

Desautels Faculty of Management Faculté de gestion Desautels

Measuring and Modeling Default Correlation: Evidence from CDO, CDS and Equity Data

Peter Christoffersen (McGill University and CREATES) Jan Ericsson (McGill University and SIFR) Kris Jacobs (McGill University and Tilburg University) Xisong Jin (McGill University)

> Bank of Canada Fixed Income Conference September 13, 2008

Motivation I

Credit correlation is critically important. Using a pricing model, it can be computed using different securities.

- Equity market (KMV)
- Credit Default Swap (CDS) market (Tarashev and Zhu 2007)
- Collateralized Debt Obligation (CDO) market

The evidence is limited. Even less is known about the co-movements of the correlation time series based on these securities

Empirical objective: compare three time series of correlations; characterize time variation

The industry standard for CDO valuation is the Gaussian copula. In industry practice, implied correlations take center stage.

What does this implied correlation mean?

- Is it related to correlation in the underlying names in CDS and equity markets?
- Or does it reflect other determinants of prices in a segmented CDO market, notably liquidity?
- Is it meaningless as a correlation measure because of the inadequacy of the Gaussian copula?

Non-standard (bespoke) CDOs are typically priced using market information on standard (index) products

Q: Can we learn something more by investigatingthe actual correlation structure of the underlying?A: Perhaps if implied correlation and the correlationin the underlying are moving together

How to price a CDO in a market with low (or no) liquidity

A CDS is an insurance product

- The protection buyer pays a periodic spread
- The protection seller pays the default costs
 The CDS premium equates the present value of both sides of the transaction or "legs"

$$\begin{split} V_{\textit{Fixed}}(t,T,P) &= P_t \left[\sum_{i=1}^N D(t,T_i) \alpha(T_{i-1},T_i) q(t,T_i) + \int_t^{T_N} D(t,s) \alpha(T_{I(s)},s) f(s) ds \right] \\ V_{\textit{Floating}}(t) &= \int_t^{T_N} D(t,s) (1-\delta) f(s) ds. \end{split}$$

 $P_0 = V_{Floating}(0)/V_{Fixed}(0, T, 1).$

Default intensities can be extracted given a default model using simple econometric techniques (NLS)

CDO Markets

- A CDO is a multi-name credit derivative. The attachment and detachment points of the tranche indicate which parts of the portfolio losses are assigned to the tranche.
- Like a CDS, a CDO is an insurance contract. A protection buyer pays a periodic amount based on the spread and the remaining notional, the original notional adjusted for losses.
- The value of the tranche to the insurance seller is determined by the difference between the present value of these payments and the expected present value of the sum of loss changes. The par spread for a new tranche is such that this value is zero.
- Clearly changes in default probabilities will change the value of the tranche. Correlation impacts the volatility of the distribution of portfolio losses: the stronger the dependence, the more likely extreme scenarios become. Thus correlation also affects tranche value.

CDO Markets: Base Correlation

- Implied correlation for a CDO tranche is the correlation between the underlying names that equates the theoretical price of the CDO tranche to the observed market price, conditional on a choice of pricing model
- The industry standard is the Gaussian Copula. See Li (2000), Andersen and Sidenius (2004), Hull and White (2004)
- Mostly a base correlation is used. If we have implied correlations for 0-3%, 3-7%, and 7-10% tranches, we can compute base correlations for 0-3%, 0-7%, and 0-10% tranches
- Note analogy with implied volatility

Data

- Our data choice is motivated by the CDO market, and organized around the CDX and iTraxx indices
- At any point in time, the CDX and iTraxx indices consists of 125 names. The composition changes every six months
- CDX contains North American names, the iTraxx European names
- Sample period is October 14, 2004 to December 31, 2007
- For CDX we have 61 names throughout the sample period without missing data. For the iTraxx 64 names
- Use 40% constant recovery throughout
- Use 5Y CDS spread
- Equity data standard

Cross Sectional Averages of CDS Premia

Descriptive Statistics for CDX Spreads

Firm Name	Ticker	Average	Std Dev	Skewness	Kurtosis
Ace Limited	ACE	37.14	14.05	0.59	2.73
Alcan Inc.	AL	29.50	8.32	1.45	5.33
Alcoa Inc.	AA	27.88	10.55	0.85	2.56
Altria Group, Inc.	MO	63.49	39.18	1.06	3.57
American Express Company	AXP	24.19	15.13	2.28	8.34
American International Group, Inc.	AIG	24.47	16.13	1.88	6.81
Anadarko Petroleum Corporation	APC	35.95	9.38	0.94	3.42
Arrow Electronics, Inc.	ARW	60.24	13.72	0.12	2.62
AT&T Inc.	ATTINC	38.01	35.82	2.49	9.45
AutoZone, Inc.	AZO	63.58	22.84	0.07	1.88
Baxter International Inc.	BAX	21.28	7.45	-0.15	2.50
Boeing Capital Corporation	BA-CapCorp	16.78	7.00	0.43	2.33
Bristol-Myers Squibb Company	BMY	18.02	5.62	-0.09	1.92
Burlington Northern Santa Fe Corporation	BNI	26.56	6.70	1.13	4.51
Campbell Soup Company	CPB	20.83	6.45	0.37	2.37
Cardinal Health, Inc.	CAH	42.04	22.83	2.92	16.17
Camival Corporation	CCL	28.41	8.40	1.46	5.98
CenturyTel, Inc.	CTL	64.72	11.54	-0.01	2.55
Cigna Corporation	CI	33.59	9.47	0.00	2.43
CIT Group Inc.	CIT	65.09	87.58	2.71	9.36
Comcast Cable Communications, LLC	CMCSA-CableLLC	38.77	12.32	0.04	2.23
ConocoPhillips	COP	21.70	6.05	0.32	3.41
Constellation Energy Group, Inc.	CEG	35.98	12.33	0.85	3.71
Countrywide Home Loans, Inc.	CCR-HomeLoans	108.36	187.52	3.56	15.37
Cox Communications, Inc.	COX-CommIne	55.79	18.04	0.05	4.04
CSX Corporation	CSX	38.27	12.59	0.73	2.99
Devon Energy Corporation	DVN	30.86	8.72	0.98	6.16
Dominion Resources, Inc.	D	35.47	9.71	-0.66	2.41
The Dow Chemical Company	DOW	26.94	7.15	0.74	3.58
Eastman Chemical Company	EMN	46.45	8.59	0.60	2.82
General Electric Capital Corporation	GE-CapCorp	21.99	11.09	2.12	8.06
Honeywell International Inc.	HON	17.71	4.26	-0.01	3.21
IAC/InterActiveCorp	IACI	99.11	23.21	0.72	4.24
International Lease Finance Corporation	AIG-IntLeaseFin	30.41	13.13	0.77	2.75
Lennar Corporation	LEN	115.32	124.14	2.82	10.38
Loews Corporation	LTR.	24.61	9.04	0.28	2.53
Marsh & McLennan, Inc.	MMC	59.29	27.83	3.38	20.73
National Rural Utilities Cooperative Finance Corporation	NRUC	21.95	9.75	1.10	5.47
News America Incorporated	NWS-AmIne	39.55	13.91	-0.06	1.88
Omnicom Group Inc.	OMC	26.30	7.64	-0.25	2.01
Progress Energy, Inc.	PGN	34.79	15.15	0.13	3.01
Pulte Homes, Inc.	PHM	119.33	108.01	1.94	5.13
Rohm and Haas Company	ROH	26.59	6.66	0.61	3.71
Safeway Inc.	SWY	54.16	16.75	0.74	2.88
Sempra Energy	SRE	34.19	12.69	0.07	2.52
Simon Property Group, L.P.	SPG-LP	37.20	21.30	2.19	8.73
Southwest Airlines Co.	LUV	39.29	10.30	0.18	3.11
Sprint Nextel Corporation	s	50.01	22.11	2.54	10.20
Starwood Hotels & Resorts Worldwide, Inc.	HOT	112.96	25.79	0.46	2.84
Textron Financial Corporation	TXT-FinCorp	24.42	8.68	0.62	3.69
Time Wamer Inc.	TW	44.53	12.47	0.40	2.68
Transocean Inc.	RIG	31.00	8.70	3.00	15.35
Union Pacific Corporation	UNP	33.46	8.49	0.79	4.47
Valero Energy Corporation	VLOC	40.84	11.97	1.88	9.46
The Walt Disney Company	DIS	24.33	9.54	0.27	2.32
Washington Mutual, Inc.	WM	60.27	78.24	3.60	15.42
Wells Fargo & Company	WFC	16.50	11.89	2.56	9.58
Weyerhaeuser Company	WY	53.80	17.74	1.00	4.76
Whirlpool Corporation	WHR.	50.79	12.23	0.55	2.52
Wyeth	WYE	21.52	11.44	2.20	9.38
XL Capital Ltd.	XL	44.27	20.52	2.22	9.63

CDX Tranche Spreads and Base Correlations

iTraxx Tranche Spreads and Base Correlations

Existing Approaches to Estimating Default ¹³ Probabilities and Credit Correlation

- Historical default data allow us to compute default correlation directly
- Structural (Merton-type) models
- Reduced-form (intensity-based) models

To estimate credit correlation using structural and reduced-form models, we have to extract default intensities (or the relevant default measure) and subsequently use a correlation model

Existing Approaches to Estimating Credit Correlation

Which correlation model to use?

- Factor models are convenient
- Can use simple rolling correlations
- To estimate time-varying correlations, multivariate GARCH is logical but problematic Recent advances in multivariate GARCH literature: DCC

To ensure straightforward comparability with base correlations, we need an "average" time-varying correlation \implies DECO

Dynamic Equicorrelation (DECO) Engle and Kelly (2008)

Dynamic equicorrelation matrix

$$R_t = (1 - \rho_t)I_n + \rho_t J_{n \times n}$$

$$\rho_{t+1} = \omega + \alpha u_t + \beta \rho_t$$

$$\begin{split} u_t^{SS1} &= \frac{1}{n(n-1)} \sum_{i \neq j} \varepsilon_{i,t} \varepsilon_{j,t} = \frac{1}{n(n-1)} \left[\left(\sum_i \varepsilon_{i,t} \right)^2 - \sum_i \varepsilon_{i,t}^2 \right] \\ u_t^{SS2} &= \frac{\sum_{i \neq j} \varepsilon_{i,t} \varepsilon_{j,t}}{(n-1) \sum_i \varepsilon_{i,t}^2} = \frac{\left(\sum_i \varepsilon_{i,t} \right)^2 - \sum_i \varepsilon_{i,t}^2}{(n-1) \sum_i \varepsilon_{i,t}^2} \end{split}$$

Engle and Kelly find that u^{SS2} is least sensitive to residual vol dynamics and extreme realizations

DECOs and Base Correlations for CDX Companies

DECOs and Base Correlations for iTraxx Companies

How to Compare Correlations Across Markets?¹⁸ Beware of Apples and Oranges

- For CDS-based and equity-based correlations, which correlations do we use? Which ones to compare to CDO-implied correlation?
- One approach: use the Merton model for all markets to filter out the same object and compute its correlation
- What if I want to use another (more accurate) reduced-form model for CDS markets?

- Extract a constant default intensity λ at each t
- Use the resulting time series of λ's to estimate the following model

$$\Delta \lambda_t = \mu_{\lambda,t} + z_t$$

$$\begin{split} \mu_{\lambda,t} &= \mu_{\lambda} + \sum_{i=1}^{p} \phi_{i} \Delta \lambda_{t-i} + \sum_{j=1}^{q} \theta_{j} z_{t-j} \\ z_{t} &= \sigma_{t} \varepsilon_{t} \end{split}$$

$$\sigma_t^2 = \omega_\sigma + \alpha_\sigma z_{t-1}^2 + \beta_\sigma \sigma_{t-1}^2$$

$$arepsilon_t \sim i.i.d.(0,1)$$

Intensity DECOs and Asset Return DECOs

- Implied correlations from CDOs co-move with correlation time series extracted from CDS and equity data.
 - CDO market is not completely segmented from markets for underlying
 - Can use underlying to learn about CDO pricing
 - Gaussian copula model may have some value
- Substantial time variation in correlation
- Unresolved issue: Extracting correlations from CDS data using reduced-form models that can be meaningfully compared with implied correlations

- Characterize cross-sectional variation in correlation dynamics (DCC)
- Use copula models on CDS data to characterize tails
- Price CDOs with model consistent with (timevarying) DECO or DCC
- Estimate time-varying correlation from CDO data