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Abstract

Most macroeconomic data are uncertain - they are estimates rather than perfect measures. Use of

these uncertain data to form an assessment of current activity can be viewed as a problem of signal

extraction. One symptom of that uncertainty is the propensity of statistical agencies to revise their

estimates in the light of new information or methodological advances. This paper sets out an

approach to extracting the signal from uncertain data that takes the experience of past revisions as

representative of the uncertainties surrounding the latest published estimates. Speci�cally, it

describes a two-step estimation procedure in which the history of past revisions (real-time data)

are �rst used to estimate the parameters of a measurement equation describing the of�cial

published estimates; and these parameters are then imposed in a maximum likelihood estimation

of a state space representation of the `true' pro�le of the macroeconomic variable.
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Summary

Most macroeconomic data are uncertain � they are estimates rather than perfect measures.

Measurement errors arise because data are typically based on incomplete samples. And they arise

because many variables � for example, in-house software investment � are not easily observable;

necessitating the use of proxies. Such uncertainty poses challenges for both forecasting and

economic analysis. Where it is material, economists must decide how much weight to place on

apparent `news' in the published data. But how can the extent of the problem be judged and what

can be done about it?

One symptom of data uncertainty is the propensity of statistical agencies to revise their estimates

in light of new information (bigger samples) or methodological advances (better proxies). In the

United Kingdom, the National Accounts are subject to a rich revisions process and as a result, the

scale of the ensuing revisions may give a clear indication of the extent of data uncertainty in the

past. And to the extent that past revisions give a good guide to the likely scale of revisions in the

future, they can also be used to gauge the uncertainty associated with the latest data.

Recognition of this uncertainty leads naturally to a probabilistic view of the past. Estimation of a

con�dence interval around the of�cial published data is a �rst step; giving an indication of the

potential scale of revisions. Going further, economists can gather additional evidence about the

current economic conjuncture; using that evidence to assess the likely impact of future revisions

on the pro�le of growth.

Treating uncertain data in this way is neither new nor unique to the Bank. A 2004 study by the

Statistics Commission concluded that �the main users of the [of�cial] statistics knew that revisions

should be expected, understood the reasons for them, and were able to make some allowance for

them when taking important decisions.� However, most attempts to allow for potential revisions

are informal. Approaching the issue more formally can add rigour to the exercise of combining

such diverse source of information � this sort of exercise is known as a `signal extraction problem'.

This paper describes a formal (`state space') model of uncertain (revisable) data that can be used

to extract the signal from uncertain data. The model draws on the experience of past revisions to

proxy the uncertainty surrounding the latest vintage of the of�cial data published by the Of�ce for
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National Statistics. It estimates how far to update a simple estimate of how the data would evolve

� based on past values of the variable in question � in the light of those data and any alternative

indicators (such as business surveys). The model's output is an estimate of the `true' value of the

variable of interest � a `backcast' � that cab be used as a cross-check of the latest published data,

or even to substitute for those data in any economic applications. Since we assume that of�cial

estimates get better with time the resulting backcasts amount to a prediction of the cumulative

impact of revisions.

In using the model to predict the cumulative impact of revisions, economists should, however, be

alert to a number of caveats. In particular, the model relies on past revisions being a good

indicator of current uncertainty. It is, however, possible that revisions may become less predictable

in the future. For example, successful delivery of the Of�ce for National Statistic's Statistical

Modernisation Programme will enable faster balancing of National Accounts data from differing

sources and facilitate internal reviews of collation procedures. And some signi�cant

methodological revisions in the past � such as the introduction of the ESA-95 accounting

framework � may not be representative of current uncertainty. It is also quite possible that

alternative indicators that have provided a good mapping to mature ONS data in the past will offer

a worse indication in future � for example if the sample of respondents to a particular business

survey becomes unrepresentative.
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1 Introduction

Most macroeconomic data are uncertain � they are estimates rather than perfect measures.

Measurement errors may arise because data are based on incomplete samples. And measurement

errors may also arise because many variables � for example, in-house software investment � are

not easily observable; necessitating use of proxies. Where such uncertainty is material, economists

should recognise the potential for measurement error when gauging how much weight to place on

apparent `news' in the published data. But how can we judge the importance of data uncertainty?

Without objective measures of data quality, it is dif�cult to gauge the potential for measurement

errors. One symptom of data uncertainties is the propensity of statistical agencies to revise their

estimates in the light of new information (larger samples) or methodological advances (better

proxies). In the United Kingdom, the National Accounts are subject to a rich revisions process �

staff at the Of�ce for National Statistics (ONS) work through the implications of any changes to

methodology for back data. As a result, the experience of revisions gives an indication of the scale

of past uncertainties. And, to the extent that the experience of past revisions gives a good guide to

the likely incidence of revisions in the future, it provides a measure of the potential for

measurement errors surrounding the latest published estimates.

In practice, revisions have often appeared large relative to the variation observed in the published

data. For example, the variance of revisions to the �rst Quarterly National Accounts estimates of

real GDP growth was 0.08pp over the period since 1993; compared with a variance of 0.07pp in

the latest estimates of quarterly GDP growth. This issue is by no means unique to the United

Kingdom: see Mitchell (2004) for a review of work establishing the scale of historical revisions

and Öller and Hansson (2002) for a cross-country comparison.

Uncertainty about the true pro�le of macroeconomic variables now and in the past adds to the

challenge of forming a forward-looking assessment of economic prospects and hence complicates

policy formulation. Our understanding of the behavioural relationship between variables will be

impaired if estimates of model parameters change as the underlying data are revised. And even

where model parameters are not materially affected, revisions to the recent pro�le of

macroeconomic data may affect the forecasts generated by those models. Taking published data at

face value � ignoring the potential for future revisions � may result in avoidable forecast errors.
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The data-user need not, however, treat uncertain data in such a naïve way. Indeed, there is some

evidence that data-users have allowed for data uncertainties in interpreting macroeconomic data.

For example, the August 2003 In�ation Report noted that �The MPC takes account of the

likelihood that GDP data will be revised when deciding how much weight to put on the latest

data�. More generally, in reviewing revisions to the United Kingdom's National Accounts,

Statistics Commission (2004) concluded that �the main users of the statistics knew that revisions

should be expected, understood the reasons for them, and were able to make some allowance for

them when taking important decisions.� In other words, data-users appear to be aware that

macroeconomic data provide a noisy signal of the current conjuncture.

One strategy that the data-user might adopt in the face of uncertainty in estimates of the past is to

amend her model estimation strategy to recognise the imperfect signal in the published of�cial

data. For example, Harrison, Kapetanios and Yates (2004) suggest that where measurement

uncertainties are greatest in estimates of the recent past, models that downweight recent

`experience' may have a superior forecasting performance to models in which all observations are

weighted equally. In a similar vein, Jaaskela and Yates (2005) explore the implications of

uncertain data for performance of competing simple policy rules. The intuition they develop is

that the more measurement error there is in the output gap data, and the worse current data are

relative to lagged data; the greater the weight on in�ation compared to output gap terms; and the

greater the weight on lagged output gap terms relative to current ones.

However, integrating data uncertainty into model estimation strategies in this way adds to the

complexity of model building and interpretation � the mapping from published of�cial estimates

to forecast model output con�ates estimation of economic relationships with estimates of the

signal contained in the published data. Such costs may be acute in a practical policy setting

because of policymakers' preference for picking from a wide range of models appropriate to

interpretation of differing economic developments; as described in Bank of England (1999). An

alternative strategy is to unbundle treatment of data uncertainty from estimation of speci�c

forecasting models � �rst estimating the `true' value of economic data and then using those

estimates to inform economic modelling and forecasting. In other words, focusing directly on the

signal extraction problem posed by uncertain data.
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This paper explores that signal extraction problem more formally. So long as revisions tend to

improve data estimates � moving them towards the truth � the problem boils down to predicting

the cumulative impact of revisions on the latest estimates of current and past activity. In

addressing this problem, our paper contributes to a growing and long-standing literature on

modelling revisions (or real-time analysis), of which Howrey (1978) was an early proponent.

1.1 An overview of the literature

One common approach to prediction of revisions is to estimate `true' data using some form of

state space model. One very simple possible setting would be to assume that published data are

unbiased; measurement errors i.i.d; uncertainties are resolved after a single round of revisions; and

that no alternative indicators are available. Then, the solution of the signal extraction problem is

simply a matter of estimating the signal-to-noise ratio attaching to the preliminary estimates.

Early papers extended this basic story by allowing for any systematic biases apparent in previous

preliminary estimates. Such biases appear to have been endemic in National Accounts data in the

United Kingdom and elsewhere, as documented for example in Akritidis (2003) and Garratt and

Vahey (2006). Early papers also allowed for serial correlation across vintages � that is that errors

in today's measure of activity in 1999 might be related to errors in yesterday's measure of growth

in 1999. However, a number of features of real-time National Accounts data were left unexplored.

Indeed, in a detailed review of the literature, Jacobs and Van Norden (2006) charge that the early

papers �impose data revision properties that are at odds with reality�. Recent papers have sought

to enrich the representation on a number of fronts.

Role for alternative indictors. Most authors consider only the statistical agency's estimates as

candidate measures. Ashley, Driver, Hayes and Jeffery (2005) suggest weighting the signal

extracted from alternative indicators in proportion to past performance in predicting revisions.

Jacobs and Sturm (2006) model competing indicators more formally in a state space setting.

Considering alternative measures in this way appears consistent with the wide array of indicators

monitored by policymakers (see Lomax (2004)) and is the approach pursued in this paper.

Persistence of data uncertainty. Howrey (1978) restricts attention to revisions occurring in the

�rst few quarters after the preliminary release. Assuming that estimates become 'true' after a few

quarters is, however, violated by the experience of revisions to more mature estimates. Subsequent
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papers have explored a variety of approaches to dealing with the uncertainty surrounding more

mature estimates. Some, such as Patterson (1994) and Garratt, Lee, Mise and Shields (2005),

increase the number of vintages in the model so that estimates are not assumed to become `true'

for two or three years. In the case of the United Kingdom's National Accounts, however, revisions

have been applied to even more mature estimates. An alternative, followed by Jacobs and Van

Norden (2006), is to restrict the model to a few maturities but allow that measurement errors may

be non-zero for the most mature vintage modelled. Finally, Kapetanios and Yates (2004) impose

an asymptotic structure on the data revision process � estimating a decay rate for measurement

errors rather than separately identifying the signal-to-noise ratio for each maturity. The bene�t of

modelling the relationship between measurement errors of differing maturities in this way is that

they can capture revisions to quite mature data relatively parsimoniously.

Serial correlation in measurement errors. Many authors allow for serial correlation across

releases (see, for example, Howrey (1984)). Jacobs and Van Norden (2006) argue that spillovers in

measurement errors within any vintage may be more important; in other words, that errors in

today's measure of growth in a given past period may be related to errors in today's measure of

growth in another past period.

Correlation between measurements errors and the `true' state. Early models assumed

measurement errors to be independent of the `true' state. In an in�uential paper, Mankiw and

Shapiro (1986) challenged whether early estimates should be viewed as `noisy' in this way or

whether we might expect some correlation with the level of activity, which they termed `news'.

Ignoring such a correlation could lead models to under-weight uncertain data relative to prior

information. Jacobs and Van Norden (2006) propose a model that captures both `noise' and

`news' elements. Annex A expands on the distinction between `noise' and `news' in revisions to

better locate the approach taken in this paper.

The model developed in this paper seeks to capture these various features. The set of available

measures is expanded to include alternative indicators while the representation of measurement

errors attaching to the latest of�cial estimates allows for serial correlation, correlation with the

true pro�le and for revisions to be made to quite mature estimates as well as the preliminary data

releases. In allowing for mature data to be revised, we follow Kapetanios and Yates (2004) and

assume the variance of measurement errors decays asymptotically.
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In contrast with the treatment in much of the antecedent literature, we exclude earlier vintages

from the set of measures used to estimate `true' activity (see, for example, Garratt et al (2005)).

Ignoring earlier vintages amounts to little more than assuming that the statistical agency processes

new information ef�ciently, so that the information set on which the latest published estimate is

based encompasses that used for earlier releases. This intuition is developed more formally in

Annex B.

The paper is structured as follows. Section 2 represents the signal extraction problem in state

space. Section 3 describes the estimation strategy adopted; focusing on the use of the statistical

properties of past revisions to estimate some parameters of the state space model. We also present

the results of a small simulation exercise and an empirical illustration.

2 A State Space Model of Uncertain Data

In this section, we present a state space representation of the signal extraction problem.

Recognising that analysis of the latest of�cial data may be complemented by business surveys and

other indirect measures, we allow for an array of measures of each macroeconomic variable of

interest. Then, for each variable, the model comprises a transition law and separate measurement

equations describing the latest of�cial estimates and each of the alternative indicators considered.

The measurement equation describing the of�cial published estimates is designed to be

suf�ciently general to capture the patterns in revisions observed in historical revisions to a variety

of United Kingdom National Accounts aggregates.

For ease of future generalisation, the model is presented in vector notation, for m variables of

interest. However, as discussed below, we simplify estimation by assuming block diagonality

throughout the model so that the model can be estimated on a variable-by-variable basis for each

of the m elements in turn. One cost of this simpli�cation is that estimates of the `true' value of the

various elements of National Accounting identities will not necessarily satisfy the accounting

identities. (1)

(1) In practical application of the model, it is relatively trivial to `balance' estimates as a post-model step � following
Weale (1985) in allocating any accounting identity `residual' arising from estimation of the Kalman system across
elements, to minimise some loss function.
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2.1 The model for the true data

Let the m dimensional vector of variables of interest that are subject to data uncertainty at time t

be denoted by yt ; t D 1; : : : ; T : The vector yt contains the true value of the economic concepts of

interest, but is not observed.

We assume that the model for the true data yt is given by

yt D �C
qX
iD1
Aiyt�i C �t ; (1)

where A1; : : : ;Aq are m � m matrices, A .L/ D Im � A1L � : : :� AqLq is a lag polynomial

whose roots are outside the unit circle, � is a vector of constants, �t D .�1t ; : : : ; �mt/0 and

E
�
�t�

0
t
�
D 6� where we denote the main diagonal of 6� by �2� D

�
� 2�1; : : : ; �

2
�m

�0
:We further

assume that A1; : : : ;Aq are diagonal, so that the true value of each variable of interest is related

only to its own historical values. For future reference we de�ne E.yty0t/ D 6y and its main

diagonal �2y D .� 2y1; : : : ; �
2
ym /

0; where � 2yi D E.yi t � �i/
2:

This representation has a number of limiting features in practical application. First, because we

assume stationarity of yt , the model is more likely to be applicable to differenced or detrended

macroeconomic data than to their levels. Second, we assume linearity for yt . Although this may

be a restrictive assumption, it is unclear to what extent we can relax it as assuming one particular

form of nonlinearity is likely to be restrictive as well. Finally, because we assume A1; : : : ;Aq are

diagonal, we do not consider transition laws that exploit prior views of any behavioural

relationship between the variables of interest. This treatment is common across the antecedent

literature.

2.2 The statistical agency's published estimate

Let ytCnt denote a noisy estimate of yt published by the statistical agency at time t C n; where

n D 1; : : : T � t . The model for these published data is

ytCnt D yt C cn C vtCnt : (2)

where cn is the bias in published data of maturity n and vtCnt the measurement error associated

with the published estimate of yt made at maturity n:
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One of the main building blocks of the model we develop is the assumption that revisions improve

estimates so that of�cial published data become better as they become more mature. Re�ecting

this assumption, both the bias in the published estimates and the variance of measurement errors

are allowed to vary with the maturity of the estimate � as denoted by the n superscript. Note also

that the latest data release
�
yT�iC1T�i ; : : : ; yTT�1

�0 includes data points of differing maturities ranging
from preliminary estimates of the most recent past through more mature observations of data

points that were �rst measured some years previously.

In principle, the model in Equation (2) could be applied to previous vintages as well as the latest

estimates. One natural question is whether data-users should consider these previous vintages as

competing measures of the truth � that is, using ytCn� jt alongside ytCnt as measures of yt . This

treatment does not sit easily with our assumption that revisions tend to improve estimates. So long

as the statistical agency processes new information ef�ciently � in other words, does not discard

useful information � the latest release should entirely subsume earlier estimates and the data-user

should ignore all earlier vintages. Annex B establishes this intuition more formally. We assume

that the statistical agency does process information ef�ciently and hence the remainder of this

Section develops the model summarised in Equation (2) for the latest release alone.

The constant term cn is included in Equation (2) to permit consideration of biases in the statistical

agency's dataset. As noted above, the n superscript allows for observations of different maturities

to be differently biased. Speci�cally, we model cn as

cn D c1.1C �/n�1; (3)

where c1 is the bias in published data of maturity n D 1 and � describes the rate at which bias

decays as estimates become more mature .�1 � � � 0/. This representation imposes structure on

the bias in of�cial published estimates � we assume that any bias tends monotonically towards

zero as those estimates become more mature. The particular functional form chosen is arbitrary

and it is possible that other richer forms might �t the revisions experience of speci�c variables

better; albeit at some cost in terms of generality of application.

We assume that the measurement errors, vtCnt , are distributed normally with �nite variance. We

allow that measurement errors be serially correlated, heteroscedastic with respect to maturity, and

correlated with economic activity.
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Serial correlation.

We allow serial correlation in vtCnt . Speci�cally, we model serial correlation in the errors attaching

to the data in any data release published at t C n; as

vtCnt D
pX
iD1
BivtCnt�i C "

tCn
t ; (4)

where B1; : : : ;Bp are m � m matrices, B.L/ D I� B1L � : : :� BpL p is a matrix lag polynomial

whose roots are outside the unit circle and "tCnt D
�
"tCn1t ; : : : ; "

tCn
mt
�0, with E �"tCnt �

"tCnt
�0�
D 6n" as

we are allowing for heteroscedasticity in measurement errors with respect to n. The representation

picks up serial correlation between errors attaching to the various observations within each data

release. In other words, errors in today's estimates of yesterday may be correlated with error's in

today's estimate of last week. Equation (4) imposes some structure on vtCnt because we assume a

�nite AR model whose parameters do not depend on maturity. We further assume that B1; : : : ;Bp
are diagonal, so that the measurement errors attaching to published estimates of each of the m

variables are treated independently from the measurement errors of the other variables.

Heteroscedasticity.

We allow that "tCnt and therefore vtCnt has heteroscedasticity with respect to n: Speci�cally, we

model the main diagonal of 6n" as �2"n D
�
� 2"n1
; : : : ; � 2"nm

�0
; where � 2"ni D E

�
"tCnit

�2
: For future

reference we also de�ne E.vtCnt .vtCnt /0/ D 6nv and its main diagonal �2vn D .� 2vn1 ; : : : ; �
2
vnm
/0; where

� 2vni
D E

�
vtCnit

�2
: The model for �2"n is given by

�2"n D �
2
"1 .1C �/

n�1 ; (5)

where �2
"1
is the variance of measurement errors at maturity n D 1 and � describes the rate at

which variance decays as estimates become more mature .�1 � � � 0/ : A monotonic decline in

measurement error variances is consistent with models of the accretion of information by the

statistical agency, such as that developed in Kapetanios and Yates (2004).

Correlation with economic activity.

Over-and-above any serial correlation in revisions, we allow that measurement errors be correlated

with the underlying true state of the economy, yt . In doing so, we approximate the degree of

`news' as opposed to `noise' inherent in the published estimates � addressing the challenge posed
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by Mankiw and Shapiro (1986). Annex A expands on the distinction between `noise' and `news'

in revisions to better locate the approach taken.

In order to separately identify serial correlation and correlation, we allow that "tCnt be correlated

with shock �t to the transition law in Equation (1), so that, for any variable of interest

cov
�
�i t ; "

n
it
�
D ��"� �i� "ni : (6)

2.3 The alternative indicators

In addition to the statistical agency's published estimate, the data-user can observe a range of

alternative indicators of the variable of interest; such as private sector business surveys. We denote

the set of these indicators by yst ; t D 1; : : : ; T . Unlike of�cial published estimates, the alternative

indicators need not be direct measures of the underlying variables. For example, private sector

business surveys typically report the proportion of respondents answering in a particular category

rather than providing a direct measure of growth. We assume the alternative indicators to be

linearly related to the true data

yst D c
s C Zsyt C vst : (7)

The error term vst is assumed to be i.i.d with variance 6vs . This, of course, is more restrictive than

the model for the of�cial data. (2) In particular, the model does not exploit any heteroscedasticity or

serial correlation in measurement errors associated with the indicators; any correlation between

the true state of the economy and the measurement errors surrounding the alternative indicators; or

any correlation between the measurement errors attaching to the alternative indicators and those

attaching to the published estimates.

2.4 The full model

To summarise the model, we give its complete state space form for the latest available release. The

model treats the most recent vintage of data published by the statistical agency and any alternative

(2) Simple measurement equations of this form may not be appropriate for all the alternative indicators used in
routine conjunctural assessment of economic activity. One natural extension of the model presented would be to
consider the potential for serial correlation in the measurement errors attaching to alternative indicators � recognising
that business surveys often have a smoother pro�le than the related National Accounts variables.
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indicators as measures of the variable of interest. The state space representation of the model is

0@ yTt
yst

1A D
0@ cn

cs

1AC
0@ I : : : 0 I : : : 0

Zs : : : 0 0 : : : 0

1A

0BBBBBBBBBBB@

yt
:::

yt�qC1
vTt
:::

vTt�pC1

1CCCCCCCCCCCA
C

0@ 0

vst

1A ; (8)

0BBBBBBBBBBBBBBBBB@

yt
yt�1
:::

yt�qC1
vTt
vTt�1
:::

vTt�pC1

1CCCCCCCCCCCCCCCCCA

D

0BBBBBBBBBBBBBBBBB@

�

0
:::
:::
:::
:::
:::

0

1CCCCCCCCCCCCCCCCCA

C

0BBBBBBBBBBBBBBBBB@

A1 : : : : : : Aq 0 : : : : : : 0

I 0 : : : 0 0 : : : : : : 0
:::

: : :
: : :

:::
:::

: : :
: : :

:::

0 : : : I 0 0 : : : : : : 0

0 : : : : : : 0 B1 : : : : : : Bp
0 : : : : : : 0 I 0 : : : 0
:::

: : :
: : :

:::
:::

: : :
: : :

:::

0 : : : : : : 0 0 : : : I 0

1CCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBB@

yt�1
yt�2
:::

yt�q
vTt�1
vTt�2
:::

vTt�p

1CCCCCCCCCCCCCCCCCA

C

0BBBBBBBBBBBBBBBBB@

�t

0
:::

0

"Tt

0
:::

0

1CCCCCCCCCCCCCCCCCA

:

(9)

3 Estimation of the State Space Model

In this section, we discuss the strategy adopted in estimating the model. The estimation is

performed in two steps: �rst using the experience of revisions to past published data to estimate

Equations (2) through (6); and then, as a second step, estimating the remaining parameters via

maximum likelihood using the Kalman �lter. Section 3.1 gives a brief discussion of the motivation

for this approach and Section 3.2 describes the use of real-time data describing the experience of

past revisions to estimate bias and measurement error parameters. The form of the Kalman �lter is

standard and is given in Annex C for ease of reference. Section 3.3 summarises the results of a

Monte Carlo simulation exercise aimed at establishing the model's performance relative to taking

published estimates at face value.
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3.1 Rationale for two-step estimation of the model

The state space problem represented by Equations (8) and (9) is a simple linear model. Extensive

previous work (see, for example, Harvey (1989) and Durbin and Koopman (2001)) has shown that

the Kalman �lter and smoother algorithms prove a robust estimator for this class of models so

long as identi�cation conditions are satis�ed. In principle, all the parameters of the model could

be estimated via maximum likelihood using the Kalman �lter.

At this point, it is worth noting that the model treats the latest of�cial estimate as a substitute for

all earlier of�cial estimates � making no reference to vintage data. Estimation via the Kalman

�lter would, therefore, only exploit the patterns apparent in the latest data in estimating Equations

(2) to (6). As discussed above, our assumption that the statistical agency processes its information

ef�ciently motivates disregarding earlier vintages as competing measures of economic activity. It

does not, however warrant ignoring any evidence of the statistical properties of past measurement

errors. All that is required for this past experience to be informative about the parameters in

Equations (2) to (6) is that (i) the parameters of the process driving bias and measurement errors

be constant between vintages; and (ii) revisions evaluated over a �nite window be a reasonable

proxy for measurement errors. Assuming that these conditions hold enables us to exploit the past

experience of revisions to estimate the paramters of the measurement equations describing the

latest published data. (3)

3.2 Use of the past experience of revisions to estimate bias and measurement error parameters

In recent years, a number of `real-time' datasets have been developed � describing the evolution of

estimates through successive data releases (vintages). Using this real-time data to estimate the

parameters in (2) to (6) requires us to �rst manipulate the real-time dataset to derive a matrix of

revisions to published data of differing maturities. The parameters describing the bias and

measurement errors associated with the latest of�cial published estimates can then be estimated

over that matrix.

(3) Approaching estimation in two steps has the additional bene�t of ensuring that the model is identi�ed. Were all
parameters to be estimated in one step, the state space problem represented by equations (8) and (9) would not always
satisfy the identi�cation conditions described in Harvey (1989).
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3.2.1 Manipulation of the real-time dataset

The real-time dataset for each variable of interest is an upper-triangular data matrix with

publication (or vintage) dates ordered horizontally and reference dates vertically down. Each

column represents a new vintage of data published by the statistical agency, and each vintage

includes observations of differing maturities. By way of illustration, Table A shows an extract of

the real-time database for whole economy investment used in the illustrative example developed in

Section 4; and Table B shows the maturity of the various observations.

Table A: Quarterly Growth of Whole Economy Investment - Extract From the Real-time
Database

2003 Q1 2003 Q2 2003 Q3 … . 2006 Q2 2006 Q3 2006 Q4
2002 Q4 ­0.15 0.16 0.67 … 3.51 3.51 3.51
2003 Q1 ­1.13 ­0.73 … ­3.18 ­3.18 ­3.18
2003 Q2 1.48 … ­1.49 ­1.49 ­1.49

… … … … …

2006 Q2 1.31 1.21
2006 Q3 1.32

Vintage date
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Table B: Stylised Real-time Database - Maturity of Observations

2003 Q1 2003 Q2 2003 Q3 … . 2006 Q2 2006 Q3 2006 Q4
2002 Q4 1 2 3 … 11 12 13
2003 Q1 1 2 … 10 11 12
2003 Q2 1 … 9 10 11

… … … … …

2006 Q2 1 2
2006 Q3 1

Vintage date

R
ef
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en
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De�ne revisions to published estimates of an individual variable of interest between maturities n

and n C j as

w
j;n
t D ytCnC jt � ytCnt (10)

For estimation purposes, we take revisions over the J quarters subsequent to each observation to

be representative of the uncertainty surrounding that measure of activity.
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If the real-time dataset contains W vintages of data, and we are interested in the properties of N

maturities, we can construct an N � .W � J / matrix of revisionsWJ ; over which to estimate the

parameters of Equations (2) through (6). N and J are both choice variables and should be selected

to maximise the ef�ciency of estimation of the parameters driving Equations (2) to (6). There is a

trade-off between setting J suf�ciently large to pick up all measurement uncertainties and

retaining suf�cient observations for the estimated mean, variance, and serial correlation of

revisions and their correlation with mature data to be representative. In the remainder of the paper

we arbitrarily set N D J D 20:

Each column of the matrixWJ contains observations of revisions to data within a single data

release. Each row describes revisions to data of a speci�c maturity n. In describing the properties

of bias and measurement errors, our interest is in tracing out any relationship between data

uncertainties attaching to observations, as described below.

3.2.2 Estimating bias

We can use the sample of historical revisions in matrixWJ to estimate c1 and � quite trivially. (4)

The sample means of revisions of each maturity n D 1 to N are simply the average of

observations in each row ofWJ : Denoting the average revision to data of maturity n by

mean
�
w J;n� ; the parameters c1 and � are then estimated from

mean
�
w J;n� D c1 .1C �/n�1 C  n (11)

where �1 � � � 0 and  n denotes a remainder term.

3.2.3 Estimating the correlation between measurement and transition errors

We cannot use historical revisions to estimate ��" directly, because we do not observe either �t ; or

"tCnt in real time. But we can use the sample of historical revisions to form an approximation of

� yv � denoted ��yv: Assuming that there is no intertemporal correlation between � and "; we can

express cov
�
�t ; "

tCn
t
�
as a function of ��yv and the variances of �t and "tCnt :We can, then,

substitute this expression into the relevant state space model covariance matrices. The

manipulation involved is summarised in Annex C.

(4) Recall that we assume B1; : : : ;Bp to be diagonal. As a result, the functions can be estimated for individual
variables rather than for the system of all variables of interest. In the remainder of this section, we therefore consider
estimation for a single variable and discard vector notation.
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A �rst step is to estimate ��yv. We can readily calculate the correlation between revisions to data of

any maturity (n) and published estimates of maturity J C n, denoted by

�nyv D corr
�
ytCJCnt ; w J;n

t
�
; at each maturity. Averaging across the N maturities inWJ gives an

average maturity-invariant estimate of ��yv:Where the variance of measurement errors decays

suf�ciently rapidly, we do not introduce much approximation error by taking this correlation with

mature published data as a proxy for the correlation with the `true' outcome, yt : (5)

3.2.4 Estimating heteroscedasticity and serial correlation

The variance-covariance matrix of historical revisions may be used to jointly estimate both the

heteroscedasticity in measurement errors and their serial correlation. This requires us to �rst

express the variance-covariance matrix of errors as a function of the parameters in Equations (4)

and (5) and then to estimate the parameters consistent with the observed variance-covariance

matrix of revisions.

Assuming, for simplicity of exposition, �rst-order serial correlation in the measurement errors, we

can easily build-up a full variance-covariance matrix at any point in time. The variance-covariance

matrix of the measurement errors in the most recent N maturities, will be invariant with respect to

t and is given by

V D
� 2
"1

1� .1C �/ �21

0BBBBBB@
1 .1C �/ �1 � � � .1C �/N�1 �N�11

.1C �/ �1 .1C �/ � � � .1C �/N�1 �N�21
:::

:::
: : :

:::

.1C �/N�1 �N�11 .1C �/N�1 �N�21 � � � .1C �/N�1

1CCCCCCA : (12)

A sample estimate of the variance-covariance matrix bV can be calculated trivially from the matrix
of historical revisionsWJ : Taking the variance-covariance matrix to the data, we can estimate

�1; �
2
"1
and � via GMM by minimising�

vec .V/� vec
�bV��0 �vec .V/� vec �bV�� : (13)

Higher lag-orders of p require some further manipulation to derive the variance-covariance

matrix, as outlined in Annex C.

(5) We do not apply any correction for this approximation because derivation of any correction would require
untested assumptions about the relationship between measurement errors across successive vintages (such as those
described in Annex B) which we do not wish to impose on the model.
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3.3 Monte Carlo simulation properties

As a check on the small-sample performance of our estimator, we run a small Monte Carlo

simulation exercise. The focus of the exercise is on the model's performance in �tting the true

state, yt ; rather than on the estimation of speci�c parameters. In particular, we want to establish

whether �ltering of the data is an improvement on taking the latest published estimate, ytCnt ; at

face value.

3.3.1 Simulation assumptions

The data are generated according to the model described by Equations (8) and (9). It is assumed

that the model is of quarterly growth, with only one release per quarter. We assume only one

variable of interest, yt ; that evolves as an AR(1) process, ie q D 1: The constant in the true model

is set to � D 0: For further simplicity we assume cn D c1 D 0: This reduces the complexity of the

model. For the measurement errors we also assume an AR(1) process, ie p D 1:We assume no

additional indicators are available. The output of the model is an estimate of the true state

prevailing in each period, denoted Oyt . The model is estimated over a sample of length T D 100;

corresponding to 25 years of data. We run 1000 replications in total for each parameterisation and

the results presented are averages over the replicates.

Parameterisation. We evaluate simulation properties across differing assumptions about the

degree of persistence in the transition law and the measurement errors for the of�cial estimates �

assigning the AR coef�cients � and �; values 0.1 and 0.6. We also consider differing assumptions

about the degree of correlation between transition shocks and measurement errors � setting

��" D �0:5; 0 and 0:5:

We set the heteroscedasticity decay parameter to � D �0:05; broadly in line with the decay rates

found in the experience of revisions to United Kingdom National Accounts data since 1993. We

have not explored alternative values. The transition error, �t ; and the error of the measurement

error, "t ; are assumed to be i.i.d. N .0; 1/ : The variance of the measurement error at maturity one

is � 2
vTC1T

D 1 implying that the signal-to-noise ratio is also one at maturity one.
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3.3.2 Simulation results

We use the simulation results to gauge the degree to which using the model improves relative to

taking the latest published estimate at face value. The metric used is the standard deviation of

model errors across replications, relative to the standard deviations of errors in the latest published

estimate. We evaluate this metric separately for each maturity of the latest data to check whether

any performance gain is restricted to recent maturities.

Figure 1 compares the performance of estimated and published data for � D 0:6; � D 0:1 and

��" D 0: The model outperforms the published data for all maturities up to 58 quarters. Thereafter,

the measurement errors attaching to the published estimates have declined suf�ciently that any

gains from �ltering are more than offset by parameter uncertainties.

Chart 1: Simulation results
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Table C summarises the results for the other parameterisations. In all cases, the estimated model

outperforms published estimates with maturities below 18 quarters.

Table C: Gains from �ltering for simulation results

Gain from Earliest maturity at
�ltering which published
at maturity: estimates

��" � � 1 9 outperform �lter
0:5 0:1 0:1 47:7 43:6 �y
0:5 0:1 0:6 47:4 41:2 80
0:5 0:6 0:1 51:2 46:4 �y
0:5 0:6 0:6 46:0 39:0 70
0 0:1 0:1 30:3 19:9 52
0 0:1 0:6 31:2 26:1 41
0 0:6 0:1 29:8 25:7 58
0 0:6 0:1 29:2 18:8 42

�0:5 0:1 0:1 12:4 6:0 18
�0:5 0:1 0:6 17:0 10:3 23
�0:5 0:6 0:1 16:5 11:1 26
�0:5 0:6 0:6 9:7 6:3 18

y
For these parameter settings, the �lter outputs outperform the published data at all maturities.

4 An Illustrative Example

As an illustrative example, we apply the model to quarterly growth of whole economy investment.

The Bank of England's real-time dataset was described in Castle and Ellis (2002) and includes

published estimates of investment from 1961. (6) We consider the British Chambers of

Commerce's Quarterly Survey as an indicator � speci�cally, the balance of service sector

respondents reporting an upward change to investment plans over the past 3 months. This is an

arbitrary choice made to explore the functioning of the model rather than following from any

assessment of competing indicators. We do not provide such an assessment as part of this

example. We restrict estimation to the period 1993 to 2006 because an earlier study of the

characteristics of revisions to the United Kingdom's National Accounts (Garratt and Vahey

(2006)) found evidence of structural breaks in the variance of revisions to National Accounts

aggregates in the years following the Pickford Report.

(6) The Bank of England's real-time dataset is available at www.bankofengland.co.uk/statistics/gdpdatabase.

22



4.1 Characterising the revisions history

Table D sets out some summary statistics describing the experience of revisions to published data

of differing maturities � evaluating revisions over a 20 quarter window as discussed in Section 3.2.

Table D: Quarterly growth of whole economy investment - revisions summary statistics, 1993
Q1 to 2006 Q4

Maturity
1 4 8 12 16 20

Mean 0:49 0:32 0:22 0:31 0:03 0:11
p-value.a/ 0.41 0.23 0.37 0.14 0.76 0.44
Variance 3:09 3:28 2:26 1:65 1:35 1:57
p-value.b/ - 0.18 0.03 0.00 0.00 0.00
Mean upward revision 1:70 1:49 1:25 1:13 0:85 0:96
Mean downward revision �1:21 �1:51 �1:07 �0:85 �0:88 �0:96
Skewness �0:08 �0:55 �0:16 �0:05 �0:74 �0:22
Excess Kurtosis �0:67 0:06 �0:06 0:60 1:24 0:77
(a) p-value of a test that mean revision are zero at each maturity.

(b) p-value of a test that revisions variance at each maturity is smaller than revisions variance at maturity one.

The summary statistics suggest that, on average, upward revisions have been larger magnitude

than downward revisions. However, the null hypothesis that mean revisions are zero cannot be

rejected at the 5% level for any maturity. The variance of revisions is 3.09pp for estimates with a

maturity of 1 quarter. That is similar to the variance of whole economy investment growth

(3.12pp). For immature data there is little evidence of heteroscedasticity, but the variance of

revisions does decline quite markedly once data have reached a maturity of 8 quarters � the null

hypothesis that the variance of revisions is equal to that at maturity 1 is rejected at the 5% level for

maturities beyond 8 quarters.

4.2 Estimating the bias and measurement error parameters

As outlined in Section 3, the model is estimated in two stages: �rst estimating the parameters of

Equations (2) though (6) � across real-time data and second applying those parameters in

estimation of the state space model via the Kalman �lter. Table E reports these estimated

parameters.
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Table E: Quarterly Growth of Investment - Estimated Parameters

Parameter Standard Error
Initial variance � 2

v1
3:584 0:296

Variance decay � �0:058 0:013
Serial correlation - 1st order �1 �0:220 0:055
Correlation with mature data ��yv �0:315 0:162

Bias was not found to be signi�cant and hence was excluded from the model. This is not

surprising given that Table D shows bias to be insigni�cant at all maturities. The measurement

error variance parameters also map fairly easily from the summary statistics quoted in Table D.

The variance decay parameter, �; suggests a half-life for measurement errors of 12 quarters. There

is signi�cant �rst order negative serial correlation across revisions: successive quarters of upward/

downward revision are therefore unusual. Revisions appear to have been negatively correlated

with mature estimates, although the parameter is only signi�cant at the 10% level.

4.3 Estimating the state space model

Once Equations (2) though (6) have been estimated, the remaining model parameters are

estimated via maximum likelihood using the Kalman �lter. Table F reports the estimated

parameters, while Table G sets out some standard diagnostic tests of the various residuals of the

Kalman �lter to give an indication of the degree to which modelling assumptions are violated in

the dataset. The model sets q D 0 so that the transition equation does not include an

autoregressive component. Higher orders of q were not found to be statistically signi�cant.

Table F: Quarterly Growth of Investment - Estimated Transition Law and Indicator Parame-
ters

Parameter Standard Error
Transition law
Constant � 1:177 0:238
Error variance � 2� 3:217 0:673
Indicator measurement
Constant cs 1:177 0:219
Slope Z s 0:369 0:138
Error variance � 2vs 2:629 0:567
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Both the prediction errors (7) for the published ONS data and the smoothed estimates of the errors

on the transition equations pass standard tests for stationarity, homoscedasticity and absence of

serial correlation at the 5% level. The errors surrounding predictions for the indicator variable are

less well-behaved. In particular, there is evidence of signi�cant serial correlation in these

residuals. (8)

Table G: Quarterly Growth of Investment - Model Residual Diagnostics

Prediction: yt Prediction: yst Transition
ADF test: no constant or trend �6:114 �2:795 �5:405
ADF test: constant, but no trend �6:054 �2:781 �5:346
ADF test: constant and trend �5:984 �3:439 �5:401
Normality test 0:598 0:921 0:891
Serial correlation test: 1 lag 0:313 0 0:061
Serial correlation test: 4 lags 0:538 0 0:294
ARCH test: 1 lag 0:069 0:006 0:166
ARCH test: 4 lags 0:401 0:064 0:646
Table reports p-values for all tests except for the ADF tests, where t-statistics is reported.

Entries in bold indicate rejection of the null hypothesis on 5% signi�cance level.

We next turn to the estimate for quarterly growth of whole economy investment � that is, the

smoothed backcast. Given the focus on data uncertainty, it makes sense to view the backcast in

probabilistic terms rather than focussing on point estimates of past growth. The standard error

surrounding the smoothed backcast of the most recent quarter is less than � 2
v1
; suggesting some

in-sample gain from applying the model to the signal extraction problem posed by uncertainty in

measurement. Figure 2 reports the estimates of quarterly growth of whole economy investment.

Following the convention of the GDP and in�ation fan charts plotted in the Bank of England's

In�ation Report each band contains 10% of the distribution of possible outcomes. In this

application, because we assume normality, the outer (90%) band is equivalent to a +/- 1.6 standard

error bound.

(7) Prediction errors are de�ned above Equation (C-8) in Annex C as the `surprise' in the observable variables (ie
of�cial published data and alternative indicators) given the information available about previous time periods. These
errors enter into the prediction error decomposition of the likelihood function. Standard maximum likelihood
estimation therefore assumes that these errors are zero-mean, independent through time, and normally distributed. If
this is not the case, then the parameterisation of the Kalman �lter (and the resulting smoothed backcasts) will be
incorrect.

(8) We have assumed that residuals associated with the indicator variables are i.i.d. This assumption could be relaxed
in future work.
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The centre-point of the fan chart tracks the statistical agency's published estimates quite closely

once those estimates are mature. This is a corollary of the heteroscedasticity in measurement

errors. Over the most recent past, the centre-point differs more materially: re�ecting both the

higher measurement error variance attaching to earlier releases and the difference between the

large apparent changes in the published estimates and the stability of the transition law.

Chart 2: Quarterly Growth of Investment: Full Model
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4.4 Real-Time Evaluation of the State Space Model

As noted above, the variance surrounding the estimates of quarterly growth in investment is less

than the variance of past revisions to the statistical agency's published estimates, suggesting some

in-sample gain from the modelling exercise. However, to the extent that estimated variances

ignore parameter uncertainty they are likely to overstate the gain from �ltering. To assess the

importance of this, we evaluate the real-time performance of the model.

For this experiment, the evaluation period starts at s0 D 1998Q1 and ends at s1 D 2004Q4. That is

the model is estimated and outputs are produced based on samples from 1993Q1 to 1998Q1: The
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estimation period is then extended to include observed data at the following time period, ie

1998Q2: This is repeated until 2002Q4 to give 20 evaluation observations. For each run, we

compare the performance of the backcast with that of the of�cial published estimates available at

the time the backcast was formed. Because each of�cial data release includes data points of

differing maturities, we evaluate performance in backcasting each maturity from 1 to 24.

In standard forecasting applications, real-time performance is evaluated on the basis of forecast

errors - often using the RMSE as a summary statistic. Evaluation of backcasts is more complex

because we do not have observations of the 'truth' as a basis for evaluation. Instead, we evaluate

performance in forecasting the pro�le of investment revealed 14 releases after the of�cial data

were published. That is, we compare the value of the smoothed backcast at time t of maturity n

with the data release at time t of maturity n C 14 to derive an RMSE-type metric

& n D

vuut 1
s1 � s0 C 1

s1X
tDs0

�
Oyt � ytCnC14t

�2
:

where Oyt is the backcast of yt made at maturity n in the case of the �ltered data and is the

published data otherwise.

Figure 3 plots & n for published data and backcasts for maturities 1 to 24. The backcasting errors

are smaller than the errors attaching to the of�cial published estimates. Table H reports the results

of Diebold-Mariano tests, SDM; (Diebold and Mariano (1995)) of the signi�cance of the

difference in performance between backcasts and of�cial published estimates for maturities 1 to

12. Harvey, Leybourne and Newbold (1997) have proposed a small sample correction for the

above test statistic, S�DM . The table reports the test statistics for the null hypothesis that the two

alternative `forecasts' are equally good. We also report probability values for these statistics.

Probability values below 0.05 indicate rejection of the null hypothesis in favour of the hypothesis

that the state space model backcast is better than the early release in forecasting the truth. Note

that in a number of cases the Diebold-Mariano statistics are reported as missing. This is because

in these cases the estimated variance of the numerator of the statistic is negative as is possible in

small samples. The results show that the Diebold-Mariano test rejects the null hypothesis of equal

forecasting ability in all available cases. On the other hand the modi�ed test never rejects.
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Chart 3: RMSE for whole economy investment for maturities 1 to 24
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Table H: Diebold-Mariano test results for model of whole economy investment

n SDM p-value S�DM p-value
1 �1:694 0:045 �1:600 0:084
2 � � � �
3 �1:775 0:038 �1:315 0:296
4 � � � �
5 � � � �
6 � � � �
7 � � � �
8 � � � �
9 � � � �
10 � � � �
11 �3:452 0:000 �0:597 0:279
12 �1:908 0:028 �0:247 0:404
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5 Conclusions

We have articulated a state space representation of the signal extraction problem faced when using

uncertain data to form a conjunctural assessment of economic activity. The model draws on the

experience of past revisions to proxy the uncertainty surrounding the latest published estimates

and hence establish how far to update a prior view of how economic activity would evolve in light

of those data and any other measures (such as business surveys). The model's output is an estimate

of the `true' value of the variable of interest � a backcast � that can be used as a cross-check of the

latest published of�cial data, or even to substitute for those data in any economic applications.

Since we assume that of�cial estimates asymptote to the truth as they become more mature, our

backcasts amount to a prediction of the cumulative impact of revisions to of�cial estimates.

In using backcasts to predict the cumulative impact of revisions, one should, however, be alert to a

number of caveats. First, we assume that the past experience of revisions provides a good

indication of past uncertainties. This assumption is likely to be violated where statistical agencies

do not revise back data in light of new information or changes in methodology � in other words,

the model is only applicable where statistical agencies choose to apply a rich revisions process.

Second, we assume that the structures of both the data generating process (the transition law) and

the data production process (measurement equations) are stable. Finally, the model is founded on

a number of simplifying assumptions. In particular, the model is linear and stationary;

measurement errors are assumed to be normally distributed; and the driving matrices are diagonal

so that we can neither exploit any behavioural relationship between the variables of interest nor

any correlation in measurement errors across variables.
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Appendix A: `News' versus `Noise' in Revisions

Early papers discussing the revisions process had little to say about the actions of the statistical

agency in producing its estimates. In an in�uential paper, Mankiw and Shapiro (1986) highlighted

the potential impact of this omission. They argued that at one extreme, provisional estimates could

be thought of as small-sample observations containing a random measurement error. In this world,

the revisions process should then be viewed as the elimination of `noise' from preliminary

estimates. At the other extreme, the statistical agency could apply its own �ltering models prior to

release. Provisional estimates would then be best viewed as rational forecasts, with revisions

representing the arrival of unpredictable `news'. In between these poles, Mankiw and Shapiro

(1986) argued that when statistical staff �meet to evaluate and adjust the estimates before they are

released� they are implicitly applying some sort of �ltering model and we should expect a mixture

of `news' and `noise' revisions. These differing views of the data production process have

strikingly different implications for the statistical properties of the revisions.

Following the notation of Section 2, let ytCnt denote a noisy estimate of the `true' data, yt
published by the statistical agency at time t C n; where n D 1; : : : ; T � t: Assuming for simplicity

that measurement is unbiased, this published estimate is assumed to be equal to the true data plus

some measurement error, vtCnt ;

ytCnt D yt C vtCnt : (A-1)

Under the `noise' characterisation, measurement errors are independent of the true data, but

correlated with the published data. Any correlation with published data will be positive because

high initial estimates would tend to be revised down/ low initial estimates revised up. So

E
�
ytvtCnt

�
D 0; (A-2)

E
�
ytCnt vtCnt

�
D � 2vn :

Under the `news' characterisation, measurement errors are correlated with the true data, but

independent of the published data. Any correlation with the true data will be negative: for a given

value of ytCnt ; positive shocks to the true data will be matched by negative shocks to the
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measurement error. So

E
�
ytvtCnt

�
D �� 2vn ; (A-3)

E
�
ytCnt vtCnt

�
D 0:

The impact of these differences is readily apparent in the variance of the published data. Under the

`noise' case

� 2yn D �
2
y C �

2
vn : (A-4)

whereas under the `news' case

� 2yn D �
2
y � �

2
vn : (A-5)

We can exploit the difference between Equations (A-4) and (A-5) to gauge the degree of `noise'

and `news' in past published estimates. In the model of Section 2, we assume that the variance of

measurement errors, � 2vn ; declines with maturity. The variance in the published data should

therefore be declining in maturity if revisions represent `noise' (A-4) and increasing if they are

best characterised as `news' (A-5). Figure 4 plots the variance of low maturity estimates relative to

data with a maturity of 20 quarters for a range of United Kingdom National Accounts variables;

evaluated over vintages released since 1993.

Chart 4: Relative variance of early estimates and mature data
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The impression given is that some variables contain more `news' whereas others contain more

`noise'. In any general representation of data uncertainty, we therefore need to be able to impose

both noise and news processes. To do this, we can introduce an extra parameter, �; that re�ects the

proportion of `news' revisions for any variable, where � D 1 in the case of pure `news' and � D 0

in the case of pure `noise'. Then, revisions are correlated with both preliminary and mature

estimates

E
�
ytvtCnt

�
D ��� 2vn ; (A-6)

E
�
ytCnt vtCnt

�
D .1� �/ � 2vn : (A-7)

Moreover, the variance of published data will decrease (increase) with maturity when � is less

than (greater than)

� 2yn D �
2
y C .1� 2�/ �

2
vn (A-8)

The model developed in Section 2 is based on a similar principle. By manipulating Equation

(A-6), we can uncover the correlation between the measurement error and the `truth'

corr
�
yt ; vtCnt

�
D ��

� vn

� y
: (A-9)

When revisions contain any `news' component, we would expect them to be negatively correlated

with mature data. Moreover, if � 2vn is declining with maturity, we would expect any negative

correlation to attenuate towards zero with maturity.

In Section 2, such a correlation is introduced through Equation (6). If we were con�dent that this

correlation was purely a function of the `news' vs `noise' distinction we would expect it to be

non-positive, and attenuating with maturity. In practical application other in�uences may be

important (for example, dif�culties in measurement at different stages of the economic cycle), so

we have instead adopted an agnostic approach with a freely-estimated constant correlation across

maturities. Reassuringly, experimentation with United Kingdom national accounts data suggests

that positive correlations are very rarely observed.
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Appendix B: The Role of Early Releases Once More Mature Estimates Are Available

The model of Section 2 uses the latest published estimates as a measure but makes no reference to

earlier data releases. This begs the question: why should the data-user ignore all earlier published

estimates? The intuition supporting our focus on the latest release is that so long as the statistical

agency processes new information effectively the information set driving the latest release will

encompass that driving all earlier vintages. This annex develops that intuition more formally,

drawing out any additional assumptions necessary to support the model of Section 2. In doing so,

we need to model the evolution of measurement errors across releases and then consider whether

previous releases enter the expectation of yt :

B.1 A model of measurement errors across successive vintages

Consistent with the notation in the main paper, denote the true value of the variable of interest by

yt : Ignoring any bias in estimates, the model for the published data is then

ytCnt D yt C vtCnt ; (B-1)

where ytCnt is the n-th vintage of published data for the truth at time t:We model

vTt ; t D 1; : : : ; T � 1 by assuming that it is an AR process over t:We have

B .L/ vTt D "
T
t : (B-2)

We can also consider the process describing the evolution of "tCit over i - that is the evolution of

errors through successive vintages. Recognising that the statistical agency's information set grows

through time, we can write "tCit as follows

"tCit D �tCit C �tCiC1t C : : : D
1X
jD0
�
tCiC j
t : (B-3)

As maturity increases, the statistical agency receives incremental information. That information is

used to remove bits of error from "tCit ; the �tCit represent these bits of error that are successively

removed from "tCit : So long as the statistical agency does not throw away information and new

information helps, the variance of the measurement errors will decline with maturity. We

formalise this below.
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Assume that �tCit can be treated as independently, but not identically, distributed (i.ni.d). By the

i.ni.d assumption on �tCit we then know that

var
�
"tCit

�
D

1X
jD0
� 2�iC j (B-4)

where var
�
�tCit

�
D � 2

�i
:

In the model described in Section 2, we assume that vtCnt has heteroscedasticity with respect to n;

with � 2"n D � 2"1 .1C �/
n�1 : This exponential decay in measurement error variance would be

consistent with an exponential decay in � 2
�i
with maturity � the intuition being that the increments

to the statistical agency's information set decrease in size as estimates become more mature. Thus

� 2�i D �
2
�1 .1C � /

i�1 : (B-5)

B.1.1 The covariance of errors across vintages

To establish our expectation of yt ; we need to determine the covariance between measurement

errors of differing vintages within this model set up; that is E
�
vtCit v

tC j
t

�
: As a �rst step, we

express � 2
"1
as a function of the increments to the statistical agency's information set. We have (9)

� 2"1 .1C �/
i�1 D

1X
jD0
� 2�1 .1C � /

iC j�1 D
� 2
�1
.1C � /i�1

��
: (B-6)

Thus, we get � D � and

� 2"1 D
� 2
�1

��
: (B-7)

Then cov
�
"tCit ; "

tC j
t

�
is given by

E
�
"tCit "

tC j
t

�
D

1X
rDk

� 2�r D
� 2
�1

��
.1C �/k�1 D � 2"1 .1C �/

k�1 D � 2"k (B-8)

where k D max .i; j/ :

Finally we would like to determine cov
�
vtCit ; v

tC j
t

�
; that is, to recognise the serial correlation in

measurement errors across reference periods. For simplicity, we take this serial correlation to be

described by an AR(1) process so that

vtCit D �vtCit�1 C "
tCi
t : (B-9)

(9) Using the standard rule for in�nite geometric series that
1P
iD1

Ar i D A= .1� r/ where jr j < 1:
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Then, we get

� 2vi D
1X
pD0

�2p E
�
"tCit�p

�2
D
� 2
"1
.1C �/i�1

1� �2 .1C �/
: (B-10)

Then,

vtCit v
tC j
t D

1X
pD0

1X
qD0

� pCq"
iCp
t�p"

jCq
t�q : (B-11)

So

E
�
vtCit v

tC j
t

�
D

1X
pD0

�2p E
�
"
iCp
t�p"

jCp
t�p

�
D

1X
pD0

�2p� 2"1 .1C �/
pCk�1 D

� 2
"1
.1C �/k�1

1� �2 .1C �/
D � 2vk

(B-12)

where k D max .i; j/ : The covariance between measurement errors attaching to differing vintages

is equal to the variance of the most recent, that is the least mature release.

B.2 Expectations of yt

Given a model for the covariance of revisions across vintages, we can derive an expectation of yt
conditional on the entire set of available vintages. Assume we have N available vintages of data.

Then, in forming our expectation of yt ; we want to �nd the coef�cients that minimise the

mean-square error in the following expectations function

E
�
yt jytC1t ; : : : ; ytCNt

�
D E .yt jyt/ D �C 
 1ytC1t C : : :C 
 N ytCNt : (B-13)

Using standard results on conditional expectations the 
 parameters in this expression will be

given by .var .yt//�1 cov .yt ; yt/ :

It can be shown that the optimal coef�cients are zero for all releases but the most recent. This

conclusion holds under both 'noise' and 'news' characterisations of the data production process.

According to the `noise' hypothesis, the underlying shocks (the �tC jt 's) are uncorrelated with the

true data so

var .yt/ D �N� 2y�
0
N C6v; (B-14)

cov .yt ; yt/ D �N� 2y; (B-15)

where �N is a N � 1 vector of ones, � 2y is E .yt � E .yt//
2 and 6v D E

�
vtv0t

�
is the

variance-covariance matrix of measurement errors, where vt D
�
vtC1t ; vtC2t ; : : : ; vtCNt

�
:
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We can then use Equation (B-12) to build this variance-covariance matrix as

E.vtv0t/ D 6v D

0BBBBBBBB@

� 2
v1

� 2
v2

� 2
v3

� � � � 2
vN

� 2
v2

� 2
v2

� 2
v3

� � � � 2
vN

� 2
v3

� 2
v3

� 2
v3

� � � � 2
vN

:::
:::

:::
: : :

:::

� 2
vN

� 2
vN

� 2
vN

� � � � 2
vN

1CCCCCCCCA
: (B-16)

Putting these elements together (10)0BBBBBB@

 1


 2
:::


 N

1CCCCCCA D
�
�N�

2
y�
0
N C6v

��1
�N�

2
y D

0BBBBBB@
0

0
:::
� 2y

� 2
vN
C� 2y

1CCCCCCA : (B-17)

Given the data structure of Equations (B-3) and (B-4) - ie assuming that the statistical agency

never discards useful information and that increments to the agency's information set are

independent � we can legitimately focus on just the most recent vintage of data. Intuitively, the

information contained in earlier releases is entirely subsumed in the latest available release. The

optimal expectation of yt involves smoothing through the noise in the latest available release (as
� 2y

� 2
vN
C� 2y

� 1).

A similar result holds under the `news' hypothesis, where the underlying shocks (the �tC jt 's) are

negatively correlated with the true data. Equations (B-14) and (B-15) become marginally more

complicated

var .yt/ D �N� 2y�
0
N C6v � �N diag .6v/

0 � diag .6v/ �0N ; (B-18)

cov .yt ; yt/ D �N� 2y � diag .6v/ : (B-19)

(10)To see the second equality of (B-17) we note that for n D 2 the result follows from elementary calculations. To
show the result for general n we proceed by induction. The n D 2 result may be used to show that
E
�
yt jytC1t ; ytCnt

�
D E

�
yt jytCnt

�
: Given this it follows that E

�
yt jytC1t ; ytC2t ; ytCnt

�
D E

�
yt jytCnt

�
if

E
�
yt jytC2t ; ytCnt

�
D E

�
yt jytCnt

�
: But this can be shown by appealing to the n D 2 result. Proceeding inductively and

by repeated use of the n D 2 result, the general n case is obtained.

38



Putting the elements together as before (11)

0BBBBBB@

 1


 2
:::


 N

1CCCCCCA D
�
�N�

2
y�
0
N C6v � �N diag .6v/

0 � diag .6v/ �0N
��1�

�N�
2
y � diag .6v/

�
D

0BBBBBB@
0

0
:::

1

1CCCCCCA :
(B-20)

Again, given the data structure of Equation (B-3) � we can legitimately focus on just the most

recent vintage of data. The difference between the `news' and `noise' cases lies in the amount of

weight we should place on the latest available release, not in the different treatment of alternative

vintages.

(11)The second equality of (B-20) follows similarly to (B-17) by using the argument of footnote 10.
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Appendix C: Details of the Application of the Kalman Filter in Backcasting

C.1 General representation of the Kalman �lter

The model developed in Section 2 is summarised in state space form as Equations (8) and (9).

Linear state space models of this form can be cast in the general representation given below,

following the notation in Harvey (1989).

yt D dt C Ztbt C ut ; ut � i:i:d:N
�
0; 6t;u

�
; t D 1; : : : ; T (C-1)

bt D ct C Ttbt�1 C Rt�t ; �t � i:i:d:N
�
0; 6t;�

�
(C-2)

and E
�
�tu0t

�
D Gt : Below, we abstract from issues arising from the estimation of the parameters

of the model which enter the matrices ct ;Zt ; 6t;u; 6t;�;dt ;Tt ;Gt and Rt and concentrate on the

estimation of the state vector bt conditioned on those known parameters. Denote the estimate of bt
conditional on the information set It�1 as Obt jt�1 and that conditional on the information set up to
and including time t by Obt : Denote the covariance matrices of the estimators Obt jt�1 and Obt as OPt jt�1
and OPt ; respectively. The Kalman �lter is initialised by specifying b0 and P0: Then, estimation of
Obt by the Kalman �lter comprises sequential application of the following two sets of Equations

Obt jt�1 D ct C Tt Obt�1; (C-3)

OPt jt�1 D Tt OPt�1T0t C Rt6t;�R
0
t ;

known as the prediction Equations, and

Obt D Obt jt�1 C
�
OPt jt�1Z0t C RtGt

�
F�1t

�
yt � Zt Obt jt�1 � dt

�
; (C-4)

OPt D OPt jt�1 �
�
OPt jt�1Z0t C RtGt

�
F�1t

�
Zt OPt jt�1 CG0tR

0
t

�
;

known as the updating Equations, where

Ft D Zt OPt jt�1Z0t C ZtRtGt CG
0
tR

0
tZ
0
t C6t;u: (C-5)

The set of smoothed estimates (i.e. the estimate of bt conditional on the information set IT ) and
their respective covariance matrices, denoted by Obt jT and OPt jT ; are given by

Obt jT D Obt C P�t
�
ObtC1jT � TtC1 Obt

�
(C-6)

and
OPt jT D OPt C P�t

�
OPtC1jT � OPtC1jt

�
P�0t ; (C-7)

where P�t D OPtT0tC1 OP
�1
tC1jt :
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The log-likelihood function for the system, denoted by L .#/ ; where # denotes the vector of
parameters with respect to which the log likelihood is maximised. It can be written in terms of the

prediction errors$t D yt � Zt Obt jt�1 � dt as

L .#/ D �
T
2
log 2� �

1
2

TX
tD1
log jFt j �

1
2

TX
tD1
$

0

tF
�1
t $t : (C-8)

This log likelihood function L .#/ can be used to estimate the unknown parameters of the model,
#: The matrices Ft and$t are dependent on the matrices ct ;Zt ; 6t;u; 6t;�;dt ;Tt ;Gt ;Rt ;b0 and

P0:

C.2 Representation of the data uncertainty model

The solution method described above is general to all linear state space models. In the remainder

of this Annex, we give further details of its application to the model developed in Section 2. In

that model, the parameter vector # comprises

D
�
�01;�

0
2; : : : ;�

0
q;�

2
"1
;�;�01; : : : ;�

0
p; c1

0
;�;��";�

20
vs ;�

0;�2
0

� ; cs;Z
s� :

The model is multivariate with all the parameter matrices assumed diagonal, so:

� The parameters of the transition Equation, given by �1;�2; : : : ;�q; are de�ned by

�i D diag .Ai/ I

� The variance of the shocks to that Equation by �2� D diag .6�/;

� The heteroscedastic variance of measurement errors in the published data by 6T�t
" - a diagonal

matrix whose diagonal elements are a function of �2
"1
and �:

� Serial correlation in those measurement errors by �i D diag .Bi/;

� The covariance between measurement errors of differing maturities and shocks to the transition

Equation by �T�t�" - a diagonal matrix whose diagonal elements are a function of ��"; 6T�t
" and

�2�:

� The variance of measurement errors attaching to indicators by �2s D diag .6s/ :
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Then we have the following setup

dt D

0@ c1 .1C �/T�t�1

cs

1A ;
ct D �;

Zt D

0@ I : : : 0 I : : : 0

Zs : : : 0 0 : : : 0

1A ;

Tt D

0BBBBBBBBBBBBBBBBB@

A1 : : : : : : Aq 0 : : : : : : 0

I 0 : : : 0 0 : : : : : : 0
:::

: : :
: : :

:::
:::

: : :
: : :

:::

0 : : : I 0 0 : : : : : : 0

0 : : : : : : 0 B1 : : : : : : Bp
0 : : :

: : : 0 I 0 : : : 0
:::

: : :
: : :

:::
:::

: : :
: : :

:::

0 : : : : : : 0 0 : : : I 0

1CCCCCCCCCCCCCCCCCA

;

6t;u D

0@ 0 0

0 6s

1A ;

6t;� D

0BBBBBBBBBBBBBBBBB@

6� 0 : : : 0 �T�t�" 0 : : : 0

0 0 : : : 0 0 0 : : : 0
:::

:::
: : :

:::
:::

:::
: : :

:::

0 0 : : : 0 0 0 : : : 0

�T�t�" 0 : : : 0 6T�t
" 0 : : : 0

0 0 : : : 0 0 0 : : : 0
:::

:::
: : :

:::
:::

:::
: : :

:::

0 0 : : : 0 0 0 : : : 0

1CCCCCCCCCCCCCCCCCA
Rt D I;

Gt D 0;

b0 D

0@ �

0

1A ;
and

P0 D
�
I� T0 .#/

��1
60;� .#/ :
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C.3 2-step estimation: Imposition of parameters estimated over the real-time dataset

As described in the main text, in estimation we set some parameters to constants having obtained

suitable values for them via prior estimation (Section 3.2). Then the maximum likelihood

estimation problem becomes one where the log likelihood is maximised with respect to #1
keeping #2 constant; where # D

�
#01;#

0
2
�0 is some suitable partition of #:With the

heteroscedasticity, serial correlation, bias and correlation parameters estimated over the real-time

dataset and assuming for simplicity that m D 1; the partition is

#1 D
�
�1; �2; : : : ; �q; �

2
vs ; �; �

2
�; cs;Z

s�0 and #2 D �� 2"1; �; �1; : : : ; � p; ��"; c1; ��0 :
The vector of imposed parameters, #2; includes two that are not directly observed but map in a

one-for-one fashion from directly observed features of the real-time dataset. Because we do not

observe revisions net of serial correlation, we observe � 2v1 rather than �
2
"1
: Similarly, we cannot

estimate ��"; but can estimate ��yv directly.

Section 3.2.4 describes the use of the real-time dataset to estimate � 2
v1
; � and B1; : : : ; Bp and the

manipulation of these estimates to derive an estimate of � 2
"1
: This manipulation is trivial for low

orders of p: For p D 1 we have, from Equation (12)

� 2"1 D �
2
v1

�
1� .1C �/ B21

�
: (C-9)

For higher orders of p; following the model of serial correlation in measurement errors described

in Section 2, the model for measurement errors in period t is

vtCnt D �1v
tCn
t�1 C �2v

tCn
t�2 C : : :C � pv

tCn
t�p C "

tCn
t : (C-10)

To derive V we need to build-up the matrix in p by p blocks. We can do this by writing Equation

(C-10) in companion form as

vt D Bvt�1 C "t ; (C-11)

where vt D
�
vtCnt ; vtCnt�1 ; : : : ; v

tCn
t�p
�0
; "t D

�
"tCnt ; 0; : : : ; 0

�0 and

B D

0BBBBBBBBB@

�1 �2 : : : � p�1 � p

1 0 : : : 0 0

0 1 : : :
:::

:::
:::

: : :
: : : 0 0

0 : : : 0 1 0

1CCCCCCCCCA
: Taking the variance of both sides gives

var .vt/ D B var .vt�1/B0 C var ."t/ ; (C-12)
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where var is the variance operator.

Recognising from Equation (12) that var .vt/ D .1C �/ var .vt�1/ and using the identity

vec .ABC/ D .C0 
 A/ vec .B/ ; we have

vec .var .vt// D .1C �/ .B
 B/ vec .var .vt//C vec .var ."t// : (C-13)

Rearranging gives

vec .var .vt// D
�
Ip2 � .1C �/B
 B

��1 vec .var ."t// : (C-14)

We can then build-up the full Vt matrix in a similar fashion to Equation (12)

Vt D

0BBBBBBBB@

Ip .1C �/p B .1C �/2p B2 � � � .1C �/kp Bk

.1C �/p B .1C �/p Ip .1C �/2p B � � � .1C �/kp Bk�1

.1C �/2p B2 .1C �/2p B .1C �/2p Ip � � � .1C �/kp Bk�2
:::

:::
:::

: : :
:::

.1C �/kp Bk .1C �/kp Bk�1 .1C �/kp Bk�2 � � � .1C �/kp Ip

1CCCCCCCCA
(C-15)

� .IkC1 
 var.vt// :

Again, it is invariant with respect to time. Taking the variance-covariance matrix to the data, we

can estimate B1; : : : ; Bp; � 2"1 and � via GMM by minimising�
vec .V/� vec

�bV��0 �vec .V/� vec �bV�� with respect to B1; : : : ; Bp; � 2"1 and �:
For higher orders of p; Equation (C-14) gives

vec .var ."t// D
�
Ip2 � .1C �/B
 B

�
vec .var .vt// ; (C-16)

where � 2
"1
is the �rst element of vec .var ."t// :

We can apply a similar set of manipulations to express ��" as a function of � yv; the variance of

measurement errors � 2" and the parameters of the transition law - assuming there is no

intertemporal correlation between �t and "tCnt :We can write the transition Equation (1) in

companion form

yt D �C Ayt�1 C �t ; (C-17)
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where yt D
�
yt ; : : : ; yt�p

�0
; �t D .�t ; 0; : : : ; 0/0 and A D

0BBBBBBBBB@

A1 A2 : : : Aq�1 Aq
1 0 : : : 0 0

0 1 : : :
:::

:::
:::

: : :
: : : 0 0

0 : : : 0 1 0

1CCCCCCCCCA
:

The covariance between yt and vt can be written as

cov .yt ; vt/ D A cov .yt�1; vt�1/B0 C cov .�t ; "t/ ; (C-18)

where cov is the covariance operator. Using the identity vec .ABC/ D .C0 
 A/ vec .B/ ; we have

vec .cov .yt ; vt// D .B
 A/ vec .cov .yt�1; vt�1//C vec .cov .�t ; "t// : (C-19)

Recognising that cov .yt�1; vt�1/ D
p
.1C �/ cov .yt ; vt/ we can rearrange to give

vec .cov .yt ; vt// D
�
Ipq �

p
.1C �/B
 A

��1
vec .cov .�t ; "t// : (C-20)

The �rst-element in the vector on the right-hand side re-scales the covariance between yt and vt to

the covariance between �t and "t : To uncover the re-scaled correlation we also need to take

account of the differences in variance between the dynamic series and the respective shocks. From

Equation (C-14) we know that

vec .var .vt// D
�
Ip2 � .1C �/B
 B

��1 vec .var ."t// : (C-21)

By similar reasoning, we also know that

vec .var .yt// D
�
Iq2 � A
 A

��1 vec .var .�t// : (C-22)

Putting (C-20) to (C-22) together reveals the mapping between � yv and ��": In the case when

p D q D 1; it can be shown quite easily that
����"�� � ��� yv�� : Intuitively, the correlation between the

two autoregressive processes is a diluted version of the correlation between the two underlying

shocks.
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