0.
13

6
0.

00
0

C
on

di
ti

on
al

co
va

ri
an

ce
m

at
ri

x
G

D
P

IN
T

SP
R

G
V
A

A
g
r.

G
V
A

In
d
.

G
V
A

E
n
e
.

G
V
A

C
o
n
.

G
V
A

S
e
r.

U
N

P
f 1

t
f 2

t

G
D

P
1.

26
8∗
∗

IN
T

-0
.1

05
0.

93
5∗
∗

SP
R

0.
26

2∗
0.

13
5

1.
36

7∗
∗

G
V
A

A
g
ri

c
u
lt

u
re

1.
03

8
0.

43
0

0.
21

7
32

.0
89
∗∗

G
V
A

In
d
u
st

ry
0.

50
2

-0
.2

83
0.

62
9∗

-9
.2

11
∗∗

8.
08

7∗
∗

G
V
A

E
n
e
rg

y
-0

.3
76

-0
.6

75
∗

1.
32

7∗
∗

-0
.1

67
2.

43
6∗
∗

14
.6

85
∗∗

G
V
A

C
o
n
st

ru
c
ti

o
n

0.
19

6
-0

.4
71

0.
63

8
-4

.6
05
∗∗

3.
70

8∗
∗

5.
28

5∗
∗

12
.5

88
∗∗

G
V
A

S
e
rv

ic
e
s

0.
10

3
0.

00
9

0.
32

5∗
∗

0.
12

8
0.

89
7∗
∗

1.
46

5∗
∗

1.
78

2∗
∗

1.
61

7∗
∗

U
ne

m
pl

oy
m

en
t

-0
.0

95
0.

08
8

-0
.0

48
0.

32
3

-0
.2

46
0.

03
3

-0
.3

73
-0

.0
58

0.
36

1
f 1

t
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

1.
00

0
f 2

t
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

-0
.4

68
∗∗

1.
00

0

N
ot

es
:

T
w

o
as

te
ri

sk
s

in
di

ca
te

si
gn

ifi
ca

nc
e

at
th

e
5%

le
ve

l,
w

hi
le

on
e

as
te

ri
sk

de
no

te
s

si
gn

ifi
ca

nc
e

at
th

e
10

%
le

ve
l.

G
D

P,
IN

T
,

SP
R

an
d

G
V
A

de
no

te
,

re
sp

ec
ti

ve
ly

,G
D

P
gr

ow
th

,t
he

va
ri

at
io

n
of

th
re

e-
m

on
th

re
al

in
te

re
st

ra
te

s,
th

e
sp

re
ad

be
tw

ee
n

si
x-

ye
ar

an
d

th
re

e-
m

on
th

in
te

re
st

ra
te

s,
an

d
gr

os
s

va
lu

e
ad

de
d.

33



Table 10
P-values of specification tests of the correlation matrix of default frequencies

(a) Model with GDP and Interest rates
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.00
Manufacture 3 0.00 0.00
Utilities 4 0.00 0.00 0.00
Construction 5 0.00 0.00 0.00 0.00
Commerce 6 0.00 0.00 0.00 0.00 0.00
Hotels 7 0.00 0.00 0.00 0.00 0.00 0.00
Communications 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R&D 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other Corp. 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cons. loans 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mortgages 12 0.03 0.17 0.06 0.07 0.01 0.11 0.28 0.11 0.01 0.00 0.00

(b) Model with GDP, Interest rates and latent factors
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.30
Manufacture 3 0.67 0.03
Utilities 4 0.85 0.74 0.89
Construction 5 0.76 0.24 0.57 0.14
Commerce 6 0.67 0.95 0.69 0.59 0.36
Hotels 7 0.43 0.27 0.50 0.38 0.72 0.99
Communications 8 0.67 0.52 0.88 0.93 0.44 0.99 0.72
R&D 9 0.44 0.15 0.15 0.09 0.40 0.35 0.94 0.51
Other Corp. 10 0.76 0.71 0.57 0.13 0.27 0.41 0.77 0.35 0.00
Individuals 11 0.39 0.34 0.20 0.92 0.52 0.28 0.64 0.25 0.24 0.78
Mortgages 12 0.73 0.72 0.60 0.51 0.43 0.51 0.58 0.62 0.39 0.40 0.18

(c) Model with GDP, Interest rates, spread, six sectorial effects and latent factors
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.33
Manufacture 3 0.88 0.06
Utilities 4 0.62 0.85 0.94
Construction 5 0.75 0.16 0.44 0.29
Commerce 6 0.91 0.94 0.60 0.98 0.71
Hotels 7 0.73 0.41 0.55 0.65 0.83 0.90
Communications 8 0.74 0.57 0.87 0.87 0.53 0.94 0.82
R&D 9 0.39 0.40 0.22 0.34 0.59 0.37 0.84 0.73
Other Corp. 10 0.65 0.93 0.69 0.55 0.53 0.44 0.53 0.46 0.10
Individuals 11 0.26 0.41 0.22 0.53 0.36 0.32 0.63 0.33 0.45 0.92
Mortgages 12 0.67 0.68 0.80 0.19 0.34 0.43 0.63 0.41 0.11 0.15 0.24

Notes: in each cell the null hypothesis is that the empirical correlation between the corresponding sectorial
default frequencies equals the one hypothesised by the model. The p-values below 5% are expressed in
bold.
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Table 11
Kolmogorov specification tests of the out-of-sample distribution of the standardised fitted

residuals of the model of default frequencies and number of loans

Factors Kolmogorov test P-value
GDP, INT 0.103 0.004
GDP, INT, ft 0.051 0.446
GDP, INT, SPR, SEC, ft 0.046 0.573

Notes: The model has been estimated with data from 1984.Q4 to 2003.Q4. The test studies whether the
orthogonalised residuals from 2004.Q1 to 2006Q4, a total number of 288 values, are independent standard
normal. INT, SPR and SEC denote, respectively, real interest rates, interest rate effects and sectorial
factors.
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Table 12
Effect of macroeconomic factors on the expected exposures at default

Mean in 2006.Q4 ηk GDPt−1 INTt−1

Agriculture 0.107 -0.002 -0.054∗∗ 0.131∗∗

Mining 0.089 -0.018∗∗ -0.011 0.059∗

Manufacture 0.096 -0.010∗∗ -0.029∗∗ 0.041∗∗

Utilities 0.178 0.028 -0.150∗∗ -0.218∗∗

Construction 0.092 -0.021∗∗ -0.076∗∗ 0.051∗∗

Commerce 0.090 -0.007∗∗ -0.043∗∗ 0.024∗∗

Hotels 0.062 -0.023∗∗ -0.115∗∗ -0.026∗

Communications 0.054 -0.018∗∗ -0.061∗∗ -0.021∗∗

R&D 0.057 -0.014∗∗ -0.111∗∗ 0.002
Other Corp. 0.094 -0.015∗∗ -0.029∗∗ -0.002
Cons. loans 0.016 -0.018∗∗ 0.017∗∗ 0.018∗∗

Mortgages 0.062 0.004∗∗ -0.042∗∗ 0.022∗∗

Notes: Two asterisks indicate significance at the 5% level. Means in millions of euros. GDP and INT
denote, respectively, GDP growth and the variation of three-month real interest rates. Data sample for
the estimation: 1989.Q4 - 2006.Q4.
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Table 14
Comparison of credit loss distributions

(1) (2) (3)

Characteristics
Included Factors

-GDP, Interest rates 3 3 3

-Spread, GVA’s, Unemployment 3

Model of the distribution of exposures Static Static Dynamic

Normal Scenario
Expected loss

1 year 1679 1671 1486
3 years 5887 5769 5288
5 years 11648 11335 10647

VaR (99.9%)
1 year 3889 3821 3501
3 years 17443 16693 17811
5 years 43716 40708 50076

Change due to -3 s.d. GDP shock (%)
Expected loss

1 year 7 6 20
3 years 16 16 32
5 years 18 18 35

VaR (99.9%)
1 year 7 7 17
3 years 18 17 33
5 years 21 20 37

Change due to +3 s.d. Interest rate shock (%)
Expected loss

1 year 3 6 10
3 years 5 6 14
5 years 6 6 15

VaR (99.9%)
1 year 3 7 10
3 years 5 7 14
5 years 5 7 15

Notes: results in millions of euros. “Spread” denotes the difference between six-year and three-month
interest rates. “GVA’s” denotes gross value added factors, namely: agriculture, industry, energy, con-
struction and market services. Statistics obtained from 1 million simulations of the credit risk model. All
models include latent factors.
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Figure 2:
Kernel estimate and fitted densities of the right tail of the distribution of exposures at default
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Notes: the x-axis is expressed in millions of euros. Both the kernel and the fitted densities are based on
exposure data from 2001 to 2006.
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Figure 3:
Kernel estimate and fitted densities of the right tail of the distribution of exposures at default
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Notes: the x-axis is expressed in millions of euros. Both the kernel and the fitted densities are based on
exposure data from 2001 to 2006.
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Figure 4:
Kernel estimates of the total credit loss distribution
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Note: the x-axis is expressed in millions of euros, where a log-scale is employed. Estimates
based on 100,000 simulations.
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