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Abstract

Recent asset pricing models of limits to arbitrage emphasize the role of funding conditions
faced by financial intermediaries. In the US, the repo market is the key funding market. Then, the
premium of on-the-run U.S. Treasury bonds should share a common funding liquidity component
with risk premia in other markets. We identify and measure the value of funding liquidity from
the cross-section of on-the-run bond premia by adding a liquidity factor to an arbitrage-free term
structure model. We find that an increase in the value of liquidity predicts lower risk premia for
on-the-run and off-the-run bonds but higher risk premia on LIBOR loans, swap contracts and cor-
porate bonds. Moreover, the impact is large and pervasive through crisis and normal times. We
check the interpretation of this funding liquidity factor. It varies with measures of monetary aggre-
gates, measures of bank reserves, S&P500 valuation ratios and aggregate uncertainty. It also varies
with transaction costs on the Treasury market. Conditions on funding markets have a first-order
impact on interest rates.

JEL Classification: E43, H12.

We thank Greg Bauer, Antonio Diez, Darrell Duffie, Thierry Foucault, Francis Longstaff, Albert Menkveld, Neil
D. Pearson, Monika Piazzesi, Robert Rasche, Jose Sheinkman, participants at the Econometric Society Summer
Meeting (2007) and European Meeting (2007), Canadian Economic Association Annual Meeting (2007), International
Symposium on Financial Engineering and Risk Management (2007) in Beijing, the Risk Management Institute (2009)
in Singapore, University of Lugano (2009), University of Piraeus (2009), University College Dublin (2009), FIRS
(2009), WFA (2009) and EFA (2009). The first author gratefully acknowledges support from the IFM2 and the
Banque Laurentienne. The second author is a research fellow at CIRANO and CIREQ. He gratefully acknowledges
support from FQRSC, SSHRC, MITACS, Hydro-Québec, and the Bank of Canada.
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“... a part of the interest paid, at least on long-term securities, is to be attributed to
uncertainty of the future course of interest rates.”
(p.163)

“... the imperfect ’moneyness’ of those bills which are not money [...] causes the trouble
of investing in them and [causes them] to stand at a discount.”
(p.166)

“... In practice, there is no rate so short that it may not be affected by speculative
elements; there is no rate so long that it may not be affected by the alternative use of
funds in holding cash.”
(p.166)

John R. Hicks, Value and Capital, 2nd edition, 1948.

Introduction

Bond traders know very well that liquidity affects asset prices. One prominent case is the on-the-
run premium, whereby the most recently issued (on-the-run) bonds sell at a premium relative to
seasoned (off-the-run) bonds with similar coupons and maturities. Moreover, systematic variations
in liquidity sometimes drive interest rates across several markets. A case in point occurred around
the Federal Open Market Committee [FOMC] decision, on October 15, 1998, to lower the Federal
Reserve funds rate by 25 basis points. In the meeting’s opening, Vice-Chairman McDonough, of
the New York district bank, noted increases in the spread between the on-the-run and the most
recent off-the-run 30-year Treasury bonds (0.05% to 0.27%), the spreads between the rate on the
fixed leg of swaps and Treasury notes with two years and ten years to maturity (0.35% to 0.70%,
and 0.50% to 0.95%, respectively), the spreads between Treasuries and investment-grade corporate
securities (0.75% to 1.24%), and finally between Treasuries and mortgage-backed securities (1.10%
to 1.70%). He concluded that we were seeing a run to quality and a serious drying up of liquidity1.
These events attest to the sometimes dramatic impact of liquidity seizures2.

A common explanation for these seizures the more recent market turmoil is based on a common
wealth shock to capital-constrained intermediaries or speculators (Shleifer and Vishny (1997), Kyle
and Xiong (2001), Gromb and Vayanos (2002)). Intuitively, lower wealth hinders the ability to
pursue quasi-arbitrage opportunities across markets. In practice, Adrian and Shin (2008) show
that the repo market is the key market where investment banks, hedge funds and other speculators

1Minutes of the Federal Open Market Committee, October 15, 1998 conference call. See
http://www.federalreserve.gov/Fomc/transcripts/1998/981015confcall.pdf.

2The liquidity crisis of 2007-2008 provides another example. Facing sharp increases of interest rate spreads in most
markets, the Board approved reduction in discount rate, target Federal Funds rate as well as novel policy instruments
to deal with the ongoing liquidity crisis.
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obtain the marginal funds for their activities and manage their leveraged exposure to risk and,
incidentally, the level of liquidity they provide (see Figure 3.5 in Adrian and Shin (2008)).3 Then,
the risk premia for each market where a common set liquidity providers operate share a component
linked to conditions in the funding market (Brunnermeier and Pedersen (2008), Krishnamurthy
and He (2008)). This paper looks precisely at the implication that tightness of funding conditions
in repo markets should be reflected in risk premia across financial markets.

Our main contribution is to show that the value of funding liquidity is an aggregate risk factor
that drives a substantial share of risk premia across interest rate markets.4 In particular, we
document large variations in the liquidity premium of U.S. Treasury bonds. We show that the
risk premium of U.S. Treasury bonds decreases substantially when funding conditions are tighter.
On the other hand, tight funding conditions raise the risk premium implicit in LIBOR rates, swap
rates and corporate bond yields. This pattern is consistent with accounts of flight-to-quality but
the relationship is pervasive even in normal times. Different securities serve, in part and to varying
degrees, to fulfill investors uncertain future needs for cash.

These results raise the all important issue of identifying macroeconomic drivers of our liquidity
factor. Can we characterize the aggregate liquidity premium in terms of economic state variables?
In particular, can we link our measure, based on on-the-run premium of traded bonds, to measures
of liquidity or of conditions on funding markets? First, we find that variations of non-borrowed
reserves of commercial banks at the Fed are negatively related to variations of the liquidity factor.
Similarly, increases in the rate of growth of M2, which include savings deposits, time deposits and
money market deposit accounts are associated with decreases of the liquidity factor. In other words,
the value of funding liquidity decreases, and liquidity premia decrease across markets, when the
supply of funds to intermediaries is more ample. This accords with Brunnermeier and Pedersen
(2008). Second, we find that the value of funding liquidity increases, and liquidity premia increase,
when aggregate wealth is lower or when aggregate uncertainty is higher. This is consistent with a
more general limits-to-arbitrage literature (see e.g. He and Krishnamurthy (2007), Gârleanu and
Pedersen (2009)) whereas intermediaries operate closer to their borrowing, or funding, constraints
when aggregate conditions deteriorate reducing their ability to provide liquidity services. Finally,
our liquidity factor also varies with measures of transaction costs on the bond market. In particular,
it increases when the bid-ask spread of on-the-run bonds is lower than the bid-ask spread of other,
older, bonds.

Jointly, the evidence across markets is hard to reconcile with theories based on variations of
default probability, inflation, or the real interest rate and their associated risk premia. In contrast,
we add considerable evidence for the importance of intermediation frictions in asset pricing. Note
that, conditional on variations of monetary aggregates, the funding factor shows no significant

3This figure shows a clear positive relationship between annual growth in total assets and annual growth in repo
positions and other collateral financing by six primary dealers over the period 1991:Q1-2008:Q1.

4Whether funding liquidity affects the risk premium in the stock market is beyond the scope of this paper.
Nonetheless, preliminary work in in the context of conditional CAPM models suggests that the price of market risk
increases significantly when the funding liquidity factor increases.
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relationship with measures of inflation and of real activity. While these variables are crucial, in
the context of term structure models, for modeling interest rate dynamics, the evidence presented
here shows that funding liquidity, in itself, is an important component of observed term premia.
In particular, the link between the funding factor and monetary aggregates shows that the Federal
Reserve can affect asset prices through its influence on the supply of funds to intermediaries in
different funding markets. This impact on term premia, as well as LIBOR, swap and corporate
spreads, is observed whether the Fed influences funding conditions incidentally through its endoge-
nous response to inflation and real activity, or directly through its explicit or implicit support to
the financial system.

We introduce liquidity as an additional factor in an otherwise standard term structure model.
Indeed, the modern term structure literature has not recognized the importance of aggregate liquid-
ity for government yields. We extend the no-arbitrage dynamic term structure model of Christensen
et al. (2007) [CDR, hereafter] allowing for liquidity5 and we extract a common factor driving on-
the-run premia across maturities. Identification of the liquidity factor is obtained by estimating
the model from a panel of pairs of U.S. Treasury securities where each pair has similar cash flows
but different ages. This sidesteps credit risk issues and delivers direct estimates of funding liquidity
value: it isolates price differences that can be attributed to liquidity. A recent empirical literature
suggests that market liquidity is priced on bond markets6 but these empirical investigations are
limited to a single market. Moreover, none considers the role of funding constraints or funding
liquidity.

We estimate the model and obtain a measure of funding liquidity value from a sample of end-of-
month bond prices running from December 1985 until the end of 2007.7 Hence, our results cannot
be attributed to the extreme influence of 2008. In a concluding section, we repeat the estimation
including 2008 and find that the importance of funding liquidity increases. Our empirical findings
can be summarized as follows. Panel (a) of Figure 2 presents the measure of funding liquidity value.
Clearly, it exhibits significant variations through normal and crisis periods. In particular, the stock
crash of 1987, the Mexican Peso devaluation of December 1994, the LTCM failure of 1998 and the
recent liquidity crisis are associated with peaks in investors’ valuation of the funding liquidity of
on-the-run bonds. The relationship with the risk premium of government bonds is illustrated in
Figure 3. Panel (a) compares the funding liquidity factor with annual excess returns on a 2-year
to maturity off-the-run bond. Clearly, an increase in the value of liquidity predicts lower expected
excess returns and, thus, higher current bond prices. For that maturity, a one-standard deviation
shock to liquidity predicts a decrease in excess returns of 85 basis points [bps] compared to an

5This model captures parsimoniously the usual level, slope and curvature factors, while delivering good in-sample
fit and forecasting power. Moreover, the smooth shape of Nelson-Siegel curves identifies small deviations, relative to
an idealized curve, which may be caused by variations in market liquidity.

6See Longstaff (2000) for evidence that liquidity is priced for short-term U.S. Treasury security and Longstaff
(2004) for U.S. Treasury bonds of longer maturities. See Collin-Dufresne et al. (2001), Longstaff et al. (2005),
Ericsson and Renault (2006), Nashikkar and Subrahmanyam (2006) for corporate bonds.

7A significant tax premium cannot be disentangled from the on-the-run premium using bond ages in the earlier
period. See Section B.
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average excess returns of 69 bps. We obtain similar results using different maturities or investment
horizons. Intuitively, while an off-the-run bond may be less liquid relative to an on-the-run bond
with similar characteristics, it is still viewed as a liquid substitute. In particular, it can still be
quickly converted into cash, at low cost, via the funding market.

Next, we consider the predictive power of funding liquidity for the risk premium on short-
term Eurodollar loans. Panel (b) of Figure 3 shows that variations of LIBOR excess returns are
positively linked to variations of funding liquidity. The relationship is significant, both statistically
and economically. Consider excess returns from borrowing at the risk-free rate for 12 months
and rolling a 3-month LIBOR loans. On average, returns from this strategy are not statistically
different from zero since the higher term premium on the borrowing leg compensates for the 3-
month LIBOR spread earned on the lending leg. However, following a one-standard deviation
shock to the funding liquidity factor, rolling excess returns increase by 42 bps. We reach similar
conclusions using LIBOR spreads as ex-ante measures of risk premium. The effect of funding
liquidity also extends to swap markets. Panel (d) compares the liquidity factor with the spread,
above the par Treasury yield, of a swap contract with 5 years to maturity. We find that a shock
to funding liquidity predicts an increase of 6 bps the 5-year swap spread. This is economically
significant given the higher sensitivity (i.e. duration) of this contract value to changes in yields. In
each regression, we control for variations in the level and shape of the term structure of Treasury
yields. The marginal contribution of liquidity to the predictive power is high.

Finally, we consider a sample of corporate bond spreads from the National Association of
Insurance Commissioners (NAIC). We find that the impact of liquidity is significant and follows a
flight-to-quality pattern across ratings. For bonds of the highest credit quality, spreads decrease,
on average, following a shock to the funding liquidity factor. In contrast, spreads of bonds with
lower ratings increase. We also compute excess returns on AAA, AA, A, BBB and High Yield
Merrill Lynch corporate bond indices (see Figure 4) and reach similar conclusions. Bonds with
high credit ratings were perceived to be liquid substitutes to government securities and offered
lower risk premium following increases of the liquidity factor. This corresponds to an average effect
through our sample, the recent events suggests that this is not always the case.

A few empirical papers document the effects of intermediation constraints on risk premium in
specific markets8 but we differ in significant ways from existing work. First, we measure the effect
of intermediation constraints directly from observed prices rather than quantities. Prices aggregate
information about and anticipations of intermediaries wealth, their portfolios and the margins
they face. Prices also aggregate information about other aspects of liquidity such as the level and
variability of market depth and transaction costs. Second, we also differ by studying a cross-section
of money-market and fixed-income securities, providing evidence that funding constraints should
be thought as an aggregate risk factor driving liquidity premia across markets.

8See Froot and O’Connell (2008) for catastrophe insurance, Gabaix et al. (2009) for mortgage-backed securities,
Gârleanu et al. (2009) for index options, Adrian et al. (2009) for exchange rates and Hameed et al. (2008) for equities.
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We introduce a measure of funding liquidity value based on the higher valuation of on-the-run
bonds relative to off-the-run bonds .9 The on-the-run liquidity premium was first documented by
Warga (1992). Amihud and Mendelson (1991) and, more recently, Goldreich et al. (2005) confirm
the link between the premium and expected transaction costs. Duffie (1996) provides a theoretical
channel between on-the-run premia and lower financing costs on the repo market. Vayanos and
Weill (2006) extend this view and model search frictions in both the repo and the cash markets
explicitly.10 The key frictions differentiating bonds with identical cash flows lies in their segmented
funding markets. The link between the repo market and the on-the-run premium has been confirmed
empirically. (See Jordan and Jordan (1997), Krishnamurthy (2002), Buraschi and Menini (2002)
and Cheria et al. (2004).)

We differ from the modern term structure literature in two significant ways. First, the latter
focuses almost exclusively on bootstrapped zero-coupon yields11. This approach is convenient
because a large family of models delivers zero-coupon yields which are linear in the state variables
(see Dai and Singleton (2000)). However, we argue that pre-processing the data wipes out the
most accessible evidence on liquidity, that is the on-the-run premium. Therefore, we use coupon
bond prices directly. However, the state space is no longer linear and we handle non-linearities
with the Unscented Kalman Filter [UKF], an extension of the Kalman Filter for non-linear state-
space systems (Julier et al. (1995) and Julier and Uhlmann (1996)). We first estimate a model
without liquidity and, notwithstanding differences in data and filtering methodologies, our results
are consistent with CDR. However, pricing errors in this standard term structure model reveals
systematic differences within pairs, correlated with ages. Estimation of the model with liquidity
produces a persistent factor capturing differences between prices of recently issued bonds and prices
of older bonds. The on-the-run premium increases with maturity but decays with the age of a bond.
These new features complete our contributions to the modeling of the term structure of interest
rates in the presence of a liquidity factor.

We also differ from the recent literature using a reduced-form approach that model a convenience
yield in interest rate markets (Duffie and Singleton (1997)). A one-factor model of the convenience
yield cannot match the pattern of on-the-run premia across maturities. Moreover, the link between
the premium and the age of a bond cannot be captured in a frictionless arbitrage-free model. Still,
Grinblatt (2001) argues that the convenience yields of U.S. Treasury bills can explain the U.S. Dollar
swap spread. Recently, Liu et al. (2006) and Fedlhütter and Lando (2007) evaluate the relative
importance of credit and liquidity risks in swap spreads. Other empirical investigations are related

9The U.S Treasury recognizes and takes advantages of this price differential: “In addition, although it is not a
primary reason for conducting buy-backs, we may be able to reduce the government’s interest expense by purchasing
older, “off-the-run” debt and replacing it with lower-yield “on-the-run” debt.” [Treasury Assistant Secretary for
financial markets Lewis A. Sachs, Testimony before the House Committee on Ways and Means].

10Kiyotaki and Wright (1989) introduced search frictions in monetary theory and Shi (2005) extends this framework
to include bonds. See Shi (2006) for a review. Search frictions offer a rationalization of the on-the-run premium and
of the spreads between bid and ask prices quoted by market intermediaries. See Duffie et al. (2005) and the discussion
therein.).

11The CRSP data set of zero-coupon yields is the most commonly used. It is based on the bootstrap method of
Fama and Bliss (1987) [FB].
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to our work. Jump risk (Tauchen and Zhou (2006)) or the debt-gdp ratio (Krishnamurthy and
Vissing-Jorgensen (2007)) have been proposed to explain the non-default component of corporate
spreads. Finally, Pastor and Stambaugh (2003) and Amihud (2002) provide evidence of a liquidity
risk factor in expected stock returns.

The link between interest rates and aggregate liquidity is supported elsewhere in the theoretical
literature. Svensson (1985) uses a cash-in-advance constraint in a monetary economy. Bansal and
Coleman (1996) allow government bonds to back checkable accounts and reduced transaction costs
in a monetary economy. Luttmer (1996) investigates asset pricing in economies with frictions and
shows that with transaction costs (bid-ask spreads) there is in general little evidence against the
consumption-based power utility model with low risk-aversion parameters. Holmström and Tirole
(1998) introduce a link between the liquidity demand of financially constrained firms and asset
prices. Acharya and Pedersen (2005) propose a liquidity-adjusted CAPM model where transaction
costs are time-varying. Alternatively, Vayanos (2004) takes transactions costs as fixed but intro-
duces the risk of having to liquidate a portfolio. Lagos (2006) extends the search friction argument
to multiple assets: in a decentralized exchange, agents with uncertain future hedging demand prefer
assets with lower search costs.

The rest of the paper is organized as follows. The next section presents the model and section II
describes the data. Note that the state-space representation of the model, the filtering method
and the construction of the likelihood are presented in the Appendices. We report estimation
results for models with and without liquidity in Section III. Section IV evaluates the information
content of liquidity for excess returns and interest rate spreads while Section V identifies economic
determinants of liquidity. Section VII concludes.

I A Term Structure Model With Liquidity

We base our model on the Arbitrage-Free Extended Nelson-Siegel [AFENS] model introduced in
CDR to which we add a liquidity factor that varies with the age and maturity of a bond. This
extension is consistent with the absence of arbitrage in an economy with frictions (Luttmer (1996)).
Finally, we contrast our approach with existing models that allow for liquidity through the specifi-
cation of an unobserved convenience yield.

A Term Structure Model

The term structure model of CDR belongs to the affine family (Duffie and Kan (1996)). All
the information relevant for the evolution of interest rates is summarized by 3 latent variables, Fi,t,
and the resulting zero-coupon yield curve is given by

y(Ft,m) = a(m) + F1,tb1(m) + F2,tb2(m) + F3,tb3(m), (1)

with loadings, bi(m), given in Figure 1. Details of the model are provided in Appendix A. In
particular, these loadings are the same as in the static Nelson-Siegel representation of forward rates
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(Nelson and Siegel (1987), NS hereafter) and this follows directly from the model assumptions.
Clearly, these smooth shapes lead to the usual interpretations of factors in terms of level, slope and
curvature.

Furthermore, the NS representation is parsimonious and robust to over-fitting. It delivers
performance in line with, or better than, other methods for pricing out-of-sample bonds in the cross-
section of maturities.12 Conversely, its smooth shape is useful to identify deviations of observed
yields from an idealized curve. In particular, this representation cannot fit on-the-run and off-the-
run bonds simultaneously.

A dynamic extension of the NS model, the Extended Nelson-Siegel model [ENS], was first
proposed by Diebold and Li (2006) and Diebold et al. (2006). Diebold and Li (2006) document
large improvements in long-horizon interest rate forecasting. They argue that the ENS model
performs better than the best essentially affine model of Duffee (2002) and point toward the model’s
parsimony to explain its successes. A persistent concern, though, was that the ENS model does not
enforce the absence of arbitrage. This is precisely the contribution of CDR. They derive the class of
continuous-time arbitrage-free affine dynamic term structure models with loadings that correspond
to the NS representation. Intuitively, an AFENS model corresponds to a canonical affine model in
Dai and Singleton (2000) where the loading shapes have been restricted through over-identifying
assumptions on the parameters governing the risk-neutral dynamics of latent factors. For our
purposes, imposing the absence of arbitrage restricts the model from fitting price differences that
are matched by differences in cash flows. Finally, CDR compare the ENS and AFENS models and
show that implementing these restrictions improves forecasting performances further.

B Coupon Bonds

Term structure models are usually not estimated from observed prices. Rather, coupon bond
prices are converted to forward rates using the bootstrap method. This is convenient since affine
term structure models deliver forward rates that are linear in state variables. Is is also thought to
be innocuous because bootstrapped forward rates achieve near-exact pricing of the original sample
of bonds. Unfortunately, this extreme fit means that a naive application of the bootstrap pushes
any liquidity effects and other price idiosyncracies into forward rates. Fama and Bliss (1987)
handle this sensitivity to over-fitting by excluding bonds with “large” price differences relative to
their neighbors.13 This approach is certainly justified for many of the questions addressed in the
literature, but it removes any evidence of large liquidity effects. Moreover, the FB data set focuses

12See Bliss (1997) and Anderson et al. (1996) for an evaluation of yield curve estimation methods.
13The CRSP data set of zero coupon yields is based on the approach proposed by Fama and Bliss. See also the

CRSP documentation for a description of this procedure. Briefly, a first filter includes a quote if its yield to maturity
falls within a range of 20 basis points from one of the moving averages on the 3 longer or the 3 shorter maturity
instruments or if its yield to maturity falls between the two moving averages. When computing averages, precedence
is given to bills when available and this is explicitly designed to exclude the impact of liquidity on notes and bonds
with maturity of less than one year. Amihud and Mendelson (1991) document that yield differences between notes
and adjacent bills is 43 basis point on average, a figure much larger than the 20 basis point cutoff. The second filter
excludes observations that cause reversals of 20 basis points in the bootstrapped discount yield function. The impact
of these filters has not been studied in the literature.
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on discount bond prices at annual maturity intervals. This smooths away evidence of small liquidity
effects remaining in the data and passed through to forward rates. These effects would be apparent
from reversals in the forward rate function at short maturity interval. Consider three quotes for
bonds with successive maturities M1 < M2 < M3. A relatively expensive quote at maturity M2

induces a relatively small forward rate from M1 to M2. However, the following normal quote with
maturity M3 requires a relatively large forward rate from M2 to M3. This is needed to compensate
the previous low rate and to achieve exact pricing as required by the bootstrap. However, the
reversal cancels itself as we sum intra-period forward rates to compute annual rates.

Instead of using smoothed data, we proceed from observed coupon bonds with maturity, say,
M and with coupons at maturities m = m1, . . . ,M . The price, Dt(m), of a discount bond with
maturity m, used to price intermediate payoffs, is given by

Dt(m) = exp
(−m(a(m) + b(m)T Ft)

)
m ≥ 0,

which follows directly from equation (8) but where we use vector notation for factors Ft and factor
loadings b(m). In a frictionless economy, the absence of arbitrage implies that the price of a coupon
bond equals the sum of discounted coupons and principal. That is, the frictionless price is

P ∗(Ft, Zt) =
M∑

m=m1

Dt(m)× Ct(m), (2)

where Zt includes (deterministic) characteristics relevant for pricing a bond. In this case, it includes
the maturity M and the schedule of future coupons and principal payments, Ct(m).

C Coupon Bonds In An Economy With Frictions

With a short-sale constraint on government bonds and a collateral constraint in the repo market,
Luttmer (1996) shows that the set of stochastic discount factors consistent with the absence of
arbitrage satisfies P ≥ P ∗. These constraints match the institutional features of the Treasury
market. An investor cannot issue new bonds to establish a short position. Instead, she must
borrow the bond on the repo market through a collateralized loan. Then, we model the price,
P (Ft, Lt, Zt), of any coupon bond with characteristics Zt as the sum of discounted coupons to
which we add a liquidity term,

P (Ft, Lt, Zn,t) =
Mn∑

m=1

Dt(m)× Cn,t(m) + ζ(Lt, Zn,t).

Here Zt also includes the age of the bond so that the premium varies across old and new bonds.
Note that the liquidity term should be positive to be consistent with Luttmer (1996).

Theoretically, Vayanos and Weill (2006) highlights the mechanisms linking the on-the-run pre-
mium to the short-sale constraint on government bonds and the collateral constraint in the repo
market (see also Duffie (1996)). They show that the combination of these constraints with search
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frictions on the repo market induces differences in funding costs that favor recently issued bonds.
Intuitively, the repo market provides the required heterogeneity between assets with identical pay-
offs. An investor cannot choose which bond to deliver to unwind a repo position; she must find and
deliver the same security she had originally borrowed. Because of search frictions, then, investors
are better off in the aggregate if they coordinate around one security to reduce search costs. In
practice, the repo rate is lower for this special issue to provide an incentive for bond holders to
bring their bonds to the repo market. Typically, recently issued bonds benefit from these lower
financing costs, leading to the on-the-run premium. Moreover, these bonds offer lower transaction
costs adding to the wedge between asset prices (Amihud and Mendelson (1986)). Empirically, both
channels seem to be at work although the effect of lower transaction costs appears weaker than the
effect of lower funding rates.14

Grouping observations together, and adding an error term, we obtain our measurement equation

P (Ft, Lt, Zt) = CtDt + ζ(Lt, Zt) + Ωνt, (3)

where Ct is the (N ×Mmax) payoffs matrix obtained from stacking the N row vectors of individual
bond payoffs and Mmax is the longest maturity group in the sample.15 Similarly, ζ(Lt, Zt) is a
N × 1 vector obtained by staking the individual liquidity premium. Dt is a (Mmax × 1) vector of
discount bond prices and the measurement error, νt, is a (N ×1) gaussian white noise uncorrelated
with innovations in state variables. The matrix Ω is assumed diagonal and its elements are a linear
function of maturity,

ωn = ω0 + ω1Mn,

which reduces substantially the dimension of the estimation problem. However, leaving the diagonal
elements of Ω unrestricted does not affect our results16.

D The Liquidity Premium

The liquidity premium applies to all bonds, old and new. Our specification is based on a latent
factor which drives the common dynamics but with loadings varying with the maturity and age of
each bond. The liquidity premium is given by

ζ(Lt, Zn,t) = Lt × βMn exp
(
−1

κ
agen,t

)
(4)

14Amihud and Mendelson (1991) and Goldreich et al. (2005) consider transaction costs. Jordan and Jordan (1997),
Krishnamurthy (2002) and Cheria et al. (2004) consider funding costs. See also, Buraschi and Menini (2002) for the
German bonds market.

15Shorter payoff vectors are completed with zeros.
16This may be due to the fact that the level factor explains most of yield variability. Its impact on bond prices is

linear in duration and duration is approximately linear in maturity, at least for maturities up to 10 years. Bid-ask
spreads increase with maturity and may also contribute to an increase in measurement errors with maturity.
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where aget is the age, in years, of the bond at time t. The parameter βM controls the average
on-the-run premium at each fixed maturity M . Warga (1992) documents the impact of age and
maturity on the average premium. We estimate β for a fixed set of maturities and the shape of β is
unrestricted between these maturities.17 Next, the parameter κ controls the on-the-run premium’s
decay with age. The gradual decay of the premium with age has been documented by Goldreich
et al. (2005). For instance, immediately following its issuance (i.e.: age = 0), the loading on the
liquidity factor is βM × 1. Taking κ = 0.5, the loading decreases by half within any maturity
group after a little more than 4 months following issuance : ζ(Lt, 4) ≈ 1

2ζ(Lt, 0)). While the
specification above reflects our priors about the impact of age and maturity, the scale parameters
are left unrestricted at estimation and we allow for a continuum of shapes for the decay of liquidity.
However, we fix β10 = 1 to identify the level of the liquidity factor with the average premium of a
just-issued 10-year bond relative to a very old bond with the same maturity and coupons.

Equation (3) shows that omitting the liquidity term will push the impact of liquidity into
pricing errors, possibly leading to biased estimators and large filtering errors. Alternatively, adding
a liquidity term amounts to filtering a latent factor present in pricing errors. However, Equation (3)
shows that this factor captures that part of pricing errors correlated with bond ages. Our maintained
hypothesis is that any such positive factor can be interpreted as a liquidity effect. Clearly, the
impact of age on the price of a bond can hardly be rationalized in a frictionless economy.

Intuitively, our specification delivers a discount rate function (i.e. SDF) consistent with off-the-
run valuation but remains silent on the linkage with the equilibrium stochastic discount factor.
Instead, we capture the impact of trading and funding frictions through the positive liquidity term.
Note that a more structural specification of the liquidity premium raises important challenges. In
particular, the on-the-run premium is a real arbitrage opportunity unless we explicitly consider the
costs of shorting the more expensive bond or, alternatively, the benefits accruing to the bondholder
from lower repo rates and search frictions. Moreover, a joint model of the term structure of repo
rates and of government yields may still not be free of arbitrage unless we also model the convenience
yield of holding short-term government securities. This follows from the observation that a Treasury
bill typically offers a lower yield than a repo contract with the same maturity.18

Notwithstanding these modeling challenges, theory suggests that using repo rates may improve
the identification of our premium. Unfortunately, this would restrict our analysis to a much shorter
sample. More importantly, it is unclear how differences in repo rates translate into differences
in yields and how other aspects of liquidity affect the on-the-run premium. Furthermore, general
collateral and special repo rates are only available for a limited term, typically shorter than the
period of time for which the current on-the-run bond is expected to remain special. Our strategy
bypasses these challenging considerations, which are beyond the scope of this paper, but still
uncovers the key element of funding liquidity.

17However, we impose that β0 = 0.
18These features are absent from the current crop of term structure models with the notable exception of Cheria

et al. (2004) who allow for a convenience yield, due to lower repo rates accruing to holders of an on-the-run issue.
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II Data

We use end-of-month prices of U.S. Treasury securities from the CRSP data set. Our sample covers
the period from January 1986 to December 2008. However, we estimate the model both with and
without 2008 data. Before 1986, interest income had a favorable tax treatment compared to capital
gains and investors favored high-coupon bonds. The resulting tax premium and the on-the-run
premium cannot be disentangled using bond ages in the earlier period. In that period, interest
rates rose steadily and recently issued bonds had relatively high coupons. Then, these recent issues
were priced at a premium both for their liquidity and for their tax benefits. Green and Ødegaard
(1997) document that the high-coupon tax premium mostly disappeared when the asymmetric
treatment of interest income and capital gains was eliminated following the 1986 tax reform.

The CRSP data set19 provides quotes on all outstanding U.S. Treasury securities. We filter
unreliable observations and construct bins around maturities of 3, 6, 9, 12, 18, 24, 36, 48, 60,
84 and 120 months.20 Then, at each date, and for each bin, we choose a pair of securities to
identify the on-the-run premium. First, we want to pick the on-the-run security if any is available.
Unfortunately, on-the-run bonds are not directly identified in the CRSP database. Instead, we use
time since issuance as a proxy and pick the most recently issued security in each maturity bin.
Second, we choose the security that most closely matches the bin’s maturity. Note that pinning
off-the-run securities at fixed maturities ensures a stable coverage of the term structure of interest
rates. Also, by construction, securities within each pair have the same credit quality and very close
times to maturity. We do not match coupon rates but coupon differences within pairs are low in
practice.

The most important aspect of our sample is that whenever a security trades at a premium
relative to its pair companion, any large price difference cannot be rationalized from small coupon
or maturity differences under the no-arbitrage restriction. On the other hand, price differences
common across maturities and correlated with age will be attributed to liquidity. Note that the
most recent issue for a given bin and date is not always an on-the-run security. This may be due to
the absence of new issuance in some maturity bins throughout the whole sample (e.g. 18 months to
maturity) or within some sub-periods (e.g. 84 months to maturity). Alternatively, the on-the-run
bond may be a few months old, due to the quarterly issuance pattern observed in some maturity
categories. In any case, this introduces variability in age differences which, in turn, identifies how
the liquidity premium varies with age.

We now investigate some features of our sample of 265× 22 = 5830 observations. The first two
columns of Table I present means and standard deviations of age for each liquidity-maturity cate-
gory. The average off-the-run security is always older than the corresponding on-the-run security.
Typically, the off-the-run security has been in circulation for more than a year. In contrast, the
on-the-run security is typically a few months old and only a few weeks old in the 6 and 24-month

19See Elton and Green (1998) and Piazzesi (2005) for discussion of the CRSP data set.
20See Apppendix B for more details on data filter.
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categories. A relatively low average age for the recent issues indicates a regular issuance pattern.
On the other hand, the relatively high standard deviations in the 36 and 84-month categories reflect
the decision by the U.S. Treasury to stop the issuance cycles at these maturities.

[Table I about here.]

Next, Table I presents means and standard deviations of duration21. Average duration is almost
linear in maturity. As expected, duration is similar within pairs implying that averages of cash
flow maturities are very close. Finally, the last columns of Table I show that the term structure
of coupons is upward sloping on average and the high standard deviations indicate important
variations across the sample. This is in part due to the general decline of interest rates. Nonetheless,
coupon rate differences within pairs are small on average. To summarize our strategy, differences
in duration and coupon rates are kept small within each pair but differences of ages are highlighted
so that we can identify any effect of liquidity on prices that is linked to age.

III Estimation Results

Estimation is conducted via Quasi-Maximum Likelihood (QML) combined with a nonlinear filtering
technique.22 We first estimate a restricted version of our model, excluding liquidity. Filtered factors
and parameter estimates are consistent with results obtained by CDR from zero-coupon bonds.
More interestingly, the on-the-run premium reveals itself in the residuals from the benchmark
model. This provides a direct justification for linking the premium with the age and maturity of
each bond. We then estimate the unrestricted liquidity model. The null of no liquidity is easily
rejected and the liquidity factor captures systematic differences between on-the-run and off-the-run
bonds. Finally, estimates imply that the on-the-run premium increases with maturity but decreases
with the age of a bond.

A Results For The Benchmark Model Without Liquidity

Estimation of the benchmark model puts the curvature parameter at λ̂ = 0.6786, when time
periods are measured in years. This estimate pins the maximum curvature loading at a maturity
close to 30 months. For standard errors, we reports two figures, a robust one using both the Hessian
covariance matrix and the outerproduct of the scores, which we call QML, and a second one based
on the outerproduct of the scores only, which we call OP (see details in the Appendix). The
first measure probably overestimates the variability23, while the second one surely underestimates
it. Therefore we decided to report both. For λ, the QML and OP standard errors are 0.0305
and 0.0044, respectively. Therefore, we estimate the parameter with a lot of precision with both
metrics.

21Duration is the relevant measure to compare maturities of bonds with different coupons.
22A detailed discussion of the state-space representation and of the likelihood function is provided in Appendix C.

Non-linear filtering is based on the Unscented Kalman Filter, which is discussed in detail in Appendix D.
23The Hessian is not available in closed-form and a numerical approximation for the second derivative of the entire

likelihood introduces errors.
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[Table II about here.]

Figure 2 displays the time series of the liquidity (Panel (a)) and the term structure (Panel (b))
factors. Estimates for the transition equation are given in Table IIa. The results imply average
short and long term discount rates of 3.73% and 5.45%, respectively. The level factor is very
persistent, perhaps a unit root. This standard result in part reflects the gradual decline of interest
rates in our sample. The slope factor is slightly less persistent and exhibits the usual association
with business cycles. Its sign changes before the recessions of 1990 and 2001. The slope of the term
structure is also inverted starting in 2006, during the so-called “conundrum” episode. Finally, the
curvature factor is closely related to the slope factor.

Standard deviations of pricing errors are given by

σ(Mn) = 0.0229 + 0.0284×Mn,

(0.017, 0.0012) (0.021, 0.0006)

with QML and OP standard errors for each parameter. This implies standard deviations of %0.05
and $0.31 dollars for maturities of 1 and 10 years, respectively. Using durations of 1 and 7 years,
this translates into yield errors of 5.1 and 4.4 bps. Table IIIa gives more information on the fit of
the benchmark model. Root Mean Squared Errors (RMSE) increase from $0.047 and $0.046 for
3-month on-the-run and off-the-run securities, respectively, to $0.35 and $0.39 at 10-year maturity.
As discussed above, the monotonous increase of RMSE with maturity reflects the higher sensitivity
of longer maturity bonds to interest rates. It may also be due to higher uncertainty surrounding
the true prices, as signaled by wider bid-ask spreads. In addition, for most maturities, the RMSE
is larger for on-the-run bonds. For the entire sample, the RMSE is $0.188.

Notwithstanding differences between estimation approaches, our results are consistent with
CDR. Estimating using coupon bonds or using bootstrapped data provides similar pictures of the
underlying term structure of interest rates. Also, the approximation introduced when dealing with
nonlinearities is innocuous. However, preliminary estimation of forward rate curves smooths away
any effect of liquidity. In contrast, our sample comprises on-the-run and off-the-run bonds. Any
systematic price differences not due to cash flow differences will be revealed in the pricing errors.

[Table III about here.]

Table IIIa confirms that Mean Pricing Errors (MPE) are systematically higher for on-the-
run securities. On-the-run residuals are systematically higher than off-the-run residuals. For a
recent 12-month T-Bill, the average difference is close to $0.08, controlling for cash-flow differences.
Similarly, a recently issued 5-year bond is $0.25 more expensive on average than a similar but older
issue.24 To get a clearer picture of the link between age and price differences, consider Figure 6.
The top panels plot residual differences within the 12-month and 48-month categories. The bottom

24Note that the price impact of liquidity increases with maturity. This is consistent with the results of Amihud
and Mendelson (1991).
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panels plot the ages of each bond in these categories. Panel (c) shows that the U.S. Treasury
stopped regular issuance of the 12-month Notes in 2000. The liquidity premium was generally
positive until then but stopped when issuance ceased. Afterwards, each pair is made of old 2-year
Notes, and evidence of a premium disappears from the residuals. Panel (d) shows that there has
been regular issuance of 4-year bonds early in the sample. As expected, the difference between
residuals is generally positive whenever there is a significant age difference between the two issues.
Moreover, in each case, on-the-run (i.e. low age) bonds appear overpriced compared to off-the-run
(i.e. high age) bonds. This correspondence between issuance patterns and systematic pricing errors
can be observed in each maturity category. The premium increases with maturity but decreases
with age.

Bonds with 24 months to maturity seem to carry a smaller liquidity premium than what would
be expected given the regular monthly issuance for this category. Note that a formal test rejects
the null hypothesis of zero-mean residual differences. Interestingly, Jordan and Jordan (1997) could
not find evidence of a liquidity or specialness effect at that maturity25. A smaller price premium for
2-year Notes is intriguing and we can only conjecture as to its causes. Recall that the magnitude
of the premium depends on the benefits of higher liquidity, both in terms of lower transaction costs
and lower repo rates. However, it also depends on the expected length of time a bond will offer
these benefits. Results in Jordan and Jordan (1997) suggests that 2-year Notes remain “special”
for shorter periods of time (see Table I, p.2057). Similarly, Goldreich et al. (2005) find that the
on-the-run premium on 2-year Notes goes to zero faster than other maturities, on average. This is
consistent with its short issuance cycle. Alternatively, holders of long-term bonds may re-allocate
funds from their now short maturity bonds into newly issued longer term securities. If the two-year
mark serves as a focus point for buyers and sellers, this may cause a larger volume of transactions
around this key maturity, increasing the liquidity value of surrounding assets.

B Results For The Liquidity Model

Estimation of the unrestricted model leads to a substantial increase of the log-likelihood. The
benchmark model is nested with 15 parameter restrictions and the improvement in likelihood is
such that the LR test-statistic leads to a p-value that is essentially zero26. The estimate for the
curvature parameter is now λ̂ = 0.7304 with QML and OP standard errors of 0.0857 and 0.0043.
Results for the transition equations are given in Table IIb. These imply average short and long
term discount rates of 4.09% and 5.76% respectively. Interestingly, the yield curve level is higher
once we account for the liquidity premium. Intuitively, the off-the-run yield curve is higher than
an otherwise unadjusted estimate would suggest. The standard deviations of measurement errors

25See Jordan and Jordan (1997) p. 2061: “With the exception of the 2-year notes [...], the average price differences
in Table II are noticeably larger when the issue examined is on special.”

26The benchmark model reached a maximum at 1998.6 while the liquidity model reached a maximum at 3482.6.
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are given by

σ(Mn)2 = 0.0227+ 0.0251×Mn,

(0.016, 0.001) (0.0021, 0.0006)

with QML and OP standard errors for each parameter in parenthesis. Then, standard deviations are
$0.048 and $0.274 for bonds with one and ten years to maturity, respectively. Using durations of 1
and 7, this translates into standard deviations of 4.8 and 3.9 bps when measured in yields. Overall,
parameter estimates and latent factors are relatively unchanged compared to the benchmark model.

We estimate the decay parameter at κ̂ = 1.89 with QML and OP standard errors of 1.23
and 0.45 respectively. Estimates of β are given in Table IV. Note that the level of the liquidity
premium increases with maturity.27 The pattern accords with the observations made from residuals
of the model without liquidity. Moreover, Table IIIa shows that the model eliminates most of the
systematic differences between on-the-run and off-the-run bonds. There is still some evidence of a
systematic difference in the 10-year category where the average error decreases from $0.31 to $0.26.
We conclude that part of the variations in the 10-year on-the-run premium is not common with
variations in other maturity groups. Finally, Table IIIb shows RMSE improvements for almost all
maturities while the overall sample RMSE decreases from $0.188 to $0.151.

[Table IV about here.]

Overall, the evidence points toward a large common factor driving the liquidity premium of
on-the-run U.S. Treasury securities. We interpret this liquidity factor as a measure of the value of
funding liquidity to investors. The results below show that its variations also explain a substantial
share of the risk premia observed in different interest rate markets.

IV Liquidity And Bond Risk Premia

In this section, we present evidence that variations in the value of funding liquidity, as measured
from a cross-section of on-the-run premia, share a common component with variations of risk premia
in other interest rate markets. In other words, conditions prevailing on the funding market induce
an aggregate risk factor that affects each of these markets. Of course, an increase in the liquidity
factor necessarily leads to lower excess returns for on-the-run bonds. We show here that it also
leads to lower risk premia for off-the-run bonds as well as higher risk premia on LIBOR loans, swap
contracts and corporate bonds. Thus, although the payoffs of these assets are not directly related to
the higher liquidity of on-the-run securities, their risk premium and, hence, their price, is affected
by a common liquidity factor. To summarize, the liquidity risk in the funding market for U.S.
Treasury induces a substantial price of risk in the cross-section of bond, LIBOR and swap returns.
The impact across assets is similar to the often cited “flight-to-liquidity” phenomenon but remains

27The estimated average level is lower in the 10-year group relative to the 5-year and 7-year group. This is due to
the lower average age of bonds in this groups.
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pervasive in normal market conditions. This commonality across liquidity premia accords with a
substantial theoretical literature supporting the existence of an economy-wide liquidity premium
(Svensson (1985), Bansal and Coleman (1996), Holmtröm and Tirole (1998, 2001), Acharya and
Pedersen (2005), Vayanos (2004), Lagos (2006), Brunnermeier and Pedersen (2008), Krishnamurthy
and He (2008).). The following section presents our results for various interest rate markets.28

A Off-The-Run U.S. Treasury Bonds

We first document the negative relationship between liquidity and expected excess returns on
off-the-run bonds. This is the return, over a given investment horizon, from holding a long maturity
bond, in excess of the risk-free rate for that horizon. Figure 3a displays annual excess returns on
a 2-year off-the-run bond along with the liquidity factor. The negative relationship is visually
apparent throughout the sample but note the sharp variations around the crash of October 1987,
the Mexican Peso crisis late in 1994, around the LTCM crisis in August 1998 and until the end of
the millennium. At first, this tight link between on-the-run premia and returns from off-the-run
Treasury bonds may be surprising. Recall that on-the-run bonds trade at a premium due to their
anticipated transaction costs and funding advantages on the cash and repo markets. However,
off-the-run bonds can be readily converted into cash via the repo market. This is especially true
relative to other asset classes. In that sense, seasoned bonds are close substitutes to on-the-run
bonds. Then, the risk premium of all Treasury bonds decreases in periods of high demand for
the relative funding liquidity of on-the-run bonds. Longstaff (2004) documents price differences
between off-the-run U.S Treasury bonds and Refcorp bonds29 with similar cash flows. He argues
that discounts on Refcorp bond are due to “...the liquidity of Treasury bonds, especially in unsettled
markets.”.

[Table V about here.]

We test this hypothesis through predictive regressions of off-the-run bond excess returns on
the liquidity factor. We use the off-the-run curve from the model to compute excess returns and
include term structure factors to control for the information content of forward rates (Fama and
Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005a)). The term structure
factors spans forward rates but do not suffer from their near-collinearity. Table V presents the
results. We consider (annualized) excess returns from holding off-the-run bonds with maturities of
2, 3, 4, 5, 7 and 10 years and for investment horizons of 1, 3, 6, 12, and 24 months. First, Panel (a)
presents average risk premia. These range from 153 to 471 bps at one-month horizon and from 69

28All the results below are robust to choice of the off-the-run yield curve used to compute excess returns or spreads.
Unless otherwise stated we use off-the-run yields computed from the model to compute excess returns. Using off-
the-run zero-coupon yields from the Svensson, Nelson and Siegel method (Gurkaynak et al. (2006)) available at
(http://www.federalreserve.gov/pubs/feds/2007) does not affect the results. Also, for ease of interpretation, we
standardize each regressor by subtracting its mean and dividing by its standard deviation. For each risk premium
regression, the constant corresponds to an estimate of the average risk premium and the coefficient on the liquidity
factor measures the impact on expected returns, in basis points, of a one-standard deviation shock to liquidity.

29Refcorp is an agency of the U.S. government. Its liabilities have their principals backed with U.S. Treasury bonds
and coupons explicitly guaranteed by the U.S. Treasury.
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to 358 bps at annual horizon. These large excess returns are consistent with an average positive
term structure slope and with a period of declining interest rates. Panel (b) presents estimates
of the liquidity coefficients. The results are conclusive. Estimates are negative and significant at
all horizons and maturities. Moreover, the impact of liquidity on excess returns is economically
significant. At a one-month horizon a one-standard deviation shock to our measure of funding
liquidity lowers expected excess returns obtained from off-the-run bonds by 187 and 571 bps for
maturities of two and ten years respectively. At this horizon, R2 statistics range from 7.34% to
4.23% (see Panel (c)). Regressions based on excess returns at an annual horizon correspond to the
case studied by Cochrane and Piazzesi (2005a) who document the substantial predictability of US
Treasury excess returns from forward rates. The impact of funding liquidity is substantial. A one-
standard deviation shock decreases expected excess returns by 103 basis points at 2-year maturity
and by as much as 358 basis points at 10-year maturity. At this horizon, R2 are substantially higher,
ranging from 43% and 50%. Of course, these coefficients of variation pertain to the joint explanatory
power of all regressors. Panel (c) also presents, in brackets, the R2 of the same regressions but
excluding the liquidity factor. The liquidity factor accounts for more or less half of the predictive
power of the regressions.

The regressions above used excess returns and term structure factors computed from the term
structure model. One concern is that model misspecification leads to estimates of term structure
factors that do not correctly capture the information content of forward rates or that it induces
spurious correlations between excess returns and liquidity. As a robustness check against both
possibilities, we re-examine the predictability regressions but using excess returns and forward rates
available from the CRSP zero-coupon yield data set. From this alternative data set, we compute
annual excess returns on zero-coupon bonds with maturity from 2 to 5 years. As regressors, we
include annual forward rates from CRSP at horizon from 1 to 5 years along with the liquidity factor
from the model. Table VIa presents the results. Estimates of the liquidity coefficients are very close
to our previous results (see Table Vb) and highly significant. We conclude that the predictability
power of the liquidity factor is robust to how we compute excess returns and forward rates.

[Table VI about here.]

Furthermore, this alternative set of returns allows to check whether the AFENS model captures
important aspects of observed excess returns. Table VIb provides results for the regressions of
CRSP excess returns on CRSP forward rates, excluding the liquidity factor. This is a replication of
the unconstrained regressions in Cochrane and Piazzesi (2005a) but for our shorter sample period.
This exercise confirms their stylized predictability results in this sample. That is, the predictive
power of forward rates is substantial and we recover a tent-shaped pattern of coefficients across
maturities. Next, Table VIc provides results of a similar regressions with CRSP forward rates
but using excess returns computed from the model. Comparing the last two panels, we see that
average excess returns, forward rate coefficients, as well as R2s are similar across data sets. This
is striking given that excess returns were recovered using very different approaches. The AFENS
model captures the stylized facts of bond risk premia, which is an important measure of success for
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term structure models.30

The evidence shows that variations of funding liquidity value induce variations in the liquidity
premium of Treasury bonds. Empirically, off-the-run US Treasury bonds are viewed as liquid
substitutes to their recently issued counterparts and provide a hedge against fluctuations in funding
liquidity. Note that this link between conditions on the funding market and the risk premium on
a Treasury bond can hardly be attributed to traditional explanations of bond risk premia such as
inflation risk or interest rate risk. Instead, we argue that frictions in the financial intermediation
sector affect the Treasury market. The following section considers the impact of funding liquidity
on LIBOR rates.

B LIBOR Loans

In this section, we link variations of the liquidity factor with variations in the risk compensation
from money market loans. We consider the returns obtained from rolling over a lending position in
the London inter-bank market at the LIBOR rate and funding this position at a fixed rate. This
measures the reward of providing liquidity in the inter-bank market. In contrast with the govern-
ment bond market, higher valuation of funding liquidity predicts higher excess returns. Figure 3b
highlights the positive correlation between liquidity and rolling excess returns. Again, note the
spikes in 1987, 1994, in 1998 and around the end of the millennium.

Thus, interbank loans are poor substitutes to U.S. Treasury securities in time of funding stress.
The reward for providing funds in the inter-bank market is higher when the relative value of on-
the-run bonds increases. Thus, the spread of a LIBOR rate above the Treasury yield reflects the
opportunity costs, in terms of future liquidity, of an interbank loan compared to the liquidity of
a Treasury bonds on the repo or the cash markets. Indeed, in order to convert a loan back to
cash, a bank must enter into a new bilateral contract to borrow money. The search costs of this
transaction depend on the number of willing counterparties in the market and it may be difficult
at critical times to convert a LIBOR position back to cash.31

As in the previous section, we test this hypothesis formally through predictive regressions of
excess rolling returns on the liquidity factor. As in the previous section, we consider investment
horizons of 1, 3, 6, 12 and 24 months. However, given the short maturities of LIBOR loans we
consider the returns from rolling investments in loans with 1, 3, 6 and 12 months to maturity.
Again, we use term structure factors to control for the information content of forward rates. The
LIBOR data is available from the web site of the British Bankers’ Association (BBA) and we use
a sample from January 1987 to December 2007.

30Fama (1984b) originally identified this modeling challenge but see also Dai and Singleton (2002). Other stylized
facts are documented in Fama (1976), (1984a), and(1984b), as well as Startz (1982) for maturities below 1 year. See
also Shiller (1979), Fama and Bliss (1987), Campbell and Shiller (1991). Our conclusions hold if we use Campbell
and Shiller (1991) as a benchmark. We also conclude that the empirical facts highlighted by Cochrane and Piazzesi
(2005a) are not an artefact of the bootstrap method. See the discussion in Dai, Singleton, and Yang (Dai et al.) and
Cochrane and Piazzesi (2005b).

31Note that this does not preclude that part of the LIBOR spread is due to the higher default risk of the average
issuer compared to the U.S. government.
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Table VII presents the results. For each loan maturity, the average excess returns is around 25
bps for the shortest horizon. Returns then decrease with the horizon and become negative at the
longest horizons. This reflects the average positive slope of the term structure. In practice, funding
rolling short-term investments at a fixed rate does not produce positive returns on average.

The impact of liquidity is unambiguously positive for all horizons and maturities with t-statistics
above 5 in most cases. Interestingly, the impact of the liquidity increases with the horizon. A one-
standard deviation shock to the value of liquidity increases returns on a rolling investment in one-
month LIBOR loans by 16 and 90 bps at horizons 3 and 24 months, respectively. Results are similar
for other maturities. In fact, the impact is sufficiently large that returns are positive on average,
and the risk premium is higher than the slope of the term structure. This reflects the persistence
of the liquidity premium. The R2 from these regressions range from 30% to 50%. Moreover, the
contribution of the liquidity factor to the predictability of LIBOR returns is substantial, generally
doubling the R2, or more. In the case of annual excess rolling returns from 3-month loans, the
predictive power increases from 10.8% to 43.2% when we include the liquidity factor.

An alternative indicator of ex-ante returns from investment in the inter-bank market is the sim-
ple spread of LIBOR rates above risk-free zero-coupon yields. As an alternative test, we compute
LIBOR spreads on loans with maturities of 1, 3, 6 and 12 months and consider regressions of these
spreads on the liquidity and term structure factors. Panel (c) shows the positive relationship be-
tween liquidity and the 12-month LIBOR spread. Table VIIIa presents results from the regressions.
A one-standard deviation shock to liquidity is associated with concurrent increases of 16, 12, 8 and
6 bps for loans with maturity of 1, 3, 6 and 12 months, respectively. Finally, one potential issue is
the use of a short-term Treasury yield in the computation of excess returns. The positive liquidity
coefficients could be due to variations of the liquidity factor that are negatively correlated with
variations in short-term zero rates. But this is not the case in practice. The impact of liquidity is
purged from these yields since we used off-the-run yields computed from the model but shutting-off
the impact of liquidity (i.e. using age = ∞). Moreover, the same results obtain if we use off-the-run
yields based on Gurkaynak et al. (2006) available from the Federal Reserve Board of Governors.
Finally, conditional on the term structure factors, variations of the liquidity factor have no impact
on short-term off-the-run yields.32 In particular, using a projection of short-term rates on the term
structure we find that the liquidity factor has little explanatory power for the residuals.

C Swap Spreads

The impact of funding liquidity extends to the swap market. This section documents the link
between the liquidity factor and the spread of swap rates above Treasury yields. To the extent
that swap rates are determined by anticipations of future LIBOR rates, results from the previous
section suggest that swap spreads increase with the liquidity factor. Moreover, variations in funding
liquidity may affect the swap market directly since the same intermediaries operate in the Treasury
and the swap markets. We do not distinguish between these alternative channels here.

32Results available from the authors.
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[Table VIII about here.]

We obtain a sample of swap rates from DataStream, starting in April 1987 and up to December
2007. We focus on swaps with maturities of 2, 5, 7 and 10 years and compute their spreads above
the yield to maturity of the corresponding off-the-run par yield. Figure 3d compares the liquidity
factor with the 5-year swap spread. The positive relationship is apparent. Next, we perform
regressions of swap spreads on funding liquidity. As above, we use off-the-run yields to compute
spreads and include the term structure factor as conditioning information. Hence the measured
impact of funding liquidity on swap spreads cannot be attributed to the presence of short-term
government yields on the l.h.s.

Results are reported in Table VIIIb. First, the average spread rises with maturity, from 44 to
53 bps, and extends the pattern of LIBOR risk premia. Next, estimates of the liquidity coefficients
imply that, controlling for term structure factors, a one-standard deviation shock to liquidity raises
swap spreads from 5 to 7 basis points across maturities. The estimates are significant, both statically
and economically, given the higher price sensitivities of swap to change in yields. For a 5-year swap
with duration of 4.5, say, the price impact of a 6 basis point change is $0.27 for a notional of $100.
This translates in substantial returns given the leveraged nature of swap positions.33 Finally, the
explanatory power of liquidity is high and increases with maturity.

Interestingly, funding liquidity affects swap spreads and LIBOR spreads similarly. This suggests
that anticipations of liquidity compensation in the interbank loan market, rather than liquidity risk,
is the main driver behind the aggregate liquidity component of swap risk premium. This supports
previous literature (Grinblatt (2001), Duffie and Singleton (1997), Liu et al. (2006) and Fedlhütter
and Lando (2007)) pointing toward LIBOR liquidity premium as an important driver of swap
spreads. However, we show that the liquidity risk underlying a substantial part of that premium is
not specific to the LIBOR market but reflects risks faced by intermediaries in funding markets.

D Corporate Spreads

The impact of funding liquidity extends to the corporate bond market. This section measures
the impact of the liquidity factor on the risk premium offered by corporate bonds. Empirically, we
find that the impact of liquidity has a “flight-to-quality” pattern across credit ratings. Following
an increase of the liquidity factor, excess returns decrease for the higher ratings but increase for
the lower ratings. Our results are consistent with the evidence that default risk cannot rationalize
corporate spreads. Collin-Dufresne et al. (2001) find that most of the variations of non-default
corporate spreads are driven by a single latent factor. We formally link this factor with funding
risk. Our evidence is also consistent with the differential impact of liquidity across ratings found by
Ericsson and Renault (2006). However, while they relate bond spreads to bond-specific measures
of liquidity, we document the impact of an aggregate factor in the compensation for illiquidity.

33We do not use returns on swap investment to measure expected returns. Swap investment requires zero initial
investment. Determining the proper capital-at-risk to use in returns computation is somewhat arbitrary. It should be
clear from Figure 3d that receiving fixed, and being exposed to short-term LIBOR fluctuations, will provide greater
compensation when the liquidity premium is elevated.
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Our analysis begins with Merrill Lynch corporate bond indices. We consider end-of-month data
from December 1988 to December 2007 on 5 indices with credit ratings of AAA, AA, A, BBB
and High Yield [HY] ratings (i.e. HY Master II index), respectively. In a complementary exercise,
below, we use a sample of NAIC transaction data.34 As in earlier sections, we measure the impact of
liquidity on corporate bonds through predictive excess returns regressions. For each index, and each
month, we compute returns in excess of the off-the-run zero coupon yield for investment horizons
of 1, 3, 6, 12 and 24 months. We then project returns on the liquidity and term structure factors.
Again, we use off-the-run yields to compute excess returns and include term structure factors to
control for the information content of the yield curve. The first Panel of Table IX presents the
results.

First, as expected, average excess returns are higher for lower ratings. Next, estimates of the
liquidity coefficients show that the impact of a rising liquidity factor is negative for the higher
ratings and becomes positive for lower ratings. A one-standard deviation shock to the liquidity
factor leads to decreases in excess returns for AAA, AA and A ratings but to increases in excess
returns for BBB and HY ratings. Excess returns decrease by 1.78% for AAA index but increase
by 3.12% for the HY index. For comparison, the impact on Treasury bonds with 7 and 10 years to
maturity was -4.52% and -5.42%. Thus, on average, high quality bonds were considered substitutes,
albeit imperfect, to U.S. Treasuries as a hedge against variations in funding conditions. On the
other hand, lower-rated bonds were exposed to funding market shocks.

The differential impact of liquidity on excess returns across ratings suggests a flight-to-liquidity
pattern. We consider an alternative sample, based on individual bond transaction data from the
NAIC. While this sample covers a shorter period, from February 1996 until December 2001, the sam-
ple comprises actual transaction data and provides a better coverage of the rating spectrum. Once
restricted to end-of-month observations, the sample includes 2,171 transactions over 71 months. To
preserve parsimony, we group ratings in five categories.35 We consider regression of NAIC corporate
spreads on the liquidity and term structure factors but we also include the control variables used
by Ericsson and Renault (2006). These are the VIX index, the returns on the S&P500 index, a
measure of market-wide default risk premium and an on-the-run dummy signalling whether that
particular bond was on-the-run at the time of the transaction. Control variables also include the
level and the slope of the term structure of interest rates.36.

The panel regressions of credit spreads for bond i at date t are given by

sprdi,t = α + β1LtI(Gi = 1) + · · ·+ β5LtI(Gi = 5) + γT
h Xt + εi,t (5)

where Lt is the liquidity factor and I(Gi = j) is an indicator function equal to one if the credit
34We thank Jan Ericsson for providing the NAIC transaction data and control variables. See Ericsson and Renault

(2006) for a discussion of this data set.
35Group 1 includes ratings from AAA to A+, group 2 includes ratings A and A-, group 3 includes ratings BBB+,

BBB and BBB-, group 4 includes ratings CCC+, CCC and CCC- while group 5 includes the remaining ratings down
to C-

36We do not include individual bond fixed-effects as our sample is small relative to the number (998) of securities.
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rating of bond i belongs in group j = 1, . . . , 5. Control variables are grouped in the vector Xt+h.
Table IXb presents the results. The flight-to-quality pattern clearly emerges from the results. For
the highest rating category, an increase in liquidity value of one standard deviation decreases spreads
by 31 and 20 basis points in groups 1 and 2 respectively. The effect is smaller and statistically
undistinguishable from zero for group 3. Coefficients then become positive implying increases in
spreads of 25 and 26 basis points for groups 4 and 5, respectively. This is an average effect through
time and across ratings within each group.37

The pattern of liquidity coefficients obtained from excess returns computed from Merrill Lynch
indices and spreads computed from NAIC transactions differ. While results from Merrill Lynch were
inconclusive, estimates of liquidity coefficients obtained from NAIC data confirm that a shock to
funding liquidity leads to lower corporate spreads in the highest rating groups but higher corporate
spreads in the lowest rating groups. Two important differences between samples may explain the
results. First, the composition of the index is different from the composition of NAIC transaction
data. The impact of liquidity on corporate spreads may not be homogenous across issues. For
example, the maturity or the age of a bond, the industry of the issuer and security-specific option
features may introduce heterogeneity. Second, Merrill Lynch indices cover a much longer time span.
The pattern of liquidity premia across the quality spectrum may be time-varying.

E Discussion

Focusing on the common component of on-the-run premia filters out local or idiosyncratic
demand and supply effects on Treasury bond prices. The results above show that this measure of
funding liquidity is an aggregate risk factor affecting money market instruments and fixed-income
securities. These assets carry a significant, time-varying and common liquidity premium. That is,
when the value of the most-easily funded collateral rises relative to other securities, we observe
variations in risk premia for off-the-run U.S. government bonds, eurodollar loans, swap contracts,
and corporate bonds. Empirically, the impact of aggregate liquidity on asset pricing appears
strongly during crisis and the pattern is suggestive of a flight-to-quality behavior. Nevertheless, its
impact is pervasive even in normal times.

Note that these regressions assumed a stable relationship between risk premium and funding
liquidity. One important alternative is that the sign and the size of the impact of funding conditions
itself depend on the intensity of the funding shock, as suggested by recent experience. In particular,
while corporate bonds with high ratings may be substitutes to Treasury bonds in good times,
they experience large risk premium increases in funding crises. Another alternative is that the
relationship between funding liquidity and risk premium experiences permanent break, or shifts
from one regime to another. An interesting illustration of this case is given by U.S. Agency Bonds.
Figure 5 displays the funding liquidity factor against annual excess returns on an index of U.S.

37We do not report other coefficients. Briefly, the coefficient on the level factor is negative and significant. All
other coefficients are insignificant but these results are are not directly comparable with Ericsson and Renault (2006)
due to differences of models and sample frequencies.

22



Agency bonds with 10 years to maturity. In the first half of the sample, up until 1998, they behave
much like government bonds. Investors see them as substitutes and require a lower risk premium
when the value of funding liquidity is higher. In contrast, perhaps with the hindsight of the liquidity
crisis of the summer of 1998, Agency bonds were not considered as liquid substitutes in the second
half of the sample. Post-1998, the risk premium on an Agency bond rises when funding liquidity is
more valuable. We consider that these variations in the exposure to funding liquidity may explain
the weak statistical evidence for the case of corporate bonds. We leave the detailed studies of these
variations for future research.

Jointly, the evidence is hard to reconcile with theories based on variations of default probability,
inflation or interest rates and their associated risk premia. Instead, we link substantial risk premium
variations to conditions in the funding markets. This supports the theoretical literature that
emphasizes the role of borrowing constraints faced by financial intermediaries (Gromb and Vayanos
(2002), He and Krishnamurthy (2007)) and, in particular, that highlights the role of funding markets
in financial intermediation (Brunnermeier and Pedersen (2008)). Different securities serve, in part,
and to varying degrees, to fulfill investors’ uncertain future needs for cash and their risk premium
depend on the ability of intermediaries to provide immediacy in each market. In this context, it
is interesting that the liquidity premium of government bonds appears to decrease when funding
liquidity becomes scarce. This confers a special status to government bonds, and possibly to
high-quality corporate bonds, as a hedge against variations in funding liquidity. We leave for
further research the cause of this special attribute of government bonds. The next section identifies
candidate determinants of liquidity valuation and characterizes aggregate liquidity in terms of
known economic indicators.

V Determinants Of Liquidity Value

Funding liquidity aggregates very diverse economic information. Theory suggests that the value of
funding liquidity depends on investors’ demand for immediacy on markets where intermediaries are
active. Funding costs will also vary with the capital position and the access to capital (present and
future) of financial intermediaries that obtain leverage through secured loans. Finally, conditions
in the funding market are affected by the availability of funds and, thus, by the relative tightness
of monetary policy. In this section, we check if the funding liquidity factor is related to observable
conditions in the funding markets.

Summarizing the results, we first find that the value of funding liquidity, measured by the on-
the-run factor, varies with changes in monetary aggregates and in bank reserves. Second, it also
varies with aggregate wealth and aggregate uncertainty as measured by valuation ratios and option-
implied volatility of the SP500 stock index. Third, the on-the-run premium rises when recently
issued bonds offers relatively lower bid-ask spreads. Together, the results support our interpretation
of the funding liquidity factor. An important observation is that the funding liquidity factor shows
no significant relationship with measures of inflation and of real activity. While these variables are
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crucial, in the context of term structure models, for modeling interest rate dynamics, the evidence
presented here shows that funding liquidity is an important component of interest rates term premia.
Moreover, the results show that the Fed affects asset prices not only through its impact on real
interest rates and inflation but, also, through its influence on funding conditions and, ultimately, on
liquidity premia across markets. Finally, we found (but do not report) that the Pastor-Stambaugh
measure of liquidity risk from the stock market is unrelated to our measure of funding liquidity
risk. We conjecture that the measure of Pastor-Stambaugh differs because it relates to variations
of spot market liquidity while our liquidity factor relates to variations of funding market liquidity.

In the following, we proceed via a two-step approach. In a first set of regressions, we use the
macroeconomic factors of Ludvigson and Ng (2009) that summarize 132 U.S. macroeconomic series.
This approach is parsimonious and agnostic. It allows us to consider the information content from
a broad set of economic indicators with no prior on their relative importance. The results from
this first step lead us to zoom on a subset of observed macroeconomic variables, bypassing any
potential measurement errors induced in the construction of factors. This second step confirms the
importance of reserves held by commercial banks at the Fed and of the rates of growth of monetary
aggregates as determinants of funding liquidity.

A Macroeconomic Factors

Ludvigson and Ng (2009) [LN hereafter] summarize 132 US macroeconomic series into 8 princi-
pal components. They then explore parsimoniously the predictive content of this large information
set for bond returns. Their main result is that that a “real” factor and an “inflation” factor38 have
substantial predictive power for bond excess returns beyond the information content of forward
rates. They also find that a “financial” factor is significant but that much of its information con-
tent is subsumed in the Cochrane-Piazzesi measure of bond risk premia. For our purposes, these
factors provide a first way to explore the information content of a broad set of macroeconomic
variables for the funding liquidity factor. We find that the funding liquidity factor is unrelated
to the “real” and “inflation” factors. Our previous results showed that funding liquidity is also
unrelated to the Cochrane-Piazzesi factors. Table X displays results from a regression of liquidity
on macroeconomic factors (Regression A) from LN and confirms that the funding liquidity factor
shares tight linkages with the macroeconomy.39 The explanatory power is high, with an R2 of 58%.

[Table X about here.]

First, the “financial” factor is significant. This factor relates to different interest rate spreads,
which is consistent with the evidence above that the liquidity factor predicts risk premia across

38Ludvigson and Ng (2009) use univariate regressions of individual series on each principal component to charac-
terize its information content. For example, the “real” factor was labeled as such because it has high explanatory
power for real quantities (e.g. Industrial Production).

39A significant link between liquidity and one of the principal components of LN does not necessarily require that
this component predicts bond excess returns. The liquidity factor is endogenous and its loadings on the underlying
macroeconomic variables is unlikely to be linear or constant through time.
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markets.40 Next, the F6 and F7 factors are significant and share a similar and extremely interest-
ing interpretation: these are “monetary conditions” factors. Both are linked to the rate of change
in reserves and non-borrowed reserves of depository institutions. Next, factor F6 has most in-
formation for the rate of change of the monetary base and the M1 measure of money stock and
some information from the PCE indices. Beyond bank reserves, factor F7 is most informative for
the spreads of commercial paper and three-month Treasury bills above the Federal Reserve funds
rate. Overall, this suggests an important channel between monetary policy and the intermediation
mechanism and, ultimately, with variations in the valuation of marketwide liquidity. These results
are consistent with Longstaff (2004), who establishes a link between variations of RefCorp spreads
and measures of flows into money market mutual funds, Longstaff et al. (2005), who document a
similar link for the non-default component of corporate spreads and, finally, Chordia et al. (2005),
who document that money flows and monetary surprises affect measures of bond market liquidity.

We also find that the liquidity factor is related to the “real”, “inflation” factors (i.e. F1 and
F4), which may be caused by the impact of the Fed’s actions on funding markets. But we show
below that their significance is not robust when we combine regressors. Factor F5 is also significant
but not robust. This is a “housing activity” factor that contains information on housing starts and
new building permits. Its significance appears to be limited to the early part of the sample and is
not robust to the inclusion of bid-ask spread information.

B Transaction Costs Variables

Coupon bond quotes from the CRSP data set include bid and ask prices. At each point in time,
we consider the entire cross-section of bonds and compute the difference between the median and
the minimum bid-ask spreads. This measures the difference in transaction costs between the most
liquid bond and a typical bond. Table X presents the results from a regression of liquidity on this
measure of relative transaction costs. The coefficient is positive and significant. The liquidity factor
increases when the median bid-ask spread moves further away from the minimum spread. That
is, on-the-run bonds become more expensive when they offer relatively lower transaction costs.
The explanatory power of bid-ask information is substantial, as measured by an R2 of 37.7%.
However, there is a sharp structural break in this relationship. Most of the explanatory power and
all of the statistical evidence is driven by observations preceding 1990 as made clear by Figure 7a.
The first break in this process coincides with the advent of the GovPX platform while the second
break, around 1999, matches the introduction of the eSpeed electronic trading platform. Although
transaction costs contribute to the on-the-run premium (see e.g. Goldreich et al. (2005)), the lack
of variability since these breaks implies a lesser role in the time variations of the premium.

40LN found that the information content of the “financial” factor for excess returns is subsumed in the CP factor.
Recall from Section A that the information content of the funding liquidity factor is not subsumed by the Cochrane-
Piazzesi factor.
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C Aggregate Uncertainty

The valuation of liquidity should increase with higher aggregate uncertainty. We use implied
volatility from options on the S&P 500 stock index as proxy for aggregate uncertainty. The S&P500
index comprises a large share of aggregate wealth and its implied volatility can be interpreted as
a forward looking indicator of wealth volatility. The sample comprises monthly observations of
the CBOE VOX index from January 1986 until the end of 2007. Table X presents results from a
regression of liquidity on aggregate uncertainty (Regression C). The R2 is 7.9% and the coefficient
is significantly positive. A one-standard deviation shock to implied volatility raises the liquidity
factor by 0.052. Figure 7b shows the measures of volatility and funding liquidity until the end of
2008. Clearly, peaks in volatility are associated with rises in liquidity valuation. The evidence is
mitigated by the period around 2002 where very low funding liquidity value was not matched with
a proportional decrease of implied volatility.

D Combining Regressors

Finally, Table Xa reports the results from a regression combining all the economic informa-
tion considered above (Regression D). The coefficient on the relative bid-ask spread decreases but
remains significant. On the other hand, the coefficient on the VXO changes sign and becomes in-
significant. The information from the VXO measure is subsumed in other regressors. In particular,
VXO is positively correlated with the stock market factor (i.e. F8) and this factor’s coefficient dou-
bles. Finally, among the macro factors, only the “monetary conditions” factors remain significant
when conditioning on transaction costs and aggregate uncertainty information. Note, however, that
these results were based on unobservable macroeconomic factors estimated. In the following section,
we bypass this potential measurement error issue and provide further evidence of the relationship
between our funding liquidity factor and conditions in funding markets.

E Reserves And Money Aggregates

To some extent, each of the macroeconomic factors of Ludvigson and Ng (2009) mixes infor-
mation from all of the macroeconomic variables they consider. With the hindsight from the last
section, we measure conditions in the market for funds directly from observable variables. We
project the funding liquidity factor on the quantity of non-borrowed reserves held by commercial
banks at the Fed and the annual growth rates of standard monetary aggregates (i.e. M0, M1, M2).
Note that these variables covers our entire sample. Moreover, we still control for transaction costs
and aggregate uncertainty. Table Xb presents the results. Regression E includes bank reserves
and monetary aggregate growth rates. The coefficient on bank reserves and M2 annual growth are
negative and significant. The annual growth rates of M0 and M1 are insignificant. These results
are unchanged when we control for transaction costs and for aggregate uncertainty (see Regression
F).

Overall the evidence points toward two broad channels in the determination of the value of fund-
ing liquidity. First, similar to the model of Krishnamurthy and He (2008), aggregate uncertainty
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and aggregate wealth affect the intermediaries’ ability to provide liquidity. Second, conditions in
the market for funds, as measured by bank reserves and growth in monetary aggregates, also affect
the equilibrium value of funding liquidity.

VI The Events Of 2008

We repeat the estimation of the model including data from 2008. Figure 8 presents the liquidity
(Panel 8a) and the term structure (Panel 8b) factors. The latter shows a sharp increase in the cross-
section of on-the-run premium. In fact, this large shock increases the volatility of the liquidity factor
substantially. The dramatic variations of spreads, and of the funding liquidity factor, in 2008 raise
questions as to whether a constant volatility model correctly filter the impact of liquidity on bond
prices throughout the sample. With this potential issue in mind, we now report results obtained
when including 2008 in the estimation sample. First, looking at Figure 7b and 7a we see that this
spike was associated with a large increase in the SP500 implied volatility but, interestingly, the
difference between the minimum and median bid-ask spreads remained stable. This supports our
interpretation that the liquidity factor finds its roots in the funding market.

Not surprisingly, including 2008 only increases the measured impact of the common funding
liquidity factor on bond risk premia. Empirically, most of the regressions above lead to higher
estimates for the liquidity coefficient.41 An interesting case, though, is the behavior of corporate
bond spreads. Clearly corporate bond spreads increased sharply over that period, indicating an
increase in expected returns. Figure 9 compares the liquidity factor with the spread of the AAA and
BBB Merrill Lynch index. In the sample excluding 2008, the estimated average impact of a shock
to funding liquidity was negative for AAA bonds and positive for BBB. The large and positively
correlated shock in 2008 reverses this conclusion for AAA bonds. But note that AAA spreads and
the liquidity factor were also positively correlated in 1998. This confirms our conjecture that the
behavior of high-rating bonds is not stable and depends on the nature or the size of the shock to
funding liquidity. However, this does not affect our conclusion that corporate bond liquidity premia
share a common component with other risk premia due to funding risk. Instead, it suggests that
the relationship exhibits regimes through time.

Results about the economic determinants of liquidity are also robust to the inclusion of the
year 2008. But note that the crisis is characterized by a positive correlation between monetary
aggregates and the liquidity factor in 2008. This is in contrast with the overall sample where the
availability of funds was negatively related to the liquidity factor. However, this is due to the
endogenous response of the Fed to conditions in the financial system. Clearly, had the Fed not
intervened, the value of funding liquidity would have increased with reductions of funds available
to intermediaries.

41We include all tables and figures for the risk premia regressions on all markets and for the macroeconomic
determinants of liquidity in an appendix available upon request from the authors.
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VII Conclusion

We augment the Arbitrage Free Extended Nelson-Siegel term structure model of Christensen et al.
(2007) by allowing for a liquidity factor driving the on-the-run premium. Estimation of the model
proceeds directly from coupon bond prices using a non-linear filter. We identify from a panel of
Treasury bonds a common liquidity factor driving on-the-run premia at different maturities. Its
effect increases with maturity and decreases with the age of a bond.

We interpret this factor as a measure of funding liquidity. It measures the value of the lower
funding and transaction costs of on-the-run bonds. We find that funding liquidity predicts a
substantial share of the risk premium on off-the-run bonds. It also predicts LIBOR spreads, swap
spreads and corporate bond spreads. The pattern across interest rate markets and credit ratings
is consistent with accounts of flight-to-liquidity events. However, the effect is pervasive in normal
times. The evidence points toward the importance of the funding market for the intermediation
mechanism and, hence, for asset pricing. Our results are robust to changes in the data set and to
the inclusion of term structure information.

The liquidity factor varies with transaction costs on the secondary bond market. More impor-
tantly, we find that the value of liquidity is related to narrow measures monetary aggregates and
measures of bank reserves. It also varies with measures of stock market valuations and aggregate
uncertainty. The ability of intermediaries to meet the demand for immediacy depends, in part, on
funding conditions and induces a large common liquidity premium in key interest rate markets. In
particular, our results suggest that the behavior of the Fed is a key determinant of the liquidity
premium. We leave this, as well as the potential impact of funding liquidity on stock markets, as
open research questions. In this context, the measure of funding liquidity proposed here can be
used as real-time measure of liquidity premia.
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VIII Appendix

A Arbitrage-Free Term Structure Model

This section follows Christensen et al. (2007) and provides a description of the term structure
model. The k = 3 term structure factors are stacked in the vector Ft. Its dynamics under the
risk-neutral measure Q is described by the stochastic differential equation

dFQ
t = KQ(θQ − Ft) + ΣdWQ

t , (6)

where dWt is a standard Brownian motion process. Combined with the assumption that the short
rate is affine in all three factors, this leads to the usual affine solution for discount bond yields. In
this context, CDR show that if the short rate is defined as rt = F1,t +F2,t and if the mean-reversion
matrix KQ is restricted to

KQ =




0 0 0
0 λ −λ
0 0 λ


 , (7)

then the absence of arbitrage opportunity implies the discount yield function,

y(Ft,m) = a(m) + F1,tb1(m) + F2,tb2(m) + F3,tb3(m), (8)

with loadings given by

b1(m) = 1,

b2(m) =
(

1− exp (−mλ)
mλ

)
,

b3(m) =
(

1− exp (−mλ)
mλ

− exp (−mλ)
)

, (9)

where m ≥ 0 is the length of time until maturity. Finally, the constant, a(m), is given by

a(m) = −σ2
11
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6
− (σ2
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22)

[
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+

1− e−2mλ
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+
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×
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λ2
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mλ3
+

3(1− e−2mλ)
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]
.

Note that the first factor has a unit root under the risk-neutral density. Then, as discussed in
CDR, we have that a(m) → −∞ when m → ∞. However, this is not relevant in practice since
a(m) is relatively small for observed maturities and estimated parameter values. In particular, we
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have that a ≈ 0 for short maturities and a(m) ≈ −1% at a maturity of 30 years. In contrast, we
only consider maturities of 10 years or less.

B Data

We use end-of-month prices of U.S. Treasury securities from the CRSP data set. We exclude
callable bonds, flower bonds and other bonds with tax privileges, issues with no publicly outstanding
securities, bonds and bills with less than 2 months to maturity and observations with either bid or
ask prices missing. Our sample covers the period from January 1986 to December 2008. We also
exclude the following suspicious quotes.

CRSP ID Date
#19920815.107250 August 31st 1987
#19950331.203870 December 30th 1994
#19980528.400000 May 30th 1998
#20011130.205870 October 31th 1997
#20030228.205500 February 26th 1999
#20041031.202120 November 29th 2002
#20070731.203870 May 31st 2006
#20080531.204870 November 30th 2007

These show up as outliers in the term structure model, relative to surrounding quotes. However,
including them do not affect our results. We also exclude CRSP ID #20040304.400000 since
its maturity date precedes its issuance date, as dated by the U.S. Treasury. Finally, CRSP ID
#20130815.204250 is never special and is excluded.

In 2008, the most recent 10-year issue is not always the most expensive in its maturity group.
Nonetheless, the relationship between the relative valuations and ages of bonds remained stable for
the other bonds in this group. Therefore, when we extend the estimation sample to include 2008,
the following bonds were selected.

Date CRSP ID#
New Old

01/2008 20171115.204250 20170815.204750
02/2008 20180215.203500 20171115.204250
03/2008 20180215.203500 20171115.204250
04/2008 20180215.203500 20171115.204250
05/2008 20180515.203875 20171115.204250
06/2008 20180215.203500 20171115.204250
07/2008 20180215.203500 20171115.204250
08/2008 20180215.203500 20170815.204750
10/2008 20180215.203500 20170815.204750
11/2008 20180515.203875 20170815.204750
12/2008 20180515.203875 20180215.203500

C State-Space Representation And Likelihood Function

CDR show that we are free to choose the drift term, KP , in the dynamics under the physical
measure,

dFP
t = KP (θP − Ft) + ΣdWP

t . (10)
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Implicitly, this relies on a flexible, linear specification of the prices of risk. Intuitively, choosing a
specific set of values for the parameters of the KP matrix pins downs the parameters of the price
of risk equation. Here, we impose that KP is diagonal. In practice, the presence of the off-diagonal
elements in the KP matrix does not change our results. Moreover, CDR show that allowing for
an unrestricted matrix KP deteriorates out-of-sample performance. Finally, we take Σ as lower
triangular for identification purposes.

We can then cast the model within a discretized state-space representation. The state equation
becomes

(Ft − F̄ ) = Φ(Ft−1 − F̄ ) + Γεt, (11)

where the innovation εt is standard Gaussian, the autoregressive matrix Φ is

Φ = exp
(
−K

1
12

)
(12)

and the covariance matrix Γ can computed from

Γ =
∫ 1

12

0
e−KsΣΣT e−Ksds. (13)

Finally, we define a new latent state variable, Lt, that will be driving the liquidity premium. Its
transition equation is

(Lt − L̄) = φl(Lt−1 − L̄) + σlεl
t, (14)

where the innovation εl
t is standard Gaussian and uncorrelated with εt. Then, Equations (3), (11)

and (14) can be summarized as a state-space system

(Xt − X̄) = ΦX(Xt−1 − X̄) + ΣXεt

Pt = Ψ(Xt, Ct, Zt) + Ωνt, (15)

where Xt ≡ [F T
t Lt]T and Ψ is the (non-linear) mapping of cash flows Ct, bond characteristics, Zt,

and current states, Xt, into prices, Pt.

Estimation of this system is challenging because we do not know the joint density of factors and
prices. Various strategies to deal with non-linear state-space systems have been proposed in the
filtering literature: the Extended Kalman Filter (EKF), the Particle Filter (PF) and more recently
the Unscented Kalman Filter (UKF).42 The UKF is described in greater detail in Appendix D.
In practice, it delivers second-order accuracy with no increase in computing costs relative to the
EKF. Moreover, analytical derivatives are not required. The UKF has been introduced in the
term structure literature by Leippold and Wu (2003) and in the foreign exchange literature by
Bakshi et al. (2005). Recently, Christoffersen et al. (2007) compared the EKF and the UKF for the
estimation of term structure models. They conclude that the UKF improves filtering results and
substantially reduces estimation bias.

To set up notation, we state the standard Kalman filter algorithm as applied to our model. We
then explain how the unscented approximation helps overcome the challenge posed by a non-linear
state-space system. First, consider the case where Ψ is linear in X and where state variables and

42See Julier et al. (1995), Julier and Uhlmann (1996) and Wan and der Merwe (2001) for a textbook treatment.
Another popular approach bypasses filtering altogether. It assumes that some prices are observed without errors and
obtains factors by inverting the pricing equation. In our context, the choice of maturities and liquidity types that
are not affected by measurement errors is not innocuous and impacts estimates of the liquidity factor.
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bond prices are jointly Gaussian. In this case, the Kalman recursion provides optimal estimates
of current state variables given past and current prices. The recursion works off estimates of state
variables and their associated MSE from the previous step,

X̂t+1|t ≡ E [Xt+1|=t] ,

Qt+1|t ≡ E
[
(X̂t+1|t −Xt+1)(X̂t+1|t −Xt+1)T

]
, (16)

where =t belongs to the natural filtration generated by bond prices. The associated predicted bond
prices, and MSE, are given by

P̂t+1|t ≡ E [Pt+1|=t]

= Ψ(X̂t+1|t, Ct+1, Zt+1), (17)

Rt+1|t ≡ E
[
(P̂t+1|t − Pt+1)(P̂t+1|t − Pt+1)T

]

= Ψ(X̂t+1|t, Ct+1, Zt+1)T Q̂t+1|tΨ(X̂t+1|t, Ct+1, Zt+1) + Ω, (18)

using the linearity of Ψ. The next step compares predicted to observed bond prices and update
state variables and their MSE,

X̂t+1|t+1 = X̂t+1|t + Kt+1(Pt+1 − P̂t+1|t), (19)

Qt+1|t+1 = Qt+1|t + KT
t+1(Rt+1|t)−1Kt+1, (20)

where

Kt+1 ≡ E
[
(X̂t+1|t −Xt+1)(P̂t+1|t − Pt+1)T

]
,

= Qt+1|tΨ(X̂t+1|t, Ct+1, Zt+1), (21)

measures co-movements between pricing and filtering errors. Finally, the transition equation gives
us a conditional forecast of Xt+2,

X̂t+2|t+1 = ΦXX̂t+1|t+1, (22)

Qt+2|t+1 = ΦT
XQt+1|t+1ΦX + ΣXΣT

X . (23)

The recursion delivers series P̂t|t−1 and Rt|t−1 for t = 1, · · · , T . Treating X̂1|0 as a parameter, and
setting R1|0 equal to the unconditional variance of measurement errors, the sample log-likelihood
is

L(θ) =
T∑

t=1

l(Pt; θ) =
T∑

t=1

[
log φ(P̂t+1|t, Rt+1|t)

]
, (24)

where φ(·, ·) is the multivariate Gaussian density.

However, because Ψ(·) is not linear, equations (17) and (18) do not correspond to the conditional
expectation of prices and the associated MSE. Also, (21) does not correspond to the conditional
covariance between pricing and filtering errors. Still, the updating equations (19) and (20) remain
justified as optimal linear projections. Then, we can recover the Kalman recursion provided we
obtain approximations of the relevant conditional moments. This is precisely what the unscented
transformation achieves, using a small deterministic sample from the conditional distribution of
factors while maintaining a higher order approximation than linearization43. We can then use the
likelihood given in (24), but in a QML context. Using standard results, we have θ̂ ≈ N(θ0, T

−1Ω)
43See Appendix D.
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where θ̂ is the QML estimator of θ0 and the covariance matrix is

Ω = E
[(

ζHζ−1
OP ζH

)−1
]
, (25)

where ζH and ζOP are the alternative representations of the information matrix, in the Gaussian
case. These can be consistently estimated via their sample counterparts. We have

ζ̂H = −T−1

[
∂2L(θ̂)
∂θ∂θ′

]
(26)

and

ˆζOP = T−1
T∑

t=1




(
∂l(t, θ̂)

∂θ

)(
∂l(t, θ̂)

∂θ

)T

 . (27)

Finally, the model implies some restrictions on the parameter space. In particular, φl and diagonal
elements of Φ must lie in (−1, 1) while κ and λ must remain positive. In practice, large values of
κ or λ lead to numerical difficulties and are excluded. Finally, we maintain the second covariance
contour of state variables inside the parameter space associated with positive interest rates. The
filtering algorithm often fails outside this parameter space. None of these constraints binds around
the optimum and estimates remain unchanged when the constraints are relaxed. Estimation is
implemented in MATLAB via the fmincon routine with the medium-scale (active-set) algorithm.
Different starting values were used. For standard errors computations, we obtain the final Hes-
sian update (BFGS formula) and each observation gradient is obtained through a centered finite
difference approximation evaluated at the optimum.

D Unscented Kalman Filter

The UKF is based on a method for calculating statistics of a random variable which undergoes
a nonlinear transformation. It is based on an approximation to any non-linear transformation of
a probability distribution. It starts with a well-chosen set of points with given sample mean and
covariance. The nonlinear function is then applied to each point and moments are computed from
transformed points. This approach has a Monte Carlo flavor but the sample is drawn according
to a specific deterministic algorithm. It has been introduced in Julier et al. (1995) and Julier and
Uhlmann (1996) (see Wan and der Merwe (2001) for textbook treatment) and was first imported
in finance by Leippold and Wu (2003).

Given X̂t+1|t a time-t forecast of state variable for period t + 1, and its associated MSE Q̂t+1|t
the unscented filter selects a set of Sigma points in the distribution of Xt+1|t such that

x̄ =
∑

i

w(i)x(i) = X̂t+1|t

Qx =
∑

i

w(i)(x(i) − x̄)(x(i) − x̄)′ = Q̂t+1|t.

Julier et al. (1995) proposed the following set of Sigma points,

x(i) =





x̄ i = 0

x̄ +
(√

Nx

1−w(0)

∑
x

)
(i)

i = 1, . . . ,K

x̄−
(√

Nx

1−w(0)

∑
x

)
(i−K)

i = K + 1, . . . , 2K
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with weights

w(i) =





w(0) i = 0
1−w(0)

2K i = 1, . . . ,K
1−w(0)

2K i = K + 1, . . . , 2K

where
(√

Nx

1−w(0)

∑
x

)
(i)

is the i -th row or column of the matrix square root. Julier and Uhlmann

(1996) use a Taylor expansion to evaluate the approximation’s accuracy. The expansion of y = g(x)
around x̄ is

ȳ = E [g(x̄ + ∆x)]

= g(x̄) + E

[
D∆x(g) +

D2
∆x(g)
2!

+
D3

∆x(g)
3!

+ · · ·
]

where the Di
∆x(g) operator evaluates the total differential of g(·) when perturbed by ∆x, and

evaluated at x̄. A useful representation of this operator in our context is

Di
∆x(g)
i!

=
1
i!




n∑

j=1

∆xj
∂

∂xj




i

g(x)

∣∣∣∣∣
x=x̄

Different approximation strategies for ȳ will differ by either the number of terms used in the
expansion or the set of perturbations ∆x. If the distribution of ∆x is symmetric, all odd-ordered
terms are zero. Moreover, we can re-write the second terms as a function of the covariance matrix
Pxx of ∆x,

ȳ = g(x̄) +
(∇T Pxx∇

)
g(x̄) + E

[
D4

∆x(g)
4!

+ · · ·
]

Linearisation leads to the approximation ˆ̄ylin = g(x̄) while the unscented approximation is exact
up to the third-order term and the σ-points have the correct covariance matrix by construction.
In the Gaussian case, Julier and Ulhmann (1996) show that same-variable fourth moments agree
as well and that all other moments are lower than the true moments of ∆x. Then, approximation
errors of higher order terms are necessarily smaller for the UKF than for the EKF. Using a similar
argument, but for approximation of the MSE, Julier and Uhlmann (1996) show that linearisation
and the unscented transformation agree with the Taylor expansion up to the second-order term
and that approximation errors in higher-order terms are smaller for the UKF.
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Table II: Parameter Estimates - Transition Equations.

Panel (a) presents estimation results for the AFENS model without liquidity. Panel (b) presents estimation results
for the AFENS model with liquidity. For each parameter, the first standard error (in parentheses) is computed from
the QMLE covariance matrix (see Equation 25) while the second is computed from the outer product of scores (see
Equation 27). End-of-month data from CRSP (1985:12-2007:12).

(a) Benchmark Model

F̄ K Σ (×102)

0.0545 0.169 0.68
Level (0.0136) (0.177) (0.42)

(0.0093) (0.069) (0.03)

-0.0172 0.182 0.76 0.84
Slope (0.0277) (0.088) (0.75) (0.46)

(0.013) (0.071) (0.06) (0.04)

-0.0128 0.891 -0.14 0.41 2.31
Curvature (0.0061) (0.860) (1.86) (1.64) (0.66)

(0.0045) (0.283) (0.15) (0.17) (0.13)

(b) Model With Liquidity

F̄ K Σ (×102)

0.0576 0.198 0.85
Level (0.0165) (0.165) (0.86)

(0.0154) (0.098) (0.02)

-0.0167 0.222 -0.81 0.85
Slope (0.0092) (0.293) (0.85) (0.44)

(0.0165) (0.145) (0.06) (0.05)

-0.0189 0.887 0.57 0.25 2.27
Curvature (0.0057) (1.414) (0.82) (1.91) (1.66)

(0.0088) (0.325) (0.13) (0.20) (0.12)

L̄ φl σl

0.32 0.955 0.06
Liquidity (0.42) (0.034) (0.066)

(0.09) (0.021) (0.011)
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Table III: Mean Pricing Errors and Root Mean Squared Pricing Errors

Panel (a) presents MPE and Panel (b) presents RMSPE from AFENS models with and without liquidity. The
columns correspond to liquidity categories where New refers to on-the-run issues and Old refers to off-the-run issues.
End-of-month data from CRSP (1985:12-2007:12).

(a) Mean Pricing Errors

Mean Pricing Errors

Benchmark Model Liquidity Model
Maturity Old New Old New

3 0.009 0.032 -0.010 0.001
6 -0.003 0.022 0.009 -0.011
9 -0.035 0.024 -0.008 0.016
12 -0.043 0.035 -0.015 0.029
18 -0.057 -0.054 -0.010 -0.004
24 -0.022 0.000 0.007 4e−5

36 0.001 0.068 -0.020 0.013
48 -0.002 0.082 -0.060 0.018
60 -0.010 0.177 0.021 0.034
84 -0.080 0.014 0.024 -0.021
120 -0.402 0.249 -0.075 0.104
All -0.058 0.059 -0.011 0.016

(b) Root Mean Squared Errors

Root Mean Squared Pricing Errors

Benchmark Model Liquidity Model
Maturity Old New Old New

3 0.048 0.060 0.037 0.031
6 0.036 0.046 0.033 0.030
9 0.055 0.060 0.039 0.054
12 0.076 0.081 0.052 0.073
18 0.091 0.088 0.048 0.048
24 0.069 0.094 0.053 0.082
36 0.105 0.138 0.103 0.109
48 0.199 0.200 0.184 0.134
60 0.234 0.271 0.231 0.179
84 0.363 0.301 0.276 0.238
120 0.710 0.500 0.290 0.413
All 0.264 0.216 0.157 0.167
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Table IV: On-the-run Premium

Each line corresponds to a maturity category (months). The first two columns provide the average of residual
differences in each category for the AFENS model with and without liquidity, respectively. The last three columns
display estimates of the liquidity level, β̂, followed by standard errors. The first standard error is computed from
the QMLE covariance matrix (see Equation 25) while the second is computed from the outer product of scores (see
Equation 26). End-of-month data from CRSP (1985:12-2008:12).

Maturity Redidual Differences β̂ Standard Error
Benchmark Liquidity QMLE MLE

3 0.0111 -0.0053 0.2642 0.030411409 0.023289472
6 0.0221 -0.0295 0.2837 0.032610756 0.027397712
9 0.0566 0.0202 0.3158 0.03709391 0.033157944
12 0.0783 0.0396 0.3026 0.036220666 0.033527915
18 0.0025 -0.0036 0.0428 0.024812485 0.035277936
24 0.028 -0.0117 0.2005 0.032073934 0.035007491
36 0.0644 -0.026 0.5325 0.073912661 0.084293764
48 0.0892 0.0165 0.7446 0.094527023 0.088060245
60 0.2477 0.0102 1.227 0.136949189 0.119759631
84 0.125 -0.0509 1.2174 0.102685574 0.097803022
120 0.3106 0.264 1 - -
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Table VI: Off-the-run Excess Returns and Funding Liquidity - Alternate Data Set

Results from the regressions,
xr

(m)
t+12 = α(m) + δ(m)Lt + β(m)T ft + ε

(m)

(t+12),

where xr
(m)
t+h are the annual excess returns on a bond with maturity m (years), Lt is the liquidity factor and ft is

a vector of annual forward rates f
(h)
t from 1 to 5 years. Regressors are demeaned and divided by their standard

deviations. Panel (a) presents results using returns and forward rates obtained directly from CRSP data but with
the liquidity factor from the model. Panel (b) excludes the liquidity factor. Panel (c) excludes the liquidity factor
and uses excess returns from the model. Newey-West t-statistics (in parenthesis) with 15 lags. End-of-month data
from CRSP (1985:12-2007:12).

(a) Excess returns and forward rates from Fama-Bliss data with the liquidity factor

Maturity cst f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t Lt R2

2 0.72 0.29 -1.31 1.88 0.93 -0.95 -0.78 41.65
(3.49) (0.49) (-1.18) (1.50) (1.04) (-1.60) (-5.97)

3 1.31 0.15 -2.26 4.32 0.76 -1.49 -1.55 41.66
(3.41) (0.14) (-1.13) (1.89) (0.48) (-1.27) (-5.93)

4 1.79 -0.51 -1.74 4.58 1.53 -1.85 -2.18 42.82
(3.53) (-0.35) (-0.66) (1.51) (0.75) (-1.13) (-6.07)

5 1.98 -1.51 -0.24 4.57 0.36 -0.81 -2.66 40.87
(3.23) (-0.84) (-0.07) (1.24) (0.15) (-0.39) (-5.83)

(b) Excess returns and forward rates from Fama-Bliss data

Maturity cst f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t Lt R2

2 0.72 -0.43 -1.34 2.66 0.99 -1.53 21.04
(2.95) (-0.57) (-1.06) (1.50) (0.95) (-2.13)

3 1.31 -1.27 -2.33 5.86 0.88 -2.64 19.29
(2.87) (-0.87) (-1.04) (1.77) (0.46) (-1.86)

4 1.79 -2.52 -1.83 6.74 1.70 -3.46 19.86
(2.95) (-1.26) (-0.62) (1.51) (0.67) (-1.76)

5 1.98 -3.96 -0.35 7.20 0.56 -2.79 18.27
(2.71) (-1.65) (-0.10) (1.35) (0.19) (-1.14)

(c) Excess returns from the model and forward rates from Fama-Bliss data

Maturity cst f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t Lt R2

2 0.66 -0.13 -1.91 2.97 0.93 -1.51 21.10
(2.71) (-0.17) (-1.53) (1.69) (0.91) (-2.09)

3 1.27 -1.15 -2.04 4.97 1.19 -2.43 18.19
(2.82) (-0.79) (-0.90) (1.50) (0.63) (-1.73)

4 1.74 -2.46 -1.26 6.09 1.18 -2.92 17.22
(2.83) (-1.24) (-0.41) (1.34) (0.46) (-1.47)

5 2.09 -3.86 0.00 6.62 1.06 -3.12 17.15
(2.80) (-1.61) (0.00) (1.20) (0.34) (-1.26)
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Figure 1: Factor Loadings

Estimated level, slope and curvature factor loadings from the term structure model with liquidity.
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Figure 2: Liquidity and Term Structure Factors

Factors from the AFENS model with liquidity. Panel (a) displays the liquidity factor. The
scale is in dollars and the dotted line provides the 95% confidence interval around the filtered
liquidity factor at each point. The intervals are based on the Mean Squared Errors estimates
from the Kalman filter. Panel (b) displays the term structure factors. The scale is in percentage.
End-of-month data from CRSP (1985:12-2007:12).
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Figure 3: Excess Returns and Funding Liquidity

The graphs feature the liquidity factor together with the risk premium in different markets.
Panel (a) displays annual excess returns on 2-year off-the-run U.S. Treasury bonds. Panel (b)
displays annual excess rolling returns on a 12-month LIBOR loan. Panel (c) displays the spread
of the 1-year LIBOR rate above the off-the-run 1-year zero yield. Panel (d) displays the spread of
the 5-year swap rate. Excess returns are computed above the off-the-run Treasury risk-free rate.
End-of-month data from CRSP (1985:12-2007:12).
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(b) LIBOR excess rolling returns

Dec87 Dec89 Dec91 Dec93 Dec95 Dec97 Dec99 Dec01 Dec03 Dec05 Dec07
−5

−4

−3

−2

−1

0

1

2

3

4

5

 

 

31−Oct−1987 31−Dec−1994 31−Aug−1998

01−Jan−2000

Liquidity
Libor Excess Rolling Returns

(c) 1-year LIBOR spread
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(d) 5-year swap spread
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Figure 4: Corporate Spread and Funding Liquidity

The graphs feature the liquidity factor and corporate bond spreads for different ratings. Panel (a)
compares the liquidity factor with the spreads of Merrill Lynch indices for high quality bonds:
AAA, AA and A ratings. Panel (b) compares the liquidity factor with the spread of Merrill Lynch
BBB and High Yield corporate bond indices. Spreads are computed with respect to the off-the-run
10-year Treasury par yield.

(a) Liquidity and Merrill Lynch AAA, AA, and A indices
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Figure 5: U.S. Agency Bonds Excess Returns and Funding Liquidity

This graph features the liquidity factor and excess returns on U.S. Agency bonds with 10 years to
maturity. Annual excess returns are computed with respect to the off-the-run 10-year Treasury
bond. Data from Bloomberg and AFENS model (1985:12-2006:12).

(a) Liquidity U.S. Agency Bond Returns
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Figure 6: Residual Differences - Benchmark Model

Comparison of residual differences and ages for the benchmark AFENS model without liquidity.
Panel (a) presents differences between the residuals (in dollars) of the on-the-run and off-the-run
bonds in the 12-month category. Panel (b) presents the residuals 48-month category. Panel (c)
and (d) display years from issuance for the more recent and the seasoned bonds in the 12-month
and the 48-month category, respectively. End-of-month data from CRSP (1985:12-2007:12).
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Figure 7: Determinants of Liquidity

Panel (a) traces the liquidity factor and the difference between the median and the minimum
bid-ask spread at each observation date. Panel (b) traces the liquidity factor and implied volatility
from S&P 500 call options. The liquidity factor is obtained from the AFENS model with liquidity.
End-of-month data from CRSP (1985:12-2008:12)

(a) Bid-Ask Spread and Liquidity
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Figure 8: Liquidity and Term Structure Factors - Including 2008 Data

Factors from the AFENS model with liquidity. Panel (a) displays the liquidity factor. The
scale is in dollars and the dotted line provides the 95% confidence interval around the filtered
liquidity factor at each point. The intervals are based on the Mean Squared Error estimates
from the Kalman filter. Panel (b) displays the term structure factors. The scale is in percentage.
End-of-month data from CRSP (1985:12-2008:12).
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Figure 9: Corporate Spread and Funding Liquidity - Including 2008 Data

The graphs feature the liquidity factor and corporate bond spreads for different ratings. Panel (a)
compares the liquidity factor with the spreads of the Merrill Lynch index for AAA corporate
bonds. Panel (b) compares the liquidity factor with the spreads of the Merrill Lynch index for
BBB corporate bonds. Spreads are computed with respect to the off-the-run 10-year Treasury par
yield. End-of-month data from CRSP and Merrill Lynch (1988:12-2008:12).
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(b) Liquidity and Merrill Lynch BBB index
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