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1 Introduction

It has been well–known that the presence of illiquid risky securities in the market has

significant effects on allocations by investors to liquid risky securities. For example,

during extreme market episodes when a lot of risky securities become much less liquid,

many investors try to reduce their holdings of these securities in favor of liquid ones.

Interdependence between allocations to liquid and illiquid risky securities can also shed

the light on the contagion and comovement of prices in illiquid markets. Despite the

obvious benefits, a complete understanding of this interdependence is still lacking. This

understanding relies on a realistic modelling of illiquid securities and the role of stock

diversification in illiquid market. Intuitively, illiquidity of a stock assumes its limited

availability for immediate trading. Because trading of an investor is mediated by a market

maker who provides liquidity in the market, stock illiquidity first affects the positions of an

intermediary. To avoid default, a market maker increases the bid–ask spread for an illiquid

stock making its trading more costly for an investor. Because it is too expensive to trade an

illiquid stock, an investor will not have the desired allocations to this stock.

The goal of this paper is to understand the role of diversification in the presence of illiquid

stocks and, therefore, the influence of the allocations by an investor to illiquid stocks on those

to liquid stocks and vise versa. We model stock illiquidity for an investor by assuming that

transaction costs on trading this stock are convex in the rate of trading. The transaction

costs include the bid–ask spread and increase with it as an investor tries to buy more shares

within a given time–period. We assume that stock returns have infinite first–order variation

so that an investor must trade arbitrarily fast to have his best allocations. However, the

faster an investor trades the higher the costs are. As a result, a market becomes illiquid for

an investor who endogenously chooses to trade at a finite rate and is not able to reach his

best allocations.

The described model of an illiquid stock was introduced in Cetin and Rogers (2007), and

Isaenko (2005).1 This approach is related to the idea of Longstaff (2001) that holdings of

illiquid stock by an investor should have finite first order variation. We extend this idea

and connect it to the market microstructure. The other existing approaches to model stock

illiquidity are considerably different and mentioned at the end of the Introduction.

Transaction costs may have linear and convex terms in the rate of trading. The linear

term generates a no–trading zone. Because the effects resulting from this term have been

thoroughly studied,2 our analysis assumes that the linear component in the transaction costs

is absent.

A typical investor often has to choose between large numbers of liquid and illiquid stocks.

1Also see Rogers and Singh (2006).
2The literature on portfolio optimization in the presence of proportional transaction costs is vast. Its well–

known examples include Constantinides (1986), Davis and Norman (1990), Duffie and Sun (1990), Dumas
and Luciano (1991), Vayanos (1998, 2003), Liu and Loewestein (2002), Liu (2004), and many others.

1



He diversifies his portfolio, and stocks of each type are essential for removing idiosyncratic

risk. As a result, an investor holds many risky securities of both types that we describe by

representative stocks that carry only systematic risk. The number of representative stocks

depends on the number of systematic shocks. Therefore, we consider the market where

individual liquid stocks are aggregated into n − 1 representative liquid stocks that along

with an illiquid representative stock are propelled by n systematic shocks. An investor

trades both types of stocks for further diversification. The total number of stocks, n, allows

us to control the significance of the illiquid stock for the market. Moreover, for the purpose

of tractability we assume that transaction costs are very small for liquid stocks and could

be neglected.

In the special case, the risk in the illiquid representative stock could be perfectly replicated

by liquid representative stocks. Therefore, arbitrage opportunities could be available to an

investor. These opportunities will exist in the long run because an investor can take only

limited advantage of them. Thus, it is important to understand the optimal behavior of an

investor in the presence of arbitrage opportunities. For this, we analyze optimal trading of

an investor in the presence of perfect correlation between an illiquid stock and a liquid stock

that have different conditional Sharpe ratios. This analysis is similar to that of an arbitrage

strategy that involves trading liquid and illiquid stocks of individual companies.

Assuming that the investment opportunity set is constant we arrive at the following

conclusions:

1. If an investor trades one illiquid and n − 1 liquid stocks, then an illiquid stock is

likely to play a significant role in the portfolio diversification even when illiquid stocks take

a very small fraction of the whole market (n is large). In particular, even when n is large, an

investor often tries to reduce his holdings of the illiquid stock only by a little so his flight to

liquidity is small. For example, we show that if an illiquid stock is very expensive to trade for

one year and takes only 4% of the whole market, then an investor tries to reduce his holdings

of this stock only by 20% from those in the liquid market. In addition, the allocations to all

liquid stocks could easily be very different from those in the liquid market and an investor

could substantially discount his holdings of the illiquid stock. The role of an illiquid stock in

diversification becomes negligible if n is large and this stock remains illiquid for a very long

time. In this paper we assume that only one of these two conditions can hold.

These results suggest that, given that the proportion of illiquid stocks in the market

is noticeable, a lot of intuition about allocations between liquid and illiquid stocks can be

learned from the analysis of the market with n = 2. This justifies our primarily emphasis

on the market with two stocks. The remaining conclusions are derived from this market and

are easily extended to illiquid markets with multiple liquid stocks.

2. If an investor trades two stocks one of which is illiquid, then holdings of both risky

securities would be substantially different from those where both stocks are liquid. If the

illiquid stock holdings are small, then an investor always sets his allocation in the liquid stock
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at that in the liquid market with one stock. If the volatility of the illiquid stock holdings

is too high, he adjusts allocations in the liquid stock to reduce cumulative volatility. In

particular, if a correlation between the two stocks is positive, then an investor can take a

short position in the liquid stock even if this position is significantly positive in a perfectly

liquid market. If the two stocks are independent, then allocations to the liquid stock are

similar to the case with a positive correlation but less pronounced. If the correlation is

negative, then the mutual dynamics of the allocations to the two stocks is defined by the

size of the correlation. Increasing interdependence between the allocations to the two stocks

will cause contagion between the stocks and comovements of the two stock prices.

If the correlation between the two stocks is substantial, we find only minor differences in

the allocations to the liquid stock between the cases where illiquidity is very strong, moderate

or small. It follows that the described impact on the liquid stock portfolio allocations can be

significant even when the other stock’s illiquidity is minor, leading to incorrect conclusions

about investors’ rationality and market efficiency, if illiquidity is neglected.

3. In the special case where the two traded stocks have perfect correlation, we uncover

the limits to arbitrage: investor considers arbitrage opportunities on an equal basis with

other investment opportunities.3 He offsets the risk of his position in the illiquid stock with

the one in the liquid stock and takes an additional position in the liquid stock that is the

same as the one in the absence of the illiquid stock.

4. In agreement with conclusion 1, an investor achieves a highest expected utility when

his allocations are very close to those in a liquid market. This result implies that in many

situations an investor barely tries to reduce his holdings of the illiquid stock in the presence

of a liquid one. Thus, flight to liquidity resulting from a stock illiquidity per se is negligible.

For a rational investor, it could occur only for very volatile stock returns given that the

stock is extremely illiquid for a very long time. Otherwise, an investor has to be irrationally

pessimistic in his views on the future returns of an illiquid stock. Finally, the welfare loss

of an investor at allocations maximizing the expected utility is negligibly small. This result

demonstrates the importance of the allocations away from those maximizing the expected

utility to be analyzed on the optimal trading and welfare losses. In fact, the liquidity premium

at these allocations can easily be of the same order of magnitude as the risk premium.

The related paper by Isaenko (2005) studies the optimal trading of an investor and a

liquidity premium when trading the whole stock market obliges paying convex transaction

costs while bond market is liquid. Isaenko finds that, with the calibration of the model on

the historical data, the flight to liquidity observed for an illiquid stock market is unlikely

to result from this stock illiquidity per se. It follows from either the increased volatility of

stock returns or irrationally pessimistic expectations of investors. He also finds that welfare

losses of an investor at allocations maximizing his utility are vary small. These conclusions

3Related results can be found in Basak and Croitoru (2000, 2003), Liu and Longstaff (2004), and Isaenko
(2004).
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are barely affected by the presence of stock crashes. Because an investor is always away

from his best allocations, Isaenko studies optimal trading far from those allocations. He

finds that liquidity premium at those allocations could be of the same size as a risk premium

and the presence of stock crashes makes this conclusion only stronger. In the case where the

convex transaction costs have linear term, Isaenko investigates the resulting no–trading zone.

He shows numerically that the cross–section of this zone at fixed stock price has a shape

of a connected cone which opening angle increases with smaller stock price. In addition,

the boundaries of this cone change very weakly with the convexity of the transaction costs

which warrants the convenience of the analysis of this zone due to the absence of singularity of

stochastic control. In this paper we extend some of the above results to the case where illiquid

stocks occupy only a fraction of the market (see conclusions 1 and 4). More importantly, as

motivated in the beginning of the Introduction, we study the role of stock diversification for

risk management in the illiquid market, interdependence of allocations between liquid and

illiquid stocks as well as trading in the presence of arbitrage opportunities.

Our analysis could also be related to the paper by Kahl, Liu, and Longstaff (2003).

These authors consider a portfolio choice by an entrepreneur who cannot trade his firm’s

stock shares but is not restricted in trading other securities. The inability of an investor to

trade his firm’s stock shares can be formally interpreted as though his firm’s stock is illiquid.

If so, our special case where the cost of trading an illiquid stock is very high resembles their

model and some of their conclusions are similar to ours. However, illiquidity in our model is

not extreme as investors can trade the security at a flexible and possibly high rate. Moreover,

the investor in our model trades an illiquid stock that is essential for the stock market rather

than a small stock with idiosyncratic risk as in Kahl, Liu, and Longstaff (2003). Overall, our

analysis applies to trading by an investor in an illiquid market, rather than to an insider’s

transactions in a perfectly liquid market.

Our paper contributes to growing theoretical literature on the market’s illiquidity. In

addition to the above–cited references, important contributions include Lipman and McCall

(1986), Amihud and Mendelson (1986), Grossman and Miller (1988), Grossman and Laroque

(1990), Boudoukh and Whitelaw (1993), Frey (1998), Holmstrom and Tirole (2001), Weill

(2002), Acharya and Pedersen (2003), Huang (2003), Duffie, Garleanu, and Pedersen (2003a,

2003b), O’Hara (2003), Vayanos and Wang (2003), Cetin, Jarrow, and Protter (2004), Cetin,

Jarrow, Protter, and Warachka (2004), Eisfeldt (2004), Jang, Koo, Liu, and Loewenstein

(2005), Lo, Mamaysky, and Wang (2004), Brunnermeir and Pederson (2005), He and

Mamaysky (2005), Huang and Wang (2005), Liu and Yong (2005), Longstaff (2005), Pereira

and Zhang (2005), Deuskar (2006), and many others.

The rest of the article is organized as follows. Section 2 describes the model for the

economy with two stocks. Section 3 presents the solutions to the model. Section 4 describes

trading of an investor in the presence of n − 1 liquid stocks, where n > 2. Section 5

summarizes. Appendix A presents the HJB equation of the optimization problem introduced
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in Section 2, while Appendix B identifies the conditions for the absence of arbitrage

opportunities in the market with two stocks.

2 The Basic Model

Due to easy tractability, we first analyze an optimal trading of an investor in an economy

with one liquid and one illiquid stock. We extend this economy to that with multiple liquid

stocks in Section 4 and show that the majority of our conclusions remains intact.

2.1 The Asset Market

We consider a markovian economy with a finite horizon T where there is a single perishable

consumption good that we treat as the numeraire. We assume a filtered probability space

(Ω,F , {Ft}, Q). Uncertainty in the model is generated by a standard two–dimensional

Brownian motion W = (W1,W2), where W is adapted.

Investors can continuously trade three securities: a riskless bond and two stocks. The

riskless bond has the price dynamics

dBt = Btrdt, (1)

where r denotes a constant interest rate. We assume that the dynamics of the stock prices

are given by

dS1t = S1t(µ1dt + σ1dW1t), (2)

dS2t = S2t(µ2dt + σ2dW2t), (3)

where W1 and W2 have the constant instantaneous correlation coefficient ρ and µ1, µ2, σ1,

and σ2 are also constants, the last two of which are positive.

We assume that stock 1 is illiquid so that its trading requires paying transaction costs,

while stock 2 is liquid meaning its trading is free. Trading shares of stock 1 takes place at a

finite rate u1, that is

dN1t = u1tdt, (4)

where N1 is a number of shares of stock 1 held by an investor.

The last assumption results from the shape of the charges levied on trading illiquid stock

shares. We require that trading ∆N1 shares of stock within time interval ∆t will cost

α|∆N1| = α|u1|∆t dollars, where the cost percentage α increases with the rate of trading as

|u1|ε, with ε being a positive constant. Therefore, trading ∆N1 shares requires covering a

cost equal to α|u1|1+ε∆t dollars. For simplicity of exposition, we assume that coefficient α is

the same for the purchasing and selling of stock 1 shares. The convexity of the transaction

costs captures the difficulty of trading shares at a high rate. This convexity does not allow
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the rate of trading u1 to be infinite, even though it can be large: the higher the u1 at fixed

∆N1, the more costly it is for an investor to trade. Naturally, share holding N1 becomes

absolutely continuous and can be given by expression (4).

The chosen representation of the transaction costs is intuitive. When the market is

illiquid, it becomes more difficult for a market maker to find stock shares. The faster

shares have to be bought (sold) the more difficult it is to find their seller (buyer). To

compensate for facing extra risk and effort, a market maker imposes higher costs on an

investor. Consequently, the transaction costs become convex in the rate of trading. Moreover,

because u1 is always finite, an investor is not able to reach the position in stock 1 that

maximizes his utility. This situation is observed for many investors in illiquid market. See

Isaenko (2005) for a more detailed discussion on the nature of convex transaction costs.

Two remarks are in order. Notice that an investor could have placed a buy (sell) order

between many market makers and considerably reduced the nonlinear component in the

transaction costs. We assume that the order diversification is limited either by considerable

time and effort required to place the orders between many market makers, and/or fixed

transaction fees charged by each trader. Second, we assume that transaction charges are

placed on the number of shares instead of on the dollar value of the stock traded by an

investor. The corresponding modification of our model is straightforward and does not bring

any qualitative changes to our conclusions.

2.2 The Investor’s Problem

An investor is a price–taker who has CRRA–preferences that support only consumption at

time T . The optimization problem faced by this investor is4

max
u1,π2∈R2

E0

(
X1−γ

T

1− γ

)
(5)

dXt =

[
rXt + N1tS1t(µ1 − r) + Xtπ2t(µ2 − r)− α|u1t|1+ε

]
dt

+ N1tS1tσ1dW1t + Xtπ2tσ2dW2t, (6)

where γ > 0, γ 6= 1, X stands for an investor’s wealth and π2 is the proportion of an investor’s

wealth allocated to stock 2. Since dX depends explicitly on S1 and N1, the description of

the problem is completed by adding equations (2) and (4).

Optimization problem (5) can be solved only by the dynamic programming approach.

Furthermore, equations (2), (4), and (6) show that the markovian set of state variables in the

4We assume that an investor chooses not to sell the stock shares at time T . It is likely that an investor
will continue to trade his portfolio after time T but he expects that the market will become liquid and so a
new optimization problem will be formulated. Therefore, T could be interpreted as the time during which
many stocks will remain illiquid. See also Longstaff (2001).
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given economy is (S1, X, N1). As in Merton (1969), we define an investor’s indirect utility as

V (t, S1, X,N1) = max
u1,π2∈R2

Et

(
X1−γ

T

1− γ

)
(7)

and find it by solving the corresponding HJB equation.

Notice that we assume that there is no explicit utility maximization over different initial

conditions, that is, an investor cannot choose to be at a given point of the state variable

space at time zero. This assumption is intuitive: if an investor can trade only at a finite

rate and stock returns have infinite first–order variation, the probability that he would have

a given allocation is zero and therefore all of them have to be considered.

2.3 Portfolio Choice when the Whole Stock Market is Illiquid

For the purpose of comparison, we present the solution to the portfolio choice problem of

an investor in the above market when only a bond and an illiquid stock are available. We

assume that the stock price follows dSt = St(µdt + σdwt), where µ, σ > 0 are constants and

wt is a standard Brownian motion.

If the available stock is liquid, then the portfolio rule and the expected utility are given

by

π̂ =
µ− r

γσ2
. (8)

Ū =
X1−γ

1− γ
exp

{
(1− γ)

[
r +

(µ− r)2

2σ2γ

]
T

}
. (9)

Ū is the maximal level of utility which can be achieved in the economy with one illiquid

stock. In an economy with two stocks where stock 1 is illiquid, Ū is the minimal possible

level of utility given that it is calculated for liquid stock 2. In such a setting, we refer to this

level as Umin.

Table 1 presents the optimal rate of trading and the expected utility for an investor if

the stock market is illiquid. Additionally, these tables show a liquidity premium ∆l which is

the return of the liquid stock that an investor is willing to give up to avoid facing illiquidity:

∆l = µ− r −
√

2σ2γ

(
1

(1− γ)(T − t)
ln

V

X1−γ/(1− γ)
− r

)
, (10)

where V is a value function of an investor in a given market. Detailed discussion of these

results can be found in Isaenko (2005).

2.4 Optimal Policies in Liquid Market

For a second benchmark, we describe the optimal strategy of an investor with CRRA–

preferences in the market of section 2.1, but in the absence of transaction charges on stock
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1. In this case, we refer to the market as being (perfectly) liquid. We find the portfolio rule

and the expected utility of an investor

π̂i ≡ 1

σiγ(1− ρ2)

[
(µi − r)

σi

− ρ
(µj − r)

σj

]
, i, j = 1, 2, (11)

Umax =
X1−γ

1− γ
exp

{
(1− γ)

[
r +

1

2γ(1− ρ2)
(12)

×
(

(µ1 − r)2

σ2
1

+
(µ2 − r)2

σ2
2

− 2
(µ1 − r)(µ2 − r)

σ1σ2

ρ

)]
T

}
.

Formula (11) implies that holdings of one stock are independent from the presence of the

other when the two stocks are independent. As the number of independent stocks increases,

the aggregate position in equity of an investor increases proportionally. Nonetheless, the

probability for portfolio wealth to fall below a certain threshold diminishes because of

diversification. If stocks provide positive risk premia and become more positively/negatively

correlated, then an investor takes shorter/longer positions in stocks to reduce his exposure

to the correlated parts of risks. If stocks are perfectly correlated and their conditional

Sharpe ratios are different, an investor takes infinite opposite positions in two stocks to take

advantage of unlimited arbitrage. Therefore Umax becomes infinitely large. If ρ = 1 and

the conditional Sharpe ratios of the two stocks are the same, then an investor is indifferent

between the two stocks. Finally, we notice that an investor always chooses a market portfolio

since πi is independent from an investor’s wealth.

3 Optimal Policies in Illiquid Market

We now consider the case where transaction costs are present. Furthermore, for clarity of

presentation we assume from now on that ε = 1. Appendix A analyzes the problem for

arbitrary ε > 0.

First, we identify the conditions for the absence of arbitrage in this economy. To do so,

we introduce its definition:

Definition 1 An arbitrage (a free lunch) is a self–financed portfolio process such that the

associated wealth process X(·) satisfies

X0 ≥ 0, XT > X0e
rT . (13)

An arbitrage is a portfolio process whose wealth grows locally risklessly with a rate higher

than the instantaneous interest rate. Appendix B shows that, similar to perfect markets,

arbitrage opportunities are possible only if ρ = 1 and ∆ ≡ µ1−r
σ1

− µ2−r
σ2

6= 0 or if ρ = −1 and
µ1−r

σ1
6= −µ2−r

σ2
. We will show that the presence of arbitrage opportunities in this economy

8



does not cause the utility of an investor to become infinitely large and so may sustain for a

very long time.

Let us also introduce the liquidity premium ∆l1 of stock 1 to be the amount of this stock’s

conditional return that an investor is willing to give up to avoid trading the illiquid stock. As

follows from equation (12), indirect utility is not always a monotonically increasing function

of µ1 when ρ 6= 0. Thus, ∆l1 is not an accurate description of an investor’s welfare when

ρ 6= 0 so we use it only when ρ = 0:

V (t, S1, X, N1) =
X1−γ

1− γ
exp

{
(1− γ)

[
r +

1

2γ

(
(µ1 −∆l1 − r)2

σ2
1

+
(µ2 − r)2

σ2
2

)]
(T − t)

}
,

or

∆l1(t, S1, X, N1) = µ1 − r − σ1

√
2γ

(
1

(1− γ)(T − t)
ln

V (t, S1, X, N1)

X1−γ/(1− γ)
− r

)
−

(
(µ2 − r)

σ2

)2

.

(14)

The liquidity premium provides an estimate of the additional contribution over the risk

premium present in the illiquid stock returns in equilibrium.

One can show that if |ρ| 6= 1, then the investor’s problem has a solution only if

X ≥ N1S1 ≥ 0. The proof of the last result is very similar to that in Longstaff (2001)

and is not presented. In essence, an investor cannot borrow, because the illiquid stock can

quickly fall and he would not be able to sell enough of this stock to have positive terminal

wealth. Furthermore, he cannot short–sell because the illiquid stock can rapidly rise and

an investor would not be able to unwind his obligation before his wealth becomes negative.

An investor may borrow or take a short position in the illiquid stock if he has an additional

source of earnings, for example from labor income, that can hedge the variation in the illiquid

stock. Since such earnings are absent in our model and the problem is not defined outside

the intervals X ≥ N1S1 ≥ 0, we consider only an economy where 0 ≤ π̂1 ≤ 1 unless |ρ| = 1.

If |ρ| = 1, then unpredictable changes in the illiquid stock holdings can be completely hedged

away by trading the liquid stock. Thus, an investor can take a short or very long position

in the illiquid stock.

We present the HJB equation for the value function V (T, S1, X, N1) in Appendix A.

First–order conditions in this equation provide optimal policies for an investor:

u1 =
VN1

2αVX

(15)

π2 = −VX(µ2 − r) + (VXXN1S1 + VXS1S1)ρσ1σ2

XVXXσ2
2

. (16)

Expression (15) shows that an investor changes the direction of stock 1 trading when VN1 = 0.

Clearly, an investor can maintain any proportion of π2 at any time by trading the bond and

stock 2 at a possibly infinitely large rate.
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Unfortunately, the equation for the indirect utility function cannot be solved analytically

and we resort to the traditional finite–difference numerical approach. The following section

presents the results of the numerical analysis. We are interested in states of the economy

where stock liquidity is limited. Assuming that these states exist for a reasonably short

period of time, we set the time horizon for an investor to be only one year and consider the

horizon of five years as an exception. In addition, we choose the following parameters unless

otherwise specified: γ = 2, σ1 = σ2 = 0.2, µ1 = µ2 = 0.07, and r = 0.01.

In the following subsections we consider three cases: when two stocks are independent

(ρ = 0), when they are imperfectly correlated (0 < |ρ| < 1), and when trading stocks

provides arbitrage (ρ = 1 and ∆ 6= 0). One can verify from the following results that the

expected utility function of an investor is maximal when N1S1

X
∼= π̂1 if 0 ≤ |ρ| < 1. This result

holds for any positive choices of α and ε. We conclude that an investor barely tries to get rid

of the illiquid stock in the presence of the liquid one. Thus, flight to liquidity is negligibly

small. Moreover, the maximal expected utility of an investor is very close to that found in

the liquid market. These results confirm the crucial importance of analysis of the allocations

away from those providing the highest expected utility since the liquidity premium at these

allocations could be higher by orders of magnitude than that at allocations with the highest

expected utility.

The result that the maximal expected utility of an investor is very close to that in the

liquid market is interesting: as soon as an investor reaches the allocations providing this

utility he can stop trading and his conditional expected utility will be very close to the

maximal possible level. However, on rare occasions his allocations to the illiquid stock can

fluctuate significantly away from those proving the maximal indirect utility. In the letter

case, the role of active trading considerably increases.

Finally, it is straightforward to verify in all of the three cases for the values of ρ, that

an investor chooses not to hold the market portfolio, since the weight of each stock holding

changes differently with the variations in state variables.

We show results when some of the state variables are fixed. Outcomes for other values of

these state variables do not bring any new intuition and are thus not presented.5 Moreover,

we consider the cases when α = 0.1 and α = 0.002 representing the market with a very

strong and moderate illiquidity of stock 1.

3.1 Trading when ρ = 0

In the case of uncorrelated stocks, expression (16) becomes π2 = −VX(µ2−r)

XVXXσ2
2
. The last result

is formally the same as the one in the absence of the illiquid stock. However, given that the

5In the calculations, we choose state variable ln(S1) instead of S1 and consider time and state variables
(t, ln(S1), X, N1) on the set of values [0, 1]× [−3, 3]× [0, 10]× [0, 3], where the corresponding numbers of the
grid–points are 10× 100× 100× 800. The condition 0 ≤ N1S1 ≤ X is maintained on each point of the grid.
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indirect utility depends on the state variable N1, we expect that optimal allocations to the

liquid stock would depend on allocations to the illiquid stock.

The last expectation is confirmed in Table 2. Contrary to the case with two liquid stocks,

the presence of another stock has an effect on the other’s stock trading. In particular,

comparison between Table 1 and Table 2 shows that the rate of trading of the illiquid stock

increases in the presence of the liquid stock. Managing stock 2 provides additional positive

returns and an investor is better off by forwarding some of them towards covering the cost

of trading the illiquid stock. As a result, an investor prefers paying higher fees to achieve

better diversification of stocks by trading stock 1. On the other hand, the presence of the

illiquid stock has an effect on the holdings of the liquid stock: when holdings of the illiquid

stock are very low, the proportion of wealth invested in the liquid stock is greater than

that when both stocks are liquid, and when holdings of the illiquid stock are too high, the

proportion of wealth invested in the liquid stock is lower than that when both stocks are

liquid. To explain these allocations, we notice that an investor who maximizes his expected

utility function from terminal consumption, tries to increase the probability of high terminal

consumption and decrease the probability of low terminal consumption. In perfect markets,

this goal is achieved by means of diversification. If one stock is illiquid, then diversification

is very restricted. As a result, an investor manages the aggregate risk exposure by directly

adjusting his position in the liquid stock. In particular, when aggregate risk exposure is low,

an investor increases his allocations to the liquid stock to increase terminal consumption.

If aggregate risk exposure is too high, an investor decreases his allocations to the liquid

stock to lower the risk of low consumption. The given deviations of π2 from π̂2 diminishes

diversification of the stocks. Finally, an investor is much less willing to increase the return

and volatility of his portfolio when they are low, than to give up extra volatility at the

expense of portfolio returns when the former is too high. This effect follows from the risk

aversion of an investor and becomes stronger as this aversion rises. It strengthens even

further if stock 1 becomes more illiquid (α increases) or if the volatility of its return rises.

It is interesting that at low values of N1 the allocations to the liquid stock are not

monotonic. Because in the absence of the illiquid stock π̂ = 0.75, they increase from π2 = π̂

at N1 = 0 and then decrease as N1S1/X approaches π̂1. It turns out that an investor assumes

that the illiquid stock is absent for trading when N1 is very small and chooses π2 as if only

one liquid stock is being traded. If N1 increases, then an investor considers his position in

the illiquid stock as insufficient which he compensates by increasing allocations to the liquid

stock.

Table 2 shows that the liquidity premium ∆1l is very small at N1S1/X ∼= π̂1 and then

increases as N1S1/X moves away from π̂1. Because ∆1l is a discount for the illiquid stock in

the presence of the liquid one, it is close to ∆l which is a similar discount in the economy

with only illiquid stock 1 (see Table 1). Still, ∆1l < ∆l. The last relation results from

the interdependence between the optimal policies of trading two stocks when one stock is
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illiquid. As an investor gets access to the liquid stock, he improves the management of the

risk in illiquid stock holdings which allows him to demand a smaller discount for holding the

illiquid stock.

Finally, Table 3 presents the optimal trading, the expected utility function, and the

liquidity premium for a longer time horizon (T = 5) and two levels of volatility of the

illiquid stock returns (σ1 = 0.2 and σ1 = 0.3). Firstly, we point out a dramatic rise in the

trading volume of the illiquid stock for higher T . It is caused by the expected additional

returns from both stock holdings which are appreciated by paying higher transaction costs.

Secondly, we observe a noticeable change in the allocation π2 for a longer time horizon:

it further increases for low N1S1/X and further decreases when this ratio is high. As the

terminal consumption becomes more remote, an investor is better off by further adjusting the

aggregate risk exposure with stock 2 and lowering the diversification of his position. This is

compensated by the increased rate of trading of the illiquid stock allowing an improvement in

stock diversification by reaching the neighborhood of π̂1 before an investor’s horizon. Thirdly,

as the time horizon T is extended, an investor can reach π̂1 within a smaller time–fraction

of his horizon. Hence, the effect of stock illiquidity on the expected utility function (or the

liquidity premium) weakens. Table 3 also shows the impact on π2 coming from a combination

of the long–time horizon and the high volatility of the illiquid stock. As seen, π2 can fall as

low as 76% of π̂2 at high ratios of N1S1/X. Finally, even though stock 2 is very illiquid for

a very long time, an investor still maximizes his expected utility at allocations that are very

close to those in a liquid market and encounters very small losses in his welfare. Because the

rate of trading of the illiquid stock is close to zero in the neighborhood of utility–maximizing

allocations, the present value of the transaction costs is small and so are the welfare losses.

3.2 Trading when 0 < |ρ| < 1

The situation when stocks are completely uncorrelated is rather unusual, even though

instructive. In this subsection, we consider the case when 0 < |ρ| < 1.

Table 4 shows the optimal trading and the expected utility function when ρ = 0.5. As

follows from equation (11), π̂1 = π̂2 = 0.5 so that the expected utility function is highest

when N1S1/X ∼= 0.5. Given the results for ρ = 0, one would expect π2 to be reasonably

close to π̂2. However, we find that π2 undergoes very significant variations around π̂2: if

N1S1/X is very small, then π2 is close to π̂ = 0.75, where π̂ is an optimal proportion of

wealth allocated to stock when only a liquid stock is traded, if N1S1/X increases but smaller

than π̂1, then π2 > π̂2, and if N1S1/X exceeds π̂1, then π2 falls considerably below π̂2. The

last two patterns of behavior are mainly defined by the correlation between the two stocks.

If N1S1/X is substantially below π̂1, an investor can rely only on stock 2 for risk exposure

and will trade as if only this stock is available, choosing π2 ≈ π̂. If N1S1/X increases

but smaller than π̂1, then an investor considers his risk exposure as insufficient and sets π2

above π̂2. The difference between π2 and π̂2 is more significant than in the absence of the
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correlation between the stocks, since a shorter position in stock 1 substantially decreases the

exposure to the correlated risk that can be compensated only by a substantial increase in

π2. If N1S1/X increases above π̂1, then the volatility of the portfolio rises and the only way

it can be lowered is by selling stock 2 below π̂2. Moreover, the leading contributor to the

risk exposure becomes the correlated risk. The reduction of this risk requires an investor to

sell more liquid stock than he does when stocks are uncorrelated. The given deviations of

π2 from π̂2 decrease diversification of the stocks.

The last discussion suggests what happens to π2 when the correlation between the stocks

is negative. Here, the relation between π2 and π̂2 is affected by the size of ρ. Suppose that

N1S1/X > π̂1. To compensate for the excessive uncorrelated risk of his position in stock 1,

an investor decreases his holdings of stock 2. However, to reduce correlated risk, he increases

his holdings of stock 2 since it has the dynamics that is opposite to that of the illiquid stock.

Therefore, if the correlation is significant, an investor will increase his holdings of stock 2

at an excessive volatility of stock 1 holdings. Similarly, if 0 < N1S1/X < π̂1, then with

a smaller N1 an investor would like to increase his risk exposure by means of stock 2. If

the correlation between the two stocks is small, then the uncorrelated stock plays a leading

role causing an increase in π2. If the correlation is high, then correlated risk plays a leading

role making π2 decrease. Notice that the boundary values of ρ defining different patterns of

behavior for the two intervals of N1S1/X are usually different.

So far, we have not made any assumptions about the distribution of the initial allocations

of an investor. It seems reasonable that allocations to the illiquid stock at time zero are

likely to be above π̂1. Often, decreased liquidity of a stock is accompanied by an increased

volatility of its returns.6 A higher volatility of the illiquid stock returns implies smaller

allocations to this stock, but as soon as the stock becomes illiquid an investor cannot move

to these allocations fast enough and start at proportion of N1S1/X higher than π̂1. As a

result, he reduces his position in the liquid stock if the correlation between the two stocks

is nonnegative and increases this position if the correlation is substantially negative. The

former strategy leads to lower prices and higher returns of the liquid stock. This conclusion

contradicts a common empirical observation that in the presence of illiquid risky securities

investors substantially increase their holdings of liquid risky securities. Because it is likely

that the correlation between the two stocks is positive, we explain the discrepancy by the

overreaction of investors to the bad news that a lot of stocks have become less liquid. A

detailed understanding of the behavior of stock prices requires a general equilibrium analysis

of the economy.

Remarkably, the allocations to the liquid stock in Table 4 are essentially the same for

both shown values of α even though the trading of stock 1 is negligible if α = 0.1 and an

investor can reach the neighborhood of π̂1 before the end of his time horizon if α = 0.002.

6According to the Committee on the Global Financial System, during the 1998 crisis, the implied volatility
of the S&P500 Index rose from 23% to 43% and that of the thirty–year US T–bond rate from 7% to 14%.
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This effect is present if the correlation between the two stocks is significant. To understand

its nature, let us decompose two correlated sources of uncertainty to two independent ones

[e.g., see Shreve (2004)]: W1 =
√

1− ρ2B1 + ρB2, W2 = B2, where B1 and B2 are two

independent standard Brownian motions. Then, the wealth of an investor’s portfolio follows

dXt =

[
rXt + ΦρtXt(µ2 − r) + N1tS1tσ1

(
µ1 − r

σ1

− ρ
µ2 − r

σ2

)
− αu2

1t

]
dt

+ N1tS1tσ1

√
1− ρ2dB1t + XtΦρtσ2dB2t, (17)

where Φρt = ρσ1

σ2

N1tS1t

Xt
+ π2t.

If both stocks are liquid, then it is easy to show that Φρ = µ2−r
γσ2

2
, which is a position in stock

2 when stock 1 is absent. Table 4 shows that the risk exposure Φρ is almost the same for all

values of N1 and very close to µ2−r
γσ2

2
. We conclude that for any position in illiquid stock 1,

an investor takes a risk exposure in liquid stock 2, such that an aggregate exposure to source

of uncertainty B2 is equal to that in the absence of the illiquid stock. The exposure to the

other source of uncertainty B1 is defined by the current position in the illiquid stock.

Table 4 shows that the described strategy persists for both values of α. Because Φρ

is independent from u1, π2 does not change with the illiquidity of stock 1 (parameter α).

Thus, π2 will not change even if this illiquidity becomes small. Moreover, for a given state

(S1, X, N1), one can easily estimate π2 in the illiquid market from π̂ − ρσ1

σ2

N1S1

X
, where π̂

is found in the absence of the illiquid stock. We conclude that deviations of allocations

to stock 2 from those in the perfectly liquid market could be very considerable even when

stock illiquidity is small. Therefore, full consideration of illiquidity is important for finding

the best strategies even when this illiquidity may seem to be insignificant. In the latter

case, however, an investor reaches the best allocations relatively quickly. As long as the

correlation between stocks is substantial, we expect that the given strategy is stable with

respect to changes in the parameters of the model, the underlying processes as well as the

preferences of an investor.

Knowing a good estimate for π2 when ρ is substantial, easily allows us to find conditions

when the deviation of π2 from π̂2 becomes very strong. For example, for the set of parameters

µ1 = µ2 = 0.07, σ2 = 0.2, γ = 2, and r = 0.01 this deviation becomes very large at

high ρ and/or high σ1. Table 5 shows the optimal policies and the expected utility when

ρ = 0.8, σ1 = 0.2, and ρ = 0.5, σ1 = 0.3. If both stocks are liquid, then for the first choice

of parameters the optimal allocations are π̂1 = π̂2 = 0.417, while for the second choice of

parameters they are π̂1 = 0.111 and π̂2 = 0.667. As seen in Table 5, even at N1S1/X = 0.5

the difference between π̂2 and π2 is substantial. It becomes extreme at N1S1/X ≈ 1 when

an investor may take a short position in the liquid stock even though π̂2 > 0.

At this point, we notice that our analysis of the case α = 0.1 could be related to that of

Kahl, Liu, and Longstaff (2003). While some of their conclusions are similar to ours, there

are major differences as well. Similar results include the behavior of the optimal allocation π2

versus illiquid stock return volatility and risk aversion. The differences include the behavior
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of the expected utility function: in our case, it is maximal when N1S1/X ∼= π̂1, not when

N1 = 0 as in Kahl, Liu, and Longstaff (2003). This difference is a consequence of their illiquid

stock being a small stock with an idiosyncratic risk. Moreover, contrary to our conclusions,

these authors find that the deviation of the optimal portfolio weight π2 from this weight in

the unconstrained case decreases as T increases. The difference is caused by the presence

of intertemporal consumption in the model by Kahl, Liu, and Longstaff (2003). In their

model, as the stock stays illiquid for a longer time, the intertemporal consumption in the

illiquid market becomes more important for an investor. In the meantime, the longer time

horizon in our model weakens the effect of the stock illiquidity because an investor has more

time to reach the utility–maximizing allocations by the time of terminal consumption. The

strengthening of the effects from stock illiquidity in the model by Kahl, Liu, and Longstaff

(2003) and their weakening in our model, defines the difference in the behavior of π2 versus

increasing T . Above all, the economic setups in Kahl, Liu, and Longstaff (2003) and our

paper are very different: Kahl, Liu, and Longstaff find the portfolio rules of an insider in a

perfectly liquid market, while we find the portfolio rules of an investor in an illiquid market.

3.3 Limits to Arbitrage, or Trading when |ρ| = 1

Now we analyze the case when ρ = 1. The case when ρ = −1 is similar and will not be

considered. If ρ = 1 and the conditional Sharpe ratios of the two stocks are the same, then

an investor trades only the liquid stock and the problem becomes trivial. Hence, we assume

that ∆ 6= 0 and arbitrage is present in the market. The given situation is related to markets

where securities providing identical cash flows, but having different liquidities, also have

different price dynamics which may allow an arbitrage.

As follows from the proof in Appendix B, the market allows arbitrage in states where

N1 has the same sign as ∆ [see equation (B-1)]. This arbitrage is limited by applicable fees.

Arbitrage may also be available at states where N1 and ∆ have opposite signs. Notice that

the rate of portfolio growth in equation (B-1) of Appendix B cannot be made arbitrarily

high since an investor can change N1 only at a finite rate. Accordingly, the expected utility

of an investor is finite even in the presence of arbitrage opportunities. The finiteness of the

expected utility causes an investor to consider arbitrage as one of many strategies available

for trading, rather than as a dominant one.

We confirm the above expectations by considering an investor’s optimal portfolio whose

value follows

dXt =

[
rXt + ΦtXt(µ2 − r) + N1tS1tσ1∆− αu2

1t

]
dt + σ2ΦtXtdW1t,

where Φt = σ1

σ2

N1tS1t

Xt
+ π2t is the cumulative risk exposure of an investor.

Table 6 reports optimal policies at different values of state variable N1 when stock 1 can have

the two levels of illiquidity. We assume that (µ1− r)/σ1 = 0.1 and (µ2− r)/σ2 = 0.3, so the

15



illiquid stock is overpriced with respect to the liquid one and ∆ < 0. Similar to the above case

with ρ = 0.5, in all shown states an investor keeps Φ constant at the level corresponding to

the market with only liquid stock 2. That is, for any position in the illiquid stock, an investor

takes a risk–offsetting position in the liquid stock plus additional positions in this stock and

a bond which match those in the absence of the illiquid stock. The first two allocations define

a locally riskless strategy whose associated wealth follows Xa(t) =
∫ t

0
(∆N1S1σ1 − αu2

1)dτ .

The last strategy is an arbitrage for states with a significantly short position in stock 1, since

its drift is nonnegative ∀t ∈ [0, T ]. It can also be arbitrage for other states N1 which are

not far from N1 = 0. We expect that the described pattern of trading is stable with respect

to changes in the parameters of the model, the underlying processes, and the preferences of

an investor. Thus, we recover a result similar to that in Basak and Croitoru (2000) who

show that in the presence of market frictions an investor considers arbitrage as one of many

strategies if taking advantage of arbitrage is limited.7 Instead of allocating to only arbitrage

strategy, an investor also trades a risky strategy. In our case, the frictions are caused by

stock illiquidity, while Basak and Croitoru treat liquid markets in the presence of short–sale

and long–position constraints. We expect that arbitrage opportunities may exist in a general

equilibrium if markets are illiquid.

Notice that an investor offsets the risk of his position in the illiquid stock even when N1

is significantly positive and an arbitrage strategy is not available. By doing this, he removes

the risk related to his position in the illiquid stock which is very difficult to manage by

trading the illiquid stock itself.

4 Extension to Multiple Liquid Stocks

In this section we extend our results of Sections 2 and 3 to the market with multiple liquid

stocks. That is, we discuss an optimal trading by an investor when liquid and illiquid

stocks in the economy can be aggregated into one illiquid and n-1 liquid stocks propelled

by n different sources of systematic risk represented by adapted n–dimensional standard

Brownian motion W = (W1, .., Wn)T :

dS1t = S1t(µ1dt + σ1dW1t),

· · ·
dSnt = Snt(µndt + σndWnt),

where all conditional moments of each stock returns are constant, only stock 1 is illiquid,

and the covariance matrix of the stocks returns is non–degenerate.

Introduction of multiple liquid stocks allows us to control the size of the market taken by

7See also Basak and Croitoru (2006), Liu and Longstaff (2004), and Isaenko (2004).
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illiquid stocks. During some market episodes this size is dominant, while most of the time

it is not very significant.

The analysis of the portfolio–choice problem in this new economy is a straightforward

extension of the analysis in Sections 2 and 3. Because this analysis remains numerical, it

is now complicated by the large size of the covariance matrix of stock returns. To preserve

a tractability we emphasize the market where the covariance matrix of stock returns is

diagonal. In such a market, the rate of trading of the illiquid stock is given by equation (15),

while the proportion of wealth invested in each liquid stock is πi = −VX(µi−r)

XVXXσ2
i
, i = 2, ..., n.

These proportions are found after rewriting the HJB equation of Appendix A for multiple

stocks and solving it numerically.

Table 7 shows u1, πi, i = 2, ..., n and ∆l1, where the last parameter is, as before, the

return of stock 1 that an investor is willing to give up to avoid trading the illiquid stock in

the given economy. We assume that illiquidity of stock 1 is very strong (α = 0.1), T = 1,

and n = 5, 10, and 25. In the limit when n is infinitely large and the diversification role

of the illiquid stock is negligible, an investor always tries to sell all his holdings of illiquid

stock [see Kahl, Liu, and Longstaff (2003)]. Therefore, as n increases and the illiquid stock

becomes less significant for diversification, an investor tries to reduce his allocation to it,

so his expected utility is maximal at the proportion of N1S1/X that is lower than π̂1 and

decreases with n. Remarkably, however, the resulting flight to liquidity is small even if n is

very large. For example, for π̂1 = 0.75 an investor switches the direction of stock 1 trading

at N1S1/X = 0.725, 0.695, and 0.598 at n = 5, 10, and 25, respectively. In the last case,

illiquid stocks take only 4% of the whole market but an investor tries to reduce his allocation

to them only by 20%. If the illiquidity of stock 1 is moderate (α = 0.002) and we keep

the parametrization of Table 7, then an investor switches the direction of stock 1 trading at

N1S1/X = 0.739, 0.720, and 0.677 at n = 5, 10, and 25, respectively.

Table 7 also shows that the presence of illiquid stock shares in an investor’s portfolio has

a significant effect on his positions in the liquid securities even when n is large. For example,

if π̂i = 0.75 and N1S1/X = 1.0 then πi = 0.714, 0.711, and 0.704 (i = 2, ..., n) at n = 5, 10,

and 25, respectively. That is, if illiquid stocks take 4% of the whole market, allocation

to each remaining liquid stock could be substantially different from that in the absence of

illiquid stock. The deviation of πi from π̂i in the given example slightly increases with n

because the utility maximizing proportion of N1S1/X decreases. Finally, the importance of

the illiquid stock for an investor is also seen from the considerable liquidity risk premium

that he is willing to give up to avoid trading the illiquid stock. Notice that if proportion of

N1S1/X is close to 1, then this premium increases with n. However, the maximal possible

liquidity premium falls with n since illiquid stock becomes less significant.

The last results are affected by the time–horizon of an investor. In particular, if he

expects that a lot of stocks will remain very illiquid for a long time, then the flight to

liquidity noticeably increases with n. For example, if π̂1 = 0.75, α = 0.1, and T = 5,
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then an investor switches the direction of stock 1 trading at N1S1/X = 0.662, 0.505, and

0.266 at n = 5, 10, and 25, respectively. Consequently, the deviation of allocation πi from

π̂i (i = 2, ..., n) substantially increases at large and small proportions of N1S1/X. The effect

from longer illiquidity of stock 1 at fixed n is similar to that from increasing n at fixed T : if an

investor’s horizon extends and n is large, illiquid stock becomes substantially less significant

for risk management and terminal consumption, so the proportion of N1S1/X corresponding

to the highest expected utility falls. Table 8 illustrates these conclusions for n = 10 and

T = 1, 3, and 5. In particular, it shows that the proportion of N1S1/X maximizing the

expected utility of an investor falls from π̂1 with higher T , while the maximal liquidity

premium becomes less substantial.

We conclude that, unless n is very large and many very illiquid stocks will remain such

for a very long time (tens of years), presence of these stocks in the market is important for

an investor even if these stocks take a very small fraction in the market. It is highly unlikely

for this conclusion to depend on the structure of the covariance matrix of stock returns.

It is interesting to extend our approach for analytical estimation of π2 of Section 3.2 to

the similar estimation of πi, i = 2, ..., n in the multidimensional case. It is known that each

standard Brownian motion Wi (i = 1, ..., n) can be represented by the linear combination of

n independent standard Brownian motions B1, ..., Bn. The latter Brownian motions result

from the orthogonal transformation of the original ones. It is also known that B1, ..., Bn

can be chosen such that Bk = Wk for a chosen k > 1. It follows from our numerical

analysis of subsection 3.2 that, given that the correlations between an illiquid stock and

stock k is significant, the risk exposure of an investor with respect to Wk does not change

with the allocation to the illiquid stock N1 and equals to µk−r
γσ2

k
, while the risk exposure to

Bi (i 6= k, i > 1) generally changes with N1. Therefore, one can write

µk − r

γσ2
k

= ρ1k
σ1

σk

N1S1

X
+

∑
i>1

ρik
σi

σk

πi. (18)

where the right side is a risk exposure with respect to Wk found by induction.

If there is a liquid stock with a negligible correlation with stock 1 then approximation (18)

for this stock deteriorates. We notice however that even if the number of the latter stocks is

significant, approximation (18) could be reasonable and used for all liquid stocks. As long as

the last claim is correct we can write expression (18) for all k = 2, ..., n to provide us n− 1

equations for unknown π1, ..., πn. The resulting nonhomogeneous system of equations can be

solved by using the Kramer method.

Finally, let us consider the market with arbitrage opportunities. We assume that such

opportunities are never available if only liquid securities are traded. Therefore, arbitrage

strategy should involve a nontrivial position in the illiquid stock. Moreover, the essence of

this strategy remains the same regardless of the number of available liquid stocks: for a

given position in the illiquid stock, an investor takes an exactly offsetting position in liquid

stocks plus an additional position in the latter stocks providing him a desired risk exposure.
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Consequently, we assume that the total number of available stocks is n + 1 and liquid stock

n+1 has a perfect correlation with illiquid stock 1, while their conditional Sharpe ratios are

different. As above, the covariance matrix of returns of first n stocks is non-degenerate. In

this market, u1 and πn+1 are similar to u1 and π2 in Section 3.3, while allocations π2, ..., πn

are similar to those in the market without arbitrage opportunities. Therefore, one can use

the above approach to analytically estimate π2, ..., πn+1.

The results of this section allow us to conclude that, as long as the fraction of illiquid

stocks in the market is noticeable, a lot of intuition about optimal trading of illiquid and

liquid stocks can be learned from our analysis of this trading of only two stocks one of which

is illiquid.

5 Conclusion

We analyze the optimal behavior of an investor who trades a lot of liquid as well as a lot

of illiquid individual stocks. We assume that these stocks can be aggregated into n − 1

(n ≥ 2) liquid stocks and one illiquid stock. We find that the role of the illiquid stock is

likely to remain significant even if the number of liquid stocks is very large. Therefore, a lot

of intuition about portfolio rules in the market with multiple liquid stocks can be learned

from the analysis of these rules in the market with only one liquid and one illiquid stock.

The rest of conclusions is related to this market.

We find that holdings of both risky securities will be considerably different from those

where both stocks are liquid, even if the two stocks are independent. In addition, the trading

rate of the illiquid stock increases versus that in the market with only one illiquid stock. If

there is a significant correlation between the two stocks and the illiquid stock holdings are

small, then an investor always reduces his allocations to the liquid stock to the ones in

the market with one liquid stock. If his holdings of the illiquid stock are too high, he

adjusts these allocations to decrease cumulative volatility. In particular, if there is a positive

correlation between the two stocks, then an investor can take a short position in the liquid

stock, even if a perfectly liquid case assumes this position to be significantly positive. If two

stocks are independent, then the above effects are present but may be less pronounced. The

given adjustments in positions of liquid stock decrease diversification of the stocks. If the

correlation between the two stocks is significant (which is likely to be the case), then the

position in liquid stock can be estimated from such a position in the market with only a

liquid stock.

In the special case where the two traded stocks have perfect correlation, we uncover the

story of limits to arbitrage: an investor considers arbitrage opportunities on an equal basis

with other investment opportunities and takes a risky position in their presence.
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Appendix A

In this appendix we formulate the HJB equation to be solved for the indirect utility function

when an investor trades a liquid bond and stock, and one illiquid stock. The analysis is

conducted for an arbitrary positive degree of convexity ε.

The value function V (t, S1, X, N1) of an investor solves the following PDE

max
u1,π2∈R2

{
Vt +

[
1

2
(N1S1σ1)

2 + ρN1S1π2Xσ1σ2 +
1

2
(π2Xσ2)

2

]
VXX +

1

2
σ2

1S
2
1VS1S1

+ (N1S1σ1 + ρπ2Xσ2)σ1S1VXS1 + µ1S1VS1 + u1VN1 (A-1)

+

[
rX + N1S1(µ1 − r) + π2X(µ2 − r)− α|u1|1+ε

]
VX

}
= 0,

V (T, S1, X,N1) = X1−γ/(1− γ).

The first–order condition implies

u1 =
VN1

|VN1|
( |VN1|

α(1 + ε)VX

) 1
ε

, (A-2)

Result (A-2) provides expression (15) if we replace ε with 1. Finding optimal proportion π2

is straightforward. When optimal u1 and π2 are substituted into equation (A-1), we find:

Vt +
1

2
(N1S1σ1)

2VXX +
1

2
σ2

1S
2
1VS1S1 + N1S

2
1σ

2
1VXS1 + µ1S1VS1 + [rX + N1S1(µ1 − r)]VX

− [VX(µ2 − r) + (VXXN1S1 + VXS1S1)ρσ1σ2]
2

2VXXσ2
2

+ ε

( |VN1|
α(1 + ε)VX

) 1
ε

|VN1| = 0, (A-3)

where z+ is a positive part of variable z.

Equation (A-3) can be solved only numerically. Since this equation is highly nonlinear,

standard existence and uniqueness results for its solution do not apply. Therefore, we simply

assume that the solution exists and that it is unique. Moreover, we assume that our numerical

solution converges uniformly to the true solution in the limit of infinitely small space (and

so time) increments.

Appendix B

In this appendix we show that arbitrage opportunities in the economy with a bond and

two stocks one of which is illiquid are possible only if ρ = 1 and ∆ 6= 0 or if ρ = −1 and
µ1−r

σ1
6= −µ2−r

σ2
.

Indeed, if ρ = 1, thenW1 and W2 are identical and we can make the volatility of the

portfolio to be zero by setting π2 = −σ1

σ2

N1S1

X
. Consequently, equation (6) becomes

dXt = {rXt + N1tS1tσ1∆− α|u1t|1+ε}dt. (B-1)
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If the allocation N1 has the same sign as ∆, the portfolio return can be made locally riskless

and higher than r, because an investor can choose u to be arbitrarily small. Assuming that

an investor can be in a state where N1 and ∆ have the same sign, we find access to arbitrage

opportunities. If ∆ = 0, then the locally riskless rate of portfolio growth is r − α|u|1+ε

X
≤ r

and no arbitrage is available. The proof for ρ = −1 is similar. Finally, if −1 < ρ < 1, then

the portfolio with stocks cannot be made locally riskless and arbitrage will not be available.
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Table 1: Optimal trading of illiquid stock market

α = 0.1 α = 0.002
NS/X
0.020
0.250
0.500
0.748
0.752
0.850
0.925
1.000

u U ∆l

0.139 -0.9883 0.0431
0.094 -0.9773 0.0145
0.047 -0.9702 0.0031
0.0003 -0.9680 0.0000
-0.0001 -0.9680 0.0000
-0.018 -0.9683 0.0003
-0.032 -0.9690 0.0014
-0.046 -0.9702 0.0031

u U ∆l

3.113 -0.9771 0.0141
2.134 -0.9722 0.0060
1.072 -0.9690 0.0013
0.006 -0.9680 0.0000
-0.003 -0.9680 0.0000
-0.413 -0.9681 0.0001
-0.731 -0.9684 0.0005
-1.044 -0.9689 0.0013

The table reports optimal trading rate u, expected utility function U , and liquidity premium ∆l when
γ = 2, µ = 0.07, σ = 0.2, r = 0.01, T = 1, and t = 0, S = 0.5, X = 1.0, so π̂ = 0.75, and Ū = −0.9680.

Table 2: Optimal trading of two stocks when ρ = 0

α = 0.1 α = 0.002
N1S1/X

0.020
0.250
0.500
0.748
0.751
0.850
0.925
1.000

u1 π2 U ∆l1

0.140 0.751 -0.9661 0.0426
0.095 0.755 -0.9554 0.0145
0.048 0.750 -0.9485 0.0032
0.0004 0.737 -0.9465 0.0000
-0.0001 0.737 -0.9465 0.0000
-0.019 0.729 -0.9467 0.0006
-0.033 0.723 -0.9475 0.0016
-0.047 0.715 -0.9487 0.0032

u1 π2 U ∆l1

3.124 0.752 -0.9552 0.0141
2.141 0.752 -0.9504 0.0061
1.084 0.749 -0.9473 0.0015
0.007 0.743 -0.9465 0.0000
-0.010 0.743 -0.9465 0.0000
-0.433 0.740 -0.9466 0.0004
-0.740 0.737 -0.9468 0.0007
-1.063 0.734 -0.9473 0.0015

The table reports optimal policies u1, π2, expected utility function U , and the liquidity premium ∆l1, when
γ = 2, µ1 = µ2 = 0.07, σ1 = σ2 = 0.2, ρ = 0, r = 0.01, T = 1, and t = 0, S1 = 0.5, X = 1.0, so
π̂1 = π̂2 = 0.75, Umax = −0.9465, and Umin = −0.9680.
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Table 3: Optimal trading of two stocks when ρ = 0 and T = 5

σ1 = 0.2 σ1 = 0.3
N1S1/X

0.020
0.250
0.330
0.336
0.500
0.748
0.752
0.850
0.925
1.000

u1 π2 U ∆l1

0.363 0.767 -0.8002 0.0161
0.261 0.767 -0.7758 0.0059
0.219 0.765 -0.7693 0.0035
0.218 0.765 -0.7692 0.0035
0.131 0.751 -0.7600 0.0001
0.0002 0.714 -0.7596 0.0000
-0.0005 0.713 -0.7596 0.0000
-0.054 0.692 -0.7599 0.0001
-0.094 0.674 -0.7607 0.0003
-0.134 0.654 -0.7651 0.0016

u1 π2 U ∆l1

0.340 0.750 -0.8240 0.0127
0.073 0.748 -0.8087 0.0001
0.001 0.739 -0.8086 0.0000
-0.002 0.739 -0.8086 0.0000
-0.132 0.712 -0.8122 0.0021
-0.336 0.648 -0.8327 0.0216
-0.340 0.647 -0.8333 0.0222
-0.425 0.620 -0.8485 0.0486
-0.491 0.599 -0.8632 NA
-0.550 0.572 -0.8810 NA

The table reports optimal policies u1, π2, expected utility function U , and the liquidity premium ∆l1,
when α = 0.1, γ = 2, µ1 = µ2 = 0.07, σ2 = 0.2, ρ = 0, r = 0.01, T = 5, and t = 0, S1 = 0.5, X = 1.0, so
π̂2 = 0.75, Umin = −0.8500, while π̂1 = 0.75, Umax = −0.7596 for σ1 = 0.2, and π̂1 = 0.333, Umax = −0.8086
for σ1 = 0.3.

Table 4: Optimal trading of two stocks when ρ = 0.5, T = 1 and σ1 = 0.2

α = 0.1 α = 0.002
N1S1/X

0.020
0.250
0.498
0.502
0.750
0.850
0.925
1.000

u1 π2 U Φρ

0.069 0.740 -0.9671 0.750
0.035 0.626 -0.9623 0.751
0.0003 0.500 -0.9608 0.749
-0.0002 0.498 -0.9608 0.749
-0.035 0.370 -0.9623 0.745
-0.048 0.318 -0.9640 0.743
-0.059 0.279 -0.9657 0.741
-0.069 0.240 -0.9677 0.740

u1 π2 U Φρ

1.750 0.740 -0.9639 0.750
0.924 0.626 -0.9615 0.751
0.012 0.500 -0.9608 0.749
-0.001 0.498 -0.9608 0.749
-0.901 0.372 -0.9615 0.747
-1.274 0.320 -0.9624 0.745
-1.543 0.282 -0.9632 0.744
-1.813 0.243 -0.9642 0.742

The table reports optimal policies u1, π2, and expected utility function U when γ = 2, µ1 = µ2 = 0.07, σ1 =
σ2 = 0.2, ρ = 0.5, r = 0.01, T = 1, and t = 0, S1 = 0.5, X = 1.0, so π̂1 = π̂2 = 0.5, Umax = −0.9608, and
Umin = −0.9680.
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Table 5: Optimal trading of two stocks.

ρ = 0.8, σ1 = 0.2, ρ = 0.5, σ1 = 0.3
N1S1/X

0.020
0.110
0.112
0.250
0.417
0.419
0.500
0.750
0.850
0.925
1.000

u1 π2 U
0.027 0.734 -0.9676
0.021 0.661 -0.9667
0.021 0.659 -0.9667
0.011 0.550 -0.9659
0.0001 0.417 -0.9656
-0.0001 0.416 -0.9656
-0.006 0.350 -0.9657
-0.022 0.151 -0.9669
-0.029 0.071 -0.9680
-0.034 0.012 -0.9690
-0.039 -0.047 -0.9701

u1 π2 U
0.028 0.735 -0.9676
0.0001 0.668 -0.9672
-0.0006 0.666 -0.9672
-0.042 0.563 -0.9683
-0.090 0.438 -0.9729
-0.091 0.436 -0.9729
-0.114 0.375 -0.9765
-0.184 0.187 -0.9927
-0.212 0.112 -1.0016
-0.232 0.056 -1.0092
-0.254 -0.001 -1.0181

The table reports optimal policies u1, π2, and expected utility function U when α = 0.1, γ = 2, µ1 =
µ2 = 0.07, σ2 = 0.2, r = 0.01, T = 1, and t = 0, S1 = 0.5, X = 1.0. The other parameters are
shown at the top of columns 2 and 3. Umax = −0.9656, Umin = −0.9680, π̂1 = π̂2 = 0.417, and
Umax = −0.9672, Umin = −0.9680, π̂1 = 0.111, π̂2 = 0.667 in the setting of the second and third columns,
respectively.

Table 6: Optimal trading of two stocks when ρ = 1

α = 0.1 α = 0.002
N1

-2.500
-2.000
-1.500
-1.000
-0.500
0.000
0.500
1.000
1.500
2.000
2.500

u1 π2 Φ
-0.096 1.992 0.742
-0.096 1.742 0.742
-0.096 1.494 0.744
-0.095 1.246 0.746
-0.095 0.998 0.748
-0.094 0.750 0.750
-0.094 0.502 0.752
-0.094 0.254 0.754
-0.093 0.006 0.756
-0.093 -0.242 0.758
-0.092 -0.492 0.758

u1 π2 Φ
-4.892 1.984 0.734
-4.872 1.734 0.734
-4.853 1.488 0.738
-4.834 1.239 0.739
-4.810 0.993 0.741
-4.793 0.743 0.743
-4.774 0.495 0.745
-4.751 0.247 0.747
-4.724 -0.003 0.747
-4.701 -0.249 0.749
-4.682 -0.499 0.751

The table reports optimal policies u1, π2, and risk exposure Φ when γ = 2, µ1 = 0.03, µ2 = 0.07, σ1 = σ2 =
0.2, ρ = 1, r = 0.01, T = 1, and t = 0, S1 = 0.5, X = 1.0.
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Table 7: Optimal trading in illiquid market with multiple liquid stocks

n = 5 n = 10 n = 25
N1S1/X

0.020
0.250
0.500
0.597
0.600
0.693
0.697
0.723
0.727
0.850
1.000

u1 πi ∆l1

0.142 0.751 0.0391
0.094 0.755 0.0135
0.044 0.750 0.0027
0.025 0.746 0.0010
0.025 0.746 0.0009
0.006 0.740 0.0002
0.006 0.740 0.0002
0.0003 0.738 0.0001
-0.0001 0.738 0.0001
-0.024 0.728 0.0009
-0.053 0.714 0.0043

u1 πi ∆l1

0.144 0.752 0.0265
0.093 0.755 0.0115
0.040 0.750 0.0022
0.020 0.745 0.0007
0.019 0.745 0.0007
0.0001 0.739 0.0002
-0.0001 0.739 0.0002
-0.006 0.737 0.0003
-0.007 0.737 0.0003
-0.032 0.727 0.0015
-0.063 0.711 0.0054

u1 πi ∆l1

0.154 0.754 0.0178
0.090 0.757 0.0060
0.025 0.750 0.0008
0.0004 0.744 0.0004
-0.0005 0.744 0.0004
-0.023 0.736 0.0008
-0.024 0.736 0.0008
-0.031 0.734 0.0011
-0.032 0.734 0.0011
-0.061 0.721 0.0033
-0.097 0.704 0.0090

The table reports optimal policies u1, πi, i = 2, ..., n, and liquidity premium ∆l1 when α = 0.1, γ = 2, µ1 =
µ2 = ... = µn = 0.07, σ1 = σ2 = ... = σn = 0.2, r = 0.01, T = 1, so π̂1 = π̂2 = ... = π̂n = 0.75. The other
variables are fixed at t = 0, S1 = 0.5, X = 1.0 and the covariance matrix of stock returns is diagonal.

Table 8: Optimal trading in illiquid market with multiple liquid stocks at different
T ’s

T = 1 T = 3 T = 5
N1S1/X

0.020
0.250
0.503
0.506
0.600
0.603
0.693
0.697
0.850
1.000

u1 πi ∆l1

0.144 0.752 0.0265
0.093 0.755 0.0115
0.039 0.750 0.0021
0.038 0.749 0.0021
0.019 0.744 0.0006
0.018 0.744 0.0006
0.0001 0.739 0.0002
-0.0001 0.739 0.0002
-0.032 0.727 0.0015
-0.063 0.711 0.0054

u1 πi ∆l1

0.335 0.761 0.0158
0.198 0.763 0.0057
0.056 0.743 0.0010
0.055 0.743 0.0010
0.001 0.731 0.0006

-0.0004 0.730 0.0006
-0.050 0.715 0.0009
-0.052 0.714 0.0009
-0.136 0.681 0.0032
-0.219 0.642 0.0078

u1 πi ∆l1

0.512 0.764 0.0096
0.304 0.765 0.0038
0.002 0.751 0.0008
-0.001 0.750 0.0008
-0.079 0.729 0.0011
-0.081 0.728 0.0011
-0.114 0.703 0.0018
-0.115 0.702 0.0019
-0.150 0.660 0.0034
-0.277 0.621 0.0080

The table reports optimal policies u1, πi, i = 2, ..., 10, and liquidity premium ∆l1 when n = 10, α = 0.1, γ =
2, µ1 = µ2 = ... = µ10 = 0.07, σ1 = σ2 = ... = σ10 = 0.2, r = 0.01, T = 1, so π̂1 = π̂2 = ... = π̂10 = 0.75.
The other variables are fixed at t = 0, S1 = 0.5, X = 1.0 and the covariance matrix of stock returns is
diagonal.
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