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Abstract

This paper proposes a dynamic model to estimate the credit loss distribution of the ag-
gregate portfolio of loans granted in a banking system. We consider a sectorial approach
distinguishing between corporates and individuals. The evolution of their default fre-
quencies and the size of the loans portfolio are expressed as functions of macroeconomic
conditions as well as unobservable credit risk factors, which capture contagion effects be-
tween sectors. In addition, we model the distributions of the Exposures at Default and
the Losses Given Default. We apply our framework to the Spanish banking system, where
we find that sectorial default frequencies are not only affected by economic cycles but also
by a persistent latent factor. Finally, we identify the riskier sectors and perform stress
tests.
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1 Introduction

During the last years, a more volatile and dynamic financial environment has caused
an increasing concern about the stability of banking systems. In this sense, it is widely
agreed that credit risk is one of the variables that are more directly related to financial
stability. Indeed, the Basel II framework has put forward the need of measuring this type
of risk accurately. As a consequence, there has been a number of papers that estimate
the credit loss distributions of the loans portfolios of different countries.[]

These papers generally follow a top-down approach by analysing the banking sector
as a whole. Most of them also emphasise the need of assessing the variability of credit
risk across different sectors. In addition, since the early works of \Wilson| (1997alb), most
subsequent studies relate changes in the probabilities of default to changes in macroeco-
nomic conditions (see also Demchuk and Gibsonl 2006). Specifically, it is usually assumed
that, conditional on the macroeconomic explanatory variables, defaults are independent
across sectors. However, this assumption might yield strongly biased results if a relevant
factor is omitted. What is more important, on top of macroeconomic variables, there
might exist some credit risk factors that induce contagion across sectors, but which we
cannot directly observe. This issue has already been a cause of concern in the litera-
ture. Unfortunately, most of the empirical research has generally focused on either large
corporates or publicly traded instruments, such as bonds or stock returns. For instance,
Schuermann and Stiroh| (2006)) have found an important presence of “hidden risk factors”
in U.S. banks stock returns, while Duffie, Eckner, Horel, and Saital (2006) have noticed
that the effects of these factors on the correlation of defaults might be larger if they are
persistent. However, much less is known about the presence of latent factors in the credit
loss distribution of loans.

This paper proposes a credit risk model that allows for the presence of persistent
latent factors. We express loans losses in terms of four stochastic components: default

frequencies, the size of the loans portfolio, the exposures at default and the losses given

1To cite a few examples, [Boss| (2002) has developed a credit risk model for Austria, [Virolainen| (2004)
has considered the case of Finland, |Misina, Tessier, and Dey| (2006) have analysed the Canadian loans
portfolio, [Drehmann| (2005) and Drehmann, Patton, and Sorensen| (2006) have studied the credit loss
distribution in the U.K., while |Pesaran, Schuermann, Treutler, and Weiner| (2006) have considered an
international credit risk model.



default. The importance of modelling the size of the loans portfolio has been traditionally
neglected. However, it is necessary to take into account this variable if we want to study
the total losses of a banking system, and not just those due to a fixed number of loans.
For each of the economic sectors in which we arrange the loans, we assume that changes in
the default frequencies and the total number of loans are a function of past observations
of the dependent variables, a set of observable characteristics, some potentially persistent
common latent factors and one idiosyncratic component. The effect of observable factors
is to introduce correlation between different loans due to clearly identifiable shocks, such
as a fall in GDP growth. In contrast, the latent components will generate contagion effects
that are orthogonal to the observable events. Conditional on default, the loss given default
and the exposure at default are initially assumed to be independent of default rates and
the size of the credit market, although they are allowed to have a different distributional
shape for each sector. With the exception of Madan and Unal (2006) in the context of
deposit insurance, the literature has paid little attention to the distribution of exposures
at default. However, we believe that it is necessary to account for the variability of
exposures within each sector in order to correctly describe the heterogeneity of loans.
Specifically, we employ either the Inverse Gaussian or the Gamma distribution. Both
are flexible distributions whose statistical properties can be exploited to reduce by a
considerable amount the computational demands of our model. Additionally, we propose
a generalisation in which these distributions can change as a function of the observable
macroeconomic factors. Finally, we consider the usual Beta distribution to describe the
loss given default (see e.g. (Gupton and Steinl, 2002]).

We use our model to estimate the credit loss distribution of the Spanish banking
system. We have quarterly loan data from 1984.Q4 to 2006.Q4, obtained from the Spanish
Credit Register. This database contains information on every loan granted in Spain
with an exposure above €6,000. Since this threshold is very low, we can safely assume
that we have data on virtually every loan granted in Spain. Hence, we use high quality
loan data at a frequency at which it is not usually available. In this sense, it is worth
remarking that we are able to obtain actual default rates from our database. In contrast,

most of the literature usually relies on bankruptcy rates, which are imperfect proxies of



defaultsE] We consider 10 corporate sectors plus one group for mortgages and another one
for consumption loans. We first estimate a simple model with changes in GDP growth and
three-month interest rates as our macroeconomic factors. Then, we obtain the credit loss
distribution by simulating losses from our model under the current economic conditions
and under some stressed scenarios. Interestingly, we are able to identify a persistent
unobservable factor that generates dependence between sectorial default frequencies, and
an analogous effect on the growth of the number of loans. These factors remain significant
when we reestimate our model with an augmented set of macroeconomic characteristics.
We also determine which sectors are riskier, and compare our model with simpler versions
that have been previously implemented. In this sense, we show that latent factors are
crucial to capture the empirical correlations between sectorial default frequencies. In
addition, we assess the out-of-sample stability of our model. Finally, we explore the
relationship between exposures at default and macroeconomic conditions, where we find
that they tend to be higher on average during recessions than during expansions. This
result is consistent with the findings of |Jiménez, Lopez, and Saurinal (2007), who find,
also for the Spanish loan market, that a higher usage rate of credit lines during recessions
induces higher exposures at default in these periods.

In summary, we believe that our paper provides some important contributions to
the literature. Firstly, this paper introduces unobservable common shocks in a credit
risk model of loans losses. Secondly, the paper takes advantage of the use of a very
rich dataset which contains precise information about almost all the loans granted in
the Spanish economy. In particular, we are able to model the distribution of exposures
at default, as well as the loan market dynamics. In addition, we consider an extensive
sectorial structure that includes mortgages and consumption loans. Thirdly, our results
show that value at risk can be significantly underestimated if contagion effects between
sectors are not allowed. Finally, we dramatically reduce the computational demands of
our model by exploiting its statistical properties.

The rest of the paper is organised as follows. We describe our model in the next section,
and discuss the estimation of its parameters in Section [3] In Section [ we consider an

empirical application to Spanish loan data. Finally, concluding remarks and directions

2See the discussion by Duffie, Eckner, Horel, and Saital (2006)



for future research are suggested in Section [5

2 The credit risk model

We are interested in modelling credit risk in an economy with K sectors. We will
consider a sample of T periods of data. In this context, the losses due to a loan i from

sector k can be decomposed at any time period t as
Lt = Dt LGDy FAD; 14,

where D, is a binary variable that equals 1 in case of default and 0 otherwise, while
LGDy, € (0,1) and EAD; .+ > 0 are, respectively, the loss given default and the exposure
at default. We will denote the proportion of non-performing loans in sector k£ at time t as
Drt, 1.e. the ratio of the number of loans in default to the total number of loans in each
sector. This variable is usually known as default frequency. Hence, the losses from sector
k at time t can be expressed as

Nkt

Lk,t = Z Li,k,t = LGDk,tSk(pktnk,t)a (1)

i=1
where ny; is the total number of loans in sector k and

katnk,tJ

Sw= Y EAD,. (2)

i=1
where |pging| rounds pging: to the nearest integer. Without loss of generality, we have
assumed that the first loans in the sum are those that default. We have also supposed
that the losses given default are homogeneous in each sector because this type of infor-
mation is rarely available for loans at a more disaggregated level. If we assume that the
probability of default is constant in each sector, pi; will converge to the probability of
default of sector k as ny; grows to infinity. However, for small ng,, they will not necessarily
coincide.

The main dynamic features of our model are introduced with a joint model for py; and
ny:. In order to work with variables with support on the whole real line, we transform the
default frequencies by means of the probit functional form y; = ®~!(pgs), where ®~1(+) is

the inverse of the standard normal cumulative distribution function. Alternatively, a logit
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model could also be adopted. For every sector, we define the growth of the number of loans
as Any, = log(ng) — log(ng—1), while the changes in the transformed default frequencies
are defined as Ayi = yrt — ykt_lﬂ We propose the following vector autoregression for

these variables:

q T
Ang = g+ Z p1 AN + Z ’)”LJ-thj + /Bl,kfl,t + Uy ot (3)
j=1 j=1
q T
Ay = agp+ Z P2, AYkt—j + Z Yo Xt—j + Bojfor + U k. (4)
j=1 =1

In consequence, the evolution of Any; and Ay, depends on their previous history, a set of
m observable characteristics x;, two unobservable common factors, f1; and fo;, and the
idiosyncratic shocks uy gy ~ N(0,0%,) and ugj ~ N(0,03,), for j,k = 1,--- | K. These
idiosyncratic terms are assumed to be #id jointly Gaussian and independent from the
common shocks. In addition, we only allow for correlation between the two idiosyncratic
terms from the same sector, i.e. cov(uy g, ug i) = 0 for k # j.

We consider the following vector autoregressive structure for the observable factors:

x; = 0 + Z Ajxy_j+ vy, (5)

j=1
where v, ~ N(0,€Q). To ensure the identification of the model, we assume that fi, only
affects , whereas fy; can only influence default frequencies. However, we allow for
correlation between these factors. In particular, if we define the vector f; = (fit, for)', the

dynamics of f; can be expressed in terms of the following VAR(1) model:

ft = th—l + Wy. (6)
where
¢ 0
R— { L } |
and w; is Gaussian with zero mean and
1 - ¢} py/ (1= 01)(1 — ¢3)
V t) — . 7
=i 1o "

3We specify our model in first differences because the levels are usually nonstationary in this type of
applications (see e.g. Boss, [2002, and our empirical application). However, it will be straightforward to
rewrite our model in levels if necessary.



Hence, ¢; is the first order autocorrelation of f;;, for ¢ = 1,2, and p is the conditional
correlation between f;, and fo,. Since f; is unobservable, we have to fix its scale to ensure
the identification of the model. This is why we have parametrised so that the latent
factors have unit unconditional variances. In addition, we assume that cov(vy, w;) = 0,
which implies that the latent factors are orthogonal to the observable characteristics.
Hence, these unobservable components introduce a source of contagion between sectors
that cannot be attributable to the observable shocks. |Giesecke and Weber| (2004) show
that these effects may be caused by the interaction of firms with their business partners,
while Kiyotaki and Moore| (1997) argue that the relationship between credit limits and
asset prices can create a transmission mechanism by which shocks will persist and spill
over to other sectors. Nevertheless, our approach is focused on empirically assessing the
existence of latent factors, without precluding or favouring any of these explanations.
Finally, we will suppose that, conditional on default and the current macroeconomic
conditions, LG Dy, are random Beta variates, while EAD,, are independent Inverse
Gaussian or Gamma Variatesﬁ We will first suppose that the parameters of these distri-
butions are constant over time but possibly different for each sector. This implies that
their distributions do not depend on the cycle. Later on, we will extend this model by
allowing the mean of EFAD, ., to depend on the macroeconomic factors. Specifically, if we
denote the mean of the exposures at default in sector k£ and period ¢ as j, we propose

the following parametrisation:

1
Lot = [kt—1 €XD | M + @Vt — 590299% (8)

where 7, captures a time trend, v, is the lagged vector of innovations in equation ({5
and €2 is its covariance matrix. Thus, we allow uy; to be influenced by the same shocks
that affect x;. Of course, if ¢, = 0 we are back in the static setting. The time trend
component turns out to be important for estimation purposes. For example, in a context
of historically decreasing exposures, this component will be negative. However, when we
compute the credit loss distribution, we will assume no particular trend by setting this

parameter to zero. In consequence, it is important to include the term ¢} Q¢p, /2 in

4We have compared the empirical performance of these two distributions with other potential candi-
dates. Our results show that the Gamma and the Weibull yield a similar empirical fit, while the shapes
generated by the IG are similar to those of the log-normal. These results are available on request. How-
ever, we will not consider the Weibull nor the Log-normal because they are not closed under aggregation.



to ensure that

1
E {exp [go%vtl — §<p;€QcpkH =1

This result, which is a consequence of the normality of v;, ensures the constancy of the
unconditional mean of (§)) when 7 is set to zero. It is also possible to consider a dynamic
parametrisation of the distribution of the loss given default (see |Bruche and Gonzélez-
Aguadol [2006). However, due to lack of data in our application, we will not be able to

explore this extension.

3 Estimation and simulation of the model

To estimate the parameters in and , we need to use the Kalman filter to deal
with the unobserved factors. The intuition of this procedure is as follows. To evaluate
the likelihood at each period ¢, we first compute the expected value of the factors given

the information available up to time ¢t — 1:
ft\t—l = E(ft|{A1’ls, AY&XS}ISSSt—l)?

where An, = (Anys, -+, Ang,) and Ay, = (Ayrs, - -+, Ayk,s)'. In addition, since fy;_;
is a noisy estimate of the true realisation f;, we also need to measure the uncertainty of

this estimate:
Pt|t71 =V [ft‘{Ansa AYsaxs}lgsgtfl)] .

Finally, the estimation procedure consists basically in treating and as a pure
vector autoregressive model, by using the series of f;,_; as if they were actually observed.
However, we must adjust the variance of the model with Py;_; to account for the fact
that f;;_1 is not equivalent to the true realisation f;(see e.g. Hamilton| 1994, for a formal
discussion).

Interestingly, as new data arrives, we can update our previous estimates of the realisa-
tions of the factors, and obtain more accurate ones. For example, given the whole sample

of data, we can estimate the evolution of the latent factors as:
fiE|T = E<ft|{Ans> Aysa Xs}lgng)'

To identify the factors, we need at least two sectors. In fact, the more sectors we

have, the more precise our estimates of f; will be. Hence, latent factors are particularly
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valuable in models with many sectors, since they allow for rich dynamics and correlation
structures without requiring too many parameters.

As we have remarked, we consider two possible distributions for EAD; ;: the Inverse
Gaussian (IG) and the Gamma distribution. For each sector, we choose the one that best
fits the data from the sector. Their parameters are estimated by maximum likelihood,

where their density functions can be expressed as:

e\ Ak 2
e (EAD s =mm) = (55) oo |- e-m?|
(@/m) ! (—a
amma EAD@ =T, Vg, = a_ 1
Jo ( kit = T3 Th) 2vk /2T (1 /2) T exp 27 (10)

We will denote these distributions as IG(ug, A\x) and Gamma(vy, 71,), respectively. In the
IG case py, is the mean, and u3 /), is the variance, whereas for the Gamma distribution

the mean is 1,7, and the variance v72

. The subindices indicate that these parameters
are sector specific. As we show in the empirical application, both distributions provide
a good fit of the data, although the IG generally outperforms the Gamma. In addition,
it can be shown that sums of 7d IG or Gamma variates remain within the same family
(see |Johnson, Kotz, and Balakrishnan| [1994)). Due to this property, we can express the
distribution of Sy; in closed form for a given number of defaults |pyny]. Specifically, it
can be shown that the distribution of Sj; conditional on the number of defaults at ¢ is
a IG[| prenre | 1, katnktf Ax] in the IG case, while it is a Gamma(|pginge | Vi, k) in the
Gamma case. From this result, we can express the distribution of the sum of EAD’s given
only the information known at ¢ — s by means of the following sum:

J(Ske| Li—s) = Zg(skt| Prinke = 1 i) Pr( [ prenne| = if i) (11)

i=0

where g( S| | prinre| = 1, I;—s) is the conditional density function of Sy, given i defaults oc-
curring at ¢, while I;_; denotes the information known at t—s. Finally, Pr( | pgine: | = @] [i—s)
is the probability of ¢ defaults occurring at ¢ given I;_;.

Unfortunately, we cannot compute in closed form because it is extremely difficult
to obtain the exact values of Pr(|pwni:| =i|I;—s) due to the dynamic features of the
model followed by py; and ng;. Moreover, when we consider the dynamic parametrisation
for the means of exposures at default, we will only be able to express g(Sk:| preni =

i,I;_s) in closed form for s = 1. Due to this complexity, we will have to compute the
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credit loss distribution by simulation. However, the IG and the Gamma distributions
offer important computational advantages. In particular, thanks to their properties, we
do not need to simulate individual exposures at default, but just their sum Sy, which will

severely speed up the computation of the credit loss distribution.

4 Empirical application

We use loan data from the Credit Register of the Bank of Spain (CIR). This database
records monthly information about all the loans granted by credit institutions in Spain
(commercial banks, savings banks, credit cooperatives and credit finance establishments)
for a value above €6,000. Although the database offers a wider amount of information,
we will focus on the particular details directly related to our application (see |Jiménez
and Saurinal, 2004, and |Jiménez, Salas, and Saurinal [2006, for a thorough description).
In particular, the database reports the amount drawn and available for each loan, and
whether its borrower is an individual or a company. In the latter case, the specific eco-
nomic sector to which the borrower belongs is reported as well. There is also information
available about the state of the loans. Every new loan is assigned a code which only
changes if its situation deteriorates or if it matures. A loan that is expected to fail in the
near future is classified as “doubtful”. If the loan eventually defaults, every month the
database reports the time elapsed since its default. In particular, we will know whether
it has been in default from 3 to 6, 6 to 12, 12 to 18, 18 to 21, or more than 21 months.

From the CIR, we have obtained quarterly series from 1984.Q4 to 2006.Q4 of sectorial
default frequencies (px), the total number of loans per sector (ny;) and the exposures of
the defaulting loans. Most papers usually focus on corporate loans. Typically, this is due
to lack of available data on loans to individuals. However, we believe that loans to indi-
viduals, and specially mortgages, play an important role in the credit loss distribution of
banks. In consequence, we consider 2 sectors for individuals and 10 corporate sectors. For
individuals, we consider one group of mortgages and another one for consumption loans.
For corporate loans, we define the following economic sectors: (1) Agriculture, livestock
and fishing; (2) Mining; (3) Manufacture; (4) Utilities; (5) Construction and real estate;
(6) Commerce; (7) Hotels and restaurants; (8) Transport, storage and communications;

(9) Renting, computer science and R&D. Finally, those companies that cannot be classi-



fied in any of the previous sectors are gathered in an additional group denoted as Other
Corporates (10). However, we remove from the database all the companies from the
financial sector, because of their particular characteristics.

In each quarter, we compute the default rates as the ratio of the number of loans that
have been in default from 3 to 6 months to the total number of loans in each sector.
This definition is consistent with the Basel II framework. Those loans that have been in
default for more than 6 months are left out because they were already considered in one
of the previous quarters. Thus, only newly defaulted loans are considered at each period.
Additionally, we have also obtained the individual exposures of the non-performing loans
for every quarter.

Figure 1 (a) shows the historical evolution of default frequencies. For the sake of
comparability, we represent in Figures 1 (c¢) and 1 (d) the quarterly series of the Spanish
GDP annual growth and the 3-month real interest rates, respectivelyl’] We can observe
an increasing trend of default frequencies in all sectors from the end of the 1980s until
almost the mid 1990s. This period coincides with a strong recession in the Spanish
economy which had its trough in 1993, as we can check in Figure 1 (¢). In addition,
interest rates also increased from 4% in 1988 to values above 8% in the first half of
the 1990’s. Loans to construction companies and hotels were more affected than the
rest in this recession, with default frequencies peaking at 4%. In contrast, the default
frequencies of mortgages reached 1.5% at the worst moment of the recession. From 1995
to the present, economic conditions have steadily improved, except for a brief period from
2000 to 2001. Interest rates have experienced a sharp decline in the last decade due to
the convergence and integration in the European Monetary Union, and GDP growth has
remained positive and less volatile than in the past (see Martin, Salas, and Saurina;, 2005,
for a more detailed analysis). As a consequence, during this expansionary period default
frequencies have dropped to the lowest historical values in the sample. Under the current
conditions, hotels and communications are the two sectors with higher default frequencies.
In comparison, defaults in the construction sector are remarkably low at the moment.

Figure 1 (b) shows the quarterly series of the total number of loans in each sector.

The loan market size has steadily grown in all sectors during the sample period under

SFollowing the methodology of Davidson and MacKinnon| (1985)), we have obtained real interest rates
from the nominal rates and inflation.
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analysis. From this impressive growth it is not difficult to conclude that assuming a
constant number of loans could yield inaccurate results. In addition, if we take a closer
look at this figure, we can see that the rate of growth decreased for almost all sectors in
the first half of the previous decade, that is, during the last recession. In consequence,
the evolution of these variables seems to be correlated with the economic cycle. However,

this conjecture will have to be confirmed with more formal results.

4.1 A simple model with two macroeconomic factors

We will start with a simple model that only considers two macroeconomic factors: the
quarterly change in real GDP growth and the variation of three-month real interest rates.lﬂ
We employ these two factors because they are generally regarded in the literature as the
most important macroeconomic determinants of credit risk fluctuations. In addition, in
this first set of estimations, we will assume that the parameters of the distribution of the

exposures are constant over time.

Default frequency and market size growth. Let us consider the estimation of
and E] We will introduce the lags 2,3 and 4 of our two macroeconomic variables. To
save parameters, we do not include the first lag, because we obtain insignificant estimates
for this lag once the subsequent 3 lags are considered. The intuition of this result relies
in the definition of default: not meeting the scheduled payments for at least one quarter.
In consequence, the default frequencies of period t are related to borrowers who originally
became insolvent in period t — 2. In this sense, it seems reasonable that we do not obtain
significant sensitivities with respect to the first lag of the observable factors. As for the
autoregressive structure, we consider the effect of the first lag of the dependent variables,
as well as a seasonal effect by means of the fourth lag. Finally, we consider three dummies
whose values are 1 in 1988.Q1, 1988.Q4 and 1996.Q)2, respectively, and zero otherwise.ﬂ

These dummies are intended to capture the effects of historical exogenous changes in the

6 A similar analysis has been conducted with nominal interest rates yielding similar results, which are
available on request.

"Prior to estimation, we have conducted a series of unit root tests on the data (see Breitung and
Pesaran|, [2005, for a review of this literature). Our results have shown us that we need to model default
rates and the total number of loans in first differences to ensure their stationarity.

8The first dummy only affect mortgages, the second dummy affects mortgages and consumption loans,
whereas the third dummy affects all sectors.
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database (see |Delgado and Saurinaj, 2004, for a formal justification).

The estimates of the default frequency model are shown in Table 1, whereas analo-
gous results for the evolution of the size of the credit portfolio can be found in Table 2.
Intuitively, an increase in GDP growth tends to reduce default frequencies and induce an
expansion of the loan market. This is why we observe that GDP growth generally has a
negative impact on the variation of default frequencies and a positive effect on the growth
of the credit market. As Table 1(a) shows, the effect of GDP on default frequencies seems
to be more important for most sectors, with the first two lags being highly significant
in many of them. Nevertheless, mining and utilities react less to the cycle, while some
sectors seem to respond more slowly to aggregate shocks. For instance, we only observe a
significant effect on R&D and mortgages two quarters after a shock to GDP has occurred.
In Table 2(a), we can observe that the effect of GDP on the size of the credit market
is smaller, although it is still significant for manufacture, construction, commerce, and
R&D.

As for interest rates, higher values generally tend to increase default frequencies, with
significant coefficients for agriculture, hotels and communications. However, the overall
effect of higher interest rates on the size of the loan industry is less clear. In some cases,
they may even strengthen its growth. Nevertheless, from a theoretical point of view, it
is unclear how interest rates should affect the growth of the number of loans. On the
one hand, higher interest rates will reduce the demand of loans. On the other hand,
on the supply side banks will have incentives to grant more loans if interest rates rise.
Nevertheless, the effect of interest rates seems to be less important than the impact of
GDP. This may well be due to the fact that, until very recently, most Spanish borrowers,
either corporates or individuals, preferred fixed to variable interest rates. For instance,
in 1992 only 26.11% of the credit granted in Spain was linked to variable interest rates.
This proportion has steadily increased in subsequent years, reaching 55.02% in 2000, and
74.47% in 2005. However, the predominant fixed interest rates for most of our sampling
period have surely weakened the impact of interest rates variations in our model.

The last column of Tables 1(a) and 2(a) report the loadings of the unobservable factors.
Although we consider two latent factors, we have explained in Section [2| that f5; only

affects default frequencies, whereas f1; exclusively alters the size of the credit portfolio. As
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we can see, we obtain significant estimates for both factors in all sectors. In addition, we
find a significant correlation of —0.473 between f1; and fo, (see Table 3). In consequence,
a high value of f5; in a given quarter will induce an increase in default frequencies in
all sectors. Moreover, through the negative correlation with fi;, it will tend to cause
a reduction in the growth of the loan market. Likewise, a low (negative) value of fi;
would produce a similar effect. Hence, fi; and f5 are able to capture a presence of
contagion between sectors that the observable factors cannot account forﬂ Furthermore,
the time series structure of these factors also deserves some attention. Table 3 shows the
autoregressive structure of the observable and unobservable factors. As we can observe,
for has a significant first order autocorrelation of 0.198. Hence, since shocks to fo; tend to
persist through time, their effect on default frequencies will die away slowly. In contrast,
f1¢ has a significant negative autocorrelation of —0.193. In consequence, the effect of
a shock to fy will tend to be reverted in the following periods. For the observable
factors, we find a positive (first order) autocorrelation for interest rates, and a negative
autocorrelation for GDP growth.

We report the remaining parameters of the model in the lower panels of Tables 1 and
2. The first column of Table 2 (b) shows the positive and highly significant intercept
terms that we obtain for the market size growth, which are consistent with the expansion
of the loan market already documented in Figure 1 (b). These intercepts are negative
but statistically insignificant for default frequencies, as Table 1 (b) shows. The second
column of Table 1 (b) shows that the marginal effect of lagged default frequencies from the
previous quarter is negative, whereas the seasonal effect (third column) is positive when
it is significant. In contrast, both terms are generally positive in the market size equation.
Finally, we can observe in the last columns of both tables that the correlation between the
idiosyncratic terms from the same sector are generally negative in the significant cases.
Hence, shocks that increase the growth of the number of loans in a particular sector tend
to be correlated with declines in the rate of defaults from the same sector.

These results can be compared with the estimates reported in Tables 4 and 5, which
correspond to a restricted version of our model, where no latent factors are considered.

GDP and interest rates have a qualitatively similar impact in this model. However,

9Notice that the latent factors are independent from the observable factors by construction.
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the absence of latent factors causes an increase in the absolute correlations between the
idiosyncratic terms of default frequencies and loan market growth in each sector (see the

last column of Tables 4 (b) and 5 (b)).

Exposure at default. For each sector, we estimate the parameters of the static specifi-
cations of the IG and the Gamma distributions by maximum likelihood. Since we assume
that these parameters remain constant over time, we focus on the current situation. Hence,
we only use the exposures of the loans that defaulted in 2006 to fit the parameters of these
distributions. Prior to estimation, we have adjusted the data for inflationary effects. In
Figures 2 and 3 we compare for each sector the empirical fit at the right tail of the I1G
and the Gamma with a Kernel estimate of the empirical density. Except for mortgages,
the IG distribution provides a better fit in all sectors. In consequence, we will model
the exposures of non-performing mortgages with the Gamma distribution and employ the

Inverse Gaussian in the remaining cases.

Loss given default. Unfortunately, we do not have data on the loss given default of
the loans in our database. However, Spanish banks have reported the historical average
loss given default for corporate, consumption and mortgage loans to the QIS5 Using
this data, we choose the parameters of the Beta distribution so that the mean loss given
default is 35% for corporates, 25% for consumption loans and 15% for mortgages. Finally,
we choose 20% as the standard deviation in the three cases, which is close to the values

reported by [Altman, Resti, and Sironi| (2004)).

Credit loss distribution. We estimate the credit loss distribution by simulating losses
from our model. For each quarter of the horizon that we consider, we first obtain draws
of the total number of loans and the default rates per sector. In particular, we use
and , where we sample the idiosyncratic terms from their joint Gaussian distribution,
and generate the draws of the observable and latent common factors by means of
and (@, respectively. In these simulations, we set to zero the unconditional means of
the changes of default frequencies, since a positive (negative) intercept would imply that

default frequencies would tend to 1(0) in the long run. Thus, our restriction rules out

0Fifth Quantitative Impact Study of the Basel Committee on Banking Supervision.
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these extreme cases. Finally, given the total number of defaults, we can generate random
replications of ([2)) and the loss given default from their respective distributions. To ensure
the stability of our results, we obtain one million simulated losses from our model.

We report descriptive statistics of the credit loss distribution in Table 6 for the model
with latent factors. Specifically, we focus on the expected loss, the Value at Risk (VaR)
at the 99.9% level and the unexpected loss, defined as the difference between the first two
measures. We consider three different time horizons: 1, 3 and 5 yearsﬂ We can see that,
due to higher uncertainty, the three measures increase more than proportionately as the
horizon increases. In terms of expected losses, consumption loans is the riskiest group for
short horizons, followed by construction and manufacture. However, for longer horizons
mortgages and specially construction also have high expected losses. These three sectors
are also the riskiest ones in terms of unexpected losses, specially for long horizons. Again,
the VaR of the construction sector seems to grow relatively more with the horizon than
in the other cases. This is due to the strong dependence of this sector on cyclical effects,
as we already observed in Tables 1 and 2.

Table 7 reports analogous results for the model without latent factors. The differences
between sectors are qualitatively similar in this model. For instance, construction and
consumption loans are still the riskiest categories. In addition, if we view each sector
individually, there are not large quantitative discrepancies between the two models. If
anything, it seems that the model without latent factors yields higher sectorial losses.
However, as the last row of the table shows, total unexpected losses are much lower in this
model, specially for longer horizons. This is due to the fact that we are underestimating
contagion effects across sectors when we do not consider the unobservable factors. For
example, the unexpected loss at a three year horizon is about 15% larger in the model with
latent factors than in the model with only observable explanatory variables. Graphically,
we perform a similar comparison in Figure 4, where we plot the total credit loss densities
for the two models. Again, we can observe that the model that allows for unobservable

factors has fatter tails.

" These horizons start at the end of December 2006, because we are conditioning on the final date of
our sample. For instance, three-year horizon losses add all losses that occur up to three years after the
start date.

15



4.2 Extensions and robustness checks

To begin with, we will determine whether we are still able to identify contagion through
latent factors when we consider a richer set of observable explanatory variables. Specifi-
cally, we will consider, as an additional common factor, the spread between three-month
and six-year interest rates. This variable, related to the slope of the term structure of
interest rates, will affect all sectors. Moreover, we consider six additional variables that
will only have an impact on those sectors that are more related to these characteristics.
In particular, we allow the change in the unemployment rate to affect consumption loans
and mortgages; gross value added of market services will affect communications, hotels
and commerce; gross value added of industry will affect manufacture and mining; and
the gross value added series of agriculture, energy and construction will affect agriculture,
utilities and construction, respectively. The coefficients obtained with this specification
are displayed in Tables 8 and 9. We can observe some significant values for the impact of
the spread variable, specially in the evolution of the growth of the number of loans. Specif-
ically, a steepening of the term structure seems to induce an expansion of the number of
loans in some sectors. Unfortunately, at least in terms of statistical significance, most of
the sectorial factors yield somewhat unsatisfactory results. Nevertheless, in spite of the
additional factors, we still obtain highly significant factor loadings for the unobservable
effects.

We will now compare the ability of the three different specifications of the VAR model
to fit the empirical correlations between default frequenciesHTo do so, we compute the
fitted residuals of the default frequencies in for the three cases. That is, we compute
skt(éT) = Ayp — E(Aykt,1|lt,1;éT) for Kk = 1,---, K, where the expectation is based
on the information known at time ¢ — 1 and the maximum likelihood estimates of the
parameters, denoted by the vector 7. The specification that does not include latent fac-
tors assumes that these fitted residuals are uncorrelated because in this case intersectorial
correlations are only captured by the observable common characteristics, which are part
of the information set I;_;. In contrast, the model with latent factors introduces a fac-

torial structure for these correlations: cov(ait(éT),ejt(éT)):ﬁmﬂQJ. We test in Table 10

2For the sake of brevity, we focus only on default frequencies. However, we have obtained similar
results with the residuals of the equation for the number of loans, which are available upon request.
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whether the empirical correlations of the fitted residuals are equal to those hypothesised
by each of these specifications. As we can observe in Panel (a), most correlations are not
adequately captured when latent factors are neglected. In contrast, Panels (b) and (c)
show that these unobservable effects are able to yield a very accurate fit of the empirical
residual correlations. Although these results show the good in-sample performance of our
model, we are also interested in assessing its out of sample reliability. We will consider the
period from 2004.Q1 to 2006.Q4 for this analysis. Hence, we need to reestimate the three
specifications of our VAR model using only data up to 2003.Q4. With these estimates,
we again compute the fitted residuals of , but in this case we will also consider those
of . We could use these residuals to compute tests analogous to those of Table 10.
However, since we only have 12 periods, these tests will have low power. Thus, we prefer
to follow a different approach in this case. In particular, we standardise the residuals
with the inverse of the Cholesky factorisation of their hypothesised covariance matrices
under each specification. The resulting values should be iid standard normal under the
correct specification. We check this hypothesis in Table 11 by means of a Kolmogorov
test. This table shows that the null can be easily rejected when we do not consider latent
factors, but it can no longer be rejected once these factors are included. Hence, this result
confirms the out-of-sample stability of our model.

Finally, we will explore the linkages between aggregate macroeconomic shocks and
the distribution of exposures at default. We have estimated by maximum likelihood the
parameters of the IG distribution, substituting for px in @ Although we have also
estimated an analogous model with the Gamma distribution, we do not report the results
for this model due to its poorer empirical fit. For the sake of parsimony, we will only
consider the effect of the innovations to GDP growth and real interest rate variations.
The results are displayed in Table 12. As expected, the estimated means at the end
of our sample period, displayed in the first column of Table 12, reflect the differences
between the loan sizes across sectors. Specifically, loans to individuals, either mortgages
or consumption loans, are characterised by small mean exposures when compared to the
much larger sizes of loans to corporates. As for corporates, the more capital intensive
sectors have larger mean exposures. For instance, utilities is a sector with relatively few

but very large loans. We can also observe in the second column that the time trend
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coefficients are generally negative though small in magnitude. Imposing n; = 0 in these
estimations would have yielded unstable estimates of the factor loadings. Specifically, the
interest rates would then be forced to capture the time effects, because of their decreasing
historical trend (see Figure 1d). In the third column, we can observe that GDP generally
has a negative and significant effect. In consequence, higher GDP growth will tend to
reduce the magnitude of exposures at default on average. Conversely, these exposures will
be higher during economic downturns. As for interest rates, we generally obtain positive
coefficients. Hence, higher interest rates tend to increase the means of the exposures.
These results are consistent with the use of credit lines as a liquidity management tool by
firms, as|Jiménez, Lopez, and Saurinal (2007) show. Moreover, the observed dependence of
EAD on the business cycle can reinforce the pro-cyclicality of the Basel II framework. The
impact of Basel I on pro-cyclicality has been extensively debated in the literature[[The
main conclusion is that the minimum capital requirements computed under the Internal
Ratings Based (IRB) approach will be more risk-sensitive under Basel 11, increasing during
recessions and falling as the economy enters expansions. Thus, this will make the lending
decisions of banks more pro-cyclical, which, in turn, will amplify the economic cycle. In
this sense, our results support the concerns of this literature about the strong relationship
between economic cycles and credit risk. However, the global impact of Basel II on the

financial stability of the banking system is an issue beyond the scope of this paper.

4.3 Stress tests

We will end this empirical study by assessing the consequences of a strong shock to
either GDP or interest rates. We follow the standard practice in stress testing exercises
and introduce artificial shocks in the vector of innovations of the factors (see (5))). In
particular, we stress our model with a 3-standard deviation shock that occurs in the
first quarter of the period under study. We consider separate shocks to each of the two
macroeconomic factors that we stress. The GDP shock will be negative, whereas the
interest rate shock will be positive. Thus, these tests are designed to induce a recession
in both cases.

As in the previous sections, we will start with our baseline model, in which GDP

13See for instance |Goodhart| (2005)), Goodhart and Taylor| (2005), |Gordy and Howels (2006), [Kashyap
and Stein| (2004) and |Ayuso, Pérez, and Saurina| (2004)
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and interest rates are the only observable characteristics. We report in Table 13 the
percentage change in the expected loss and the VaR caused by these shocks. The effect of
the GDP shock is similar for most sectors, although it is relatively larger for manufacture,
construction and mortgages, and smaller for utilities. In contrast, due to its poorer
explanatory power, the interest rate shock causes more heterogeneous responses. In Table
14, we compare these results with the ones obtained from our two extensions. In the first
extension we assess the effect of including the augmented set of macroeconomic factors,
while in the second one we analyse the impact of modelling the dynamics of the mean of the
exposures at default. In both cases, we allow for the presence of latent factors, although
in the latter extension we only consider our specification with two observable factors. In
addition, we assume that the unconditional means of the exposures at default will remain
constant over time["] The two models that use a static distribution for exposures at
default yield fairly close results. Indeed, both seem to respond more to a GDP shock
than to an interest rate shock. For example, at a three-year horizon, the expected loss
and the value at risk increase by 17% under the GDP shock, but only by 5-7% under the
interest rate shock. This result is a direct consequence of the much higher explanatory
power of GDP in the VAR models of Tables 1, 2 and 8.

In contrast, we find larger effects when we allow for time varying means of exposures
at default. Although the expected loss and the VaR under normal conditions are similar
for short horizons, we now obtain fatter tails at the five-year horizon, where VaR reaches
€50 billion. We also find a higher sensitivity to the GDP and interest rate shocks. These
larger losses are mainly due to two sources. Firstly, exposures at default deteriorate as the
economy worsens, whereas in the previous models they remained unaltered. Secondly, we
have introduced correlation between default frequencies and exposures at default, since
both of them are influenced by the same macroeconomic factors. For instance, increments
in default frequencies due to a lower GDP growth are reinforced with higher exposures
at default. In consequence, the overall effect is fatter tails and larger responses to stress

tests of the same magnitude.

l4Hence, we directly simulate from , by imposing n, = 0, because we do not expect that the
downward trend documented in Table 12 will persist in the future.
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5 Conclusions

We develop a flexible model to estimate the credit loss distribution of the loans port-
folio in a national banking system. We classify the loans in sectors, and model default
frequencies, individual exposures at default, losses given default and the total number of
loans in each sector. This latter variable has not been previously considered in the liter-
ature. However, we believe that the growth of the credit industry may have important
effects on total credit losses, specially for medium and long term horizons. We propose
a dynamic model for default frequencies and the growth of the credit industry, using as
explanatory variables a set of macroeconomic factors. As a distinguishing feature of our
approach, we also allow for the presence of unobservable common factors. These fac-
tors are able to capture contagion effects between sectors, which are orthogonal to the
observable macroeconomic conditions. Both observable and unobservable variables are
modelled with a vector autoregressive structure. In addition, we model the loss given de-
fault with a Beta distribution. Finally, we fit the distributions of the exposures at default
with the Gamma and the Inverse Gaussian distributions, where we propose a dynamic
parametrisation that relates their expected values to macroeconomic shocks.

In the second part of the paper we apply our model to analyse the loss distribution of
the total credit portfolio of Spanish banks. We use quarterly loan data from the Spanish
Credit Register. Our database starts in 1984.Q4 and ends in 2006.Q4. It contains infor-
mation on every loan granted in Spain with an exposure above €6,000. Hence, we are able
to analyse the whole Spanish loan market. We consider 10 corporate sectors. Further-
more, we also investigate the role of consumption loans and mortgages in the credit loss
distribution by including an additional group for each of these categories. We first study
a simple model that uses the quarterly changes in GDP growth and the variation in three-
month real interest rates as the only macroeconomic explanatory variables. Exposures are
modelled in a static setting for each sector with the Inverse Gaussian distribution, except
for mortgages, where we employ the Gamma because of its better fit. We estimate the
parameters by maximum likelihood and obtain the credit loss distribution for the 1, 3 and
5 year horizons by simulation. Despite the analytical complexity of our model, we show

that we can generate extremely fast simulations by exploiting the statistical properties of
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the Gamma and the Inverse Gaussian distributions. In particular, we compute for each
sector the expected loss, the unexpected loss and the value at risk of credit losses. We
also estimate the density function of losses. Our results show that credit losses in the
Spanish economy are mainly due to the manufacture, construction, consumption loans
and mortgages. The result for the latter two sectors should be interpreted in absolute
terms. Despite the typically low losses given default and exposures at default in loans to
individuals, there is such a large number of loans in these groups that they are one of the
main sources of credit risk in Spain. At the other extreme, mining and utilities are the
sectors with lower absolute risk in Spain. We compare our results with the losses gener-
ated by a simpler model that does not take into account the presence of “hidden” factors.
Although the two models provide similar results for sectorial losses viewed separately, ag-
gregate or total losses are larger in the more general setting, due to the higher correlation
between sectors introduced by the latent factors. In this sense, we show by means of in
and out-of-sample specification tests that latent factors capture the intersectoral correla-
tions very accurately, whereas a model with only observable explanatory variables misses
important contagion effects. Furthermore, we are also able to find a significant impact of
macroeconomic cycles on the distribution of exposures at default.

Finally, we perform two stress tests to assess the sensitivity of credit losses to macro
shocks. In particular, we assess the separate effects of a sudden drop in GDP growth and
a sharp increase in interest rates. Both shocks occur in just one quarter, and they have a
magnitude of three standard deviations. Overall, stressed GDP has a stronger effect than
the interest rate shock. However, we obtain a higher sensitivity once we account for the
dependence of exposures at default on the cycle.

A fruitful avenue for future research would be to integrate this credit risk model with
market risk and operational risk models, as |Rosenberg and Schuermann| (2006) propose.
It would also be interesting to combine our model with one for the interbank market, such
as those developed by |Goodhart| (2005) and |[Elsinger, Lehar, and Summer| (2006]). These
types of general models could be extremely helpful in providing analytical systemic risk

measures.

21



References

Altman, E., A. Resti, and A. Sironi (2004). Default recovery rates in credit risk modelling:

a review of the literature and empirical evidence. Economic Notes 33, 183-208.

Ayuso, J., D. Pérez, and J. Saurina (2004). Are capital buffers procyclical? Evidence
from Spanish panel data. Journal of Financial Intermediation 13, 249-264.

Boss, M. (2002). A macroeconomic credit risk model for stress testing the Austrian credit

portfolio. Financial Stability Report of the Austrian National Bank /4, 64-82.

Breitung, J. and M. H. Pesaran (2005). Unit roots and cointegration in panels. Forthcom-
ing in L. Matyas and P. Sevestre “The Econometrics of Panel Data (Third Edition)”,

Kluwer Academic Publishers.

Bruche, M. and C. Gonzélez-Aguado (2006). Recovery rates, default probabilities and
the credit cycle. CEMFI Working Paper No. 0612.

Davidson, R. and J. G. MacKinnon (1985). Testing linear and loglinear regressions against

Box-Cox alternatives. Canadian Journal of Economics 18, 499-517.

Delgado, J. and J. Saurina (2004). Riesgo de crédito y dotaciones a insolvencias. Un
analisis con variables macroeconémicas. Moneda y Crédito 219, 11-41. Also available

in English by request to the authors.

Demchuk, A. and R. Gibson (2006). Stock market performance and the term structure

of credit spreads. Journal of Financial and Quantitative Analysis 41, 863-887.

Drehmann, M. (2005). A market based macro stress test for the corporate credit exposures

of UK banks. Bank of England Working Paper.

Drehmann, M., A. J. Patton, and S. Sorensen (2006). Corporate defaults and macroeco-

nomic shocks: non-linearities and uncertainty. Bank of England Working Paper.

Duffie, D., A. Eckner, G. Horel, and L. Saita (2006). Frailty correlated default. Working

paper.

22



Elsinger, H., A. Lehar, and M. Summer (2006). Risk assessment for banking systems.
Management Science 52, 1301-1315.

Giesecke, K. and S. Weber (2004). Cyclical correlations, credit contagion and portfolio
losses. Journal of Banking and Finance 28, 3009-3036.

Goodhart, C. A. E. (2005). Financial regulation, credit risk and financial stability. Na-
tional Institute Economic Review 192, 118-127.

Goodhart, C. A. E. and A. Taylor (2005). Procyclicality and volatility in the financial
system: The implementation of Basel II and TAS 39. In S. Gerlach and P. Gruenwald

(Eds.), Procyclicality of Financial Systems in Asia. Palgrave Macmillan.

Gordy, M. B. and B. Howels (2006). Procyclicality in Basel II: Can we treat the disease
without killing the patient? Journal of Financial Intermediation 15, 395-417.

Gupton, G. M. and R. M. Stein (2002). Losscalc™: Model for predicting Loss Given
Default (LGD). Moody’s KMV, New York.

Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.

Jiménez, G., J. A. Lépez, and J. Saurina (2007). Empirical analysis of corporate credit

lines. Unpublished manuscript.

Jiménez, G., V. Salas, and J. Saurina (2006). Determinants of collateral. Journal of

Financial Economics 81, 255—281.

Jiménez, G. and J. Saurina (2004). Collateral, type of lender and relationship banking as
determinants of credit risk. Journal of Banking and Finance 28, 2191-2212.

Johnson, N. L., S. Kotz, and N. Balakrishnan (1994). Continuous univariate distributions.

New York: John Wiley and Sons.

Kashyap, A. K. and J. C. Stein (2004). Cyclical implications of the Basel II capital
standards. Economic Perspectives 1Q)/2004, 18-31.

Kiyotaki, N. and J. Moore (1997). Credit cycles. Journal of Political Economy 105,
211-248.

23



Madan, D. B. and H. Unal (2006). Designing countercyclical and risk based aggregate

deposit insurance premia. CFR Seminar Series Library, FDIC.

Martin, V. Salas, and J. Saurina (2005). A test of the law of one price in retail banking.
Bank of Spain Working Paper No. 0530.

Misina, M., D. Tessier, and S. Dey (2006). Stress testing the corporate loans portfolio of
the Canadian banking sector. Bank of Canada Working Paper No. 2006-47.

Pesaran, M. H., T. Schuermann, B. J. Treutler, and S. M. Weiner (2006). Macroeco-
nomic dynamics and credit risk: a global perspective. Journal of Money, Credit and

Banking 38, 1211-1261.

Rosenberg, J. V. and T. Schuermann (2006). A general approach to integrated risk
management with, skewed, fat-tailed risks. Journal of Financial Economics 79, 569—

614.

Schuermann, T. and K. J. Stiroh (2006). Visible and hidden risk factors for banks.
Financial Institutions Center, Wharton School of Business. Working paper No. 06-10.

Virolainen, K. (2004). Macro stress testing with a macroeconomic credit risk model for

Finland. Bank of Finland discussion paper No. 18.
Wilson, T. C. (1997a). Portfolio credit risk (I). Risk 10, 56-61.

Wilson, T. C. (1997b). Portfolio credit risk (II). Risk 10, 111-117.

24



Table 1

Model for default frequencies with GDP, interest rates and latent factors

(a) Explanatory variables

GDP;_ o GDP;.3 GDP; 4 INT; o INT; 3 INT; 4 fo
Agriculture -1.133**  -1.129** -0.432 -0.281 1.453** -0.336  3.335**
Mining -1.162 -1.248 0.122 0.291 0.316 -1.094 5.791**
Manufacture -1.515**  -1.740"* -0.862*  0.383 0.668 -0.469  4.447*
Utilities -0.097 0.087 -0.494 0.073 0.647 -0.847  5.129**
Construction -0.958**  -0.988*  -0.875** 0.702 0.093 0.259 3.411**
Commerce -1.267  -1.213**  -0.606 -0.198 0.712 -0.119 4.038**
Hotels -1.304**  -0.826 -0.141 -0.101 1.849**  -0.348 4.038**
Communications -0.953** -1.053** -0.857* 0.138 1.125**  -0.435  3.673**
R&D -0.403 -1.421*  -1.486** 0.156 -0.187  -0.096  3.697**
Other Corp. -0.331 -0.888*  -0.256 0.644 0.881* -0.242  3.191**
Cons. loans -0.840**  -1.026** -0.526 0.020 0.604 0.219 3.261**
Mortgages -0.805 -1.608**  -1.329**  0.364 0.022 0.029 1.668**
(b) Dynamics
a Ayt Aypi—a  cOrr(Uipy, Uskt)

Agriculture -0.605 -0.362** 0.215** 0.429**

Mining -1.080 -0.327** -0.074 0.017

Manufacture -0.554 -0.329** -0.013 0.084

Utilities -1.122  -0.377** -0.135 0.058

Construction -0.368 -0.079 0.176** -0.354**

Commerce -0.459 -0.237** 0.038 0.052

Hotels -0.395 -0.340** -0.003 0.145

Communications -0.420 -0.317** 0.120* 0.319**

R&D -0.494 -0.160** 0.070 -0.116

Other Corp. -0.625 -0.219** 0.141* -0.322**

Cons. loans -0.594 -0.277*  -0.030 -0.304**

Mortgages -0.520 0.049 0.058 -0.162

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDP;_; and INT;_; for i = 2, 3,4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. « is the intercept of
the VAR model, and the columns labelled Ayk,t—l and Ayk,t% denote the effect of lagged observations

of the dependent variables. “corr(uig:,uszk,t)” refers to the correlation between the two idiosyncratic

residuals that affect the same sector.
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Table 2
Model for the growth of the number of loans with GDP, interest rates and latent factors
(a) Explanatory variables

GDP;_» GDP;_3 GDP;_4 INT; o INT;_3 INT,\ 4 fis

Agriculture 0.250 0.171 0.189 -0.200 0.059 -0.078  1.258**
Mining 0.197 -0.249 0.038 -0.056 -0.064  0.226 1.375**
Manufacture 0.383**  0.062 0.120 -0.072 -0.074  0.090 1.600**
Utilities 0.246 -0.110 -0.097 -0.863**  0.562 -0.499 1.211**
Construction 0.321* 0.086 0.137 -0.240 0.068 -0.126  1.470**
Commerce 0.463**  0.127 0.072 0.086 -0.201  0.158 1.793**
Hotels 0.210 -0.070 0.063 0.023 0.027 -0.242  1.991**
Communications 0.126 0.537 0.424 0.621 -0.113  0.141 2.069**
R&D 0.623**  0.225 -0.059 -0.055 -0.096  -0.201  1.591**
Other Corp. -0.902**  -0.805*  0.205 0.359 -0.261  0.544 1.019**
Cons. loans 0.029 0.058 0.522* 0.514 0.311 0.042 0.781**
Mortgages 0.155 0.038 0.116 0.756**  -0.516  -0.118  0.589*

(b) Dynamics

a Angi—1 Angg_g  corr(uig, Uok,t)
Agriculture 1.309**  0.308** 0.130 0.429**
Mining 0.917**  0.293** 0.081 0.017
Manufacture 0.659**  0.374**  0.186** 0.084
Utilities 1.199**  0.194* -0.191* 0.058
Construction 1.002**  0.575*  0.249** -0.354**
Commerce 0.846**  0.447**  0.289** 0.052
Hotels 1.303**  0.286™*  (.488** 0.145
Communications 0.908**  0.514**  0.252** 0.319**
R&D 1.579*  0.314**  0.416** -0.116
Other Corp. 1.649**  0.477** 0.094 -0.322**
Cons. loans 2.465**  0.094* 0.033 -0.304**
Mortgages 2.681*  -0.023  0.235** -0.162

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDP;_; and INT;_; for i = 2, 3,4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. « is the intercept of the
VAR model, and the columns labelled y; :—1 and yj:—4 denote the effect of lagged observations of the
dependent variables. “corr(uix., uok,t)” refers to the correlation between the two idiosyncratic residuals
that affect the same sector.
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Table 3
Dynamics of the factors

Intercept First lag Second lag ~ Conditional covariance matrix

GDP INT fie for
GDP 0.035 -0.425**  -0.056 1.259%*
INT -0.094 0.549**  -0.511** -0.117  0.933**
it 0 -0.193* 0 0 0 1
Jat 0 0.198* 0 0 0 -0.473* 1

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by 100.
GDP and INT denote, respectively, the changes of GDP growth and three-month real interest rates.
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Table 4
Model for default frequencies with GDP and interest rates
(a) Explanatory variables

GDP;_» GDP;_3 GDP;_4 INT;_o INT;_3 INT, 4 fi;

Agriculture -1.058**  -1.105** -0.326 -0.096  1.349** -0.067  0.000
Mining -0.984 -1.171 0.205 0.685 0.251 -0.949  0.000
Manufacture -1.509**  -1.613** -0.686 0.646 0.681 -0.430  0.000
Utilities -0.076 0.071 -0.394 0.451 0.390 -0.491  0.000
Construction -0.783*  -0.712 -0.770*  1.190** -0.308  0.593 0.000
Commerce -1.203**  -1.029** -0.431 0.069 0.702 -0.073  0.000
Hotels -1.273**  -0.688 -0.017 0.155 1.714* -0.156  0.000
Communications -0.745*  -0.800 -0.652 0.567 0.999*  -0.218  0.000
R&D -0.207 -1.364**  -1.454** 0.412 -0.428 0.178 0.000
Other Corp. -0.290 -0.840*  -0.192 0.736 0.766 -0.013  0.000
Cons. loans -0.650*  -0.893** -0.418 0.308 0.472 0.452 0.000
Mortgages -0.825 -1.654**  -1.440**  0.530 -0.224  0.103 0.000

(b) Dynamics

o Aypi—1  Aypg—a  corr(Uig s, Usk,t)
Agriculture -0.311  -0.329** 0.467** 0.061
Mining -0.985 -0.338** -0.002 -0.360™*
Manufacture -0.375  -0.237** 0.146 -0.458**
Utilities -1.010 -0.357** -0.053 -0.103
Construction -0.156  0.047 0.393** -0.256**
Commerce -0.278 -0.131 0.253** -0.431**
Hotels -0.287 -0.301** 0.118 -0.227**
Communications -0.254 -0.244** (.382** 0.083
R&D -0.352  -0.125 0.264** -0.103
Other Corp. -0.450 -0.203*  0.306** -0.242**
Cons. loans -0.405 -0.239** 0.174 -0.025
Mortgages 20.553 0.034  0.105 -0.141

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDP;_; and INT;_; for i = 2, 3,4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. « is the intercept of
the VAR model, and the columns labelled Ayk,t—l and Ayk,t% denote the effect of lagged observations
of the dependent variables. “corr(uig:,uszk,t)” refers to the correlation between the two idiosyncratic

residuals that affect the same sector.
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Table 5
Model for the growth of the number of loans with GDP and interest rates
(a) Explanatory variables

GDP;_» GDP;_3 GDP;_4 INT; o INT;_3 INT,\ 4 fo

Agriculture 0.282 0.174 0.146 -0.223 -0.008  -0.114  0.000
Mining 0.198 -0.212 -0.044 -0.086 -0.111 0.201 0.000
Manufacture 0.455"*  0.166 0.095 -0.155 -0.111  -0.016  0.000
Utilities 0.242 -0.085 -0.112 -0.832**  0.486 -0.471 0.000
Construction 0.392**  0.124 0.122 -0.299 0.017 -0.243  0.000
Commerce 0.514*  0.208 0.022 0.011 -0.232  0.019 0.000
Hotels 0.211 -0.088 -0.023 -0.018 0.004 -0.347  0.000
Communications 0.220 0.712* 0.465 0.787* -0.109  0.050 0.000
R&D 0.794**  0.460* -0.052 -0.152 -0.045  -0.415  0.000
Other Corp. -0.913*  -0.843*  0.152 0.328 -0.265  0.538 0.000
Cons. loans 0.012 0.021 0.531* 0.505 0.312 -0.023  0.000
Mortgages 0.162 0.041 0.121 0.730**  -0.463 -0.153  0.000

(b) Dynamics

a Angi—1 Angg_g  corr(uig, Uok,t)
Agriculture 1.197**  0.208*  0.293** 0.061
Mining 1.103**  0.063 0.173* -0.360**
Manufacture 0.622**  0.159 0.413** -0.458**
Utilities 1.332** 0.112 -0.191 -0.103
Construction 0.791**  0.461**  0.522** -0.256**
Commerce 0.688**  0.261**  0.547** -0.431**
Hotels 1.010"  0.171*  0.643** -0.227**
Communications 0.813*  0.446™*  0.410** 0.083
R&D 1.085**  0.115 0.685** -0.103
Other Corp. 1.782**  (0.443** 0.088 -0.242**
Cons. loans 2.383** 0.071 0.084 -0.025
Mortgages 2.648**  -0.033 0.251** -0.141

Notes: Two asterisks indicate significance at the 5% level, while one asterisk denotes significance at the
10% level. Prior to estimation, the dependent and the explanatory variables have been multiplied by
100. GDP;_; and INT;_; for i = 2, 3,4 denote, respectively, the effect of lagged observations of changes
of GDP growth and three-month real interest rates on the dependent variables. « is the intercept of the
VAR model, and the columns labelled y; :—1 and yj:—4 denote the effect of lagged observations of the
dependent variables. “corr(uix., uok,t)” refers to the correlation between the two idiosyncratic residuals
that affect the same sector.
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Table 10

P-values of specification tests of the correlation matrix of default frequencies

(a) Model with GDP and Interest rates
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1
Mining 2 0.00
Manufacture 3 0.00 0.00
Utilities 4 0.00 0.00 0.00
Construction 5 0.00 0.00 0.00 0.00
Commerce 6 0.00 0.00 0.00 0.00 0.00
Hotels 7 0.00 0.00 0.00 0.00 0.00 0.00
Communications 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R&D 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Other Corp. 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cons. loans 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mortgages 12 0.03 0.17 0.06 0.07 0.01 0.11 0.28 0.11 0.01 0.00 0.00
(b) Model with GDP, Interest rates and latent factors
1 2 3 4 5 6 7 8 9 10 11
Agriculture 1
Mining 2 030
Manufacture 3 0.67 0.03
Utilities 4 0.85 0.74 0.89
Construction 5 076 0.24 0.57 0.14
Commerce 6 0.67 095 0.69 0.59 0.36
Hotels 7 043 0.27 0.50 0.38 0.72 0.99
Communications 8 0.67 0.52 0.88 0.93 0.44 0.99 0.72
R&D 9 0.44 0.15 0.15 0.09 0.40 0.35 0.94 0.51
Other Corp. 10 0.76 0.71 0.57 0.13 0.27 0.41 0.77 0.35 0.00
Individuals 11 0.39 0.34 0.20 0.92 0.52 0.28 0.64 0.25 0.24 0.78
Mortgages 12 0.73 0.72 0.60 0.51 0.43 0.51 0.58 0.62 0.39 0.40 0.18

(c) Model with GDP, Interest rates, spread, six sectorial effects and latent factors
1 2 3 4 5 6 7 8 9 10 11

Agriculture 1

Mining 2 033

Manufacture 3 0.88 0.06

Utilities 4 0.62 0.85 0.94

Construction 5 0.75 0.16 0.44 0.29

Commerce 6 091 094 0.60 0.98 0.71

Hotels 7 073 041 0.55 0.65 0.83 0.90

Communications 8 0.74 0.57 0.87 0.87 0.53 0.94 0.82

R&D 9 0.39 0.40 0.22 0.34 0.59 0.37 0.84 0.73

Other Corp. 10 0.65 0.93 0.69 0.55 0.53 0.44 0.53 0.46 0.10
Individuals 11 0.26 0.41 0.22 0.53 0.36 0.32 0.63 0.33 0.45 0.92
Mortgages 12 0.67 0.68 0.80 0.19 0.34 0.43 0.63 0.41 0.11 0.15 0.24

Notes: in each cell the null hypothesis is that the empirical correlation between the corresponding sectorial
default frequencies equals the one hypothesised by the model. The p-values below 5% are expressed in
bold.
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Table 11
Kolmogorov specification tests of the out-of-sample distribution of the standardised fitted
residuals of the model of default frequencies and number of loans

Factors Kolmogorov test P-value
GDP, INT 0.103 0.004
GDP, INT, f; 0.051 0.446
GDP, INT, SPR, SEC, f; 0.046 0.573

Notes: The model has been estimated with data from 1984.Q4 to 2003.Q4. The test studies whether the
orthogonalised residuals from 2004.Q1 to 2006Q4, a total number of 288 values, are independent standard
normal. INT, SPR and SEC denote, respectively, real interest rates, interest rate effects and sectorial
factors.
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Table 12
Effect of macroeconomic factors on the expected exposures at default

Mean in 2006.Q4 Nk GDP;_1 INT; 4

Agriculture 0.107 -0.002 -0.054**  0.131**
Mining 0.089 -0.018**  -0.011 0.059*
Manufacture 0.096 -0.010**  -0.029**  0.041**
Utilities 0.178 0.028 -0.150**  -0.218**
Construction 0.092 -0.021**  -0.076**  0.051**
Commerce 0.090 -0.007**  -0.043**  0.024**
Hotels 0.062 -0.023**  -0.115**  -0.026*
Communications 0.054 -0.018**  -0.061** -0.021**
R&D 0.057 -0.014**  -0.111*  0.002
Other Corp. 0.094 -0.015**  -0.029**  -0.002
Cons. loans 0.016 -0.018** 0.017**  0.018**
Mortgages 0.062 0.004**  -0.042** 0.022**

Notes: Two asterisks indicate significance at the 5% level. Means in millions of euros. GDP and INT
denote, respectively, GDP growth and the variation of three-month real interest rates. Data sample for
the estimation: 1989.Q4 - 2006.Q4.
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Table 14
Comparison of credit loss distributions

Characteristics
Included Factors
-GDP, Interest rates v v v
-Spread, GVA’s, Unemployment v
Model of the distribution of exposures Static Static Dynamic

Normal Scenario
Expected loss

1 year 1679 1671 1486
3 years 5887 5769 5288
5 years 11648 11335 10647

VaR (99.9%)

1 year 3889 3821 3501
3 years 17443 16693 17811
5 years 43716 40708 50076

Change due to -3 s.d. GDP shock (%)
Expected loss

1 year 7 6 20
3 years 16 16 32
5 years 18 18 35

VaR (99.9%)

1 year 7 7 17
3 years 18 17 33
5 years 21 20 37

Change due to +3 s.d. Interest rate shock (%)
Expected loss

1 year 3 6 10
3 years 5) 6 14
5 years 6 6 15

VaR (99.9%)

1 year 3 7 10
3 years ) 7 14
5 years 5 7 15

Notes: results in millions of euros. “Spread” denotes the difference between six-year and three-month
interest rates. “GVA’s” denotes gross value added factors, namely: agriculture, industry, energy, con-
struction and market services. Statistics obtained from 1 million simulations of the credit risk model. All
models include latent factors.
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Figure 2:

Kernel estimate and fitted densities of the right tail of the distribution of exposures at default
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Notes: the x-axis is expressed in millions of euros. Both the kernel and the fitted densities are based on

exposure data from 2001 to 2006.
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Figure 3:

Kernel estimate and fitted densities of the right tail of the distribution of exposures at default
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Notes: the x-axis is expressed in millions of euros. Both the kernel and the fitted densities are based on
exposure data from 2001 to 2006.
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Figure 4:
Kernel estimates of the total credit loss distribution

One-year horizon

— With latent factors
- - =No latent factors

x 10

10* 10°

Three-year horizon

— With latent factors
+, | == =No latent factors

15

0.5

10°

Five-year horizon

— With latent factors
= = =No latent factors

14

1.2

0.8

0.6

0.4

0.2

10°

Note: the x-axis is expressed in millions of euros, where a log-scale is employed. Estimates
based on 100,000 simulations.
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