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Predictability of Interest Rates and Interest-Rate Portfdios

ABSTRACT

Due to the near unit-root behavior of interest rates, theenwants of individual interest-rate series
are inherently difficult to forecast. In this paper, we prep@n innovative way of applying dynamic
term structure models to forecast interest-rate movemébrdtead of directly forecasting the movements
based on the estimated factor dynamics, we use the dynarmicsteucture model as a decomposition
tool and decompose each interest-rate series into two coempsr a persistent component captured
by the dynamic factors, and a strongly mean-reverting carapbgiven by the pricing residuals of
the model. With this decomposition, we form interest-ratetfplios that are first-order neutral to the
persistent dynamic factors, but are fully exposed to thengfily mean-reverting residuals. We show that

the predictability of these interest-rate portfolios igrsficant both statistically and economically, both

in sample and out of sample.

JEL Classification:E43; G11; G12; C51.
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Predictability of Interest Rates and Interest-Rate Portfdios

Forecasting interest-rate movements attracts greatiatifrom both academics and practitioners. A central
theme underlying the traditional literature is to explbi information content in the current term structure to
forecast the future movement of interest rates. Theseestdidimulate forecasting relations based on various
forms of the expectation hypothesisvore recently, several researchers apply the theory ofrdicgerm
structure models in further understanding the links bebwthe cross-sectional behavior (term structure)
of interest rates and their time-series dynamics. Theygaemnd test model specifications that can best
explain the empirical evidence on the expectation hypdthesd the properties of excess bond retdrirs.
this paper, we propose a new way of applying multivariateadyic term structure models in forecasting

interest-rate movements.

Modern dynamic term structure models accommodate muliijphamic factors in governing the interest-
rate movements. Several empirical studies also identifylin@arity in the interest-rate dynamigsThus,
if the focus is on forecasting, a better formulation shoubdilba multivariate framework, and potentially
in nonlinear forms, rather than in the form of simple lineagressions designed to verify the expectation
hypothesis and the behavior of market risk premium. Funtloee, if interest rates are composed of multiple
factors, do these factors exhibit the same predictabiliyfiot, can we separately identify these factors
from the interest-rate series and forecast only the momtigiedble components while hedging away the less

predictable ones?

We address these questions based on weekly data on 12 darddBIOR and swap rate series from
May 11, 1994 to December 10, 2003 at maturities from one mmn80 years. We perform our analysis
within the framework of three-factor affine dynamic ternusture models. We apply the unscented Kalman
filter to estimate the term structure models and to extraetinkerest-rate factors and the pricing errors.

Similar to earlier findings in the literature, we observetttiee estimated three interest-rate factors are

Iprominent examples include Roll (1970), Fama (1984), Farddéiss (1987), Mishkin (1988), Fama and French (1989, 1,993
Campbell and Shiller (1991), Evans and Lewis (1994), Havdbs (1994), Campbell (1995), Bekaert, Hodrick, and Matksh
(1997, 2001), Longstaff (2000), Bekaert and Hodrick (20@ihyd Cochrane and Piazzesi (2005).

25ee, for example, Backus, Foresi, Mozumdar, and Wu (2004),abd Singleton (2002), Duffee (2002), and Roberds and
Whiteman (1999).

3Examples include Ait-Sahalia (1996a,b), Stanton (198#apman and Pearson (2000), Jones (2003), and Hong andDB)(20



highly persistent. When we try to forecast four-week ahederést-rate changes based on the estimated

factor dynamics, the performance is no better than the laasiemption of random walk.

In pricing 12 interest rate series with three factors, wéatiserve pricing errors. The unscented Kalman
filter estimation technique accommodates these pricirgyein the form of measurement errors. Thus, the
estimation procedure decomposes each interest-rates settetwo components: the model-implied fair
value as a function of the three factors, and the pricingrehat captures the idiosyncratic movement of
each interest-rate series. We can think of the pricing stasrthe higher dimensional dynamics that are not
captured by the three factors. Compared to the highly gergisiterest-rate factors, we find that the pricing

errors on the interest-rate series are strongly mean negert

Based on this observation, we propose a new way of applymdyhamic term structure models in fore-
casting interest-rate movements. Instead of using thmattd dynamic factors to forecast the movements
of each individual interest-rate series, we use the model dscomposition tool. We form interest-rate
portfolios that are first-order neutral to the persistetgnest-rate factors, but are fully exposed to the more
mean-reverting idiosyncratic components. To illustraite ilea, we use swap rates at two-, five-, ten-, and
30-year maturities to form such a portfolio. We find that, antrast to the low predictability of the indi-
vidual swap rate series, the portfolio shows strong preditity. For example, in forecasting interest-rate
changes over a four-week horizon based on an AR(1) speuificate obtain R-squares less than 2% for all
12 individual interest-rate series. In contrast, the fasting regression on the swap-rate portfolio generates

an R-square of 14%.

To generalize, we use the 12 interest-rate series to formd#f#sent combinations of four-instrument
interest-rate portfolios that are hedged with respect éottinee persistent interest-rate factors. We find
that all these 495 portfolios show strong predictabilitheTR-squares from the AR(1) forecasting regres-
sion range from 7.84% to 55.72%, with an average of 19.32%stihting the robustness of the portfolio-

construction strategy in enhancing the predictabilityhef portfolio return.

We use the same idea to form two-instrument interest-ratiégtios to hedge away the most persistent
interest-rate factor, and three-instrument interestpatéolios to hedge away the first two factors. We find
that the predictability of most of the two- and three-instant portfolios remains weak, indicating that we

must hedge away all the first three factors to generate fiogfwith strong predictability.



To investigate the economic significance of the predidtsdof the four-instrument interest-rate portfo-
lios, we follow the practice of Kandel and Stambaugh (1998) devise a simple mean-variance investment
strategy on the four-instrument portfolios over a four-lwlerizon that exploits the portfolios’ strong pre-
dictability. During our sample period, the investment ei®r generates high premiums with low standard
deviation. The annualized information ratio estimategeainom 0.36 to 0.94, with an average of 0.7, illus-
trating the strong economic significance of the predicitgif the four-instrument portfolios. Furthermore,
the excess returns from the investment exercise show yosikewness, and the average positive premi-
ums cannot be fully explained by systematic factors in tbhekstcorporate bond, and interest-rate options
markets? Given their independence of systematic market factors, ypethesize that the average positive
excess returns are premiums to bearing short-term ligustliocks to individual interest-rate swap contracts.
We construct measures that proxy the absolute magnitudesntfct-specific liquidity shocks in the swap
market and find that larger liquidity shocks at a given daterofead to more positive excess returns ex post

for investments put on that day.

The literature has linked the three persistent interdstfectors to systematic movements in macroeco-
nomic variables such as the long-run expected inflation tateoutput gap, and the short-run Fed policy
shocks. Within a short investment horizon, e.g., four wedhksse systematic movements are difficult to
predict. The four-instrument interest-rate portfolioattve have constructed in this paper are relatively
immune to these persistent and systematic movements,éakposed to more transient shocks due to tem-
porary supply-demand variations. Trading against thesekshamounts to providing short-term liquidity
to the market and hence bearing a transient liquidity riskir @alysis shows that historically the swap
market has assigned a relatively high average premium tlicphidity risk, potentially due to high barriers
to entry, limits of arbitrage, and compensation for intefilal capital (Duarte, Longstaff, and Yu (2005)).
Our subsample analysis further shows that the risk premiasndeclined over the past few years, a sign
of increasing liquidity and efficiency in the interest-rawap market. Nevertheless, the predictability of

our four-instrument interest-rate portfolios remains matronger than that of individual interest-rate series

4The high information ratios and positive skewness are alseved in excess returns on popular fixed income arbitrage
strategies (Duarte, Longstaff, and Yu (2005)). In contragtess returns from other high-information-ratio inmestt strate-
gies reported in the literature often exhibit negativelgvg&d distributions, e.g., selling out-of-the-money pui@ys (Coval and
Shumway (2001), Goetzmann, Ingersoll, Spiegel, and W&0B3)), shorting variance swap contracts (Carr and Wu (g0a4d
merger arbitrage (Mitchell and Pulvino (2001)).



across different sample periods, both in sample and outropka Furthermore, our results are robust to

different model specifications within the three-factorradfclass.

Our new application of the dynamic term structure modelsishew insights for future interest-rate
modeling. The statistical and economic significance of tiegliptability of the interest-rate portfolios point
to a dimension of deficiency in three-factor dynamic ternucttire models. These models capture the
persistent movements in interest rates, but discard tmsiénat interest-rate movements. Yet, not only
can these transient movements be exploited in investmarigides to generate economically significant
premiums, as we have shown in this paper, but they can algamlaortant roles in valuing interest-rate
options (Collin-Dufresne and Goldstein (2002) and Heidend Wu (2002, 2003)) and in generating the

observed low correlations between non-overlapping favirterest rates (Dai and Singleton (2003)).

The remainder of this paper is structured as follows. Sedtidescribes the specification and estimation
of the three-factor affine dynamic term structure modelsuhderlie our analysis. We also describe the data
and estimation methodology, and summarize the estimatienant results in this section. Section 2 inves-
tigates the statistical significance of the predictabitifynterest rates and interest-rate portfolios. Section 3
studies the economic significance of the interest-ratfgdms from an asset-allocation perspective. Sec-
tion 4 performs robustness analysis by examining the pradality variation across different subsamples, in

sample and out of sample, and under different model spetdifitsa Section 5 concludes.

1. Specification and Estimation of Affine Dynamic Term Structire Models

We perform our analysis based on affine dynamic term streichadels (Duffie and Kan (1996) and Duffie,
Pan, and Singleton (2000)). The specification and estimaifaaffine term structure models have been
studied extensively in the literature, e.g., Backus, Holdszumdar, and Wu (2001), Dai and Singleton
(2000, 2002), Duffee (2002), and Duffee and Stanton (2008& follow these works in specifying and
estimating a series of standard three-factor models ins#gtion. However, our proposed applications of

the estimated models in the subsequent sections are cetyaldterent from the previous studies.



1.1. Model specification

To fix notation, we consider a filtered complete probabilipase{Q, 7 ,P, (#t)o<t<s } that satisfies the
usual technical conditions withi being some finite, fixed time. We u3ec R" to denote am-dimensional
vector Markov process that represents the systematic atdbe economy. We assume that for any time
t € [0,7] and maturing dat& < [t, 7 ], the fair value at timé of a zero-coupon bond with time-to-maturity

1=T —t s fully characterized by?(X;, 1) and that the instantaneous interest ratedefined by continuity:

(%) = lim P T (1)

1/0 T

We further assume that there exists a risk-neutral mea&useich that the fair values of the zero-coupon

bonds and future instantaneous interest rates are linkidl@ass,

P, 1) =E{ [exp(— /ttﬂr(xs)dsﬂ , (2)

whereE; |-] denotes the expectation operator under meaBuomnditional on the filtrationy;.

Under the affine class, the instantaneous interest rateaffing function of the state vector,
r(X)=a +b X, 3
and the state vector follows affine dynamics under the rekinal measuré*,
d% = K" (8" —X) dt+ /S AW, 4)
where§ is a diagonal matrix with itsth element given by

[Sli = ai + B %, (5)



with a; being a scalar anfl; an n-dimensional vector. Under these specifications, theviines of the

zero-coupon bonds are exponential affine in the state vi¥gtor
P(%.T) = exp(—a() ~b(1) %) (6)

where the coefficients can be solved from a set of ordinafgrdifitial equations (Duffie and Kan (1996)).

Dai and Singleton (2000) classify the affine models into ao@al Am(n) structure such that

><t,i |:1,,m,
Sli = { (7
1+B|TX(7 i:m+l>"'>n>
Bi = [Bil)"'?Bimaoa"'vo]T' (8)

The normalization amounts to settiog= 0 andB; = 1; for i < m, where 1 denotes a vector with itdh

element being one and other elements being zero. In esskadestmfactors follow square-root dynamics.

To derive the state dynamics under the physical meaBuiai and Singleton (2000) assume that the
market price of risk is proportional t¢'S, y(X) = v/SA1, whereA; is ann x 1 vector of constants. Duffee

(2002) proposes a more general specification,

V%) = VSAL+ /S A, 9)
wherel; is ann x n matrix of constants an§f is a diagonal matrix with itéth diagonal element given by

§ho= 40 (= Leem (10)
b 14B™%) ", i=m+1,---.n.
(1+B'%) . v

Under the general market price of risk specification in (98R-dynamics of the state vector remains affine,

dX =K (8 — X)) dt+ /SdW, (11)



with

. 0, i=1---,m
K6l = [K'6%i+ (12)
Ai i=m+1---.n,
Al.ili—ry |:l> , M,
Ki. = K. — (13)

(AiB +A2i) i=m+1---.n,

wherek; . andA,; denote theth row ofk andA,, respectively, and, ; denotes théth element of the vector.

Since the firsmrows ofA;, do not enter the dynamics &f, we normalize\,; =0 fori=1,--- ,m.

For our analysis, we follow the common practice in the literain focusing on three-factor models. We
estimate four generién(3) models withm= 0,1, 2,3 and with the general market price of risk specification
in equation (9). In the case oh =0, § andS become identity matrices. The three factors follow a

multivariate Ornstein-Uhlenbeck process,

dX = —kXdt+ dW, (14)

where we normalize the long-run me@a- 0. For identification purpose, we restrict thenatrix to be lower

triangular. In this case, the essentially affine marketgpoicrisk specification in equation (9) becomes

V(%) = A+ A2X, (15)

so that the risk-neutral state dynamics becomes

dX =K* (0" —X)dt+dW", K'0"=—-A1, K'=K+As (16)

We also confiné\, and hencex* to be lower triangular. FoAy(3) models withm= 1,2,3, we normalize

8 =0fori=m+1,c...,n. We also normaliz&* andk to be lower triangular matrices.



1.2. Data and estimation

We estimate the four affine dynamic term structure modelsaanadlyze the predictability of interest rates
based on five eurodollar LIBOR and seven swap rate seriesLIB@R rates have maturities at one, two,
three, six and 12 months, and the swap rates have matutities ahree, five, seven, ten, 15, and 30 years.
For each rate, the Bloomberg system computes a composite §ased on quotes from several broker
dealers. We use the mid quotes of the Bloomberg compositmdalel estimation. The data are sampled

weekly (every Wednesday) from May 11, 1994 to December 1032801 observations for each series.

LIBOR rates are simply compounded interest rates, reldtirige values of the zero-coupon bonds by,

LIBOR(X;,T) = 1%”(%-1), (17)

where the time-to-maturity is computed based on actual over 360 convention, startingotwiness days

forward. The swap rates relate to the zero-coupon bondsphbge

1-P(%,T1)

SWARX,T) = 10thx —— 02
Vet) ST Pi/h)

(18)

whereT denotes the maturity of the swap ahdlenotes the number of payments in each year. For the
eurodollar swap rates that we use, the number of paymenisds per yearh = 2, and the day counting

convention is 30/360.

Table 1 reports the summary statistics of the 12 LIBOR andpsmates. The average interest rates
have an upward sloping term structure. The standard dewiafi the interest rates shows a hump-shaped
term structure that reaches its plateau at one-year matitltinterest-rate series show small estimates for

skewness and excess kurtosis.

The interest rates are highly persistent. The first-ordezklyeautocorrelation ranges from 0.985 to
0.995, with an average of 0.991. An AR(1) dynamics approt@savell the autocorrelation function at
higher orders. If we assume an AR(1) dynamics for interdsisran average weekly autocorrelation esti-

mate of 0.991 implies a half life of 78 weeksTherefore, if we make forecasting and investment decisions

5We define the half life as the number of weeks for the weeklpeartrelation ¢) to decay to half of its first-order value:
Half-life (in weeks) = In(@/2)/In(@).



based on the mean-reverting properties of interest ratesjegd a very long investment horizon for the

mean reversion to actually materialize.

We cast the four dynamic term structure models into stadeeforms and estimate the model parame-
ters using the quasi-maximum likelihood method based oarghtions on the 12 interest-rate series. Under
this estimation technique, we regard the three interdéstfagtors as unobservable states and the LIBOR and

swap rates as observations. The state propagation eqf@itamms a discrete-time version of equation (11),

X1 = A+ OX + \/aetﬂa (19)

wheree ~ 1IN (0,1), @ = exp(—kAt) with At = 1/52 as the discrete-time (weekly) interval= 6(1 — @),
andQ; = SAt.

We define the measurement equation using the 12 LIBOR and satap, assuming additive and

normally-distributed measurement errors,

LIBOR(X, i) i =1,2,3,6,12 months
Y = +&, cov&a)==R, (20)
SWARX, |) j=2,3,5,7,10,15,30 years

For the estimation, we assume that the measurement err@achrseries are independent but with distinct

variance:Rj = oiz andg;j =0 fori # .

When both the state propagation equation and the measureqpgstions are Gaussian and linear, the
Kalman (1960) filter generates efficient forecasts and @sdah the conditional mean and covariance of
the state vector and the measurement series. In our apmticétte state propagation equation in (19) is
Gaussian and linear, but the measurement equation in (2Wnknear. We use the unscented Kalman
filter (Wan and van der Merwe (2001)) to handle the nonlirigarihe unscented Kalman filter directly
approximates the posterior state density using a set ofrdetistically chosen sample points (sigma points).
These sample points completely capture the true mean ardiaoge of the Gaussian state variables, and
when propagated through the nonlinear functions of LIBO® swap rates, capture the posterior mean and

covariance accurately to the second order for any noniiyear



Lety,,; andA;1 denote the timé-ex ante forecasts of tim@-+ 1) values of the measurement series
and the covariance of the measurement series obtained fimrmiscented Kalman filter, we construct the

log-likelihood value assuming normally distributed faasting errors,

lt11(0©) = —% log |A| — % <(yt+1 ~Vii1) (zul)fl (Yer1— Vt+1)> : (21)

The model parameters are chosen to maximize the log likaditod the data series,

N—1
ezargrr(])axg(e, (Hiy), with £(©{w},) = Z)It+1(e), (22)
t=

whereN = 501 denotes the number of weeks in our sample of estimation.

1.3. The dynamics of interest-rate factors and pricing erros

The model specifications and estimations are relativelydstal, and our results are also similar to those
reported in the literature. Since all four models generatglar performance, our conclusions are not

particularly sensitive to the exact model choice. For eijfmrsl clarity, we henceforth focus our discussions

on theAy(3) model, and address the similarities and differences ofttier three models\y(3),m=1,2,3,

in a separate section. From the estimated models, we arialyggnamics of the interest-rate factors and the
behavior of the pricing errors, both of which are importamtdur subsequent analysis on the predictability

of interest rates and interest-rate portfolios.

1.3.1. Factor dynamics

Table 2 reports the parameter estimates and the absoluteitodes of thet-values for theAy(3) model.
The parameter estimates @rcontrol the mean-reverting feature of the time-series oyos of the three
Gaussian factors. For the factor dynamics to be statiotiaey,eal parts of the eigenvalues of thenatrix
must be positive. Under the lower triangular matrix assummptthe eigenvalues of the matrix coincide

with the diagonal elements of the matrix.

10



The estimate for the first diagonal element is very small@d®. Itst-value is also very small, implying
that the estimate is not statistically different from zdf@nce, the first factor is close to being nonstationary.
The estimate for the second eigenvalue is 0.48, witlvaue of 1.19, and hence not significantly different
from zero. The estimate for the third eigenvalue of khmatrix is significantly different from zero, but
the magnitude remains small at 0.586, indicating that aé¢Hactors are highly persistent. The largest

eigenvalue of 0.586 corresponds to a weekly autocorrelatid®.989, and a half life of 62 weeks.

Thek* matrix represents the counterpartiofinder the risk-neutral measure. The estimatesfare
close to the corresponding estimatesdpmdicating that the three interest-rate factors also shiglv per-
sistence under the risk-neutral measure. Compared torthegrix, which controls the time-series dynamics
of the interest rates, the risk-neutral counterpértontrols the cross-sectional behavior (term structure) of
interest rates. Thevalues fork* are much larger than thevalues for the corresponding elementskof
Thus, by estimating the dynamic term structure model on rikerést-rate data, we can identify the risk-
neutral dynamics and hence capture the term structure ioelodinterest rates much more accurately than

capturing the time-series dynamics.

The difference irt-values betweer andk* also implies that from the perspective of a dynamic term
structure model, forecasting future interest-rate movems more difficult than fitting the observed term
structure of interest rates. This difficulty is closely kakto the near unit-root behavior of interest rates. The
difficulty in forecasting persists even if we perform theimsttion on the panel data of interest rates across

different maturities and hence exploit the full informaticontent of the term structure.

1.3.2. Properties of pricing errors

In using a three-factor model to fit the term structure of X2riest rates, we will see discrepancies between
the observed interest rates and the model-implied valueghd language of the state-space model, the
differences between the two are called measurement efirbey. can also be regarded as the model pricing

errors. The unscented Kalman filter minimizes the pricirrgrerin a least square sense.

Table 3 reports the sample properties of the pricing erfbine. sample mean shows the average bias be-

tween the observed rates and the model-implied rates. Tapeskbiases come from the six- and 12-month

11



LIBOR rates, potentially due to margin differences and opgohon-synchronousness between LIBOR and
swap rates (James and Webber (2000)). The root mean squaried @rror (rmse) measures the relative
goodness-of-fit on each series. The largest root mean sheei@ comes from the 12-month LIBOR rate
at 14.145 basis points. The maximum absolute pricing es@0i495 basis points on the one-month LI-
BOR rate. The skewness and excess kurtosis estimates atelanger than the corresponding estimates
on the original interest rates, especially for the shamit&IBOR rates, reflecting the occasionally large
mismatches between the model and the market at the short émelyeld curve (Heidari and Wu (2003b)).
Overall, the model captures the main features of the terottstre well. The last column reports the ex-
plained percentage variation (VR) on each series, definedasinus the ratio of pricing error variance to
the variance of the original interest-rate series, in paege points. The estimates suggest that the model

can explain over 99% of the variation for 11 of the 12 interast series.

We also report the weekly autocorrelation for the pricinges. The autocorrelation is smaller for the
better-fitted series. The average weekly autocorrelatiorthie pricing errors is at 0.69, much smaller than
the average of 0.991 for the original interest-rate seBaesed on an AR(1) structure, a weekly autocorrela-
tion of 0.69 corresponds to a half life of less than three westuch shorter than the average half life for the
original series. Thus, if we can make an investment on thengrierrors instead of on the original interest-
rate series, our ability to forecast will become much stesrand convergence through mean-reversion will

become much faster.

2. Predictability of Interest-Rate Portfolios

Given the estimated dynamic term structure models, a toadit approach is to directly predict future
interest-rate movements based on the estimated factondgsize.g., Duffee (2002) and Duffee and Stanton
(2000). We start this section by repeating a similar exeragsa benchmark for comparison. We then propose
a new, innovative application of the estimated dynamic tsimicture models to enhance the predictability.
In this new application, we do not use the estimated factaadycs to directly predict interest-rate move-
ments, but use the model as a decompoaosition tool and formesiteate portfolios that are significantly more

predictable than are the individual interest-rate series.

12



2.1. Forecasting interest rates based on estimated factoydamics: A benchmark

As a benchmark for our subsequent analysis, we forecastldBEIR and swap rate series using the esti-
matedAy(3) model via the following procedure. At each date, based oruffates on the three factors,
we forecast the values of the three factors four weeks ahe@mtding to the state propagation equation in
(19) and with the time horizoAt = 4/52. The choice of a four-week forecasting horizon is a commise
between the weekly data used for model estimation and amablolong horizon for forecasting. Given

the high persistence in interest rates, the investmentdrolis usually one month or longer.

Using the forecasts on the three factors, we compute thedsted values of zero-coupon bond prices
according to equation (6) and the forecasted LIBOR and saigs raccording to equations (17) and (18).
Then, we compute the forecasting error as the differencesmsipoints between the realized LIBOR and

swap rates four weeks later and the forecasted values.

We compare the forecasting performance ofAB€8) model with two alternative strategies: the random
walk hypothesis (RW), under which the four-week ahead faseof the LIBOR and swap rate is the same
as the current rate, and a first-order autoregressive sgne§OLS) on the LIBOR or swap rate over a

four-week horizon.

Table 4 reports the sample properties of the four-week afoeadasting error from the three forecasting
strategies. By design, the in-sample forecasting erran ftioe regression is always smaller in the least
square sense than that from the random walk hypothesis. Wowaue to the high persistence of interest
rates, the differences between the sample properties dbtheasting errors from RW and OLS are very
small. The root mean squared forecasting errors on eadsdenm the two strategies are less than half a
basis point apart. In the last column in each panel, we reperéxplained percentage variation, defined as
one minus the variance of the forecasting errors over thanee of the four-week changes in the interest
rate series. By definition, the random walk strategy has egptanatory power on the changes in LIBOR
and swap rates. The OLS strategy generates positive rebuttshe outperformance is very small, with
the highest percentage being 1.528% for the 30-year swagp. rétence, for short-term investment over a
horizon of four weeks, the gain from exploiting the meanerémg property of individual interest-rate series

is negligible, even for in-sample analysis.

13



The last panel reports the properties of the forecastingrefrom theAy(3) dynamic term structure
model. The model’s forecasting performance is not signifigabetter than the simple random walk hy-
pothesis. In fact, the root mean squared error from the miedatger than the mean absolute forecasting
error from the random walk hypothesis for seven of the 12esemnd the explained variation estimates
are negative for eight of the 12 series. Therefore, the djm#srm structure model delivers poor forecast-
ing performance. Duffee (2002) and Duffee and Stanton (R6B8erve similar performance comparisons
for a number of different dynamic term structure models,ertihg the inherent difficulty in forecasting

interest-rate movements using multi-factor dynamic temoncsure models.

2.2. Forming interest-rate portfolios that are strongly predictable

Given the near unit-root behavior of interest rates, neidlyaamic term structure models nor autoregressive
regressions can do much better than a simple random walkngsiem in predicting future changes in the

individual interest-rate series. However, the pricingpesrfrom the dynamic term structure models show
much smaller persistence than both the interest-raterfaatal the original interest-rate series. As a result,
an autoregressive regression can predict future changtseipricing errors much better than does the
random walk hypothesis. Therefore, the predictable corapbim the interest-rate movements is not in the
estimated dynamic factors, but in the pricing errors. Bamethis observation, we propose a hew way of

applying the term structure model in forecasting interatts.

Instead of using the term structure model to directly fosecaovements in the individual interest-rate
series, we use the model as a decomposition tool, which deases each interest-rate series into two com-
ponents, a very persistent component as a function of tee thterest-rate factors, and a relatively transient
component that constitutes the pricing error of the mode.tMhk of the pricing errors as reflecting higher

dimensional dynamics of the interest rates that are noticeghby the three factors.

With this decomposition, we can use the model to form intera® portfolios that have minimal expo-
sure to the three persistent factors, and hence magnifiezbasgto the more transient pricing errors. We
expect that future movements in these interest-rate piagfare more predictable than movements in each
individual interest-rate series, given the portfolios’gndied exposure to the more predictable component

in interest rates.
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In principle, when dealing with a portfolio of bonds, we caeuwo different interest-rate series to hedge
away its first-order dependence on one factor, and threessirihedge away its first-order dependence on
two factors. To hedge away a portfolio’s first-order deperwgeon three factors, we need four interest-rate
series in the portfolio. To illustrate the idea, we use anmgla of four swap rates at maturities of two,
five, ten, and 30 years to form such a portfolio. Formally, atH € R34 denote the matrix formed by the

partial derivatives of the four swap rates with respect &thiree interest-rate factors,

ISWARX,,T)

Hix) = | 22

] , T1=2,5,10,30. (23)

We usem = [m(1)], with 1= 2,5,10, 30, to denote thé4 x 1) portfolio weight vector on the four swap rates.

To minimize the sensitivity of the portfolio to the three tiais, we require that
Hm =0, (24)

which is a system of three linear equations that set therideendence of the portfolio on the three factors

to zero, respectively.

The three equations in (24) determine the relative propomif the four swap rates. We need one more
condition to determine the size or scale of the portfolio.efEhare many ways to perform this relatively
arbitrary normalization. For this specific example, we &et portfolio weight on the ten-year swap rate
to one. We can interpret this normalization as being longwnmitof the ten-year swap contract, and then
using (fractional units of) the other three swap contrawi®-, five-, and 30-year swaps) to hedge away its

dependence on the three factors.

Based on the parameter estimates in Table 2, we first evaluatpartial derivative matrixd at the

sample mean of; and solve for the portfolio weight as,

.
m=[0.0277, —0.4276 1.000Q —0.6388] : (25)

In theory, the partial derivative matrid depends on the value of the state vectgrbut under the affine
models, the relation between swap rates and the state ¥&®utell approximated by a linear relation. Hence,

the derivative is close to a constant. Our experiments aldicate that within a reasonable range, the partial
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derivative matrix is not sensitive to the choice of the leskthe factorsX;. Thus, we evaluate the partial

derivative at the sample mean and hold the portfolio weifjkésl over time.

Figure 1 plots the time series of this swap-rate portfolidghia left panel. The solid line denotes the
market value based on the observed swap rates and the dashddnotes the model-implied fair value as
a function of the three interest-rate factors. We observera flat dashed line in the left panel of Figure 1,
indicating that the fixed-weight portfolio is not sensitit@ changes in the interest-rate factors over the
whole sample period. The flathess of this dashed line alstiromthat the partial derivative matrix in

equation (23) is relatively invariant to changes in thenesérate factors.

[Figure 1 about here.]

The market value (solid line) of the portfolio shows sigrafit variation and strong mean reversion
around the model-implied value (dashed line). The weektp@rrelation of this four-swap rate portfolio
is 0.816, corresponding to a half life of about a month. Fengarison, we also plot the time series of the
unhedged ten-year swap rate series in the right panel, whimlis much less mean reversion than the hedged
swap rate portfolio. The weekly autocorrelation estimatettie ten-year swap rate is 0.987, corresponding

to a half life of about one year, in contrast to a half life oeanonth for the hedged swap-rate portfolio.

In the right panel, we also plot the model-implied value &f tmhedged ten-year swap rate in dashed
line, but the differences between the market quotes (swle) nd the model values (dashed line) are so
small that we cannot visually distinguish the two lines. fEfiere, from the perspective of fitting individual
interest-rate series, t#e(3) model performs very well and the pricing errors from the made very small.
However, by forming a four-instrument portfolio in the lptinel, we magnify the significance of the pricing

errors by hedging away the variation in the three interatg-factors.

To investigate the predictability of this interest-ratatfimio, we employ the OLS forecasting strategy

on this portfolio. The AR(1) regression generates the Yalhg result:

AR,; = -0.0849 — 0275& + a1, RP=14% 26)
(0.0096) (0.0306)
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whereR; denotes the portfolio of the four swap rates @il ; denotes the changes in the portfolio value
over a four-week horizon. We estimate the regression paeambéy using the generalized methods of
moments (GMM) with overlapping data. We compute the stath@arors (in parentheses) of the estimates

following Newey and West (1987) with eight lags.

The explained variation (VR) in the second panel of Table Mesponds to the R-squares of a similar
AR(1) regression on individual LIBOR and swap rate serieBe VR estimate on the unhedged ten-year
swap rate is 1.068%. In contrast, by hedging away its depemden the three persistent factors, the hedged

ten-year swap rate has an R-square of 14%, a dramatic iedrepsedictability.

Equation (26) reflects the predictability of the swap ratefptio based on the OLS strategy. However,
we construct the portfolio based on the estimates ofA§{8) dynamic term structure model. Therefore,
the strong predictability in equation (26) represents thelmined power of the dynamic term structure
model and the AR(1) regression. In this application, we dbuseg the dynamic term structure model
to directly forecast future interest-rate movements, bther use it to form an interest-rate portfolio that
is more predictable. The portfolio weights are a functiorthef partial derivatives matrifd (X;), which
is determined by the risk-neutral dynamics of the interat#-factors and the short-rate function, both of

which we can estimate accurately.

When a time series is close to a random walk, forecastingrbesdifficult irrespective of the forecasting
methodology. Individual interest-rate series providensaicexample. Table 4 shows that using the estimated
factor dynamics generates forecasting results no betiarttie random walk assumption. Nevertheless, we
show that the dynamic term structure model can still be lis&he model captures the cross-sectional (term
structure) properties of the interest rates well. We usedtiength of the dynamic term structure model to
form an interest-rate portfolio that minimizes its depermeon the persistent interest-rate factors. As a
result, the portfolio’s exposure to the more transientrggerate movements is magnified. The portfolio

becomes more predictable, even when the prediction is masadimple AR(1) regression.

The idea of using four interest-rate series to form the pbatfis to achieve first-order neutrality to the
three persistent factors. In principle, any four interase series should be able to achieve this neutrality.
With 12 interest-rate series, we can construct 495 disfmaet-instrument portfolios. To investigate the

sensitivity of the predictability to the choice of the spgicinterest-rate series, we exhaust the 495 combi-
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nations of portfolios and run the AR(1) regression in equrafR6) on each portfolio. For each portfolio, we

normalize the holding on the interest-rate series by gettie largest portfolio weight to one.

Table 5 reports in the first panel the summary statistics erprameter estimatesstatistics, and the
R-squares from the 495 regressions on the four-instrunwtfofios. The slope estimates are all statistically
significant, with the minimum absolutestatistic at 6.504. The minimum R-square is 7.844%, theimmax
is 55.724%, and the median is 15.68%. Even in the worst chsepredictability of the four-instrument

portfolio is much stronger than the predictability of théiiridual interest-rate series.

In principle, we can use any four distinct interest-rateéesaio neutralize the impact of the three persis-
tent factors, but practical considerations could favor pogfolio over another. First, when the maturities
of the interest rates in the portfolio are too close to onettaTp the derivative matri¥d could approach
singularity, and the portfolio weights could become unigtaBecond, we see from Table 3 that the pricing
errors from the better fitted interest rates series showlensarial dependence. Thus, a portfolio composed
of better-fitted interest-rate series should show stropgedictability. These considerations lead to sam-
ple variation in the R-squares for different portfolios. wver, the fact that the predictability of even the
worst-performing portfolio is better than that of the bpstforming individual interest-rate series shows the

robustness of our portfolio construction strategy.

So far, we have been using four interest-rate series toalathe effect of all three interest-rate factors.
However, the idea is not limited to forming four-instrumeuottfolios. For example, we can use two interest-
rate series to form a portfolio that is immune to the first, atsb the most persistent, factor. We can also
form three-instrument portfolios to neutralize the impafcihe first two factors. Finally, we can estimate an

even higher dimensional model, and form portfolios withreseore interest-rate series.

Based on the 12 interest-rate series, we form 66 two-ingntiportfolios that have minimal exposures
to the first factor. We also form 220 three-instrument pdidothat have minimal exposures to the first
two interest-rate factors. For each portfolio, we run the(BRegression as in equation (26). The second
and third panels in Table 5 report the summary statistiches$e regressions on two- and three-instrument
portfolios, respectively. The predictability of the twastrument portfolios is not much different from the
predictability of the individual interest rate series. Tdwerage R-square for the two-instrument portfolios

is merely 0.42%, not much better than the random walk hypigh&he maximum R-square is only 5.47%.
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Therefore, hedging away the first factor is not enough to awgrinterest-rate predictability significantly

over a four-week horizon.

By hedging away the first two persistent factors, some oftiheetinstrument portfolios show markedly
higher predictability. The maximum R-square is as high aglZ%6. Furthermore, about 10% of the
three-instrument portfolios generate R-squares grelader 5%. Nevertheless, the median R-square is only
0.242%, and the R-square at the 75-percentile remains Hgwr hus, improved predictability only hap-
pens on a selective number of three-instrument portfoliés.need to hedge away the first three factors to

obtain universally strong predictability over a four-wdwdtizon.

3. The Economic Significance of Portfolio Predictability

The predictability of a time series does not always lead tmemic gains. In this section, we investigate
the economic significance of the predictability of the fstrument portfolios from an asset-allocation
perspective, an approach popularized by Kandel and Staghb@i996). We then analyze the risk and
return characteristics of the excess returns from the -afieehtion exercise, and discuss the economic and

theoretical implications of our results.

3.1. A simple buy and hold strategy based on AR(1) forecasts

We assume that an investor exploits the mean-revertingepnopf the interest-rate portfolios and makes
capital allocation decisions based on the current deviatiothe portfolio from its model-implied mean
value. Since floating rate loans underlying the LIBOR ratgeHow interest-rate sensitivities, we focus our

investment decisions on swap contracts of different mizgtri

Following industry practice, we regard each swap contrac par bond with the coupon rate equal to
the swap rate. We regard the floating leg of the swap contfareig-month LIBOR) as short-term financing
for the par bond. Hence, forecasting the swap rates amaoufdsecasting the coupon rates of the portfolio
of par bonds. When the current portfolio of swap rates is drighan the model value, the mean-reverting

property of the portfolio predicts that the portfolio of gwaates will decline in the future and move toward
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the model value. Then, it can be beneficial to go long the plistfand receive the current fixed swap
rates as coupon payments. However, as time goes by, theitieatof the invested portfolios also decline.
Thus, only when the maturity effect is small compared to tiredasted movements of the fixed-maturity
swap rates, does the investment lead to economic gains.hbinest maturity of the swap contracts under
consideration is two years. An investment horizon of fouekseis short relative to the swap maturity.
Hence, strong predictability on the swap rates can potgntead to economic gains for investing in swap

contracts.

At each timet, we determine the allocation weight to a portfolio based amean-variance criterion:

ER
"= VarER) @D

where ER denotes the deviation of the portfolio from its model-ineplifair value. The ternVar(ER)

denotes its sample variance estimate and serves as a dealiogin our application.

We consider a four-week investment horizon for a simple bog laold strategy based on the above
mean-variance criterion. At the end of the investment loorjzve close our position and compute the profit
and loss based on the market value of each coupon bond. Samomlwobserve LIBOR and swap rates
at fixed maturities, not the whole spot-rate curve, we lilygaterpolate the swap rate curve and bootstrap
the spot-rate curve. We then compute the monthly excessatgpins based on the market value of the
investment portfolio at the end of the four-week horizon #relfinancing cost of the initial investment. We
compute the financing cost based on the floating leg rate hadiihe three-month LIBOR. Since the initial
investment is a very small number, we report the excessatayaiin, which we regard as excess returns over
the ten-year par bond. First, we use the portfolio compo$éda, five-, ten-, and 30-year swap rates as an

illustrative example. Then, we report the summary resuitstber four-instrument portfolios.

Based on the decision rule in equation (27), the allocatieigkt on this specific portfoliow) is be-
tween—0.5578 and 0r283 during our sample period. The portfolio weighsums to a very small number
—0.0388. If we buy $1,000 par notional value of the ten-year merdband form the corresponding hedged
portfolio, we will have a small net sales revenue of $38.8. (e this $1,000 par notional value on the

ten-year par bond as a base position and multiply this poskyw; at each date The excess capital gains
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from this investment can be regarded as excess returns o0 $ivestment in the ten-year par bond,

hedged to be factor-neutral using two-, five-, and 30-yeabpads.

The left panel of Figure 2 plots the time-series of the exceggns for each weekly investment. The
right panel plots the cumulative wealth. To make full usehafweekly sample, we make investments every

week. We hold each investment for a four-week horizon to agmthe excess returns.

[Figure 2 about here.]

The excess returns during each investment period are predotly positive. The right panel shows

a fast cumulation of wealth from this exercise. The averagess return over the four-week investment
horizon is 0.2494, and the standard deviation is 1.283i|treg in an annualized information ratio of 0.701,
defined as the ratio of the mean to the standard deviationipined by \/W An annualized information
ratio of 0.701 is comparable to that from popular fixed incargtrage strategies (Duarte, Longstaff, and
Yu (2005)). Thus, the predictability of the swap portfolmried according to the dynamic term structure
model is not only statistically strong and significant basedAR(1) regressions, but also economically
pronounced from the perspective of a simple mean-variamasior. Furthermore, the skewness estimate
for the excess return is strongly positive at 5.4293, addirsgcond layer of attraction in addition to the
high information ratio. Over our sample period, the maximoss for the investments is $2.8293, but the

maximum gain $17.3718.

To investigate how the profitability varies with differerftaices of swap rates in the portfolio formula-
tion, we use the seven swap rates to form 35 four-instrumertfotios. We then perform the same invest-
ment exercise on the 35 portfolios. The left panel of Figumads the cumulative gains from investing in
each of the swap portfolios. Investing in different poiitislaccumulates wealth at different rates, but the
sample-path variations are small for all portfolios and wekenprofits on all portfolios. The right panel
of Figure 3 plots the histogram of the annualized infornratiatios from investing in each of the 35 swap

portfolios. The predictability is economically signifidaior most four-instrument portfolios.

[Figure 3 about here.]
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Table 6 reports more detailed summary statistics of thessxpeturns on investing in each of the 35
swap portfolios. All investments generate positive meash median excess returns. For all investments,
the maximum losses are smaller than the maximum gains, &ndxitess return distribution shows large
kurtosis and positive skewness. The returns on non-oy@rngmsample periods show little autocorrelation.
The information ratio estimates range from 0.366 to 0.94i1h an average of 0.696. Duarte, Longstaff,
and Yu (2005) observe similar high information ratios andippae skewness from several popular fixed
income arbitrage strategies. In contrast, other highamédion-ratio investment strategies reported in the
literature often generate excess returns with negativedwed distributions. Examples include selling out-
of-the-money put options (Coval and Shumway (2001), GoatamIngersoll, Spiegel, and Welch (2002)),
shorting variance swap contracts (Carr and Wu (2004)), sergen arbitrage (Mitchell and Pulvino (2001)).

3.2. Risk and return characteristics for the swap portfolioinvestment

By design, the four-instrument swap portfolios are orthmajdo the three interest-rate factors identified
from the dynamic term structure model. Hence, the excessnefrom investing in the four-instrument

portfolios are not due to their exposures to the three iateme factors. However, if the residual risks are
correlated with other market factors, the positive averageess returns shown in Table 6 may represent

compensation for the investment’s exposure to these miateerrs.

To better understand the risk and return characteristitisec$wap portfolio investments, we regress the
excess returns from each investment on systematic factdreistock market, the corporate bond market,

and the interest-rate options market:

e Stock market. We follow Fama and French (1993) and Carhart (1997) andhesexcess returns on
the market portfolio R — R¢), the small-minus-big size portfolio (SMB), the high-m#low book-
to-market equity portfolio (HML), and the up-minus-down mentum portfolio (UMD). All these
excess returns series are available on Ken French’s onditzelitbrary. To match the excess returns
on the swap portfolios, we first download the daily excessrnstand then cumulate the excess return
over the past four weeks at each Wednesday to generate ayvasglds of overlapping four-week

returns.
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e Corporate bond market: We download the corporate bond yields from the Federal iRes8ta-
tistical Release at the Aaa and Baa rating groups. Then, watrtt a weekly series of four-week
changes over the same sample period on the credit spread=einethe two credit rating groups (CS).

We use this series to proxy the excess returns for the cisklierposure.

o Interest-rate options market. We obtain from Bloomberg at-the-money cap implied valgtdjuotes

during the same sample period. From these quotes, we cortijguexcess returns from investing in
a five-year straddle and holding it for four weeks. We use éisess return series as a proxy for
the compensation to interest-rate volatility risk expesulf our estimated dynamic term structure
models could price both the yield curve and the options viled, interest-rate volatility risk would
also be spanned by the three interest-rate factors. Nelest) there is evidence that the interest-rate
volatility risks observed from the interest-rate caps amdpions market are not spanned by the risk
factors identified from the yield curve (Collin-Dufresneda@oldstein (2002) and Heidari and Wu
(2003a)). Hence, we include this excess return series @siigate whether the excess returns to the

swap portfolios is due to their exposures to the unspannkadility risk (USV).

Formally, for excess returns on each swap portfolio investimwe run the following regression,

R = o+ B1(Rnt — Rtt) + B2SMB + BsHML; + BsUMD: + BsCS + BsU SV + & . (28)

We estimate the relation using generalized methods of mtanerith the weighting matrix constructed
according to Newey and West (1987) using eight lags. Thedejg estimatan represents the excess
return to the swap portfolio investment after accounting ife risk exposures to the stock market, the
corporate credit market, and the unspanned interest-katgility. We scale each excess return series
by \/52/4/std(R;) so that thea estimate is comparable to the annualized information resitmates
(IR=,/52/4mean(R;)/std(R;)) reported in Table 6 before we adjust for these risk expasurable 7 reports
the intercept estimates, thestatistics for all parameter estimates, and the R-squard® regressions for
each of the 35 portfolio series. The last column reports kiegvaess estimates for the risk-adjusted excess

return @).

After accounting for the risk exposures, the average exasssns (1) range from 0.03 to 0.93, with

an average of 0.66, which is not much smaller than the rawrimdition ratios without adjusting for these
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risk exposures. Thestatistics indicate that 23 out of the 35 intercepts artissizally significant at 95%
confidence level. The-statistics on the loading coefficients of the market factanow that the excess
returns may have some exposure on the SMB risk factor, withf ide 35 estimates significantly negative
at 95% confidence level. The loading estimates on other méak®rs are mostly insignificant, and the
R-squares of the regressions are low, ranging from 0.23%4@28. The last column shows that the risk-
adjusted excess returns remain positively skewed. Thagdkitive excess returns and positive skewness
from investing in the four-instrument swap portfolios canhe fully explained by the systematic factors in

the stock, corporate bond, interest-rate, and interéstetions markets.

3.3. Economic interpretations and theoretical implications

The literature regards three-factor dynamic term strgcinodels as sufficient in capturing the interest-rate
movements. This conclusion holds from the perspective tridiindividual interest-rate series since three
factors explain over 99% of the variation in the interest-naovements (Table 3). However, by forming
four-instrument portfolios that are relatively immunelte ariation of the three interest-rate factors, we ex-
pose the deficiency of a three-factor model. We show thatrilegng errors can be economically significant

for short-term investments, although they are small nadath the main variation of interest rates.

A large body of the literature assigns statistical and egdaanterpretations to the first three interest-
rate factors. Based on the statistical factor analysiseilntan and Scheinkman (1991) label the first three
interest-rate factors as the level, the slope, and the ttuevéactors. A series of recent papers (e.g., Ang and
Piazzesi (2003), Lu and Wu (2004), and Wu (2005)) link the fireee factors to macroeconomic variables
such as the long-run inflation rate, the output gap, and shtkhe short-term central bank policy. By
contrast, we can think of the higher-order dynamics captimethe pricing errors of a three-factor model
as mainly due to short-term supply and demand shocks to thafigpinterest-rate swap contracts. To
investigate whether the excess returns from our investraemitcise are correlated with contract-specific
liquidity shocks, we construct three measures that progyatbsolute magnitude of liquidity shocks in the

interest-rate swap market:

e L1: We define the first liquidity measure based on the absolutg slaap rate changes during the

past week. First, we measure the absolute daily changescbnsesap rate series. Second, we take
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the sample average of the absolute changes over the past(fr@ekthe current Wednesday to the
last Thursday) on each series. Then, we ddfihes the median value of the estimates on the seven
swap rate series. This measure is similar to Amihud (2002)jsidity measure for the stock market,
except that Amihud normalizes the absolute price changéisebtyading volume. We do not perform
the normalization as we do not have the trading volume deddade. The measure captures the
average median variation of the swap rates, which can beedawg either aggregate liquidity or

economic shocks to the swap market.

L2: We define the second liquidity measW2 as the difference between the largest positive daily
move and the largest negative daily move among the sevenrsiteageries. For example, if the largest
upward movement is 12 basis points on the five-year swap matthe largest downward movement is
seven basis points on the 30-year swap rate, t2en 12— (—7) = 19 basis points. It is a measure of
maximum nonparallel “twist” of the swap rate curve. If weaedjparallel interest-rate shifts as due to
aggregate economic shocks, the “twists” of the swap rateectein be caused by liquidity shocks on
a specific swap contract. Hende, is a better measure thad for contract-specific liquidity shocks.
Nevertheless, it is important to realize that slope andature changes on the yield curve that are
due to systematic economic shocks (such as real output ghipeghpolicy shocks) can also induce a

large estimate fok.2.

L3: To obtain a cleaner measure of contract-specific liquidiigck that does not respond to sys-
tematic slope and curvature changes, we define the thiralligumeasure.3 based on the pricing
errors, defined as the difference between the market quotetha values computed from the esti-
matedAp(3) model. Analogous td2, we defineL3 as the difference between the largest positive
pricing error and the largest negative pricing error. Urtles measure, an interest-rate movement is

not classified as a liquidity shock as long as the three dynéawtors can account for it.

The three panels in Figure 4 plot the cross-correlationmedéis at different leads and lags between

the average excess returns from investing in the 35 swafofiostand the three liquidity measures, with

each panel representing the correlation with one liquidigasure. The two dash-dotted lines in each panel

denote the 95% confidence bands. The first liquidity mealsirevhich is based on the average median

absolute daily changes, does not show a significant caoelafith the average excess returns. In contrast,

both L2 and L3 show strongly positive correlations with the excess retuahthe four-week lag point.
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Since the excess returns are from investments put on fouksaago, the positive correlations indicate that
investments made on days with large liquidity shocks capltlryL2 andL3 are more likely to generate
large and positive ex post returns. Therefore, althougleXoess returns from our investment exercise are
not highly correlated with the average absolute daily cleang swap rated.(), nor are highly correlated
with the cap implied volatilities and other stock and cogierbond market systematic factors (Table 7),
they show strongly positive correlation wikl2 andL3, which measure the non-systematic part of the swap

rate movements that we deem as caused by liquidity shocks.

[Figure 4 about here.]

Our investment analysis shows that bearing the risk frontigiddity shocks can lead to a substantially
positive average risk premium. We attribute this high preamio several facets of market frictions. First, the
liquidity shock induces less than 1% of the variation in eiatérest-rate series. Therefore, only institutions
with large amounts of capital and small costs of funds caroéxite high premium of the liquidity risk.
Second, to hedge against the first three factors and to expedeuidity risk, an investor needs to form
four-instrument portfolios that involve both long and difmositions. Many large institutions such as mutual
funds cannot initiate short positions. Thus, even if thegttiee capital requirement, institutional constraints
on their investment styles prevent them from exploitingpghafits. Third, the four-instrument portfolios are
formed according to a three-factor dynamic term structuodeh The specification and estimation of three-
factor dynamic term structure models are only recent eratsan the academia. Hence, implementing such

a strategy requires significant investment in intellectizgdital.

In a recent working paper, Duarte, Longstaff, and Yu (200@&)yze the risk and return characteristics of
several popular fixed income arbitrage strategies. Theytfiatthe annualized information ratios for these
strategies range from 0.3 to 0.9, similar to that from ourp@mnvestment exercise. Furthermore, they find
that after controlling for market factors, the mean excessrns on simple strategies become insignificant,

but the mean excess returns on strategies that require mehectual capital remain significant.

Our analysis also has important implications for futureiiest-rate modeling. The analysis reveals the
key reasons behind the poor forecasting performance ofitnaal dynamic term structure models. By

capturing only the most persistent movement in interessrat three-factor dynamic term structure model

26



misses the most predictable component in interest ratesrefdre, to improve the model performance in
forecasting, it is important to account for the higher-ordgnamics, or the liquidity risk, in the interest-rate

movements.

In a survey analysis, Dai and Singleton (2003) identify twiportant features of the interest rate data
that the existing dynamic term structure models fail to gemt First, although dynamic term structure
models can explain over 99% of the variation in interestsiateey perform very poorly in explaining the
variation in interest-rate option implied volatilities ¢{lin-Dufresne and Goldstein (2002) and Heidari and
Wu (2003a)). Second, non-overlapping forward interestsrahow very low, and sometimes negative, cross-
correlations, but almost all existing estimated dynamientstructure models generate strongly positive
cross-correlations. Accounting for the small pricing esrio the interest rates from a dynamic term structure
model can go a long way in explaining both puzzles. Althougtsistent factors dominate the movements of
the interest-rate series, the higher-order dynamics ledéathe pricing errors can have strongly significant
impact on the variation of interest-rate options (Heidad &Vu (2003c)). Furthermore, it is well known in
the dynamic control literature that a small “wavy noise” ceamatically alter the correlation pattern of two
persistent series. Therefore, for future research, ssftdgsmodeling and identifying these higher-order
interest-rate dynamics could prove fruitful in improvirdgetmodel's performance in forecasting, derivative

pricing, and in capturing the co-variation of differentdregst-rate series.

4. Robustness Analysis

In this section, we analyze the robustness of the inteegstportfolio predictability by comparing the port-
folio behaviors across different subsamples, betweeratimpde and out-of-sample, and across different

dynamic term structure model specifications.

4.1. Subsample analysis

To study the time-variation of the swap portfolio predidliy we divide the whole sample period into two
subsamples, with the first subsample spanning the first fearsyfrom May 11, 1994 to May 6, 1998, and

the second subsample spanning the remaining sample fronlB|a&y©98 to December 10, 2003.
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First, we investigate whether the statistical predictgbdf the interest-rate portfolios varies across the
two subsample periods. For this purpose, we run the AR(IEssipn on the four-instrument portfolios
for the two subsample periods separately. The left paneigfrE 5 plots the histogram of the explained
percentage variation estimates from the regressions,thetdark blue bar denoting the first subsample and
the light yellow bar denoting the second subsample. We gbgbiat the explained variations for the two
subsample periods stay in the same range. The minimum anuinenaixexplained variations during the
first subsample are 7.3% and 28.1%, respectively. The mmimud maximum for the second subsample
are 8.5% and 56.9%, respectively. Thus, the predictahilitthe interest-rate portfolios is strong in both
subsamples as well as in the whole sample. The differenceekbatthe two subsamples only lies in the
distribution of the explained variation estimates. Dueht® distributional differences, the sample mean of
the explained variation estimates during the first subsangpP8.1%, higher than the average during the

second subsample at 19%.

[Figure 5 about here.]

Second, we study how the economic significance of the paddllity varies across the two subsample
periods. For each portfolio investment exercise, we comphg sample mean and standard deviation of
the excess returns separately for the two subsample pefib@ssample average of the mean excess return
is 0.4335 for the first subsample, but lower at 0.1427 for #wmed subsample. The sample averages of
the standard deviation estimates for the first and seconshsyles are 1.5988 and 1.0755, respectively,

showing that the risk also declines in the second subsample.

The right panel of Figure 5 plots the histogram of the anaedlinformation ratios for the two subsam-
ple periods, again with the dark blue bar denoting the firssample and the light yellow bar denoting the
second subsample. It is evident that the informationab iathigher during the first subsample than during
the second subsample. During the first subsample, the mmimiormation ratio is 0.6957, the maximum
is 1.3094, with a mean of 1.1069. During the second subsarti@deminimum information ratio is 0.1357,
the maximum is 0.9906, with a mean of 0.4881, less than hal@fmean information ratio in the first
subsample. Therefore, although the statistical signifieasf predictability remains high over the whole

sample period, the economic significance has declined wer t
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We have argued that the positive average premiums to theirfsuument portfolio investments are
compensation for bearing short-term liquidity risks andifwesting in intellectual capital. Thus, we expect
the premium to be higher when the interest-rate swap masketore susceptible to supply and demand
shocks. The interest-rate swap market started activengddithe early 1990s. The market has expanded
tremendously since then. According to surveys at the latevnal Swaps and Derivatives Association, Inc
(ISDA) and the Bank for International Settlements (BIS§ tiotional amount of outstanding interest-rate
swaps at the end of 1994 was 8.82 trillion US dollars. Theomati amount increased to 111.21 trillion
by the end of 2003. We expect that such tremendous growth hde the interest-rate swap market more
liquid and deep and less likely to be significantly moved balsupply and demand shocks. Furthermore,
given the rapid progress in theory and estimation of dynderim structure models during the past decade,
we also expect the risk premiums to decline over time as theahicapital investment needed to implement

dynamic term structure models declines.

4.2. Out-of-sample analysis

All the above results are based on in-sample analysis. Thikehestimation, the portfolio construction, the
forecasting regression, and the investment decision bhbaséd on the common sample period from May
11, 1994 to December 10, 2003. To investigate how robustethdts are out of sample, we re-estimate the
model using the first four years of data from May 11, 1994 to I[da$998. Then we perform out-of-sample

analysis on the remaining sample from May 13, 1998 to Decetie2003.

First, the robustness of the predictability depends ontdigliy of the portfolio weights, which in turn
depends on the stability of the (risk-neutral) parametémases of the dynamic term structure models. In
Table 8, we report the parameter estimates ofAkE) model using the two subsamples. Compared to
the full-sample estimates in Table 2, thetatistics fork become smaller. Other than that, the parameter
estimates are relatively stable over the two subsamplesalsodnot substantially different from the full-

sample estimates in Table 2.

Second, we use the parameter estimates from the first sulestorgrice the LIBOR and swap rates in
the second subsample. Table 9 reports the summary stbétiee out-of-sample pricing errors. Comparing

to the in-sample pricing errors in Table 3, we observe a sligitline in the average explained percentage
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variance from 99.71% in sample to 99.53% out of sample. Tleeage autocorrelation is also higher at
0.77 (as compared to 0.69 for the full sample). Neverthe®3§ corresponds to a half life of less than four

weeks, still much shorter than the half life of the raw ingtnate series.

Third, we compute the portfolio weights based on the modelmater estimates from the first subsam-
ple. We then analyze the out-of-sample predictability &f thur-instrument portfolios during the second
subsample. The left panel of Figure 6 plots the histogranh@R-squares from the AR(1) regression over
four-week horizons on the out-of-sample four-instrumenttfplios. The R-squares range from 6.79% to
55.58%, similar to those obtained from in-sample regressio Figure 5. Therefore, the strong predictabil-

ity remains out of sample.

[Figure 6 about here.]

Finally, we perform the investment exercise for this ousample period, using the same procedure as
described in the previous subsection. To remain truly osgaaiple, we computéar(ER) based on the first
subsample in determining the allocation weightaccording to equation (27). The right panel of Figure 6
plots the histogram of the annualized information ratioghefinvestment strategies. Comparing to the in-
sample case during the same sample period (yellow bar inghepanel of Figure 5), the histogram for
the out-of-sample information ratios shows slightly largariation across different portfolios. The sample
mean of the information ratios is 0.4723, close to the infganmean of 0.4881 over the same sample
period. Overall, the out-of-sample analysis shows thatestimation strategy is robust and the estimated

factor dynamics are stable over time.

4.3. Robustness with respect to model specifications

So far, the analysis has been based solely orA#i8) model. We also estimai&y(3) models withm =

1,2, 3, respectively. Table 10 summarizes the estimation esultthese three models. To save space, we
only report the parameter estimates drgtatistics ork andk*, which control the factor drift dynamics
under the two measures, respectively. For the propertidsegiricing errors, we report the sample average
of the weekly autocorrelation (Auto) of the pricing errorgldhe explained percentage variation (VR). The

last column reports the maximized log likelihood valug.(
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Under all three models, theandk™ estimates indicate high persistence for the interestfaaters. The
minimum eigenvalue is close to zero. The largest eigenvedtienate is 1.269 fax under theAs(3) model.
Even this largest estimate corresponds to a weekly autdation of 0.976 and half life of 29 weeks. In
contrast, the average weekly autocorrelations for thergrierrors range from 0.69 under thg(3) model
to 0.77 under thé\;(3) model. In all cases, the implied half life for the pricingas averages below four

weeks, considerably shorter than the half lives of the rder@st-rate series or the interest-rate factors.

Comparing the average explained percentage variationthandaximized log likelihood values of the
four three-factor affine models, we find that the performatifferences between the four models are very
small. All four models explain over 99% of the variation itimterest rates. The log likelihood values from
different models only differ slightly. The likelihood vaduestimate is the highest at 12,966 for thg3)
model and the lowest at 1@34 for theA;(3) model. Bikbov and Chernov (2004) find that different three-
factor affine specifications all perform well in capturing tterm structure behavior of eurodollar futures.

Our estimation and investment exercise suggest the santigefet.S. dollar LIBOR and swap market.

Given the similar fitting performance from four models, weest to obtain similar predictability for
interest-rate portfolios formed based on these four modelsave space, we only report the histograms of
the R-squares from the AR(1) forecasting regressions onif@gtrument portfolios formed using different
models. Figure 7 reports the four histograms from the foudet®estimated using the full sample period.
We observe some mild variations in predictability from paids formed using the four models. In particu-
lar, we observe a larger proportion of low R-squares fromA4{8) model than from the other three models.
Recall that the?; (3) model also has the lowest log likelihood value. Thus, whegreadhic term structure
model fits the dynamics and the term structure of interestsrhgtter, the model can also be used to form

interest-rate portfolios that show higher predictahility

[Figure 7 about here.]
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5. Conclusion

Due to the near unit-root behavior of interest rates, it idl-keown that the movements of individual
interest-rate series are inherently difficult to forecasten under a multivariate dynamic term structure
framework. In this paper, we explore an innovative way ofl@pg multivariate dynamic term structure
models to forecast interest-rate movements. Instead e€ttiirforecasting interest-rate movements based
on the estimated factor dynamics, we use the dynamic tewntgte model as a decomposition tool. We
decompose each interest-rate series into two componeptysastent component captured by the dynamic
factors, and a strongly mean-reverting component givernbypticing residuals of the model. Given this
decomposition, we form interest-rate portfolios that arst-forder neutral to the persistent factor dynamics,
but are fully exposed to the strongly mean-reverting movemeWe show that the predictability of these

interest-rate portfolios is significant both statistigadhd economically, both in sample and out of sample.

Our new application of the dynamic term structure modeldgtasrtant implications for future interest-
rate modeling. The statistical and economic significancihefinterest-rate portfolios reveal an important
reason behind the limited success of finite-dimensionabdya term structure models in pricing interest-
rate options. The finite-dimensional dynamic term strieetmodels capture the persistent factors well, but
often discard the transient interest-rate movements. N@tonly can these transient components be ex-
ploited in investment decisions, as we have shown in thigpdgoit they can also have potentially important
impacts on the valuation of interest-rate options. An intguatr line for future research is to theoretically
model and econometrically identify the dynamics of theaadient components and to investigate the im-

pact of these dynamics on different aspects of interess eatd interest-rate options behavior.
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Table 1

Summary statistics of interest rates

Entries are summary statistics of interest rates. Mean, Stdw, Kurt, and Autocorrelation denote the
sample estimates of the mean, standard deviation, skewmessss kurtosis, and the autocorrelation of
order one, five, ten, and 20, respectively. In the maturityrom, m denotes months and y denotes years.
The data are weekly (Wednesday) closing midquotes dowatbérdm Bloomberg, from May 11, 1994 to
December 10, 2003, 501 observations for each series.

Maturity Mean Std Skew Kurt Autocorrelation
1 5 10 20

1m 4.617 1.772 -0.985 -0.594 0.994 0.969 0.935 0.848
2m 4.650 1.789 -0.987 -0.603 0.995 0.972 0.937 0.851
3m 4.684 1.809 -0.981 -0.615 0.995 0.973 0.938 0.851
6m 4.761 1.838 -0.962 -0.615 0.995 0.973 0.937 0.849
12m 4.957 1.853 -0.910 -0.557 0.994 0.970 0.930 0.835
2y 5.271 1.676 -0.882 -0.330 0.993 0.963 0.917 0.810
3y 5.524 1.510 -0.852 -0.184 0.992 0.958 0.907 0.793
5y 5.856 1.283 -0.732 -0.143 0.990 0.950 0.891 0.768
Ty 6.069 1.145 -0.594 -0.207 0.988 0.943 0.881 0.751
10y 6.276 1.028 -0.427 -0.324 0.987 0.937 0.872 0.736
15y 6.491 0.916 -0.221 -0.429 0.985 0.931 0.863 0.723
30y 6.618 0.852 0.024 -0.405 0.986 0.933 0.865 0.726
Average 5.481 1.456 -0.709 -0.417 0.991 0.956 0.906 0.795
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Table 2

Parameter estimates of the?\y(3) model
Entries report the parameter estimates (and the absolugeitnde of thet-values in parentheses) of tig(3) model based on the eurodollar
LIBOR and swap rates. The data consist of weekly obsenatonLIBOR at maturities of one, two, three, six, and 12 mouaths swap rates
at maturities of two, three, five, seven, ten, 15, and 30 ydeos each series, the data are closing Wednesday midquotasMay 11, 1994 to
December 10, 2003, 501 observations for each series. Thelnsogstimated using a quasi-maximum likelihood methodtfpiwith unscented
Kalman filter. The last column reports the maximized loglikeod value ().

Parameters K K* by M ar L
[ 0.002 0 0 ] [ 0.014 0 0 0.000 [ —0.117 ]
(0.02) —_ — (11.6) _ — (0.00) (4.30)
[ Estimates} —0.186 Q480 0 0.068 Q707 0 0.000 —0.376 [ 0.044 } 12 966
(t-values) (042 (119 —_ (1.92) (20.0) —_ (0.00) (0.75) (2.94) '
—-0.749 -2.628 0586 —-2.418 —-3.544 1110 0.005 —4.959
(1.80) (3.40) (2.5Y) | | (107) (120) (200 (13.3) | (1.96) |




Table 3

Summary statistics of pricing errors on the Ay(3) model

Entries report the summary statistics of the pricing ercorshe LIBOR and swap rates under the estimated
Ao(3) model. We define pricing errors as the basis-point diffezebetween the observed LIBOR/swap
rates and the model-implied values. The data consist of edlservations on LIBOR at maturities of one,
two, three, six, and 12 months and swap rates at maturitiesmfthree, five, seven, ten, 15, and 30 years.
For each series, the data are closing Wednesday midquotasMay 11, 1994 to December 10, 2003 (501
observations). We estimate the model using a quasi-maxifikelihood method jointly with unscented
Kalman filter. The columns titled Mean, Rmse, Skew, Kurt, Maxd Auto denote the mean, the root mean
squared error, the skewness, the excess kurtosis, the maxabsolute error, and the first-order weekly
autocorrelation of the measurement errors at each matrggpectively. The last column (VR) reports the
percentage variance explained for each series by the theem$, defined as one minus the ratio of pricing
error variance to the variance original interest-rateesgiin percentage points. The last row reports average
statistics.

Maturity Mean Rmse Skew Kurt Max Auto VR
1m 1.823 10.679 -1.018 7.254 60.495 0.802 99.647
2m 1.065 4.983 -3.407 25.636 37.142 0.703 99.926
3m 0.349 3.717 4.598 34.115 31.963 0.730 99.958
6m -4.389 9.326 -0.237 1.472 33.532 0.881 99.799

12m -9.791 14.145 -1.063 2.615 55.118 0.789 99.696
2y -0.895 4.251 -1.062 2.698 23.028 0.872 99.938

3y 0.428 1.061 0.410 1.058 3.999 0.394 99.996

5y 0.197 1.811 0.330 2.953 10.116 0.558 99.980

Ty 0.001 0.013 -1.202 11.880 0.090 0.118 99.999
10y 0.068 3.113 0.115 0.695 12.333 0.704 99.908
15y 2.162 7.387 0.335 -0.139 22.292 0.853 99.404
30y -0.529 11.070 -0.012 -0.315 34.579 0.901 98.314
Average -0.793 5.963 -0.184 7.493 27.057 0.692 99.714
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Table 4

Predictability of individual LIBOR and swap rate series

Entries report the sample mean (Mean), root mean squared(Brmse), skewness (Skew), excess kurtosis
(Kurt), maximum absolute error (Max), weekly autocornelat(Auto), and explained percentage variation
(VR) of the four-week ahead forecasting errors from the oamavalk hypothesis (first panel), AR(1) regres-
sion (second panel), and tiAg(3) dynamic term structure model. The weekly autocorrelattocomputed

on the overlapping sample of the four-week ahead foreaastirors.

Maturity Mean Rmse Skew Kurt Max Auto VR

Forecasting Error Assuming Random-Walk

1m -1.954 19.882 -0.309 7.926 107.875 0.748 0.000
2m -2.032 16.676 -0.813 8.184 93.000 0.771 -0.000
3m -2.117 16.329 -0.788 7.480 92.875 0.798 0.000
6m -2.297 17.190 -0.785 5.335 99.875 0.783 0.000
12m -2.460 20.969 -0.195 1.863 103.750 0.738 -0.000
2y -2.344 24.133 0.187 0.458 93.200 0.714 0.000
3y -2.202 24.724 0.249 0.339 92.300 0.707 0.000
5y -1.999 24.564 0.368 0.432 93.600 0.687 0.000
7y -1.854 23.910 0.403 0.496 91.000 0.681 0.000
10y -1.710 23.250 0.426 0.500 88.300 0.677 0.000
15y -1.591 21.831 0.383 0.350 80.300 0.664 -0.000
30y -1.514 19.763 0.342 0.272 68.100 0.668 0.000
Forecasting Error From AR(1) Regression
1m -0.000 19.763 -0.352 7.940 109.417 0.746 0.230
2m -0.000 16.501 -0.862 8.213 90.148 0.768 0.613
3m -0.000 16.135 -0.832 7.493 89.864 0.795 0.697
6m 0.000 16.991 -0.816 5.263 96.739 0.780 0.529
12m 0.000 20.813 -0.203 1.820 100.832 0.737 0.103
2y -0.000 24.017 0.182 0.452 91.037 0.715 0.015
3y -0.000 24.610 0.223 0.307 93.195 0.708 0.128
5y 0.000 24.429 0.305 0.344 93.291 0.690 0.438
7y -0.000 23.753 0.326 0.372 89.970 0.684 0.713
10y 0.000 23.063 0.342 0.351 86.461 0.682 1.068
15y -0.000 21.617 0.314 0.192 78.042 0.669 1.424
30y 0.000 19.554 0.288 0.122 66.116 0.673 1.528
Forecasting Error fronAg(3) Factor Dynamics
1m 3.863 15.440 -0.990 4.802 73.725 0.693 42.917
2m 3.129 14.580 -1.417 6.793 82.468 0.747 25.987
3m 2.295 16.290 -0.806 5.943 89.991 0.813 0.780
6m -2.652 19.730 -0.862 3.183 108.317 0.836 -31.711
12m -8.082 24.962 -0.577 1.814 124.598 0.795 -28.623
2y 0.255 24,947 -0.007 0.343 99.638 0.734 -7.872
3y 1.159 24.760 0.234 0.335 96.000 0.703 -0.878
5y 0.328 24.386 0.352 0.509 99.756 0.684 0.809
7y -0.199 23.889 0.378 0.460 92.050 0.679 -0.415
10y -0.397 23.635 0.415 0.425 82.167 0.681 -3.866
15y 1.494 23.479 0.450 0.426 84.567 0.697 -15.811
30y -1.352 23.073 0.317 0.138 74.146 0.726 -36.639
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Table 5

Predictability of interest-rate portfolios

Entries report the sample properties of the estimdtsgtistics in parentheses, and the R-squares on the
following AR(1) regression:

AR 1 =a+DbR 46,1,

whereAR; . ; denotes the changes in the portfolio value over a four-weeizén. We estimate the relation
using the generalized methods of moments on overlappirgy d&e compute-statistics of the estimates
following Newey and West (1987) with eight lags. Regressiomthe first panel are on the 495 four-
instrument portfolios that are first-order neutral to thee¢hinterest-rate factors. Regressions in the second
panel are on the 66 two-instrument portfolios that are brder neutral to the first interest-rate factor. The
last panel reports results on the 220 three-instrumentgtiog that are first-order neutral to the first two
interest-rate factors.

Percentile Intercept Slope R-square, %

495 four-instrument interest rate portfolios

Min -0.441 (-15.071) -1.115 (-25.010) 7.844
10 -0.101 (-11.114) -0.717 (-16.664) 9.117
25 -0.070 (-8.662) -0.493 (-12.716) 11.115
50 -0.044 (-6.629) -0.311 (-9.614) 15.680
75 -0.019 (-4.052) -0.224 (-7.887) 24.525
90 0.010 (2.002) -0.179 (-7.061) 35.846

Max 0.073 (12.669) -0.155 (-6.504) 55.724

66 two-instrument interest rate portfolios

Min 0.002 (0.205) -0.111 (-5.361) 0.000
10 0.007 (1.402) -0.013 (-1.352) 0.011
25 0.014 (1.626) 0.000 (0.029) 0.090
50 0.046 (1.924) 0.005 (0.888) 0.198
75 0.255 (2.503) 0.007 (1.597) 0.528
90 0.388 (2.706) 0.007 (1.649) 0.611

Max 0.646 (5.221) 0.007 (1.763) 5.467
220 three-instrument interest rate portfolios

Min -5.853 (-2.342) -0.548 (-13.703) 0.000
10 -1.706 (-2.232) -0.105 (-5.164) 0.038
25 -0.540 (-1.976) -0.008 (-0.887) 0.128
50 -0.111 (-1.437) 0.004 (0.796) 0.242
75 0.006 (0.321) 0.006 (1.257) 0.445
90 0.061 (4.880) 0.007 (1.446) 5.006

Max 0.174 (13.332) 0.007 (1.570) 27.420
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Table 6

Excess returns to swap portfolio investments

Entries report the summary statistics of the excess retmnsvesting in each of the 35 four-instrument
swap portfolios: the sample mean, median, minimum (Min)ximam (Max), skewness (Skew), excess
kurtosis (Kurt), average first-order autocorrelations oarfweek apart non-overlapping data (Auto), and
the annualized information ratio (IR). The last row repdinis average statistics over the 35 portfolios.

Mean Median Min Max Skew Kurt Auto IR

0.281 0.035 -1.623 12.280 6.762 59.943 -0.034 0.879
0.228 0.062 -4.121 8.861 2.600 18.124 0.008 0.756
0.114 0.026 -5.306 7.357 -0.037 11.375 -0.056 0.405
0.124 0.032 -5.534 7.544 0.402 7.312 0.022 0.366
0.329 0.097 -4.140 14.161 4.068 33.731 0.065 0.862
0.147 0.022 -5.236 10.496 1.154 16.694 -0.045 0.453
0.155 0.033 -4.294 8.773 0.935 7.059 0.023 0.447
0.270 0.028 -3.468 20.474 6.322 74.032 -0.040 0.652
0.203 0.050 -3.455 12.644 2.759 23.734 0.016 0.605
0.195 0.085 -4.358 6.873 1.116 6.997 -0.021 0.659
0.442 0.083 -1.991 34.631 11.269 171.441 0.067 0.786
0.247 0.049 -3.651 23.929 8.389 113.679 -0.035 0.559
0.228 0.026 -3.516 18.959 5.393 63.419 0.006 0.577
0.343 0.027 -2.883 27.214 8.885 120.344 -0.011 0.707
0.249 0.065 -2.829 17.372 5.429 65.002 0.020 0.701
0.199 0.069 -4.368 7.014 1.192 7.522 -0.032 0.667
0.426 0.048 -2.721 23.304 7.953 83.726 0.027 0.811
0.299 0.074 -2.194 13.818 4.674 41.222 0.042 0.873
0.199 0.041 -4.274 7.330 1.486 9.719 -0.029 0.672
0.228 0.064 -3.661 9.534 2.403 18.121 0.006 0.752
0.456 0.084 -1.643 37.827 12.288 198.482 0.067 0.774
0.277 0.054 -3.239 27.120 9.915 140.714 -0.035 0.580
0.250 0.041 -3.441 21.536 6.842 88.062 0.001 0.603
0.360 0.032 -2.952 28.661 9.347 129.479 -0.003 0.718
0.260 0.072 -2.725 18.395 6.063 76.337 0.021 0.719
0.199 0.065 -4.353 7.020 1.206 7.633 -0.034 0.669
0.436 0.055 -2.692 23.316 8.021 84.407 0.032 0.819
0.306 0.076 -2.212 13.790 4,790 42.234 0.046 0.888
0.199 0.040 -4.256 7.364 1.503 9.839 -0.029 0.673
0.228 0.063 -3.657 9.538 2.406 18.149 0.006 0.752
0.463 0.067 -2.708 25.599 8.090 84.666 0.050 0.847
0.326 0.074 -2.339 13.360 4.890 41.444 0.064 0.941
0.200 0.042 -4.187 7.510 1.590 10.462 -0.028 0.677
0.229 0.062 -3.638 9.558 2.421 18.280 0.006 0.755
0.231 0.066 -3.595 9.627 2.456 18.591 0.008 0.761
0.267 0.055 -3.464 15.794 4,714 54,914 0.005 0.696

42



Table 7

Explaining excess returns to swap portfolio using market fators

Entries report the intercept estimates, thstatistics on the intercept and slope estimates, and Rrssg|wf
the following regression,

Rt = 0+ B1(Rmt — Rit) + B2SMB + BsHML; + BaUMD; + BsCS + BsU SV + & .

Thet-statistics are computed according to Newey and West (188f)eight lags. The intercept estimates
are multiplied by,/52/4/std(R;) so that they are comparable to the annualized informatito eatimates
(IR=y/52/4mean(R;)/std(R;)) in Table 6. The last column reports the skewness of the segne residuals
(e). The last row reports the average statistics over the 3&qgtios.

Estimates t-statistics RZ2  Skew
a a Rmn— Rg SMB HML UMD CS usv % (&)
0.80 3.02 1.07 -1.40 -1.76 1.10 -0.04 0.28 1.96 6.61
0.54 1.35 0.48 -0.06 -0.79 -0.78 0.24 0.93 1.50 2.50
0.03 0.06 0.25 0.07 -0.37 -0.33 0.37 1.11 1.88 0.20
0.11 0.22 0.40 -0.42 -0.39 -0.75 0.66 0.85 2.02 0.46
0.71 1.85 0.74 0.62 0.24 -1.69 0.17 0.81 1.03 4.15
0.15 0.29 0.37 -0.05 0.01 -0.34 0.08 0.96 1.21 1.36
0.27 0.63 0.53 -0.88 -0.42 -0.80 0.78 0.68 2.02 0.97
0.45 1.32 0.35 -0.49 -0.75 0.62 -0.47 0.96 0.93 6.37
0.49 1.55 0.46 -1.57 -0.93 -0.34 0.49 0.56 1.76 2.78
0.83 2.35 -0.77 -3.01 -1.82 -0.88 1.29 -0.32 3.49 1.04
0.76 2.81 1.23 -0.04 0.45 -0.11 -0.22 -0.00 0.23 11.26
0.43 1.19 0.75 -0.54 -0.08 0.14 -0.38 0.58 0.50 8.38
0.52 1.65 0.81 -1.56 -0.76 -0.43 0.70 0.32 1.42 5.43
0.57 1.98 0.44 -0.71 -1.05 0.80 -0.82 0.83 0.79 8.89
0.65 2.48 0.49 -2.04 -1.31 -0.18 0.19 0.37 1.59 5.48
0.86 2.21 -0.95 -2.67 -1.88 -0.74 1.10 -0.40 3.29 1.09
0.70 2.70 0.43 -0.68 -1.22 0.93 -1.02 0.82 0.75 7.96
0.84 3.23 0.39 -2.04 -1.49 0.02 -0.41 0.34 1.42 4,71
0.87 2.12 -1.16 -2.45 -1.82 -0.64 0.90 -0.42 2.92 1.40
0.93 2.23 -1.26 -1.99 -1.58 -0.31 0.82 -0.37 2.35 2.35
0.77 2.93 1.28 -0.23 0.33 0.28 -0.32 -0.29 0.24 12.26
0.49 1.46 0.85 -0.69 -0.19 0.32 -0.50 0.44 0.48 9.86
0.57 1.95 0.89 -1.70 -0.91 -0.26 0.61 0.17 1.30 6.87
0.59 2.13 0.46 -0.76 -1.12 0.84 -0.89 0.79 0.77 9.34
0.69 2.68 0.50 -2.13 -1.42 -0.13 0.10 0.31 1.55 6.11
0.87 2.18 -0.99 -2.62 -1.89 -0.71 1.06 -0.41 3.24 1.10
0.71 2.77 0.44 -0.68 -1.23 0.93 -1.04 0.81 0.74 8.03
0.86 3.30 0.39 -2.04 -1.52 0.04 -0.47 0.32 1.40 4.83
0.87 2.11 -1.17 -2.43 -1.82 -0.63 0.89 -0.42 2.90 1.42
0.93 2.23 -1.26 -1.99 -1.58 -0.31 0.82 -0.37 2.34 2.35
0.75 2.96 0.45 -0.62 -1.21 0.94 -1.07 0.77 0.70 8.11
0.92 3.47 0.37 -1.96 -1.50 0.11 -0.71 0.31 1.28 4,94
0.88 2.11 -1.21 -2.39 -1.79 -0.61 0.84 -0.42 2.81 1.51
0.93 2.24 -1.26 -1.99 -1.58 -0.30 0.82 -0.37 2.33 2.37
0.93 2.25 -1.26 -1.97 -1.57 -0.28 0.82 -0.36 2.30 2.40
0.66 2.06 0.10 -1.32 -1.05 -0.13 0.15 0.29 1.64 4,71
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Table 8

Subsample parameter estimates of théy(3) model

Entries report the parameter estimates (and the absolugeitnde of thet-values in parentheses) of tig(3) model based on the eurodollar
LIBOR and swap rates for two subsamples. The data consiseekly observations on LIBOR at maturities of one, two, thiEr, and 12
months and swap rates at maturities of two, three, five, séganl5, and 30 years. Data are closing Wednesday midquidtedirst subsample
is from May 11, 1994 to May 6, 1998. The second subsample m ftay 13, 1998 to December 10, 2003. The model is estimated) w@si
qguasi-maximum likelihood method jointly with unscentediidan filter.

Sample

Period K K* br M a
[ 0.002 0 0 [ 0.003 0 0 ] 0.000 1 [ —0.128
001 ——  —— (200) —— @ —— (0.00) (7.34)

1994 0.064 Q451 0 —-0.051 Q512 0 0.000 —-0.673 0.044
[ 1999 } (013) (0.61) —— (1.83) (200) —— (0.00) (0.84) { (0.65) ]
—-0.866 —2.610 Q559 —-2.260 —-4.171 1650 0.005 —5.308
| (132 (310 (0.76) | (824) (118) (200) | (156) | | (0.96) |
[ 0.002 0 0 [ 0.060 0 0 ] 0.000 | [ —0.149 ]

001 ——  —— (198) ——  —— (0.00) (0.88)

1999- —0.263 Q415 0 —0.076 Q935 0 0.000 —0.745 0.048
[ 2003 } (0.17) (054) —— (0.40) (4.42) —— (0.00) (0.46) [ (1.82) }
—-0.760 —-2.272 Q740 —-2.480 —-3.693 1049 0.006 —4.450
| (045 (191) (2.06) | (531) (729) (3.96) | (7.72) | | (109) |




Table 9

Summary statistics of out-of-sample pricing errors on the UBOR and swap rates

Entries report the summary statistics of the out-of-sarppieng errors in basis points on the LIBOR and
swap rates. We define pricing errors as the basis-pointrelifte between the observed LIBOR/swap rates
and the model-implied values. The sample used for modehattin consists of LIBOR rates at maturities
of one, two, three, six, and 12 months and swap rates at rmesudf two, three, five, seven, ten, 15, and
30 years, from May 11, 1994 to May 6 24, 1998. The pricing artorderlying this table are on LIBOR
and swap rates from May 13, 1998 to December 10, 2003. Thencalditied Mean, MAE, Std, Max, and
Auto denote the mean, the mean absolute error, the standaiatidn, the maximum in absolute magnitude,
and the first order autocorrelation of the pricing errorsaathematurity, respectively. The last column (VR)
reports the percentage variance explained for each serigmlihree factors. The last row reports average
statistics.

Maturity Mean MAE Std Max Auto VR
1m 230 770 1140 6493 079 9969
2m 104 238 374 2095 072 9997
3m 013 295 610 4247 081 9991
6m —5.55 961 1Q77 3521 091 9973

12m 1171 1312 1201 5333 081 9966
2y —-1.62 237 309 1658 089 9997

3y 107 158 189 978 085 9999

5y 0.83 195 259 994 080 9996

7y 0.00 001 001 009 006 9999
10y —-1.15 316 394 1146 081 9985
15y —0.38 7.39 909 2409 091 9886
30y —-9.13 1305 1319 4904 091 9671
Average —-2.01 544 649 2816 Q77 9953
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Table 10

Factor dynamics and pricing errors under Ap(3) models
Entries report factor dynamicg @ndk*) estimates (and the absolute magnitude ofttielues in paren-
theses) oAy (3) models, withm = 1,2,3. We also report the average weekly autocorrelation (Aotdhe
pricing errors and the average explained percentage igari@tR) for each model. The last column reports

the maximized log likelihood valuer().

Model K K* Auto VR L
0049 O 0 ] 0000 0 0
022 —— - (000) ——  ——
~0007 Q048 O ~0354 1126 O
A | 000 (001 020, (1315 0.77  99.49 12,034
0020 -2413 0306 ~0371 -4295 0858
| (095 (024 (092 | | (012 (024) (156)
[ 0560 0 0] [ 0647 0O 0
(103) —— - (347) —— -
~3379 0952 O ~3379 1120 0
2@ | oet iy oot (54— 0.74 9975 12,916
7423 —1609 0048 11765 -3771 Q014
| (058 (082 (102 | | (078 (0.77) (120)
0013 0 0 ] 0000 0 0
681) —— - (000) ——  ——
~0089 0874 O ~0089 0684 0
AB) | 615 (a94) - (615 (262) —— 076~ 99.78 12,730
0457 -1400 1269 0457 —-1400 0960
| (423) (825 (164) | | (423 (825 (228)
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10-Year Swap, %

Jan96 Jan98 Jan00 Jan02

The time series of hedged and unhedged ten-year swap rates.

The left panel plots the time series of the ten-year swaphratlged against the three interest-rate factors
using two-, five-, and 30-year swap rates. The right pandbklee time series of the unhedged ten-year
swap rate series. In both panels, the solid lines denote #rgemnvalue and the dashed lines denote the
model-implied value. In the right panel, the market valud #re model-implied value for the unhedged

ten-year swap rates are not visually distinguishable.

47



16} e
120}
AAF
A2F i E 100}
3 =
3 I N S 8 80}
£ =
8 B g
E GF i ‘—g 60f
c 1S
o
=] RN REINIE] | INSHERNEY DU 3 40t
2H bk b o8N e
20F [ Vs
0
—2FV s OkN -
Jan96 Jan98 Jan00 Jan02 Jan96 Jan98 Jan00 Jan02

Figure 2

Capital gains from the portfolio investment.

The left panel plots the four-week excess returns from theklyanvestment in the portfolio with a $1000
notional amount on the 10-year par bond. The right panekplod cumulative wealth as a result of this

investment exercise. The portfolio is made of two, five, &mg 30-year swap rates, designed to achieve
first-order neutrality to the three interest-rate factors.
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Figure 3
Profitability of investing in four-instrument interest-ra te portfolios.

The left panel plots the cumulative wealth paths of investineach of the 35 different combinations of the

four-instrument swap portfolios. The right panel plots th&togram of the annualized information ratios
from investing in each portfolio.
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Cross-correlation between liquidity measures and swap pdfolio investment returns.

The bars in the three panels represent the cross-correkesitimates at different leads and lags between the
three liquidity measures and the average excess retumgfi@weekly investment in the 35 four-instrument
swap portfolios. Each panel reports the correlation wit kiouidity measure.
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Figure 5

Subsample analysis on the statistical and economic signidince of portfolio predictability.

The left panel plots the histogram of the R-squares of thelARdgressions over four-week horizons on
the 495 combinations of four-instrument portfolios durthg first (dark blue bars) and second (light yellow
bars) subsamples. The right panel plots the histogram @rthaalized information ratios from investing in
each of 53 different combinations of the four-instrumenapgwortfolios during the first (dark blue bars) and
second subsamples (light yellow bars). The first subsanmalessthe first four years from May 11, 1994 to
May 6, 1998, and the second subsample is from May 13, 1998 ¢erbieer 10, 2003.
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Out-of-sample: May 13, 1998 — December 10, 2003 Out—of-sample: May 13, 1998 — December 10, 2003
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Figure 6

Out-of-sample predictability of four-instrument interest-rate portfolios.

The left panel shows the histogram of the R-squares of thel ARgressions over four-week horizons on
the 495 combinations of four-instrument portfolios. Thghtipanel plots the histogram of the annualized
information ratios from investing in the four-instrumemiap portfolios. We determine the portfolio weight
based on the model estimates and data on LIBOR and swap rategHe first subsample from May 11,
1994 to May 6, 1998. Then we run the AR(1) regression (thelafiel) and perform the investment exercise
(the right panel) out of sample on data from May 13, 1998 todbduer 10, 2003.
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Figure 7
Predictability of four-instrument interest-rate portfol ios formed usingAm(3) models.
The four panels show the histograms of the R-squares of tH& )ABgressions over four-week horizons on

the 495 combinations of four-instrument portfolios, fodvi®y using four affine three-factor dynamic term
structure modelshy(3) with m=0,1,2,3.
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