# Stress Testing at Banque de France

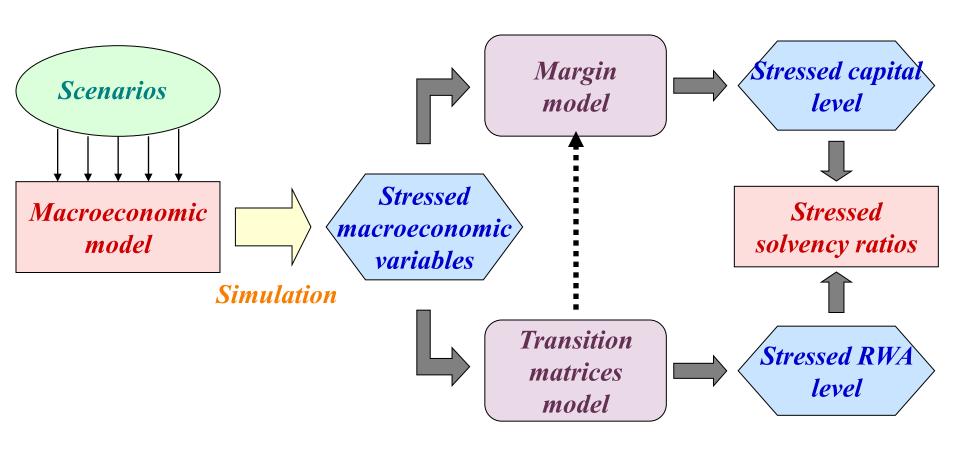
By Olivier de Bandt (\*)

Banque de France
Macroeconomic Analysis and Forecasting Directorate

(\*) with contributions from C. Martin and M. Tiesset

(French Banking Commission)

## Plan


#### Current framework

- A. Modelling the impact of macroeconomic stress scenarios on different outcomes of bank's loan portfolios (interest margin, PDs) and extrapolate effect on banks' solvency.
- B. Ad hoc shocks on the corporate credit portfolio of major French banks (sensitivity analysis)
- C. Ad hoc shocks on the EL of a single bank

#### New instruments

- Loan Loss Provisions and the Macroeconomy
- Equilibrium in the corporate debt market

#### I-A Macroeconomic stress testing exercises



#### I-A- Macro stress testing

#### 1- Analysis of intermediation Margin

- Estimated on the basis of panel data analysis (GMM estimation) of banks' net interest margin, period: 1993-2002.
- Dynamic approach (persistence)
- Main explanatory factors: yield curve, credit volumes and credit quality

$$\begin{split} M_{i,t} &= 0.64 + 0.68 M_{i,t-1} + 0.35 r_t^* - 0.59 \sigma_{p,t}^{*-2} + 0.29 r_t^* \Delta L_{i,t} - 0.20 \pi_{i,t} + \varepsilon_t \\ \text{adjusted R}^2 &= 0.83 \\ M_{i,t} &= \text{credit margin for bank i at timet} \\ r_t^* &= 5 \text{y} - 3 \text{m risk free interestrates lope} \\ \sigma_{p,t}^* &= \text{volatility of 5y} - 3 \text{m risk free interestrates lope} \\ \Delta L_{i,t} &= \text{loan growth for bank i} \\ \pi_{i,t} &= \text{cost of risk expected by bank i at timet} = \text{PD}_{i,t}.\text{LGD}_{i,t} \\ \text{Bank of Canada Conference} \\ 7-8 \text{ November 2007} \end{split}$$

#### **I-A Macro stress testing**

#### 2- Capital requirements model (Risk-weighted assets)

- Estimates of risk weighted asset are computed using the probability of migration from one rating to another, in banks' corporate portfolios (transition matrix)
- Markovian approach : logistic function/ dynamic approach

$$\begin{split} M_{t} &= \left[ \Pr(rating_{t} = j \mid rating_{t-1} = i) \right]_{ij} \\ z_{ijt} &= \log \left( \frac{\Pr(rating_{t} \leq j \mid rating_{t-1} = i)}{\Pr(rating_{t} > j \mid rating_{t-1} = i)} \right) \\ z_{ijt} &= \theta_{ij} z_{ij,t-1} + \alpha_{ij} + \beta_{ij} X_{t} + \varepsilon_{ijt}^{p} \\ X_{t} &= macroeconomic variables (GDP, interest rate, etc.) \end{split}$$

• A stressed loan portfolio P<sub>t</sub> is then calculated with:

$$P_{t+1} = P_t M_{t+1}$$

#### I-A Macro stress testing

#### 3-Capital requirements model

 The increase in capital requirements due to a change in the credit ratings after a shock is then computed from the stressed portfolio, using Basel II formulae:

```
\theta_t = \Omega(P_t)
\theta_t = \text{capital requirements}
\Omega = \text{Basel II function for credit risk computation}
```

- The initial credit portfolio is obtained from :
  - Banks' resident individual exposures on corporates (credit register)
  - A breakdown of these exposure by risk classes (BDF internal ratings)
  - Initial (before the shock) risk weighted assets can be computed, using Basel II hypotheses on LGDs and asset correlation.

#### **I-A Macro stress testing**

- 4- Stress scenario design (1/2)
  Scenarios are either "severe" or more "realistic"
  - > Partly inspired by initial FSAP scenarios (2003/2004):
    - 20 % drop in world demand for French goods
    - Decrease in consumption growth or in investment growth such as triggering a recession for the French economy.
    - Rise in oil price (100 USD)
    - Depreciation of USD/EUR
    - 200 BP parallel shift of interest rate curve
    - Flattening and Inversion of the yield rate curve (+200bp ST / +100bp LT)

#### I-A Macro stress testing

#### 4- Stress scenario design (2/2)

#### 2 types of shocks simulated:

- *Transitory shocks (macroeconomic)*, that are implemented progressively over the period. After 2 years, shocked variables return to their initial level
- *Permanent shocks (markets)*, whose impact is entirely taken into account at the start of the stress period and maintained throughout the period: interest rates, exchanges rates, Brent oil prices etc.
- •<u>Stressed exogenous factors</u> (inputs in the stress testing banking models) come from BDF internally used macroeconometric models (Mascotte, Nigem).
  - GDP growth
    - Outstanding loans to the private sector
    - Interest rates and yield curve

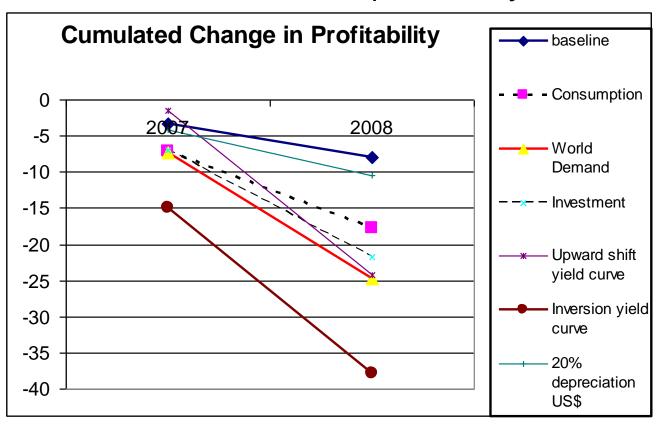
#### **I-A Macro stress testing**

#### 5- Stress scenario results (1/4)

- Final results provide us with an estimate of stressed solvency ratios for the banking sector represented by its main large and complex financial institutions
  - The new level (after the shock) of own funds is computed taking account of the change in banks' operating income 
     numerator of the ratio is impacted

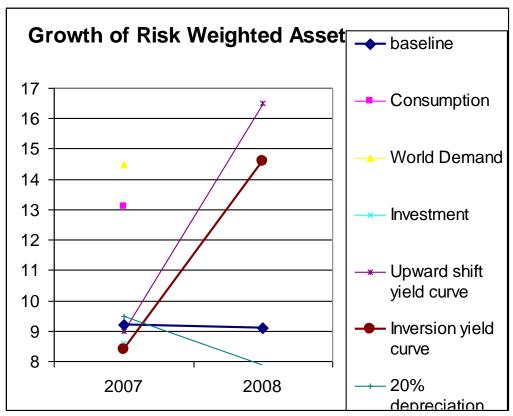
$$RWA_{t} = (I + \Delta\theta_{t}) \cdot (I + \Delta\upsilon_{t}) \cdot RWA_{t-1}$$
$$\Delta\theta_{t} = \text{risk effect}$$
$$\Delta\upsilon_{t} = \text{volumeeffect}$$

$$FP_t = (I + \Delta M_t) \cdot \Pi_t + FP_{t-1}$$
 $FP_t = \text{capital}$ 
 $\Delta M_t = \text{banks'margingrowth}$ 
 $\Pi_t = \text{Operatingincome for the 7 French LCF Is}$ 


The stressed solvency ratio (Basel II type) is then compared to a benchmark (actual ratio for the large French banks)  $stress = FP_t^{BS}/RWA_t^{BS} - FP_t^{S}/RWA_t^{S}$ Bank of Canada Conference

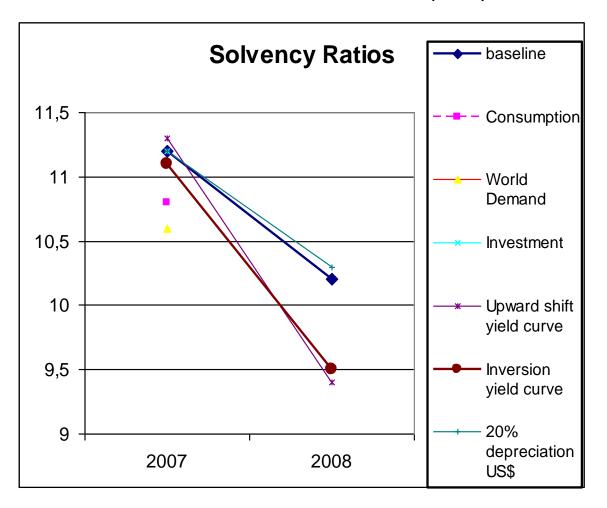
7-8 November 2007

#### **I-A Macro stress testing**


#### 5- Stress scenario results (2/4)

Impact of the shocks on banks' profitability (cumulated effect, %)




#### **I-A Macro stress testing**

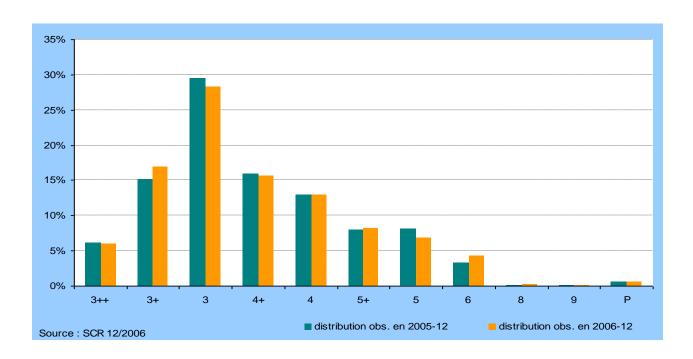
## 5- Stress scenario results (3/4) Scenarios impact on RWA



#### **I-A Macro stress testing**

#### 5- Stress scenario results (4/4)




Bank of Canada Conference 7-8 November 2007

#### I-B. Ad hoc shocks on a credit portfolio

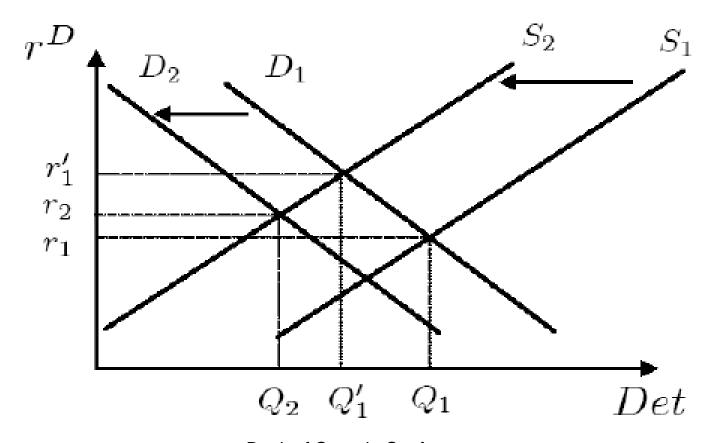
- > Overall or sector-specific downgrade of credit ratings :
  - One notch for all ratings
  - Or two notches for specific sectors/countries and one notch for the others
- ➤ Using Banque de France data base :
  - For rated companies
  - For exposures (credit register)

#### I-B Ad hoc shocks on a credit portfolio

> Risk distribution of the banks' exposures on rated enterprises



#### I-B Ad hoc shocks on a credit portfolio


- > A simulated overall-system stressed solvency ratio is calculated
- ➤ This stressed simulated ratio is compared to the benchmark solvency ratio

#### I-C Ad hoc shocks on the EL of a single bank

- For an individual bank, a banking analysis tool, named SAABA 2:
  - Stress instantaneously the individual expected losses
  - Get the resulting stressed solvency ratio for the selected bank

- Improvements desired:
  - Ad hoc nature of the link between macro and banking sector (credit demand equation)
  - Absence of feedback effects on the macroeconomy (independence between volumes and risk)
- Model the supply and demand equilibrium in one component of credit market: corporate debt
- => Panel investigation of the European corporate debt market (S&Dd)→ extension possible to HH
- Stress testing exercises:
  - measures of the effects of large macroeconomic shocks (increase in interest rates, severe recession, large oil shocks, ...) on the equilibrium in the corporate debt market → include feedback effects from shifts in both supply and demand schedules

An example in response to an adverse macro shock: debt supply shifts to the right, as well as demand → lower debt level (Q1 to Q2) and higher interest rate (r1 to r2)



#### **II-A Supply and demand schedules**

The demand equation is derived from the demand equation but

additional indicators are introduced:

$$Log(\frac{D_{it}}{P_{t}}) = \gamma_{10i} + \gamma_{11}Log(Turn_{it}) + \gamma_{12}Inv_{it} - \gamma_{13}Roa_{it} - \gamma_{14}r_{i}^{D} + \varepsilon_{it}^{d}$$

where  $Inv_{it}$ ,  $Turn_{it}$  and  $Roa_{it}$  are companies' investment, sales growth and returns on assets

The supply equation (  $r_i^L = r_i^D$  at equilibrium)

$$r_i^D = \gamma_{20i} + \gamma_{21}r_t^R + \gamma_{22}\pi_i^{fail} + \gamma_{23}Log(D_{it}/P_t) + \varepsilon_{it}^s$$

where  $\gamma_{20i}$  is a function the interest margin, can be compared across companies, although its absolute level is not determined

#### **II-B Estimation methods**

- At this stage, the estimation is static
- We have to account for heterogeneity in a panel context
- We have to face an endogeneity problem, usual in estimating supply/demand equations (simultaneity bias)
- this problem is avoided by implementing a 2SLS (Two stage least square) estimation method:
   W2SLS is preferred method

#### II-C Data (1/2)

We use the EU Commission's Harmonized BACH database which provides harmonized balance sheet, profits and loss accounts for different countries: we have retained France, Germany, Spain and Italy

The data are annual and available according to a breakdown by industrial sectors and three size classes ( small/medium/large): the individual index *i* is therefore a country-sector-size triplet and the time index *t* denotes a year

We focus on the 1993-2005 (T=12 periods) and N=144 (12 sectors x 3 sizes x 4 countries), selecting 12 sectors (manufacturing (excluding energy), construction, wholesale and retail trade)

II-C Data (2/2)

#### The variables are the following:

**Det** = log(total financial debt, divided by the GDP deflator)

Int = interest burden in % of total financial debt (rD)

**Turn** = year-on year growth of sales

**Inv** = investment ratio= investment/sales

**Roa** = net profits divided by total assets

**Gar(i)**= amount of collateral available to the company

Gar(1) for the small companies and Gar(2) for the medium size companies

**Size** = total assets in logarithm

- The default probabilites are just available for countries
- The data are aggregates (sum over the companies of a same class)
- Indicators in level are averages over the number of companies of the class
- Ratios are computed as (weighted) average ratios (ratios of aggregates)

#### II-D Empirical results : main results (1/3)

- Davidson and MacKinnon tests confirm the existence of endogeneity in most cases.
- The partial R<sup>2</sup> and the partial F indicate that the choice of instruments is all in all acceptable.

 All estimation methods provide very similar estimates for the parameters of the supply equation; with the collateral variables included, it is the same for the demand equation

#### II-D Empirical results : main results (2/3)

- The empirical fit of the supply equation to the data is better than the one of the demand equation
- W2SLS Estimation of the supply equation provides coefficients of the correct sign and order of magnitude
- Fixed effects in the supply equation indicates that the degree of competition (for fund suppliers) is higher for large than for small companies

#### II-D Empirical results: main results (3/3)

#### Model with collaterals

Table 3: Model with collateral variables<sup>a</sup>

|                        | Fixed effe               | cts model            | Random effects model |                      |                      |                      |  |  |
|------------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--|
| -                      | W2SLS                    |                      | EC                   | C2SLS                | G2SLS                |                      |  |  |
|                        | Det                      | $r^D$                | Det                  | $r^D$                | Det                  | $r^D$                |  |  |
| $r^D$                  | $-2.946** \atop (1.183)$ |                      | -3.084***<br>(0.615) |                      | -2.897***<br>(0.616) |                      |  |  |
| Det                    |                          | 0.0185**             |                      | -0.005 $(0.005)$     |                      | 0.0187**<br>(0.006)  |  |  |
| $\Gamma urn$           | 0.444***<br>(0.108)      |                      | 0.459***<br>(0.107)  |                      | 0.449***<br>(0.107)  |                      |  |  |
| Inv                    | 2.534***<br>(0.348)      |                      | 2.518***             |                      | 2.526***             |                      |  |  |
| Roa                    | -3.210***                |                      | -3.202***            |                      | -3.202***            |                      |  |  |
| ,R                     |                          | 0.797***<br>(0.043)  |                      | 0.941***<br>(0.033)  |                      | 0.853***<br>(0.039)  |  |  |
| -fail                  |                          | 0.636***<br>(0.157)  |                      | 0.361***             |                      | 0.184**              |  |  |
| Size                   |                          | -0.034***            |                      | -0.001 $(0.005)$     |                      | -0.028***<br>(0.007) |  |  |
| Far1                   |                          | -0.076***<br>(0.038) |                      | -0.039***<br>(0.011) |                      | -0.083***<br>(0.015) |  |  |
| Far2                   |                          | -0.041 $(0.033)$     |                      | -0.035***<br>(0.008) |                      | -0.064***            |  |  |
| Const.                 | 15.67***<br>(0.04)       | 0.337***<br>(0.049)  | 15.68***<br>(0.138)  | 0.139***<br>(0.026)  | 15.66***<br>(0.136)  | 0.242*** (0.034)     |  |  |
| $7^2$                  | 0.160                    | 0.770                | 0.016                | 0.722                | 0.014                | 0.599                |  |  |
| $I_{\chi^2(k)}$        |                          |                      | 0.000                | 40.22***             | 0.000                | 102.88***            |  |  |
| (k-1,n-k)              | 836.25***                | 8.66***              |                      |                      |                      |                      |  |  |
| Exog.test              | 0.088                    | 0.000                |                      |                      |                      |                      |  |  |
| Overid.test            | 0.045                    | 0.432                | 0.000                | 0.000                | 0.000                | 0.168                |  |  |
| Partial F              | 97.61***                 | 36.86***             |                      |                      |                      |                      |  |  |
| Partial $\mathbb{R}^2$ | 0.346                    | 0.124                |                      |                      |                      |                      |  |  |

Notes:\*\*\*indicates significance at 1% level; \*\* at 5% and \* at 10%;  $^a$  Firm and time effects are not reported here; Numbers in brackets denote standards errors (robust to heteroskedasticity and autocorrelation for W2SLS); W2SLS: within two-stage least squares method; EC2SLS: error-component method; G2SLS: generalized two-stage least squares method;  $H_{\chi^2(k)}$  denotes the Hausman test two-stage least squares fixed effects (W2SLS) vs Random effects (EC2SLS or G2SLS);  $F_{(k-1,n-k)}$  denotes the Fisher test that all fixed effects are equal to 0;  $Exog.\ test$ : Davidson-MacKinnon test of exogeneity;  $Overid.\ test$ : Sargan-Hansen test of overidentifying restrictions;  $Partial\ F$  denotes the first-stage F-statistic that coefficients are null in the regression of the endogenous regressor on the instruments;  $Partial\ R^2$  denotes the first-stage  $R^2$  measure.

#### II-E Implementing stress testing exercises (1/5)

- Loans to corporate firms are a large component of total assets of euro area financial institutions
- In practice:
  - Macro shocks
  - Effect on equilibrium interest rate and debt
  - Impact on banks' portfolio, based on share of corporate loans in banks' total portfolio

#### II-E Implementing stress testing exercises (2/5)

- Two macro scenarios are considered:
  - A significant reduction in world demand (originating in the US) leading to a recession in Europe
  - An increase in oil price (+70%) with a reaction of monetary policy to counteract the second round effects on inflation
- We refer to macroeconomic models to calibrate the stress scenarios:
  - we get the responses of macroeconomic variables (real GDP, GDP deflator, companies's investment/value added, growth of value added in nominal terms, gross operating surplus/capital stock) to the initial shocks
  - we use bridge equations which link the exogeneous variables included in the corporate model to the macroeconomic aggregates:
     for exemple: Inv is linked to the ratio of companies investment/value added, default to (inverse) GDP growth.

#### II-E Implementing stress testing exercises (3/5)

#### Coefficients of the reduced form model

= Elasticities of debt and interest rates to the exogenous variables

Table 5: Coefficients of the reduced form of the model without collateral variables

|       | Turn                 | Inv    | Roa                     | $r^R$  | $\pi^{fail}$ | Size                    | Const. |
|-------|----------------------|--------|-------------------------|--------|--------------|-------------------------|--------|
| Det   | 0.418                | 2.438  | -3.080                  | -2.191 | -1.662       | $8.299 \times 10^{-2}$  | 14.175 |
| $r^D$ | $6.277\times10^{-3}$ | 0.0366 | $-4.620 \times 10^{-2}$ | 0.783  | 0.596        | $-2.975 \times 10^{-2}$ | 0.532  |

#### II-E Implementing stress testing exercises (4/5)

Impact of the shocks on the exogenous variables and total impact on Det and  $r^D$ 

| TD 11 C   | T / C       | 1 1         |                 | 1111 1          | T 1 1)            |
|-----------|-------------|-------------|-----------------|-----------------|-------------------|
| Table ba: | Impact of   | the stress  | scenarios on    | equilibrium     | Det and $r^{\nu}$ |
| 10010 000 | TITIPOTO OI | 0110 001000 | SCOTICULIOS OIL | o q amino manin | To co currer ,    |

| •                                                    |        |       |       | •            |        |        |        |
|------------------------------------------------------|--------|-------|-------|--------------|--------|--------|--------|
|                                                      | Turn   | Inv   | Roa   | $\pi^{fail}$ | $r^R$  | Det    | $r^D$  |
| Value in 2005                                        | 0.040  | 0.030 | 0.045 | 0.012        | 0.022  | 15.42  | 0.048  |
| Scenario 1: stressed values                          | -0.031 | 0.031 | 0.041 | 0.019        | -      | -      |        |
| Impact on Det                                        | -2.988 | 0.041 | 1.308 | -1.180       |        | -2.819 |        |
| $(in \% points)$ Impact on $r^D$ $(in basis points)$ | -4.482 | 0.061 | 1.962 | 42.32        |        |        | 39.861 |
| Scenario 2: stressed values                          | 0.042  | 0.031 | 0.046 | 0.012        | 0.030  |        |        |
| Impact on Det                                        | 0.054  | 0.082 | 0     | -0.050       | -1.747 | -1.661 |        |
| (in % points) Impact on $r^D$ (in basis points)      | 0.082  | 0.122 | 0     | 1.788        | 62.66  |        | 64.652 |
| PONK ON LONDONO LANDATONO                            |        |       |       |              |        |        |        |

7-8 November 2007

#### II-E Implementing stress testing exercises (5/5)

#### Stress Testing Results:

- Scenario 1 : recession following a reduction in foreign demand
  - Shock : negative growth in sales (turnover), lower RoA, higher bankruptcy rates
  - Equilibrium on the corporate debt market: lower demand from negative growth in sales, partially offset by positive effect from lower Roa + lower supply from higher bankruptcy rates
  - Impact on corporate debt volume is negative (equal contribution from supply and demand) :
    - → Det -2.819%
  - Impact on lending rate is positive: significant contribution from higher bankruptcy (supply)
  - $\rightarrow$  r<sup>D</sup> +39.861 bp
- Scenario 2: An increase in oil price (+70%) with a reaction of monetary policy to counteract the secound round effects on inflation
  - Shock: slight acceleration in sales (turnover), slightly higher bankruptcy rates, higher interest rates following ECB reaction
  - Equilibrium on the corporate debt market : slightly higher demand + significantly lower supply from higher bankruptcy rates, but mainly from higher refinancing rates
  - Impact on corporate debt volume is negative, mainly from higher refinancing rates:
  - → Det -1.661%
  - Impact on lending rate is positive: from higher refinancing rate and bankruptcy
  - $\rightarrow$  r<sup>D</sup> +64.652 bp

## Perspectives for future work

- Dynamics in debt market
- Liquidity shocks
- Non linearity
- Impact of macroeconomic shocks on (expected) corporate defaults and effect on banks
- Enrich macro models with real variables (house price shock through wealth effects or other channels)
- Analysis of contagion in interbank market