An Overview of Recent Developments in Forecast Evaluation

Todd E. Clark¹

¹Federal Reserve Bank of Kansas City

October 25, 2007

I. Evaluation in simple world: no model estimation, and no nested models

II. What if my forecast models have estimated parameters?

III. What if my models are nested?

nested: null model is a restricted version of alternative

IV. What if my forecasts are real time?

Introduction: scope of overview

(1) tests of equal MSE applied to point forecasts

pair of models

(2) tests of encompassing applied to point forecasts

- encompassing: is there information in the alternative forecast not incorporated in the null forecast?
- pair of models

(3) tests of accuracy of density forecasts

single model and pair of models

omit much in the interest of time

- many tests: Corradi and Swanson (2006c), West (2006)
- multiple models: ditto
- Bayesian methods: Geweke and Whiteman (2006)

I. No model estimation, no nested models

(1) testing for equal MSE

• Diebold and Mariano (1995) t-test

•
$$loss_{t+h} = e_{1,t+h}^2 - e_{2,t+h}^2$$

• DM test = mean of loss/standard error

• DM test
$$\rightarrow^d N(0,1)$$

(2) testing for forecast encompassing

• Harvey, Leybourne, and Newbold (1998) t-test

•
$$loss_{t+h} = e_{1,t+h}(e_{1,t+h} - e_{2,t+h})$$

- HLN test = mean of loss/standard error
- HLN test $\rightarrow^d N(0,1)$

(3) density forecasts: single model

- Diebold, Gunther, and Tay (1998): examine probability integral transform (PIT)
 - $PIT = prob(y \le y_{t+h})$
 - *h* = 1: PIT is iid uniform
 - *h* > 1: PIT is still uniform, but not independent
- DGT: graphically investigate departures of PIT from uniformity
 - histogram of PIT series
 - ECDF against 45 degree line (uniform CDF)
- others: formally test by comparing the maximum distance between the uniform CDF and the ECDF against the Kolmogorov distribution
 - test only valid for h = 1

II. What if my models have estimated parameters?

answer depends in part on whether the estimation scheme is recursive or rolling

- recursive: sample expands
- rolling: constant sample size, rolled forward
- notation: R = # of observations used to estimate model generating first forecast, P = # of forecasts

West (1996) asymptotics: $P, R \rightarrow \infty$ at the same rate

- allows use of recursive and rolling schemes
- each coefficient estimate \rightarrow_{p} population value

Giacomini and White (2006) asymptotics: R fixed, $P \rightarrow \infty$

- allows only rolling scheme
- coefficients always include parameter estimation error
- GW results are conditional on the forecasts (estimated parameters, methods, etc.), rather than unconditional

(1) testing for equal MSE: DM test can be compared against the N(0,1) distribution.

- West (1996): Asymptotically, impacts of parameter estimation error (PEE) on the standard error cancel out.
 - cancellation occurs because estimation and loss functions are the same
 - applies under recursive and rolling schemes
- Giacomini and White (2006): Despite PEE, conventional DM test is N(0,1).
 - applies only under rolling scheme

challenge: DM test rejects too often for h > 1

- adjust standard error for bias (HLN (1997)); not asymptotically justified for estimated models
- moving block bootstrap of forecast errors (White (2000))

II. What if my models have estimated parameters?

(2) testing for encompassing: depends on asymptotics

- West (2001): PEE affects the variance of the encompassing statistic.
 - standard error in HLN test must be adjusted, as in West (2001, 2006)
 - specific adjustment depends on whether scheme is recursive or rolling
 - the bigger P/R, the more important is PEE adjustment
- Giacomini and White (2006): Despite PEE, HLN encompassing test is N(0,1).
 - applies only under rolling scheme

challenge: HLN test rejects too often for h > 1

same as with DM test

(3) density forecasts: single model – alternative tests

- PIT/Kolmogorov-based approach: test uniformity of PIT, making some adjustment for impact of PEE
 - applicable for h = 1, not h > 1
- (a) Bai (2003): a test statistic corrected for the impact of PEE has a simple asymptotic distribution
 - correct the test statistic directly
 - Bai's published results only apply to in-sample analysis.
 - Corradi and Swanson (2006c) show the Bai result carries over to densities of out-of-sample forecasts.
- (b) Corradi and Swanson (2006a): use conventional test statistic (max distance between ECDF and 45 degree line), and bootstrap the resulting non-standard distribution
 - moving block bootstrap of data, with adjustment for recursive estimation

(4) density forecasts: pair of models – alternative tests based on different asymptotics

- (a) Amisano and Giacomini (2007): likelihood ratio test based on log predictive density score
 - based on Giacomini and White (2006) asymptotics, in which PEE is a permanent component of forecast error
 - applicable to $h \ge 1$ and many model estimation approaches
 - but models must be estimated with rolling scheme
- (b) Corradi and Swanson (2006b): test based on distributional analog of MSE (average squared distance between densities)
 - based on West (1996)-type asymptotics
 - non-standard asymptotic distribution which incorporates impact of PEE; use moving block bootstrap with adjustment for critical values
 - applicable to $h \ge 1$
 - applies under recursive and rolling schemes

West (1996) requires a variance matrix of moment conditions to have full rank. But with nested models, the forecast errors are perfectly correlated, making the variance matrix singular.

• H₀: small model true $\Rightarrow e_{1,t+h} = e_{2,t+h} \forall t$

⇒ The population difference in MSE is exactly 0, with 0 variance.

Nested model tests based on West-type asymptotics are tests of H_0 : small model true — i.e., whether some coefficients = 0.

- perfectly valid, but whether a coefficient = 0 may not be what we want to know
- We may want to know if forecasts are equally accurate in a finite sample.

Giacomini and White (2006) asymptotics provide a way of testing whether forecasts are equally accurate.

(1) testing for equal MSE: depends on asymptotics

- McCracken (2007) and Clark and McCracken (2005): DM test has a non-standard asymptotic distribution.
 - distribution comes entirely from PEE
 - applies under recursive and rolling schemes
 - h = 1: asymptotic critical values from McCracken (2007)
 - $h \ge 1$: MC simulations or parametric bootstrap of null model
- Under H₀: small model true, the MCM asymptotic distribution is shifted well to the left of the N(0,1).
 - Why? Estimation error associated with extraneous parameters in large model makes MSE(large) > MSE(small).
 - Using N(0,1) critical values, the DM test rarely rejects, whether or not the null model is true.
- McCracken (2007) and Clark and McCracken (2005): An F-type test of equal MSE has much better power.

(1) testing for equal MSE: depends on asymptotics

- Giacomini and White (2006): DM test is N(0,1).
 - H₀: conditioned on the forecasts, the forecasts are equally accurate
 - applies only under rolling scheme

(2) testing for forecast encompassing: depends on asymptotics

- Clark and McCracken (2001, 2005): HLN test has a non-standard asymptotic distribution.
 - distribution comes entirely from PEE
 - applies under recursive and rolling schemes
 - *h* = 1: asymptotic critical values from CM (2001)
 - $h \ge 1$: MC simulations or parametric bootstrap of null model
- Clark and West (2007): N(0,1) critical values reasonably approximate the CM critical values.
 - for h > 1, better to use parametric bootstrap of null model
- Giacomini and White (2006): HLN test is N(0,1).
 - H₀: conditioned on the forecasts, encompassing
 - applies only under rolling scheme

(3) testing for forecast encompassing: Corradi-Swanson approach

- Chao, Corradi and Swanson (2001): test of $E(e_{1,t+h}X_{2,t}) = 0$ has a standard distribution
 - West (1996)-type PEE correction of variance is necessary
 - applies under recursive and rolling schemes
 - more general, but power often lower than HLN test
- Corradi and Swanson (2002): CCS extended to allow for generic nonlinear alternative models has a non-standard distribution.
 - distribution reflects PEE
 - applies to recursive forecasts
 - moving block bootstrap of data, with adjustment for recursive estimation (Corradi and Swanson (2007))

(4) density forecasts from pair of models: only one option

- Amisano and Giacomini (2007): likelihood ratio test based on log predictive density score
 - based on Giacomini and White (2006) asymptotics, which condition on the forecasts, making PEE a permanent component of forecast error
 - applicable to *h* ≥ 1 and general set of model estimation approaches
 - but models must be estimated with rolling scheme

IV. What if my forecasts are real time?

Existing work makes stationarity assumptions that rule out real time data.

- Usual assumption: regression orthogonality conditions hold both in-sample and out-of-sample.
- But predictable data revisions will make the real-time forecast error correlated with the real-time predictors.

(1) testing for equal MSE, non-nested models

- Clark and McCracken (2007): DM test has a N(0,1) distribution, but only with a standard error corrected for the impact of predictability of revisions
 - Monte Carlo evidence: standard error correction is often helpful, but doesn't seem essential

IV. What if my forecasts are real time?

(2) testing for equal MSE, nested models

- Clark and McCracken (2007): DM test has a N(0,1) distribution, but only with a standard error based entirely on the impact of the predictability of revisions
 - sharp contrast to case of no revisions, in which distribution of *t*-test is non-standard
 - Monte Carlo evidence: taking account of real time revisions is helpful, but not necessarily essential
 - punchline: Consider both the *F*-type test of equal MSE that ignores the impact of predictable revisions and the *t*-test that does not.

I. Evaluation in simple world: no model estimation, and no nested models

if only things were so simple....

II. What do I do if my forecast models have estimated parameters?

- MSE tests: simple DM
- encompassing test: depends on asymptotics, but probably a good idea to adjust HLN test for PEE as in West (2001, 2006)
- densities: take some care to account for PEE

III. What do I do if my models are nested?

- MSE tests: depends on asymptotics, but probably a good idea to use *F*-test and critical values of McCracken (2007) and Clark and McCracken (2005)
- encompassing test: reasonably safe to compare against standard critical values (short h)
- densities: only one option, which requires rolling scheme

IV. What if my forecasts are real time?

 good idea to make corrections for revision predictability in Clark and McCracken (2007), but also consider some uncorrected tests

With typical sample sizes, it is not often the case that one forecast robustly beats another.

- result of instability?
- result of small sample imprecision and limited power?
 - Clark and McCracken (2006)

Predictability has declined sharply in some countries.

- now much harder for multivariate models or professional forecasts to beat univariate benchmarks
 - Campbell (2007), Clark and McCracken (2008), Faust and Wright (2007)
- outcome of better policy and optimal control?
 - Have unconditional forecast evaluations become less useful for model and forecast evaluations?
 - Should we consider conditional forecasts? If so, how do we evaluate them?

References

- Amisano, G., and Giacomini, R. (2007), "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business and Economic Statistics 25, 177-190.
- Bai, J. (2003), "Testing Parametric Conditional Distributions of Dynamic Models," *Review of Economic and Statistics* 85, 531-549.
- Campbell, S.D. (2007), "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence from the Survey of Professional Forecasters,". Journal of Business and Economic Statistics 25, 191-200.
- Chao, J., Corradi, V., and Swanson, N.R. (2001), "An Out of Sample Test for Granger Causality," *Macroeconomic Dynamics* 5, 598-620.
- Clark, T.E., and McCracken, M.W. (2001), "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," *Journal of Econometrics*, 105, 85-110.
- Clark, T.E., and McCracken, M.W. (2005), "Evaluating Direct Multistep Forecasts," Econometric Reviews, 24, 369-404.
- Clark, T.E., and McCracken, M.W. (2006), "The Predictive Content of the Output Gap for Inflation: Resolving In–Sample and Out–of–Sample Evidence," *Journal of Money*, *Credit, and Banking* 38, 1127-1148.
- Clark, T.E., and McCracken, M.W. (2007), "Tests of Equal Predictive Ability with Real-Time Data," Research Working Paper 07-06, Federal Reserve Bank of Kansas City.
- Clark, T.E., and McCracken, M.W. (2008), "Forecasting with Small Macroeconomic VARs in the Presence of Instability," in *Forecasting in the Presence of Structural Breaks* and Model Uncertainty, Rapach D.E., and Wohar, M.E. (eds), Elsevier: Amsterdam (forthcoming).
- Clark, T.E., and West, K.D. (2006), "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis," *Journal of Econometrics* 135, 155-186.
- Clark, T.E., and West, K.D. (2007), "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," *Journal of Econometrics* 138, 291-311.
- Corradi, V., and Swanson, N.R. (2002), "A Consistent Test for Nonlinear Out-of-Sample Predictive Accuracy," Journal of Econometrics 110, 353-381.
- Corradi V., and Swanson, N.R. (2006a), "Bootstrap Conditional Distribution Tests In the Presence of Dynamic Misspecification," *Journal of Econometrics* 133, 779-806.
- Corradi V., and Swanson, N.R. (2006b), "Predictive Density and Conditional Confidence Interval Accuracy Tests," *Journal of Econometrics* 135, 187-228.

- Corradi V., and Swanson, N.R. (2006c), "Predictive Density Evaluation," in *Handbook of Economic Forecasting*, Elliott G., Granger C.W.J., and Timmermann A. (eds.), North Holland.
- Corradi, V., and Swanson, N.R. (2007), "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," *International Economic Review* 48, 67-109.
- Diebold, F.X., Gunther T.A., and Tay, A.S. (1998), "Evaluating Density Forecasts with Applications to Financial Risk Management," *International Economic Review* 39, 863-883.
- Diebold, F.X., and Mariano, R.S. (1995), "Comparing Predictive Accuracy," Journal of Business and Economic Statistics 13, 253-263.
- Faust, J., and Wright, J.H. (2007), "Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset," manuscript, Johns Hopkin University.
- Geweke, J., and Whiteman, C. (2006), "Bayesian Forecasting," in *Handbook of Economic Forecasting*, Elliott G., Granger C.W.J., and Timmermann A. (eds.), North Holland.
- Giacomini, R., and White, H. (2006), "Tests of Conditional Predictive Ability," *Economet*rica 74, 1545-1578.
- Harvey, D.I., Leybourne, S.J., and Newbold, P. (1997), "Testing the Equality of Prediction Mean Squared Errors," *International Journal of Forecasting* 13, 281-291.
- Harvey, D.I., Leybourne, S.J., and Newbold, P. (1998), "Tests for Forecast Encompassing," Journal of Business and Economic Statistics 16, 254-259.
- McCracken, M.W. (2007), "Asymptotics for Out-of-Sample Tests of Causality," Journal of Econometrics 140, 717-752.
- West, K.D. (1996), "Asymptotic Inference about Predictive Ability," *Econometrica* 64, 1067-1084.
- West, K.D. (2001), "Tests for Forecast Encompassing When Forecasts Depend on Estimated Regression Parameters," Journal of Business and Economic Statistics 19, 29-33.
- West, K.D. (2006), "Forecast Evaluation," in *Handbook of Economic Forecasting*, Elliott G., Granger C.W.J., and Timmermann A. (eds.), North Holland.
- White, H. (2000), "A Reality Check for Data Snooping," *Econometrica* 68, 1097-1126.