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1 Introduction

To mitigate the e¤ect of uncertainty about the future state of the economy, agents form

expectations to predict what will happen. To a large extent, however, the future remains

di¢ cult to predict as the spectrum events which may materialize is large. As a way to address

this issue, economic forecasts should take the form of probability distributions over a range

of possible events in order to provide a description of the uncertainty faced by agents (Tay

and Wallis, 2000). In contrast, point forecasts, the most common way by which forecasters

report their predictions, are silent about the degree of uncertainty associated to events of

interest despite being described as the most likely outcome.

This paper thus concerns the evaluation of point and density forecasts of real gross

domestic product (GDP) growth for Canada. The ability of linear and nonlinear univariate

models is compared for horizons up to two years. The paper also examines the impact of

using all data available by considering a limited-memory estimator approach as a potential

way to robustify linear models against structural changes (see, e.g., Giacomini and White,

2006; Clark and McCracken, 2004). More speci�cally, this paper concerns the usefulness

of nonlinear functional forms to predict the distribution of GDP growth. The analysis

documented in this paper is performed using vintages of data on real GDP so as to better

re�ect a real-time forecasting environment.

The rest of the paper is organized as follows. Section 2 discusses the data and presents

the forecasting models. Section 3 presents the design of the forecast experiment. Section

4 presents and discusses the empirical results of the forecast evaluation. Section 5 brie�y

concludes.

2 The Forecasting Experiment

2.1 Data and notation

Data used for this analysis are the seasonally adjusted, real GDP at market prices and

span from 1961Q1 until 2006Q4. The forecast evaluation is performed using vintages from

1990Q1. Let Yt denote the logarithm of GDP multiplied by 100, and the quarterly growth

as yt = Yt � Yt�1, with t = 1; :::; T . Figures 1 compares initial and �nal quarter-over-

quarter growth rates of GDP. In this paper, we are not interested in predicting the sequence

of quarterly growth rates. We focus instead on predicting the more important forecast

of the h-quarter growth in output, namely yht+h = �hi=1yt+i = Yt+h � Yt. By considering
this quantity rather than the sequence of growth rates, we can more directly analyze the
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uncertainty around GDP forecasts at various horizons.

In practice, forecasters are confronted with the problem of predicting a variable which is

measured with error and subject to quarterly revisions. Hence, even the information set at

time t when the prediction is made is uncertain.1 As a result, the resulting forecast error is

composed of two parts: one due to a genuine forecast error, and the other due to revisions.

Whether revisions can be predicted is outside the scope of this paper, but Jacobs and van

Norden (2007) and Cunningham et al (2007) provide interesting insights on how this can be

done.

2.2 Forecasting models

2.2.1 Unconditional forecasts

The usefulness of a forecasting model is generally analyzed by determining whether a par-

ticular model, or information set, is more informative than knowing nothing about the data

except its unconditional behaviour, or the mean. To illustrate the potential variability in

the process generating output growth, Table 1 reports summary statistics for di¤erent sub-

periods and compares the results using revised and real-time data over the recent period.

The data generating process (DGP) of output growth appears unstable over time as sug-

gested by the substantial heterogeneity across sub-period estimates of the mean, variance,

skewness, and kurtosis. The e¤ect of using revised data is mainly felt through the mean and

variance of the process, with minor discrepancies on the skewness and kurtosis estimates.

1The behaviour of revisions to Canadian GDP growth has been recently examined by Demers (2007).
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Table 1

Summary Statistics of Output Growth (annual rate)

Sample / Statistics mean variance skewness kurtosis

1961Q1-2006Q4 real-time revised real-time revised real-time revised real-time revised

� 5.175 � 12.830 � 0.321 � 2.307

1970Q1-1979Q4

� 3.983 � 13.486 � 0.542 � 2.688

1980Q1-1989Q4

� 2.591 � 16.478 � -0.184 � 1.859

1990Q1-1999Q4

2.275 2.576 5.966 8.185 -1.007 -0.865 3.873 3.694

2000Q1-2006Q4

2.641 2.694 2.395 2.614 -0.199 -0.549 2.816 3.070

1990Q1-2006Q4

2.426 2.625 4.471 5.821 -1.030 -0.935 4.575 4.513

2.2.2 AR(p)

The �rst model considered is the AR(p) model:

yt = �+ �(L)yt�1 + "t; (1)

where �(L) is the operator in the lag polynomial, with, for instance, �(L) = �1L� :::��pLp;
� is the constant; and "t s i:i:d:N(0; �2). This model is labeled as AR.

2.2.3 Markov switching AR(p)

Hamilton (1989) proposed a model of real US GNP which accommodates the expansion-

recession features of the business cycle. We use a slight variant of Hamilton�s mean-switching

model proposed by Hansen (1992). Rather than considering a mean-switching process, we

instead use an intercept-switching model, namely:

yt = �st +

pX
j=1

�jyt�j + "t; (2)
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where "t s i:i:d:N(0; �2). This speci�cation is labeled as MSI.
We also consider the case where the autoregressive parameter, �, switches. This speci-

�cation is labeled as MSIAR. Finally, Eq. (2) is generalized such that the innovations is a

also a mixture process, or state-dependent, namely "t s i:i:d:N(0; �2st). This speci�cation

is labeled as MSIH or MSIHAR, depending on whether the intercept switches or not, such

that Eq. (2) can be fully generalized as

yt = �st +

pX
j=1

�st;jyt�j + �st"t; (3)

with "t s i:i:d:N(0; 1).
The switching mechanism is unobserved and the variable, st, is a stochastic process

governed by a discrete time, ergodic, �rst order autoregressive M -state Markov chain with

transition probabilities, or mixing weights, Pr [st = jjst�1 = i] = pi;j for 8i; j 2 f1; :::;Mg,
and transition matrix, P :

P =

0BBB@
p1;1 � � � pM;1
...

. . .
...

p1;M � � � pM;M

1CCCA :
Denoting �t as the �ltered probability of being in either regime at time t, the markovian

properties allow easy derivation of values for �t+h using P, so that the regimes can be

weighted appropriately (see Hamilton, 1994, for further technical details). The vector of

population parameter, �t = f�1; :::; �M ; �1;1; :::; �p;M ; �1; :::; �M ; pi;jg0, can thus be estimated
using (constrained) maximum likelihood techniques, and is indexed by the subscript t to

re�ect that they are obtained using information up to time t and may change over time.

2.2.4 Smooth transition AR(p)

Another family of non-linear models proposed by Teräsvirta (1994) are the exponential

smooth transition and logistic smooth transition AR(p) models, denoted respectively as

ESTAR and LSTAR. The ESTAR model has the following form:

yt = �1 + �1(L)yt�1 + wt (�2 + �2(L)yt�1) + "t (4)

wt = 1� exp(�(yt�d � �)2);

whereas the LSTAR model is written as follows:

yt = �1 + �1(L)yt�1 + wt (�2 + �2(L)yt�1) + "t (5)

wt =
1

1 + exp(�(yt�d � �))
;
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where "t � i:i:d:N(0; �2); d is a delay parameter, and p � d � 1. The parameter  > 0

determines the shape of the transition function, wt. The vector of population parameter to

be estimated is thus, �t = f�1; �2; �1;1; :::; �1;p; �2;1; :::; �2;p; ; �g0, and the estimate for � is
obtained by concentrating the likelihood function, L.
These various speci�cations have one important thing in common in that they assume

conditional normality� i.e., "t is Gaussian. Meanwhile, mixture models approximate general

density functions and translate into processes with varying degrees of excess skewness and

kurtosis (Timmermann, 2000). By comparing a range of linear and nonlinear speci�cations

to perform point and density forecasts, we will thus determine if departure from linearity is

important when making such predictions.

3 Design of the Out-of-Sample Forecasting Exercise

3.1 Set-up and benchmark

To perform the pseudo out-of-sample forecast evaluation, forecasts are computed using two

strategies, namely the expanding and rolling approach. For the expanding scheme, the mod-

els are recursively estimated using information until time t. On the other hand, the rolling

approach consists of rolling a �xed sample forward at each iteration. The rolling-window

approach is also synonymous to using the so-called �limited-memory�estimator (Giacomini

and White, 2006). When the DGP is homogeneous over time, the expanding window should

work well, all else equal, since the econometrician is using all the available information.

In contrast, if the DGP is unstable, using old information will bias the estimates, whereas

the rolling window, which discards old, uninformative data, will reduce (or eliminate) the

bias. This, however, comes at the cost of a decrease in precision� the so-called bias-variance

trade-o¤. Under this scheme, data that are no longer seen as informative are excluded and

parameters are estimated using the most recent information.

To re�ect the fact that the generating process is possibly unstable, a set of possible bench-

mark forecasts is considered in the following way. Let �yht+h;S denote the unconditional mean

of the change in output over h periods calculated using various amount of time information,

S, or the length of the rolling window used for the estimation, where S = 30; 40; 50; 60; 70; 80,

or expanding (exp), such that �yht+h;S is approximated using

�yht+h;S =
1

S

tX
j=t�S+1

(Yj � Yj�h) : (6)

The quantity �yht+h;S is thus the average cumulative change in output over h period for the

S most recent data, at time t. The scheme of the expanding-window amounts to using all
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available time-information when making the forecast at time t, thus starting with j = 1.

From the set of benchmark forecasts, the one yielding the most accurate predictions (i.e.,

smallest loss) will thus be the forecast to beat. This benchmark model is labeled as UNC.

For the AR model, the optimal lag, p, is chosen using Akaike�s information criterion

(AIC). Because of signi�cant numerical cumbersomeness� the problem of identi�cation�

when estimating nonlinear models, p (and d for the smooth transition models) is �xed to

1 in the forecasting exercise. M is �xed to 2, again for the purpose of the forecasting

exercise� estimating 3-regime models with fewer than 100 observations could be di¢ cult.

Finally, constrained maximum likelihood estimates are used to ensure that j�̂j < 1 and

�̂ � 0, with �̂ �denoting an estimate. When some elements of �t lie on their boundary,

maximization of L was attempted using di¤erent starting values. If after ten attempts the
estimation failed to provide a satisfactory estimate of �t, the forecast is carried out using �̂t�1
instead. This was necessary in only a few occasions. An �insanity �lter�was not applied

although some nonlinear forecasts were a bit odd (Swanson and White, 1995).

Forecasts are evaluated for horizon h = 1; 2; 4; 8, and hmax = 8. The out-of-sample

forecast experiment runs from 1990Q1 until 2004Q4.

Because this paper strictly is concerned with the evaluation of point and density fore-

casting performance, speci�cation tests for linearity or nonlinearities are not implemented.

3.2 Point forecasts

Obtaining point forecasts from AR(p) and Markov-switching models is trivial. For the AR

model, the point forecast is derived by simply iterating forward Eq. (1). For the Markov-

switching models, the point forecast is obtained in a similar way for each regime, but each

regime is weighted appropriately� i.e., using �t+h.

In contrast, obtaining point forecasts with smooth-transition models is not possible using

closed-form expressions when h > 1; and thus requires numerical integration, or simulation

methods (Teräsvirta et al, 2005). To emphasize on the incidence of using a particular func-

tional (i.e., linear vs. nonlinear) form when forecasting, multi-step forecasts are obtained

by drawing vectors of "s of length hmax from the Gaussian distribution.2 One thousand

replications are used and averaged out to obtain ŷht+h.

2A natural alternative would be to bootstrap the residuals, but this would take us away from looking at
the incidence of the normality assumption, which is a key objective here.
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3.3 Density forecasts

Multi-step density forecasts are obtained in a similar fashion as the point forecasts, but

another quantity of interest is necessary however when h > 1. While variance estimates of the

one-step-ahead forecast-error can be estimated directly from the models, or by concentration

of the likelihood function, estimates of the multi-step-ahead forecast-error variance, denoted

as 
̂t+h, must be derived. Let �̂
2
t+h denote the h-step-ahead Newey-West estimate of the

forecast error variance for the process fYt+h � Yt+h�1g, �̂2t+h is obtained using the following
expression for an AR(1), ignoring parameter uncertainty (Clements and Hendry, 1998, ch.

4):

�̂2t+h = �̂
2

�
1 + �2h

��
1� �2

� :
As h increases, �̂2t+h approaches the unconditional variance of yt.

Then the variance of the forecast error for the partial-sum process yt+h can be obtained

using


̂t+h = h�̂
2
t+h

�
1 +

h

T

�
:

Denoting ft(yt+hjIt) as the h-step-ahead density forecast, or conditional density distribu-
tion, of the true density pt(yt+hjIt) at time t; the sequence 
̂t+h is used to construct sequences
of vectors of ft(yt+hjIt), where It is the information set known at time t.
It is important to note that the MS models with constant variance generate Gaussian

density forecast at each period t, although the density is time varying due to the mixture of

distributions embedded in the model. In contrast, when the distribution of "t depends upon

the state, the resulting density at time t is non-Gaussian.

For the smooth-transition models, forecast densities are obtained by taking the average

of the simulated densities at each period.

4 Forecast Evaluation

4.1 Point forecasts

Denoting vt+h as the out-of-sample forecast error at time t+ h, it is important to emphasis

on the di¤erence between the residuals of the models, "t, and the resulting (h =) 1-step

out-of-sample forecast error. Although vt+1 and "t+1 may coincide, they will have di¤erent

properties in general. For instance, the addition of a constant term to a linear regression

ensures that E ("t) = 0, however nothing prevents vt+1 to have a non-zero mean as forecasts

can be biased in an unstable environment.
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Since accuracy of the point forecasts is examined using the mean squared forecast error

(MSFE) criterion, and because the MSFE combines the (squared) forecast-error bias and

the forecast-error variance, these two quantities of interest are examined separately.

4.1.1 Results

To illustrate the impact of using di¤erent amounts of time-information (S) when forecasting

GDP, �gures 2 and 3 plot the forecast errors at di¤erent horizons for all the time-series

forecasting models with the S varying. The interesting thing to note from these �gures is

that the choice of S matters more for long-horizon forecasts than for short horizons. In other

words, the choice of S has a smaller impact on predicting the short-term dynamics of output

growth than for predicting its trend (i.e., the unconditional mean of GDP growth), which is

possibly time-varying.

More concretely, Figure 4 plots the MSFE of each model relative to the unconditional

(UNC) forecast�s MSFE based on a rolling window of 60 observations, which is found to

provide the lowest MSFE for nearly all horizons. When this ratio is less than one, a model

is said to improve the accuracy relative to the benchmark forecasting device. Whereas when

the ratio is above one, the model is declared non-informative relative to the benchmark.

While nearly all model speci�cations improve the forecast accuracy relative the unconditional

forecast at horizons of one or two quarters, most models fail to further improve the forecast

accuracy at the one-year horizon, at which point an uninformed, unconditional forecast

proves superior to the models. Another interesting feature that comes out of Figure 4 is that

the MSFEs of each speci�cation tend to be clustered for very short term forecasts, although

by varying S the MSFEs can be in�ated. For instance, the MSFE is in�ated by over 25 per

cent when h = 1 in the case of the AR forecasts, depending on the choice of S. On the

other hand, the models behave very di¤erently for longer horizons: the MSFE can easily

be twofold by varying S within a model speci�cation. This result clearly shows how using

di¤erent forecasting strategies can a¤ect accuracy, given a particular model speci�cation.

Rather than comparing the forecast accuracy with the best unconditional forecasts, Fig-

ure 5 compares the MSFEs relative to the best AR forecasts, which is obtained from a rolling

window of 60 observations. We see that the point-forecast accuracy of the AR model is rel-

atively good when compared to nonlinear alternatives. The reason why this is the case is

because nonlinear models tend to produce forecasts that are slightly more biased than those

obtained from the AR model. Figure 6 plots the bias of the di¤erent model. As expected, the

models which are estimated using large amount of time-information tend to be more biased

than those relying on smaller Ss, a problem which becomes more severe as h increases. For
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longer horizons, biases can cause serious problems when predicting trend growth.

Turning to the forecast-error variance by factoring out the bias, Figure 7 plots the ratios

of variances of the nonlinear models relative to the UNC forecasts based on S = exp. While

most models are informative in the short-run, few models remain informative about GDP

growth at the one-year horizon, a result consistent with the �ndings of Galbraith and Tkacz

(2007). In contrast, Figure 8 plots the ratios of variances of the nonlinear models relative to

the AR forecasts with S = 60. In this case, a few nonlinear forecasts (i.e., mainly from the

MSIH and LSTAR speci�cations) outperform the best linear forecasts.

Because nonlinear models produce biased forecasts, they tend to generate higher MSFEs

than the linear AR model. When the biased is taken into account, however, we then notice

that they generate smaller forecast error variance. This result could be due to the absence

of nonlinearities over the forecast period.

4.2 Density forecasts

In contrast to the point-forecasts evaluation or the examination of the conditional mean, the

evaluation of density forecasts is a generalized approach to discriminate between forecasting

models in their ability to characterize the unconditional density of a stochastic process of

interest. In this subsection we turn to the analysis of density forecasts.

The approach discussed in Dawid (1984) and Diebold, Gunther, and Tay (1998) is

followed. They suggest using probability integral transform to evaluate model-based eco-

nomic forecasts. Let fytgTt=1 denote the sequence of realization of the process (i.e., output
growth); with fpt(ytjIt)gTt=1 denoting the sequence of conditional densities governing yt with
It = fyt�1; yt�2; :::g; and fft(ytjIt)gTt=1 is the corresponding sequence of density forecast.
Note that the subscript t signi�es that the density function can be time varying.

Because pt(ytjIt) is unobserved, even ex post, we cannot directly compare the predicted
densities with the data generating process densities. The strategy proposed by Diebold et al

thus consists of evaluating the forecast densities through the probability integral transform

(pit). The sequence of pits, denoted as fztgTt=1, is the cumulative density function which
corresponds to pt(ytjIt) evaluated at yt, or:

zt =

Z yt

�1
pt(u)du: (7)

If the predicted densities correspond to the true densities, then fztgTt=1 � i:i:d:U [0; 1] with-
out the need to impose any distributional assumptions about the underlying process being

predicted.
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To analyze zt; the hypothesis of uniformity can be veri�ed by plotting the empirical

distribution of zt against the 45� line. Formal tests of i:i:d:U [0; 1] can also be applied under

certain conditions, for instance the Kolmogorov-Smirnov or Cramer-vonMises goodness-of-�t

test statistics. Because goodness-of-�t tests lack power, Berkowitz (2001) suggests to examine

zt by taking the inverse normal CDF transformation instead, z�t , such that z
�
t � i:i:d:N . The

normality test due to Doornick and Hansen (1994) is used.

When h = 1, the i.i.d. assumption about zt or z�t is a natural hypothesis to examine.

When h > 1, however, zt and z�t will exhibit dependence which will distort the uniformity of

normality tests that rely upon the absence of independence.

To perform the inference and account for the e¤ects of the dependence due to the over-

lapping of the h(> 1)-step-ahead forecasts, the �nite-sample distribution of the Kolmogorov-

Smirnov (KS), Cramer-von Mises (CvM), and Doornick-Hansen (DH) tests is simulated. For

each test, 10 000 replications are used to generate the distribution under the null hypothesis

of interest. Normal. For simplicity, the e¤ect of parameter estimation is ignored, although

this may be an issue for inference.

4.2.1 Results

Figures 9 and 10 plot the empirical cumulative density functions (CDF) of the zt+h values

for the di¤erent forecasting models against the theoretical 45� line. The CDFs are plotted

for various S at horizon 1, 4 and 8. The 10 per cent critical values of the Kolmogorov-

Smirnov are plotted alongside: when the empirical CDF lies outside the con�dence interval,

the null hypothesis that zt+h � i:i:d:U is rejected, implying that the predicted densities do
not match the ones which generated the data. It is important to note that zt+h could depart

from the 45� line simply because the forecasts are biased. Departure from the 45� line could

be caused by higher order moments as well. From �gures 9 and 10, we see that a number

of models fail to match the density. Even at the one-quarter horizon, the choice of S has a

large in�uence on the ability of a model to match the density of GDP growth. The MSIHAR

and the MSIH seem to produce the worse density forecasts at all horizons. On the other

hand, the MSI model performs reasonably well at the one-quarter ahead only. The MSIAR

model with rolling-windows, in contrast, can generate good density forecasts at all horizons

with a number of CDFs lying close to the ideal 45� line. From a distance point of view, the

CDF from best MSIAR lies closer to 45� line than the one from the best AR.

The results for the Cramer-von-Mises test are summarized in Figure 11. The CvM test

statistic at each forecast horizon, of each models with varying S, are plotted alongside the

simulated 10 per cent critical values. Overall, these results do not contradict the conclusions
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drawn earlier from the KS test results: for many functional form, it is possible to �nd a S

which generates forecast densities that match the data. For all functional forms, using old

time information deteriorates the ability of a model to match the density of the GDP growth

data. In general, either the KS or CvM tests �nd little rejection of the null hypothesis,

whether this is because of the low power of these tests is open question.

An alternative, more powerful testing strategy is to test whether the transformed process

z�t+h is normally distributed. Figure 12 summarizes the Doornick-Hansen normality test

results based on the simulated critical values for a con�dence level of 10 per cent. If the test

statistics, DH, lies below the 10 per cent critical value, we conclude that the null hypothesis

that the z�s are normally distributed cannot be rejected. These results generally comfort

the earlier results based on the goodness-of-�t statistics.

5 Conclusion [to be completed]
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Figure 1: Data
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Figure 2: Forecast Error with Di¤erent Amount of Time Information in Real-Time
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Figure 3: Forecast Error with Di¤erent Amount of Time Information in Real-Time
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Figure 4: Relative MSFEs
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Figure 5: Relative MSFEs
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Figure 6: Forecast Bias
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Figure 7: Variance Ratios
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Figure 8: Variance Ratios
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Figure 9: CDFs of zt+h-values From Forecasting Models
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Figure 10: CDFs of zt+h-values From Forecasting Models
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Figure 11: Cramer-von-Mises (CvM) Test Results
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Figure 12: Doornick-Hansen (DH) Test Results
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