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Overview of the paper

Popular knowledge:
UK abandoned monetary targeting because weak predictive
relationship between M and Y,P became apparent in the 1980.

→ This paper: study predictive content of M for Y,P

Finding: mixed/unstable evidence on M’s predictive content,
especially when properly taking into account real time data

Out of sample: M systematically biases forecasts←
underexploited in the paper!
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Methodology

VAR/VECM
Granger causality tests
+ out-of-sample forecast comparison with/without M
→ Amato and Swanson (2001)

New, realistic feature: model uncertainty (Bayesian Model
Averaging)
+ Bayesian look at forecast comparison
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Computing probabilities on average over models

40 VAR/VECM specifications (differences: number lags,
number of cointegrating vectors)
each specification in two varieties: with M, and without M
(coefficients restricted to 0)
⇒ total model space: 80 VAR/VECM’s
approximate Bayesian result:
posterior probability ∝ exp(BIC)
What is the posterior probability that M is out? average
over specifications: = what is the posterior weight of all
models without M as a share of all model space:
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Example

Suppose total model space is 4: specifications 1 and 2,
R(estricted) and U(nrestricted)
examples of probabilities:

P(R|1) =
eBICR

1

eBICR
1 + eBICU

1

P(U1|U) =
eBICU

1

eBICU
1 + eBICU

2

P(1) = P(1|all) =
eBICU

1 + eBICR
1

eBICU
1 + eBICR

1 + eBICU
2 + eBICR

2
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Posterior probability of R on average across models:

P(R|1)× P(U1|U) + P(R|2)× P(U2|U) =? (1)

P(R|1)× P(R1|R) + P(R|2)× P(R2|R) =? (2)

correct:

P(R|1)× P(1|all) + P(R|2)× P(2|all) = P(R|all) = P(R) (3)
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Numerical example

eBIC1r 8
eBIC1u 4
eBIC2r 1
eBIC2u 4

P(R|1) P(1) P(R|2) P(2) P(R)

by U 0.67 0.50 0.20 0.50 0.43
by R 0.67 0.89 0.20 0.11 0.61

correct 0.67 0.71 0.20 0.29 0.53
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Comment on the instability

Instability of model weights: typical finding

model probability ∝ exp(logL - K/2 lnT)

≈ SSE−T/2 × T−K/2

→ p(M|Data) ∝ p(Data|M)× p(M) - value of T-dim density,
badly behaved

in the context of growth regressions:
Ciccone, Jarocinski (2007), Determinants of Economic Growth:
Will Data Tell?
potential remedies: shrinkage priors, explicit modeling of
measurement errors, Zellner’s quality adjusted likelihood
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Model space

results are conditional on the space of models:
VAR/VECM’s with

1 to 8 lags
0 to 4 cointegrating vectors

Is the model space interesting? Are these VARs good
forecasting models?

no evidence on forecasting performance compared to other
models (e.g. univariate)

most probability on low number of lags
⇒unrestricted VARs are heavily overparametrized!
’we do not attempt an economic interpretation of the
number of cointegrating relationships’ - so why bother
distinguishing these cases?
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Missing important alternative model

encompassing model: VAR in levels + shrinkage prior
(Minnesota prior)

much better for forecasting
nests models with shorter lags, nests reduced rank -
cointegrating relationships
if included in the BMA, it will dominate other models!
”Lindley’s paradox”: flat prior = negligible model weight
its results will fluctuate less across subsamples!

Shrinking vs BMA: see Jarocinski (2007) Shrinking growth
regressions
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Out of sample exercise:
forecasting models are for h steps ahead regressions
model weights are for one step ahead regressions

- predictive density should weigh h-steps ahead models by their
own weights
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Summary

interesting new evidence on the predictive content of
money in the UK
real time issues taken into account

model space - crucial; room for improvement?
previous literature: focus on statistical significance;
still unexploited: economic significance; fig. 5-6!
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