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Overview of this Paper

• Most expert surveys take the form of unbalanced panels as
individual forecasters frequently enter and exit from
surveys

• Important concern for real-time forecasting
• This paper considers ways to combine expert opinions that

work even in the presence of forecasts data that is
incomplete

• We study several approaches and propose a new, simple
approach that projects the realized value on a constant
and the equal-weighted forecast



Overview of this Paper

• Most expert surveys take the form of unbalanced panels as
individual forecasters frequently enter and exit from
surveys

• Important concern for real-time forecasting
• This paper considers ways to combine expert opinions that

work even in the presence of forecasts data that is
incomplete

• We study several approaches and propose a new, simple
approach that projects the realized value on a constant
and the equal-weighted forecast



Overview of this Paper

• Most expert surveys take the form of unbalanced panels as
individual forecasters frequently enter and exit from
surveys

• Important concern for real-time forecasting
• This paper considers ways to combine expert opinions that

work even in the presence of forecasts data that is
incomplete

• We study several approaches and propose a new, simple
approach that projects the realized value on a constant
and the equal-weighted forecast



Overview of this Paper

• Most expert surveys take the form of unbalanced panels as
individual forecasters frequently enter and exit from
surveys

• Important concern for real-time forecasting
• This paper considers ways to combine expert opinions that

work even in the presence of forecasts data that is
incomplete

• We study several approaches and propose a new, simple
approach that projects the realized value on a constant
and the equal-weighted forecast



Motivation
Entry and exit of experts

Figure 1: Participants in the Survey of Professional Forecasters (inflation forecasts) 
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Notes: The ID corresponds to the identification number assigned to each forecaster in the survey. The 
columns represent the quarter when the survey was taken. The Xs show when a particular forecaster 
responded to the inflation part of the survey and provided a one-step-ahead forecast. 



Motivation
Number of contiguous forecasts per forecaster



Theoretical Results
Yt+1 : variable of interest; Ŷt+1,t : N × 1 vector of forecasts(

Yt+1

Ŷt+1,t

)
∼
((

µy
µ

)(
σ2
y σ′yby
σyby Σbyby

))
.

et+1,t = Yt+1ι− Ŷt+1,t : vector of forecast errors

Σe = E[et+1,te′t+1,t]

= (σ2
y + µ2

y)ιι
′ + µµ′ + Σbyby − ισ′yby − σybyι′ − µyιµ′−µyµι′.

Forecaster’s standard problem under squared loss:

minω′Σeω

s.t. ω′ι = 1.

Constraint ensures unbiasedness of the combination if µ =µyι.



Theoretical Results
Standard solution for the optimal weights

ω∗ = (ι′Σ−1
e ι)−1Σ−1

e ι.

The optimal weights depend on the full covariance matrix, Σe.
Only in very special cases are these reduced to equal
weights−the most prominent case being when the forecast
errors have identical variance, σ2, and identical pair-wise
correlations, ρ:

Σ−1
e ι =

ι

σ2(1 + (N − 1)ρ)

(ι′Σ−1
e ι)−1 =

N

σ2(1 + (N − 1)ρ)
,

and so the optimal weights are given by:

ω∗ =
(

1
N

)
ι.



Combination Methods in Common Use
Equal Weights (EW)

Ȳt+1,t = N−1
t

Nt∑
i=1

Ŷt+1,t,i

• The simple average has proven surprisingly difficult to
outperform (Clemen (1989); Makridakis and Hibbon
(2000); Stock and Watson (2001,2003))



Combination Methods in Common Use
Equal Weights (EW)

• The robustness of the simple average forecast across
different data samples and forecasting methods remains a
puzzle

• One would expect to find considerable heterogeneity in
experts’ forecasting ability - this ought to be exploitable by
differentiating the weights applied to different forecasts

• In practice, however, individual forecasters’ true
ability−and consequently the combination weights−are
unknown

• Improving on the EW average requires having a procedure
for estimating the combination weights which ensures that
the sample estimates do not get too far removed from their
true but unknown values
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Combination Methods in Common Use
Least Squares Approaches

A common approach is to use least squares on the N -vector of
forecasts, Ŷτ using data over the period τ = 1, ..., T :

ω̂T = (
T−1∑
τ=1

Ŷτ+1,τŶ′τ+1,τ )−1
T−1∑
τ=1

Ŷτ+1,τYτ+1.

Different versions of this least squares projection have been
proposed. Granger and Ramanathan (1984) consider three
regressions:

(i) Yt+1 = ω0t + ω′tŶt+1,t + εt+1

(ii) Yt+1 = ω′tŶt+1,t + εt+1

(iii) Yt+1 = ω′tŶt+1,t + εt+1, s.t. ω′tι = 1.



Combination Methods in Common Use
Least Squares Approaches

• Least-squares procedures require estimating the
covariance matrix of the forecast errors, but achieving a
precise estimate is difficult due to:

1. Short and incomplete data samples for individual
forecasters

2. The dimensionality of the problem at hand with a large
number of forecasters relative to the length of the
time-series

3. Instability of the covariance matrix reflecting structural
breaks, time-varying coefficients or other changes in the
underlying data generating process
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Combination Methods in Common Use
Shrinkage (e.g., Stock and Watson (2003))

ωit = ψω̂it + (1− ψ)(1/Nt),
ψt = max(0, 1− κNt/(T − 1−Nt − 1)),

• κ regulates the strength of the shrinkage towards equal
weights

• As the sample size, T , rises relative to the number of
forecasts, N , the least squares estimate gets a larger
weight
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Combination Methods in Common Use
Odds matrix approach (Gupta and Wilson (1987))

• Weights are derived from a matrix of pair-wise odds ratios.
Each entry in the matrix is interpreted as the odds that
forecast i will outperform forecast j

• If the odds matrix is denoted O, then the weight vector, w,
is the normalized eigenvector associated with the largest
eigenvalue

• The entries of the O matrix are oij = πij

πji
, where

πij = aij

(aij+aji)
, and aij is the number of times forecast i had

a smaller absolute error than forecast j in the historical
sample. πij represents the probability that the ith forecast
will outperform the jth forecast in the next realization
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Proposed Method
Considerations

1. Individual expert forecasts are often biased and the slope
coefficient in a regression of the realized value on
individual forecasts often differs from unity (e.g., Zarnowitz
(1985); Davies and Lahiri (1995))

2. Bias correction is best done at the level of the combined
forecast by including a single intercept and more refined
adjustments generally do not lead to improvements

3. Forecasts from data sources such as surveys are generally
highly unbalanced which makes standard
covariance-based approaches difficult to apply
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Proposed Method
Projection on the Equal-Weighted Mean

Ỹt+1,t = α+ βȲt+1,t

• This extension of the EW only requires estimating two
parameters, α and β, through least squares regression

• As in the case with EW, information from forecasters with
no more than a single data point can be used

• By including a constant, the forecast combination method
adjusts for biases that may be present in the individual
forecasts as well as in the aggregate

• By allowing for a slope coefficient different from unity the
method is likely to work well under a much broader set of
scenarios than the simple EW forecast
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Monte Carlo Experiment

• We compare the real-time forecasting performance of
various methods through MC simulations in the context of
a common factor model (2 factors) that allows for bias in
individual forecasts, dynamic dependencies in the common
factors, and heterogeneity in individual forecasters’ ability

• All forecasts are one-step-ahead, simulated out-of-sample,
and based on recursive parameter estimates using only
information available at the time of the forecast
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A Common Factor Model

The target variable and the individual forecasts are driven by
the following common factor model:

Yt+1 = µy + β′yFFt+1 + εyt+1, εyt+1 ∼ N(0, σ2
εY

)

Ŷit+1 = µi + β′iFFt+1 + εit+1, εit+1 ∼ N(0, σ2
εi

), i = 1, ..., N.

Cross-sectional heterogeneity in the individual forecasters’
performance can be introduced by letting any one of the
parameters (µi, βiF , σ2

εi
) differ across forecasters



A Common Factor Model
Factor dynamics can be introduced through:

Ft = BFFt−1 + εFt , εFt ∼ N(0,DεF ),

where DεF is an nf × nf diagonal matrix with entries:

DεF =


σ2
F1

0 · · · 0
0 σ2

F2
· · · 0

...
. . . . . . 0

0 0 σ2
Fnf

 .

This gives the following convenient expressions:

σ2
y = β′yF (I−B2

F )−1DεF βyF + σ2
εY
,

σyby[i] = β′iF (I−B2
F )−1DεF βyF

Σbyby[i, j] = β′iF (I−B2
F )−1DεF βjF+I{i=j}σ2

εi
.



Monte Carlo Evidence
Table 1: Simulation results from forecast combinations under factor structure 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best

4 100 1.000 1.015 1.052 1.046 1.037 1.045 1.043 0.993 1.538
4 1000 1.000 1.002 1.002 1.001 1.000 1.001 1.001 0.999 1.664
20 100 1.000 1.020 1.253 1.236 1.222 1.206 1.129 0.981 4.357
20 1000 1.000 1.002 1.021 1.019 1.019 1.019 1.019 0.998 5.293

4 100 1.000 0.861 0.851 0.843 0.898 0.842 0.841 0.959 0.939
4 1000 1.000 0.840 0.815 0.814 0.882 0.814 0.814 0.966 0.972
20 100 1.000 0.734 0.866 0.851 0.871 0.832 0.799 0.943 0.809
20 1000 1.000 0.705 0.700 0.700 0.725 0.700 0.700 0.951 0.828

4 100 1.000 0.841 0.872 0.924 1.019 0.923 0.922 0.991 1.123
4 1000 1.000 0.830 0.830 0.890 0.987 0.890 0.890 0.995 1.159
20 100 1.000 0.706 0.871 0.909 1.191 0.887 0.844 0.986 1.084
20 1000 1.000 0.691 0.705 0.742 0.990 0.742 0.742 0.995 1.210

Experiment 5: Strong heterogeneity

Experiment 7: Bias in individual forecasts

Experiment 1 : Equal weights summing to one

Notes: Results are based on 10,000 simulations. EW: equal-weighted forecast, PEW: projection of actual value on an 
intercept and EW forecast, GR1: unconstrained OLS, GR2: OLS w/o constant, GR3: OLS w/o constant and weights 
constrained to add to unity, Shrink1: shrinkage with !=0.25, Shrink2: shrinkage with !=1, Odds: Odds ratio approach, 
Previous Best: forecast from previous best model. 



Monte Carlo Evidence
Table 2: Simulation results from forecast combinations under factor structure with 

survey-like data 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best

20 100 1.000 1.000 1.040 1.030 1.520 1.030 1.030 1.520 1.540
20 500 1.000 0.986 1.040 1.030 1.510 1.030 1.030 1.510 1.520
20 1000 1.000 0.990 1.030 1.020 1.530 1.020 1.020 1.530 1.550

20 100 1.000 0.563 0.987 0.981 0.976 0.981 0.981 0.976 0.976
20 500 1.000 0.552 0.988 0.983 0.980 0.983 0.983 0.981 0.981
20 1000 1.000 0.557 0.988 0.983 0.977 0.983 0.982 0.977 0.977

20 100 1.000 0.586 0.987 0.992 0.990 0.992 0.992 0.990 0.991
20 500 1.000 0.564 0.994 0.998 0.997 0.998 0.998 0.996 0.997
20 1000 1.000 0.579 0.995 0.997 0.995 0.997 0.997 0.995 0.995

Experiment 5: Strong heterogeneity

Experiment 7: Bias in individual forecasts

Experiment 1 : Equal weights summing to one

 Notes: Results are based on 10,000 simulations. The minimum number of contiguous observations used by the least 
squares and shrinkage combinations is 20. EW: equal-weighted forecast, PEW: projection of actual value on an intercept 
and EW forecast, GR1: unconstrained OLS, GR2: OLS w/o constant, GR3: OLS w/o constant and weights constrained to 
add to unity, Shrink1: shrinkage with κ=0.25, Shrink2: shrinkage with κ=1, Odds: Odds ratio approach, Previous Best: 
forecast from previous best model. 



Monte Carlo Evidence
The performance of PEW

• The out-of-sample forecasting performance of the
projection on the equal-weighted forecast continues to be
very good in the unbalanced panel as this approach makes
use of the full set of forecasts in the first stage and then
adjusts for any biases remaining in the equal-weighted
forecasts in the second stage



Empirical Application
Table 3: Empirical application to inflation forecasts from the  

Survey of Professional Forecasters.1/ 

 

RMSE
EW 0.877 0.903 1.151 1.146
EWc 1.005 0.978 1.008 0.998
PEW, Recursive 0.896 0.899 0.998 0.976
PEW, Rolling 0.788 0.881 0.831 0.926
PEW c 0.903 0.972 0.780 0.996
GR1 2.860 2.921 1.096 1.207
GR2 1.241 1.817 1.120 1.087
GR3 4.499 11.480 1.070 1.113
Shrink 1 1.398 2.918 1.850 1.033
Shrink 2 3.107 7.015 5.503 1.503
Odds 0.892 0.893 1.070 1.092
Previous Best 0.937 0.876 1.053 1.092

1-Step-Ahead 4-Steps-Ahead
Revised Data Real-Time Data Revised Data Real-Time Data

 
1/ Sample: 1979q4-2006q3. Revised data is the last revision as of January 2007, real-time data corresponds 
to the first revision. The minimum number of contiguous observations required is 10, except for EW, PEW 
Recursive, and PEW Rolling, where no restriction was imposed. For PEW Rolling a fixed window with 30 
observations was used. The number of out-of-sample forecasts equals 77 for 1-step-ahead and 74 for 4-steps-
ahead. 



Empirical Application
Table 3: Empirical application to inflation forecasts from the  

Survey of Professional Forecasters.1/ 

 

P-Values Giacomini-White Test 2/

EW 0.146 0.276 0.000 *** 0.007 ***
EWc 0.021 ** 0.079 * 0.000 *** 0.033 **
PEWc 0.015 ** 0.265 0.240 0.128
GR1 0.068 * 0.059 * 0.205 0.042 **
GR2 0.001 *** 0.133 0.165 0.301
GR3 0.356 0.366 0.010 ** 0.073 *
Shrink 1 0.071 * 0.290 0.308 0.590
Shrink 2 0.210 0.293 0.279 0.174
Odds 0.059 * 0.225 0.000 *** 0.113
Previous Best 0.037 ** 0.244 0.000 *** 0.251

1-Step-Ahead 4-Steps-Ahead
Revised Data Real-Time Data Revised Data Real-Time Data

 
* p<0.10. ** p<0.05. *** p<0.01. 
1/ Sample: 1979q4-2006q3. Revised data is the last revision as of January 2007, real-time data corresponds to the 
first revision. The minimum number of contiguous observations required is 10, except for EW, PEW Recursive, 
and PEW Rolling, where no restriction was imposed. For PEW Rolling a fixed window with 30 observations was 
used. The number of out-of-sample forecasts equals 77 for 1-step-ahead and 74 for 4-steps-ahead. 
2/ Computed with respect to PEW Rolling. Test is conditional on the (first/fourth) lag of the difference of the 
losses. 



Empirical Application

 

Figure 2: Previous Best Forecaster 

 

a) Time-Series 

 
1 step-ahead Revised Data Forecasts 4 step-ahead Revised Data Forecasts 

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

62

60

70

84

65

456

512

510

433

507

404

484

94

429

414

 

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

62

60

70

407

472

456

512

463

404

484

421

429

433

 
 

 

b) Histogram 
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Empirical Application
 

Figure 2: Forecast Errors, Four-Steps-Ahead, Real-Time Data 
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Empirical Application

 

Figure 3: Forecast Errors, Four-Steps-Ahead, Real-Time Data 
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Figure 4: Estimated Parameters of PEW Rolling 
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Conclusions
• The unbalanced panel structure of survey data means that

the real-time performance of combination methods that
require estimating the full covariance between the experts’
forecasts deteriorates relative to that of more robust
methods such as equal-weighting

• Successful schemes for real-time combination of expert
forecasts achieve a favorable trade-off between the bias of
using sub-optimal combination weights and the effect of
parameter estimation error of using estimated combination
weights

• We propose a new combination method that projects the
outcome variable on a constant and the equal-weighted
forecast. This approach uses information in the full set of
individual forecasts (incorporated into the equal-weighted
average) but then adjusts for possible bias and noise in this
aggregate forecast.
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