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Abstract

Studies evaluating the e¢ cacy of monetary policy rules and regimes
are often based a benchmark new Keynesian model where the parameters
are assumed to be policy invariant. It is possible, however, that some
key parameters may not be invariant to changes in monetary policy. In
this paper, we use a hybrid new Keynesian Phillips curve to examine the
in�ation versus price-level targeting debate when the proportion of rule-of-
thumb price setters is allowed to change endogenously with the monetary
regime. Although there are other factors that may also be endogenous, we
focus on in�ation inertia since it has been identi�ed in the literature as a
crucial parameter a¤ecting the performance of monetary policy.
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1. Introduction

The new Keynesian Phillips curve with lagged in�ation has become a workhorse
model for applied monetary policy analysis. Its wide-spread use re�ects the ability
of the canonical new Keynesian Phillips curve to provide a structural framework
for understanding in�ation dynamics and its lagged extension to account for the
degree of in�ation persistence observed in the data. This hybrid in�ation model
has been used to study, among other issues, the e¢ cacy of di¤erent monetary
policies.1 Steinsson (2003), for example, follows Gali and Gertler (1999) by as-
suming the presence of rule-of-thumb price-setters and uses this type of hybrid
new Keynesian Phillips curve to study optimal monetary policy. He �nds a purely
forward-looking new Keynesian Phillips curve admits price-level stability as opti-
mal monetary policy, whereas optimal policy in the same model augmented with
rule-of-thumb behaviour allows for price-level drift that increases with the pro-
portion of rule-of-thumb price-setters. This is an especially interesting result for
monetary authorities as it suggests that the case for price-level targeting is weak-
ened as the proportion of rule-of-thumb price-setters increases. Other research
comparing the e¢ cacy of in�ation versus price-level targeting in a new Keynesian
framework extended to include rule-of-thumb price-setters often conclude that
price-level targeting dominates in�ation targeting. One reason for this result is
that the proportion of rule-of-thumb price-setters is typically set at a relatively
low value (0.1 to 0.3), and as Steinsson (2003) shows this value has important
implications for comparisons between in�ation and price-level targeting. While
this line of research has improved our understanding of the e¤ectiveness of di¤er-
ent monetary policies, it has the potential drawback that it treats the importance
of rule-of-thumb behavior as �xed across policy experiments. The loss in pro�ts
associated with following a simple rule-of-thumb is likely to be sensitive to the
policy regime so policy experiments that hold the proportion of rule-of-thumb
price-setters �xed are vulnerable to the Lucas critique.
In an e¤ort to examine the relevance of this concern, we examine the in�ation

versus price-level targeting question when the proportion of rule-of-thumb price-
setters is endogenous. We work in the context of a hybrid new Keynesian Phillips
developed by Gali and Gertler (1999) and allow the proportion of rule-of-thumb

1The new Keynesian Phillips curve with rule-of-thumb price setters has been used to study
other important monetary issues such as optimal monetary policy rules, zero bound on nominal
interest rates, welfare costs of in�ation, desirability of in�ation targeting, optimal policy under
discretion and commitment, etc.



price-setters to be a function of the monetary policy regime. Our focus on rule-
of-thumb behaviour and in�ation persistence re�ects its importance in in�uencing
monetary policy. Rudebusch (2002), for instance, �nds the e¤ectiveness of nom-
inal income targeting to be an inverse function of the degree of in�ation inertia.
Similarly, Walsh (2003) �nds the performance of price-level targeting deteriorates
signi�cantly as in�ation becomes more persistent. Levin and Williams (2003)
show that a policy rule that is optimal in a model with a low degree of in�ation
persistence can lead to disastrous results if the true model is characterized by a
high degree of in�ation inertia.
To preview our results, we �nd the relative performance of price-level targeting

deteriorates or, even reverses in favour of in�ation targeting, when the proportion
of rule-of-thumb price-setters is allowed to be endogenous. The intuition for this
result is that the e¤ectiveness of price-level targeting in stabilizing in�ation causes
rule-of-thumb behaviour to become more attractive. This leads to an increase in
the proportion of rule-of-thumb price-setters and, in turn, makes in�ation more
intrinsically persistent and thereby undermines the e¤ectiveness of price-level tar-
geting.
The remainder of the paper is organized as follows. Section 2 outlines the main

features of our model and Section 3 describes its calibration. Section 4 presents
results comparing in�ation versus price-level targeting when the proportion of
rule-of-thumb price-setters is endogenously determined. Concluding remarks are
provided in Section 5.

2. Model

The model consists of a continuum of households with an in�nite planning hori-
zon, a collection of monopolistic competitive �rms that produce di¤erentiated
intermediate goods, sluggish price adjustment, and a monetary authority that
sets the short-term interest rate according to a prespeci�ed rule. The derivations
in the forthcoming four subsections follow closely those in Steinsson (2003) so we
will provide only a high-level sketch of the benchmark rule-of-thumb price set-
ter model. The �fth section provides detail on our extension of the benchmark
model to an environment where the proportion of rule-of-thumb price-setters is
endogenous.



2.1. Households

Households maximize expected utility given by:

Et

1X
s=t

�t [u (Cs; �s)� v (ys (z) ; �s)]

where � 2 (0; 1) is a discount factor, and � is a vector of shocks to household
preferences and production. Each household is assumed to specialize in the
production of one di¤erentiated good denoted yt(z), and consume a composite
consumption good represented by Ct. The latter is combined via a Dixit-Stiglitz
consumption index given by,
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and z indexes di¤erentiated goods and �t is the elasticity of substitution between
di¤erentiated goods in period t. It is standard practice to assume that �t is
constant but we follow Steinsson and allow the parameter to be stochastic. Note
that we have suppressed the household index on consumption since the assumption
of complete markets will eliminate consumption heterogeneity in equilibrium.
Utility maximization subject to a standard budget constraint leads to house-

hold demand for individual varieties of:
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where the aggregate price index is given by:
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In equilibrium, markets must clear so ct (z) = yt (z) and Ct = Yt for all t and
z. Combining these market clearing conditions with the household�s �rst-order
conditions for consumption and asset holdings yields the familiar Euler equation:
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where it is the risk-free short-term nominal interest rate.



Household pricing decisions are based on Calvo (1983) nominal price contracts.
Following Calvo, we assume that in any given period each household has a �xed
probability 1 � � that it may adjust its price and, hence, a probability � that
the household must leave its price unchanged. In an e¤ort to better match the
persistence found in in�ation data, we depart from the standard Calvo structure
by having two types of price-setters within the cohort allowed to change their
price2. One type, which is a fraction 1� ! of price changing households, behave
like standard Calvo price-setters in the sense they set prices optimally given the
constraints of the model and use all available information. We refer to these
price-setters as "forward looking." The remaining ! households within 1 � �,
which we refer to as "rule-of-thumb" price-setters, use a simple rule to adjust
their prices.
Forward-looking (FL) price-setters choose prices to solve:

max
pf�t
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is a tax rate and pf� is the optimal price which satis�es

the �rst-order condition:
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Note that we suppress the z index on the reset price since all resetting FL �rms
choose the same price in a given period. Also note that, in the case of fully
�exible prices, (3) collapses to the standard static condition:
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2See Steinsson (2003) and Gali and Gertler (1999) for a detailed description of this type of
pricing model.



where p�t is the price chosen under �exible prices. So, under �exible prices,
the �rm will set optimally its relative price as a markup over real marginal cost
(adjusted for the tax rate).
We assume that rule-of-thumb (RT) price-setters set their price according to:

pb�t = �&tp
�
t�1�


t�1 (5)

where �t�1 � Pt�1=Pt�2 is gross in�ation, �t � �t= (�t � 1) is the gross markup,
and  governs the degree of indexation.3 An index of prices set at time t is given
by

log p�t = (1� !) log pf�t + ! log pb�t (6)

Given that all FL price-setters will choose the same price and all RT price-
setters will choose the same price in any given period, we can write the overall
price index (1) as:

Pt =

�
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1��t + (1� �) (1� !)
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2.2. Log-linearization of the model

The log-linear approximation of (2) yields the IS curve:

xt = Etxt+1 � �
�bit � Et�t+1 � rnt

�
where xt = log(Yt=Y n

t ) and Y
n
t is the level of output consistent with an economy

with fully �exible prices, perfectly competitive markets and no distortionary taxes.
Moreover,
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3Note that this is a generalization of the Gali and Gertler (1999) rule-of-thumb rule: It allows

the weight on lagged in�ation to be di¤erent from unity and the weight on the markup to be
di¤erent from zero.



Next, consider the supply-side of the economy, where the log-linear approxi-
mations of (5)-(7) are:

bpb�t = &b�t + bp�t�1 � �t + �t�1 (8)bp�t = (1� !) bpf�t + !bpb�t (9)

�t =
1� �

�

�
(1� !) bpf�t + !bpb�t � (10)

where (as in Steinsson) bpf�t , bpb�t and bp�t denote percent deviations of pf�t =Pt, pb�t =Pt
and p�t=Pt, respectively, from their steady-state values of unity. Combining the
�rst-order condition (3) with equations (8), (9) and (10) yields a Phillips curve of
the form4:
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The log-linear approximation to (4) is:

bp�t = ��
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where,
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4We have used the fact that the markup shock is calibratred to be i.i.d., to eliminate the lead

of the shock from the Phillips curve.



2.3. Monetary Policy

As a baseline we assume monetary policy is conducted according to a simple rule
of the form:

it = �iit�1 + (1� �i) ��t + "mpt (13)

where �i is a parameter governing the persistence of interest rate movements, �
re�ects the aggressiveness of monetary policy to in�ation �uctuations and "mpt is
an i.i.d. shock with zero mean and constant variance.

2.4. Welfare

A quadratic approximation to social welfare in this economy is proportional to:
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�
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�
(14)

where t:i:p. represents the so-called "terms independent of policy," and
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Note that this social loss function is identical to that in Steinsson (2003) when
 = 1 and & = 0.



2.5. Endogenizing the Proportion of RT Price-Setters

In the preceding section, we followed standard practice and treated the proportion
of RT price-setters, !, as a �xed parameter with respect to changes in policy
regime. This is potentially problematic because the costs of following a simple
rule-of-thumb (or, equivalently, the bene�ts of being rationally forward-looking)
are likely to change with the policy regime. If price-setters re-evaluate their
decision procedures in light of changes to the regime, then the proportion of RT
price-setters will be regime-dependent. In our analysis, we assume that price-
setters incur a �xed cost each time they rationally re-optimize their price. They
can avoid paying this �xed cost by instead using the simple rule-of-thumb in (5).
We treat the decision to be RT or FL as regime-dependent: Price-setters make a
rational decision to be RT or FL so as to maximize the unconditional expectation
of pro�ts, given the policy regime. That is, price-setters condition this decision
on the policy regime, but not on the state of the economy.
Before explaining how we de�ne the equilibrium proportion of RT price-setters,

it will be helpful to note some preliminary relationships. As in Romer (1990),
we can show that a quadratic approximation to the loss in pro�ts from having a
suboptimal price is given by:

bq (bpt (z) ; Yt; �t; �t) � �jbq11j2 �bpt (z)� bp�t �2 + terms independent of bpt (z)
where, bq11 = � �� � 1� � �1� + 1�Y
Let bpft�1 (z) denote the lagged relative price of a FL price-setter and bpbt�1 (z) denote
the lagged relative price of a RT price-setter. Then we can write the value
functions for FL price-setters as:
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where c is the �xed of rational re-optimization. De�ne W as the unconditional
expected value of a FL price setter:

W � �E [V nr
t (z)] + (1� �)E [V r

t (z)]

and de�ne the FL price gap as:

bpf;gapt (z) =

� bpft�1 (z)� �t � bp�t in the "nr" statebpf�t � bp�t in the "r" state



Then we can write,
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The value functions for RT price-setters takes the form:eV nr
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and the RT price gap as:
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We can now turn to the de�nition of the equilibrium value of !, which we will
denote by !�. Note that in our model, and with the calibrated values we use
below, the condition W 0 (!) �fW 0 (!) > 0 holds for all ! 2 [0; 1]. That is, the
marginal bene�t of being an FL price-setter is increasing in !. This ensures that
we always have a unique equilibrium value of !. However, we have no reason
to believe that this condition will hold in other models or for other calibrations
of our model. Thus, in other environments it may be possible to �nd situations
with multiple equilibria. Given that W 0 (!) � fW 0 (!) > 0, an equilibrium will
satisfy one of the following conditions:

(i) If W (!�) = fW (!�) for some !� 2 [0; 1] then !� is an equilibrium.

(ii) If W (!) > fW (!) 8! 2 [0; 1] then !� = 0 is an equilibrium.

(iii) If W (!) < fW (!) 8! 2 [0; 1] then !� = 1 is an equilibrium.
Type (i) equilibria require that the values of being FL and RT are equated at

!�. Figures 1 illustrates this type of equilibrium. Type (ii) equilibria arise when
�rms are better o¤ being FL for all permissible values of !. This is illustrated in
Figure 2. Finally, type (iii) equilibria occur when �rms are better o¤ being RT
for all values of !. Figure 3 provides examples of type (iii) equilibria.



3. Calibration

In order to generate results, we need to assign numerical values to the parameters
under consideration. For the benchmark model, we follow Steinsson and set
� = 0:99; � = 5; � = 0:7;  = 2; and � = 5: These values are consistent with
those reported in Rotemberg and Woodford (1997) and Gali and Gertler (1999).
On the monetary policy side, we set �i = 0:8 and � = 1:5 which is broadly in
line with the Taylor rule estimation results reported in Orphanides (2003). Gali
and Gertler (1999) and Gali, Gertler and Lopez-Salido (2001) provide a range of
empirical estimates for the proportion of RT price-setters but the average full-
sample value appeared centered on 0.3; thus we set ! = 0:3 as a baseline. We
set the weight on lagged in�ation in the rule-of-thumb,  equal to unity. In
addition, we will set & = 1=

�
1 + � �1

�
, so that the RT price-setters react to

markup shocks as if they were solving a static problem. The shock process are
calibrated using the post-1982 results reported in Rabanal and Rubio-Ramirez
(2005), viz., �� = 0, �r;n = 0:7, �� = 0:44, �r;n = 0:0244 and �mp = 0:002.
We view the current calibration as capturing the midpoint of the ranges for the
parameters under consideration.
In order to calibrate the cost of rational forward-looking reoptimization, c, we

ask what value of c would be consistent with the benchmark calibration described
earlier (that is, what value of c would rationalize ! = 0:3 given the calibration for
the other parameters). This procedure yields c = 0:0035.

4. IT versus PLT with an Endogenous Proportion of RT
Price-Setters

A general result of models with lagged in�ation is that some degree of price-
level drift is optimal, even if the monetary authority can commit to its future
policies. Steinsson (2003) demonstrates that the optimal degree of price-level
drift is related positively to the proportion of RT price-setters. Thus, when
studies use values of ! that are relatively low (0.1 to 0.3), it is not surprising
that they often conclude that price-level targeting dominates in�ation targeting.
The low value of !, however, has been based on samples where central banks have
explicitly or implicitly targeted in�ation so it is possible that the proportion of RT
price-setters may change with a shift to an explicit price-level targeting regime.
We explore this possibility and its implications in this section.
We consider two simple monetary policy rules of the form:



it = �iit�1 + (1� �i) (r
n
t + ��t)

it = �iit�1 + (1� �i)
�
rnt + ppt

�
where the �rst rule is referred to as an in�ation targeting (IT) rule and the second
as a price-level targeting (PLT) rule. We choose the parameters of these rules to
minimize the unconditional expectation of the welfare loss (14).
Table 1 reports results for the case in which ! is held constant at its benchmark

value while the policy rule is optimized over �i and � (or p). The parameter �
changes only little relative to its benchmark calibration. For both IT and PLT, the
policy inertia parameter is zero, re�ecting the relative importance of shocks to the
natural rate of interest and the absence of an interest rate term in the loss function.
As the benchmark calibration of ! is relatively low, PLT dominates IT as expected
(the welfare loss associated with PLT relative to IT is 0.81). The table also reports
several other statistics that help us better understand the subsequent results. In
particular the value of the loss function weight on quasi-di¤erenced in�ation, �2,
is reported as it is a function of !. In Table 1, therefore, the value of �2 remains
constant across the two policy experiments as the proportion of RT price setters
is �xed. Nevertheless, changes in �2 will play an important role in the subsequent
results. In addition, we report the standard deviations of in�ation and the output
gap. In Table 1, these statistics are reported relative to the benchmark policy
rule calibration, so we see reductions in both in�ation and output gap variability
from the "optimized" policy rule parameters. These unconditional moments will
play an important role in households�decisions between pricing in a FL or RT
manner.
To gain some intuition into the role played by these unconditional moments, it

is useful to think about the determinants of the variance of bpb;gapt (z). Recall that
if bpb;gapt (z) is more volatile, then the losses associated with being a RT price-setter
are greater, ceteris paribus. The de�nition of bpb;gapt (z) implies:

var
�bpb;gapt (z)

�
= �var

�bpbt�1 (z)� �t � bp�t �+ (1� �) var
�bpb�t � bp�t �

We can gain further insights by focusing on the second term on the right-hand
side. Using the expressions for bpb�t and bp�t we can write:

var
�bpb�t � bp�t � = var
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Using the fact that �� = �&=
�
� � 1

�
and that bp�t�1 is proportional to �t�1 we can

rewrite this as:

var
�bpb�t � bp�t � = var

��
1

1� �

�
�t�1 � �t + �xxt

�
or,
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Thus, var
�bpb�t � bp�t � depends on a number of variances and covariances. The

two unconditional moments identi�ed in the tables are those that we found to
be most important for the results. In particular, it is possible to show that
var

�bpb;gapt (z)
�
is increasing in var (�t) and var (xt). That is, as in�ation and the

output gap become more volatile, it becomes more costly to be an RT price-setter,
ceteris paribus. As will become apparent from the tables, output gap volatility
is the single most important factor in determining the equilibrium proportion of
RT price-setters. This is because the output gap term in (18) is generally an
order of magnitude greater than the in�ation term, so it tends to be the primary
determinant of var

�bpb�t � bp�t �.
Turning again to Table 1, note that both reported standard deviations decline

relative to the benchmark calibration. This implies that the performance of the
rule-of-thumb has improved. On this basis, one might conjecture that, were we
to hold the policy parameters constant at the values reported in Table 1 while
endogenizing !, the equilibrium proportion of RT price-setters would exceed 0.3.
This exercise is reported in Table 2.
The results in Table 2 can be interpreted as an exercise where the central

bank chooses its policy parameters assuming that ! will remain at 0.3 regardless
of what it does to the policy rule, but, in practice, ! reacts endogenously. As
expected the proportion of rule-of-thumb price-setters rises substantially relative
to Table 1. Note that the relative standard deviations reported in Table 2 do
not provide information on the sources of the increase in !. These standard
deviations are outcomes of an equilibrium in which ! is endogenous, so they are
consistent with price-setters being indi¤erent between the RT and FL options.



Rather, the increase in ! can be traced to the decline in the standard deviations
reported in Table 1 (which make RT behaviour relatively more attractive).
The increase in ! causes the performance of both the PLT and IT rules to

deteriorate. However, the PLT rule deteriorates more severely, reversing its dom-
inance over IT. The primary source of this relative deterioration is the direct
e¤ect of the change in ! on the weight (�2) on the squared quasi-di¤erence of
in�ation in the loss function. Although the values of ! reported in Table 2 may
not appear to be very di¤erent across IT and PLT, the small di¤erence translates
into a large di¤erences in �2 (because �2 = != (� (1� !))). In particular, �2
increases from 0.61 in Table 1 to 7.5 under IT and to 12.86 under PLT in Table
2. Thus, failing to account for the impact of policy on the proportion of RT
price-setters can lead to outcomes that are signi�cantly worse than anticipated.
The fact that IT outperforms PLT when the proportion of RT price-setters is

high, as in Table 2, is not surprising. As noted earlier, Steinsson has shown that
the degree of price-level drift that is optimal is increasing in !. In light of this,
one may be tempted to conclude that our assumption of full indexation ( = 1) in
the rule-of-thumb is driving our results, as indexation a¤ects the weight on lagged
in�ation in the new Keynesian Phillips curve. That is, one might presume that
RT price-setters introduce optimal price-level drift primarily through the lagged
in�ation term in their price-setting rule. Amano, Mendes and Murchison (2009)
�nd, however, that the degree of indexation does not play an important role in
determining optimal monetary policy. Even for extreme indexation values of
 = 0 and  = 1, the changing weight on lagged in�ation in the new Keynesian
Phillips curve plays only a small part in determining optimal price-level drift and
in�ation undershooting. In other words, in�ation persistence via lagged in�ation
plays only a small role in determining the e¢ cacy of monetary policy.
Rather, Amano, Mendes and Murchison show that the new Keynesian Phillips

curve with RT price-setters implies an overdiscounting e¤ect: Future output gaps
are discounted at a rate greater than the discounting of future losses in the social
welfare function. To see this, note that the forward solution of the new Keynesian
Phillips curve in (11) is:
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�
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If ! = 0, then �f = 1, �b = 0 and therefore � = 0. In this case, �f�=
�
1� �f��

�
=

�. That is, the discount factor in the forward solution is equal to the discount
factor in the welfare function. But, if ! > 0, then �f�=

�
1� �f��

�
< �. This

overdiscounting reduces the impact of the expectations channel and, therefore,
leads to greater optimal drift. In numerical experiments, Amano, Mendes and
Murchison �nd the overdiscounting e¤ect to be more important in determining
optimal monetary policy than the degree of indexation in the RT.
Finally, we consider the case where the central bank adjusts the parameters

of its policy rule to minimize the social loss function while taking into account
the reaction of !. These results are reported in Table 3. The values of �i
increase substantially to 0.9 and 0.8 under IT and PLT, respectively. However,
the aggressiveness parameters do not behave similarly under IT and PLT. The
value of � remains largely unchanged, but the value of p increases from 0.21
to 1.72. The three parameters that change (both �i�s and p) induce greater
undershooting of in�ation as they increase (this is not true of the one parameter
that remains unchanged, �). When ! is endogenous, several factors in�uence the
central bank�s incentive to induce undershooting. First, as ! approaches unity
the coe¢ cient on the markup shock in the Phillips curve increases by a factor of
1= (1� ��). This occurs because RT price-setters react to markup shocks in a
statically optimal manner � they ignore the fact that they might not have the
opportunity to change their price for several periods. Second, as we describe
in more detail below, the fact that �2 has increased relative to the benchmark
makes a greater degree of in�ation undershooting desirable. Third, increases in
undershooting tend to increase output gap volatility which reduces the incentive
to be RT. This leads to a welfare-improving reduction in the proportion of RT
price-setters, ceteris paribus.
Note that the performance of PLT relative to IT does not improve. However,

the performance of both the PLT and IT rules improve relative to the case in
which the central bank erroneously treats ! as �xed (under both IT and PLT the
losses are smaller by a factor of roughly 0.55). Most of these welfare gains come
from the reductions to �2 and in�ation volatility.
Since the quasi-di¤erence of in�ation term in the loss function plays an im-

portant role in the results, it is worth discussing it in more detail. The presence
of �2 6= 0, in isolation, will reduce the optimal level of price drift since stabilizing
in�ation also helps to stabilize changes in in�ation. In the limit as �2 goes to in�n-
ity, the central bank will fully stabilize in�ation and a mark-up shock will only be
re�ected in the output gap, just as it would if the level of in�ation were the only



argument in the loss function. The blue (dark) line relative to the green (light)
line in Figure 4 shows the marginal impact under the optimal state-contingent
policy from using the correct loss function, with �2 = !

�(1�!) , rather than zero.
Note that having a non-zero value for �2 causes there to be less price-level drift.
This can be explained by expanding the third argument in the loss function:

�2 (�t � �t�1)
2 = �2

�
�2t + �2t�1 � 2�t�t�1

�
and in unconditional expectation:

�2E
�
(�t � �t�1)

2� = 2�2 [var (�t)� cov (�t; �t�1)]

The introduction of the �2�2cov (�t; �t�1) term implies that the central bank
will have an incentive to induce some positive autocorrelation in in�ation. This
explains the somewhat more drawn out undershooting of in�ation relative to the
case with �2 = 0.
When ! is very high, as it is in Table 2, the central bank has a very strong

incentive to increase the extent of in�ation undershooting. With an IT rule, this
is best achieved by increasing the value of the smoothing parameter, �i. This is in
fact what happens in Table 3. This change also causes the standard deviation of
in�ation to fall and the standard deviation of the output gap to rise. As discussed
above, output gap volatility plays a critical role in the decision to be RT of FL.
In this case, the increase in output gap volatility is a main driver of the reduction
in !.

5. Concluding Remarks

In this paper we examined the in�ation versus price-level targeting debate when
the proportion of rule-of-thumb price setters is allowed to vary with the monetary
policy regime. Two tentative results emerged from this research. First, we found
that if a monetary authority fails to account for the impact of policy changes
on the proportion of rule-of-thumb price-setters, outcomes that are signi�cantly
worse than anticipated can occur. Second, in contrast to earlier studies in this lit-
erature, we �nd that allowing the fraction of rule-of-thumb price setters to respond
endogenously to the monetary policy framework can lead us to conclude that in-
�ation targeting dominates price-level targeting in minimizing welfare losses. We
would like to close by emphasizing that our results are quite preliminary and that
a full round of sensitivity analysis is required before �rmer conclusions can be
drawn.
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Table 1: Fixed ! = 0:3
Relative Loss Relative to Benchmark Case

Case �i � ! (PLT/IT) �2 std (�t) std (xt)
IT 0 1.51 0.3 � 0.61 0.77 0.85
PLT 0 0.21 0.3 0.81 0.61 0.66 0.91

Table 2: Fixed Policy Parameters, Endogenous !
Relative Loss Relative to Table 1 Cases

Case �i � ! (PLT/IT) �2 std (�t) std (xt)
IT 0 1.51 0.84 � 7.50 1.36 0.76
PLT 0 0.21 0.90 1.40 12.86 1.37 0.93

Table 3: Optimized Policy Parameters with Endogenous !
Relative Loss Relative to Table 2

Case �i � ! (PLT/IT) �2 std (�t) std (xt)
IT 0.9 1.41 0.64 � 2.54 0.81 1.43
PLT 0.8 1.72 0.75 1.41 4.28 0.79 1.26
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Figure 4: Loss Function E¤ect


