
Liquidity and the Market for Ideas�

Rafael Silveira Randall Wright

November 15, 2005

Abstract

We study markets where innovators sell ideas to entrepreneurs who
may be better at implementing them. These markets are decentralized,
with random matching and bilateral bargaining. Entrepreneurs hold
liquid assets (e.g. cash) lest potentially pro�table opportunities may
be lost. We extend search-based models of the demand for liquidity
along several dimensions, including allowing agents with insu¢ cient
money to put deals on hold while they try to raise the funds. Given
liquidity costs (e.g. interest rates) we determine which ideas get traded
in equilibrium, compare this to the e¢ cient outcome, and discuss the
optimal response of monetary policy.
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1 Introduction

We take it for granted that people understand that the development and im-

plementation of new ideas is one of the major factors underlying economic

performance.1 In this vein, the concept of technology transfer is impor-

tant, both to innovators and entrepreneurs looking to come up with and

commercialize new technologies, and to governments seeking to spur eco-

nomic development. The issue is this: When innovators come up with new

inventions (or ideas or projects), should they try to implement them them-

selves, say through start-up �rms? Or should they try to sell them, perhaps

to established �rms, or more generally to entrepreneurs who are better at

implementing these ideas?

If agents are heterogeneous in their abilities to come up with ideas and

to extract their returns, one can imagine that some will specialize in inno-

vation while others will specialize in implementation or commercialization.

A superior allocation of resources will generally emerge when those who

have the ideas are not necessarily those who implement them. People in

the �knowledge transactions �eld�share the view that the transfer of ideas

from innovators to entrepreneurs leads to a more e¢ cient use of resources,

making all parties better o¤ and increasing the incentives for investments

1Both the inputs to and outputs of this process are important. On the input side,
research and development expenditures account for 3% of US GDP, and according to a
survey by the Association of University Technology Managers, the licensing of innovations
just by universities, hospitals, research institutions, and patent management �rms added
more than $40 billion to the economy in 1999 and supported 270,000 jobs. On the output
side, it is obvious that new ideas and technologies are essential to production and growth,
and going back to Schumpeter (1934) it is often said that the creation of new �rms is a
signi�cant mechanism through which new technologies are implemented.
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in research. Obviously, however, this requires some mechanism �say, some

market �for the exchange of ideas, and the details of how this mechanism

works could in principle have a big impact on outcomes. This is the subject

of the current study.2

Our analysis is related to the well-known model of Holmes and Schmitz

(1990, 1995), although we also deviate considerably from their approach.

What we share with them is, in their words, the following: �The model

has two key features. The �rst crucial assumption is that opportunities for

developing new products repeatedly arise through time... The second key

feature is that we assume that individuals di¤er in their abilities to develop

emerging opportunities.�Hence, �There are two tasks in the economy, de-

veloping products and producing products previously developed� (Holmes

and Schmitz 1990, p. 266-7). Where we di¤er is the way we envision the

market where ideas get traded. While they model it as a competitive equi-

librium, we take seriously the notion that there are considerable frictions in

this market.

We think it is clear that there is really no centralized market for ideas

� innovators cannot simply choose a quantity of new ideas to supply to

maximize pro�t taking as given the competitive price, and entrepreneurs

do not simply choose how many new ideas to buy at a given price. The

2A common idea in this literature is that inventor-founded startups are often second-
best solutions, since innovators do not have the entrepreneurial skills to commercialize
new products. Of course, one could imagine innovators trying to buy implementation
expertise from entrepreneurs, but the usual view is that such expertise is largely tacit and
di¢ cult to measure, so it seems more natural for ideas to be sold to entrepreneurs. See
Teece et al. (1997), Pisano and Mang (1993), and Shane (2002).
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idea market is in our view much more decentralized. Hence, we model it

using search theory, with random matching and bilateral bargaining between

innovators and entrepreneurs. Also, we take the position that liquidity may

be critical in this market, and to capture this, we make use of some recent

results in search-based monetary economics.

When there are imperfect markets for the exchange of ideas, it is not

only important who you meet and what they know, there is also the issue of

how to pay for it. The fact that you may be better than me at implementing

my project means very little if you have nothing to o¤er in exchange. This

is especially important in highly decentralized markets, where it is easy to

imagine reasons why I would be reluctant to give up an idea for a promise

of future payment (e.g., once I give it up it is hard to get it back). Hence, it

is easy to imagine reasons why quid pro quo is the order of the day: �You

want my idea? Show me the money.�

Given this, entrepreneurs may choose to keep liquid assets, cash on hand

being the purest example, in case they come across a potentially pro�table

opportunity that may be lost if there cannot be a quick agreement. Natu-

rally, how much liquidity they choose to keep on hand depends on its cost,

e.g. the nominal interest rate, which is at least in part determined by mon-

etary policy, as well as other factors including anything that a¤ects the

willingness of innovators to sell their ideas and the willingness of entrepre-

neurs to invest in these opportunities. Our goal is to sort out the role of

some of these factors, and hence sort out what determines how many and

which opportunities get traded.
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The view that �nancial constraints matter in this context is by no means

new. For example, Evans and Jovanovic (1989), among many others, argue

for the importance of liquidity or borrowing constraints by showing that the

decision to become an entrepreneur depends positively on one�s wealth, and

interpreting this as evidence of �nancial constraints.3 We believe that our

approach is broadly consistent with this literature. However, those papers

do not incorporate any notion of liquidity as it is modeled in monetary

economics, and focus more on various credit market imperfections that are

imposed in sometimes rather ad hoc ways.4

We want to explore an alternative approach where agents are constrained

by their liquidity, which is an endogenous choice, depending on variables like

interest rates. This allows us to introduce monetary policy considerations

into the discussion of innovation and technology transfer, and we think that

this may be more important than is commonly understood. Moreover, our

approach generates some di¤erent implications, that may be worth explor-

ing, compared to the models mentioned above. For instance, if the problem

in the market is borrowing constraints, high interest rates could help by

increasing savings, but according to our approach high interest rates make

things worse by raising the cost of maintaining liquid assets.

3See also Evans and Leighton (1989), Holtz-Eakin et al. (1994), Fairlie (1999),
Quadrini (1999), Gentry and Hubbard (2000), Lel and Udell (2002), Paulson and
Townsend (2000), and Guiso, Sapienza and Zingales (2001).

4Some people simply assume there is no credit (Lloyd-Ellis and Bernhardt 2000 and
Buera 2005), some assume credit is exogenously limited to a �xed multiple of wealth
(Evans and Jovanovic 1989), some model it as the solution to a moral hazard problem
(Aghion and Bolton 1996), and some use asymmetric information (Fazzari et al. 1988,
2000).
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As we said, our framework is similar to some work in the search and

matching literature. We think that using this approach to study technology

transfer is a neat application of the theory, and a natural way to look at the

substantive issues. Since we allow liquidity to potentially play a prominent

part, our framework is especially close to recent monetary search theories,

which are all about the role of liquidity in decentralized trade. In particu-

lar, our environment shares features with the model of monetary exchange in

Lagos and Wright (2005), where sometimes agents trade in centralized mar-

kets and sometimes in decentralized markets. But while we borrow from

that model, we also extend it in a number of ways.

First, in our market, ideas are indivisible and have random valuations.

Together with the liquidity problem, this means the bargaining problem may

be nonconvex, and hence we need to consider the possibility of randomized

trade using lotteries. Second, we extend the framework, in what we think

is a very realistic way, to allow agents with insu¢ cient liquidity to try to

put deals on hold until they can raise funds in the centralized market, which

may or may not work. In this way we capture both theories where liquidity

is crucial, and those where it plays no role at all, as special cases. Third, we

consider the case where there is a public good aspect to ideas �i.e. the fact

that I give you my idea does not necessarily mean that I cannot also use it

�as well as the case where they are purely private goods.

Fourth, when ideas are intermediate inputs into some production process,

we stress that whether or not the idea market functions well, which de-

termines the extent to which the most e¢ cient agents are implementing
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projects, feeds back to aggregate variables like wages and employment. Fi-

nally, in part as a result of the points made above, we argue that monetary

policy may be more potent than is commonly understood or than is predicted

by models where agents are simply trading consumption goods. So while we

have things in common with modern monetary theory, we go well beyond

what has been done in terms of introducing some technical extensions, dis-

cussing new economic interpretations, and deriving policy implications that

arise when we model the idea market in this way.

The rest of the paper is organized as follows. Section 2 lays out our

basic assumptions. Section 3 discusses the centralized market, and Section

4 discusses the decentralized market where ideas are traded. Section 5 puts

things together to characterize equilibrium. Section 6 discusses e¢ ciency

and policy considerations. Section 7 takes up various extensions. Section 8

concludes. Many technical results are relegated to the Appendix.5

2 Basic Assumptions

Time is discrete and continues forever. As in Lagos and Wright (2005),

we assume that alternating over time there are two types of markets: a

5We mention some other related work. Several studies consider the transfer of ideas
as a strategic action among �rms, including Katz and Shapiro (1986), Gallini and Winter
(1985), and Shepard (1994). Baccara and Razin (2004) consider strategic behavior among
agents forming a team to implement an idea. Anton and Yao (1994, 2002) study markets
where buyers do not know the value of an idea, and sellers are reluctant to reveal it because
buyers may not pay afterwards. Others focus on licensing contracts in terms of incentives,
including Aghion and Tirole (1994) and Arora (1995). There is a literature that focuses
on university inventions, including Lowe (2003), Shane (2002), and Jensen and Thursby
(2001). den Haan, Ramey and Watson develop a matching model of entrpreneurs and
lenders, and cite related work. Serrano (2005) studies empirically the market for patent
transfers, and cites previous papers along the same line.
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centralized market, denoted CM, where agents perform the usual activities

of producing, consuming and adjusting their assets; and a decentralized

market, denoted DM, where agents meet bilaterally and may trade ideas.

Ideas traded in one DM yield returns realized in the next CM. Agents have

discount factor � between one DM and the next CM, and discount factor �

between the CM and the next DM, �� < 1. There are two types of agents:

innovators, denoted i, who are relatively good at coming up with ideas, and

entrepreneurs, denoted e, who may be better at implementing them. For

now the numbers of each type, Ni and Ne, are exogenous.

Every time the DM opens, an innovator i gets some idea (for free) that

has value Ri � 0 if he implements it himself, where Ri is drawn from CDF

Fi(�). To keep things simple, if not implemented in one period, an idea�s

value next period is an i.i.d. draw from Fi; hence if innovator i �nds himself

in the CM with an idea, he will implement it, since he gets a new draw in any

event. If i with an idea worth Ri to him in the DM meets entrepreneur e, it

has value Re � 0 to e, where Re is drawn from Fe(�jRi). When convenient,

for a few results below, we assume F 0j exists, is continuous, and has support

with �nite upper bound R̂.6 Whenever i and e meet and realize Re > Ri, e

has a better capacity or ability to implement the project.

One may ask, what exactly is an idea? One view is that an idea I is an

intermediate input in some production process that can be implemented by

6As a special case, we can have Ri and Re independent, which can be interpreted as
saying there is nothing special about the idea but only the match between the idea and
the agent. We can also have Ri = �Ri with probability 1, including the case �Ri = 0, where
i is are purely an �idea man�who cannot implement anything.
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agent j with technology fj(h; I), where h is labor input. Given I, j solves

Rj(I) = max
h
ffj(h; I)� whg ;

where w is the wage (more generally, h and w can be vectors of inputs

and prices). This is important because it shows that the allocation of ideas

a¤ects wages, hours and other variables in general equilibrium �having the

wrong agents implementing I can have a big impact on economic aggregates.

However, to ease the presentation, we begin with the case where Rj = fj(I)

does not require outside labor, and return to the general speci�cation later.

In any case, when i and e meet and Re > Ri, there are gains from

trade.7 We assume ideas are indivisible �either I tell you or I don�t. Also,

there is no private information: both agents know (Ri; Re), even though e

cannot implement the idea without i giving him the details. For example,

if my idea is for a restaurant with some new cuisine, I can let you taste it

without showing you the recipe. We abstract from informational frictions

not because they are uninteresting, but because we want to focus on new

issues (several of the papers mentioned in the Introduction consider private

information). Also, we assume for now that if i gives e the idea then i

does not also implement it � say, because there is only room for one new

restaurant �but we also explore below the alternative case where both can

implement it, which is relevant to the extent that ideas have a public good

component.
7Note that i will never prefer to not trade an idea for speculative reasons � i.e. in

hope of meeting another e with a bigger Re �since he will get a new idea anyway, and
the value of any idea is i.i.d. across periods. This is the same as the reason agents never
choose to not implement an idea in the CM.
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The price at which an idea is traded is determined by bargaining. This

price is in terms of money, by which we do not necessarily mean cash per

se, but relatively liquid assets generally, including e.g. checking deposits.8

If the price at which they would otherwise trade is greater than the amount

of liquidity m that e has on hand, several things could happen: i could walk

away and keep the idea for himself; they could settle for a lower price; or

they could agree to try to meet again in the next CM, where e can raise

funds. But with probability  the meeting in the next CM fails to happen.

Rather than go into details, we prefer to remain agnostic and simply label

the event an �exogenous breakdown.�The fact that it is not certain they can

put a deal together next period provides incentive for entrepreneurs to keep

liquidity on hand, lest potentially pro�table opportunities fall through.

While there may well be other ways to model the idea market, we think

our setup is reasonable. Some of the assumptions are similar to those in

standard monetary theory, and are made to generate a role for liquidity.

Thus, i will not give up his idea before he is paid, hoping to get paid in the

future, say, because after e has the idea he will renege.9 We understand that

there are many ways in the real world for innovators to try to get people

8He, Huang and Wright (2005) introduce banks and checking explicitly into an oth-
erwise standard search model of monetary exchange. Presumably something similar can
be done here, but for the sake of focus we prefer not to go into all the requisite details.
Hence, we frame the discussion in terms of money, but it is understood that in principle
the point should apply to liquid assets broadly.

9Obviously we assume there is no problem with a simultaneous (quid pro quo) ex-
change. Of course, it is important that we cannot use reputation to enforce payment,
since otherwise credit could work and eliminate the role for liquidity. A standard way to
rule out reputation in these kinds of models is to assume some form of anonymity in the
DM; see Kocherlakota (1998), Wallace (2001) or Corbae et al. (2003) for details.
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who are good at implementation involved in their projects: hiring managers;

forming partnerships; licensing; and so on. We focus on the case where they

sell the idea, which is not the only possibility but surely an interesting

case. For one thing, it is consistent with the extensive evidence of �nancial

constraints on entrepreneurial activity discussed in the introduction.

3 The CM

LetWj(m;R) be the the value functions for type j = i; e agents entering the

CM, with m dollars and a project in hand with value R (for i this would be

his own idea if he did not sell it in the previous DM, and for e this would

be an idea that he purchased). We use R = 0 to indicate either a project

with 0 return or no project (for i this would be because he sold his idea,

and for e this would be because he failed to buy one). Let Vj(m) be the

value function for agents entering the DM with m dollars before the random

values of the ideas are drawn.

Then for j = i; e, the CM problem is

Wj (m;R) = max
X;H;m̂

fU(X)� h+ �Vj(m̂)g (1)

s.t. X = "+ wh+ �(m� m̂+ �M) +R;

where X is consumption, h labor supply, m̂ money taken out of the CM,

" an endowment, w the real wage, and � the value of money (i.e. 1=� is

the nominal price level). The term �M is a lump sum cash transfer, with

M the aggregate money stock when the CM opens, which therefore evolves
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over time according to M 0 = (1 + �)M .10 We impose the usual conditions

on utility U . Also, for now we assume a representative �rm with a linear

technology, so the real wage is pinned down and can be normalized to w = 1.

Eliminating h using the budget equation, we rewrite (1) as

Wj (m;R) = "+ �m+ ��M +R+max
X
fU(X)�Xg (2)

+max
m0
f��m̂+ �Vj(m̂)g:

Now several results follow immediately. First, Wj is linear in (m;R), with

@Wj=@m = � and @Wj=@R = 1. Second, X is given by the solution to

@U(X)=@X = 1, independent of (m;R) or any other variable. Third, m̂ is

given by the solution to

��+ � @Vj(m̂)
@m̂

� 0, = 0 if m̂ > 0; (3)

independent of (m;R). This implies all agents of a given type j take the

same amount of money m̂j out of the CM, independent of the (m;R) with

which they enter.11

4 The DM

Let �j be the DM arrival rate (probability of a meeting) for j = i; e. Nor-

malizing Ne = 1, the only restriction on arrival rates is �e = �iNi, so we

10As is standard, equilibrium requires � � � � 1 as otherwise there will be arbitrage
opportunities. By the Fisher equation, this is equivalent to i � 0 where in is the nominal
interest rate. As is also standard, we assume the inequality is strict, but we do consider
the limiting case where � ! � � 1, or in ! 0, which is called the Friedman rule.

11The results in this paragraph assume an interior solution for h and the strict concavity
of Vj . One can generalize the assumptions and arguments in Lagos and Wright (2005) to
guarantee that this is valid.
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can take them to be exogenous, for now. If an e does not meet an i, he

enters the next CM with his money but no project, (m̂e; 0). Similarly, if i

does not meet an e, he enters the next CM with (m̂i; Ri). If an e and i do

happen to meet, several things can happen. If Re � Ri there are no gains

from trade; and if Re > Ri there are, and two cases need to be considered.

On the one hand, suppose m̂e � p where p is the price they would agree to

if there were no issues of liquidity (e.g. if e had access to unlimited funds).

Then they can trade immediately at p.

On the other hand, suppose m̂e < p. In this case the bargaining problem

is nonconvex, and in principle they may want to trade using lotteries; for

now we assume that this not an option, but we revisit lotteries later and

show that the basic qualitative results are the same. Hence, they can either

settle for m̂e now, or they could try to meet again in the next CM, where

e can always raise the funds. If they do meet again, they can renegotiate

the price to p0, but we will see p0 = p. In any case, meeting in the next CM

is not a sure thing: with probability , there is an exogenous breakdown.

Hence, i may or may not prefer the chance at p0 to the sure thing of m̂e.12

We now analyze the bargaining problems in more detail. As is common

in the related literature, we make use of the generalized Nash solution, where

threat points are given by continuation values and � denotes the bargaining

power of e. To begin, consider what happens if they put the deal on hold

and meet again in the next CM. Given the value function next period W 0
j ,

12Also, i could walk away and keep the idea, but if Re > Ri this is dominated trying to
meet in the CM. Note i cannot trade the idea for m̂e plus a promise of additional payment
in the next CM, since e will not honor the promise.
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the bargaining solution is:

max
p0
[W 0

e(m̂e � p0; Re)�W 0
e(m̂e; 0)]

�[W 0
i (m̂i + p

0; 0)�W 0
i (m̂i; Ri)]

1�� (4)

Since W 0
j is linear, W

0
e(m̂e � p0; Re) �W 0

e(m̂e; 0) = Re � �0p0 and W 0
i (m̂i +

p0; 0)�W 0
i (m̂i; Ri) = �

0p0 �Ri, so (4) reduces to:

max
p̂

�
Re � �0p0

�� �
�0p0 �Ri

�1�� (5)

This immediately yields p0 = [�Ri + (1� �)Re] =�0.

Now consider what happens in the DM this period. A di¤erence from

the situation analyzed above is that the threat points are no longer given by

the continuation values of not trading, but by the expected values of putting

the deal on hold,

W
0
e = W 0

e(m̂e � p0; Re) + (1� )W 0
e(m̂e; 0) (6)

W
0
i = W 0

i (m̂i + p
0; 0) + (1� )W 0

i (m̂i; Ri): (7)

Again using the linearity of W 0
j , the bargaining problem becomes:

max
p
[��0p+ �0p0 + (1� )Re]�[�0p� �0p0 � (1� )Ri]1�� (8)

A second di¤erence from the previous situation is that now we have the

constraint p � m̂e, since e cannot pay more than he has in the DM.

Suppose �rst that the constraint p � m̂e does not bind. Then it is simple

to show p = p0, the same as the solution in the CM next period. In this

case the agents settle immediately. Suppose now that m̂e < p0, which is

equivalent to Re � B(Ri) � �0m̂e��Ri
1�� (the label B stands for the fact that
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the constraint just binds). In this case e wants to pay m̂e and close the deal,

but i may prefer to put it on hold and try to meet in the next CM. In fact,

he prefers to trade now rather than put the deal on i¤W 0
i (m̂i+m̂e; 0) �W

0
i,

which simpli�es easily to Re � H(Ri) � �0m̂e�Ri(1�+�)
(1��) (the labelH stands

for the fact that the innovator is just willing to putting the deal on hold).

Taking z = �0m̂e as given for now, Figure 1 shows the possible outcomes

in (Ri; Re) space, partitioned into the following regions. Below the 45o line,

in region A1, there are no gains from trade and hence no trade. Above

the 45o line there are gains from trade, and several outcomes are possible.

Below Re = B(Ri), in A2, the constraint p � m̂e does not bind and there is

immediate trade. Above B and below Re = H(Ri), in A3, there is immediate

trade and e gets the idea for m̂e since i does not want to risk putting the

deal on hold. Above H, the deal is put on hold. This occurs when Ri and

Re are both high because: (i) then p0 is high; and (ii) when Ri is high there

is less downside risk for i in case they do not meet again.

Figure 1 about here.

We now describe the DM value function for e. We break the presentation

into parts by writing

Ve(m̂) = (1� �e)�W 0
e(m̂; 0) + �e�

5X
j=1

V je (m̂); (9)

where the �rst term is the expected value of no meeting, and for j = 1; :::5,

V je (m̂) is the expected value of a meeting with (Ri; Re) in region Aj of Figure
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1. To begin, integrate over region A1 to get

V 1e (m̂) =

1Z
0

RiZ
0

W 0
e(m̂; 0)dFe(RejRi)dFi(Ri);

which is the outcome when Re < Ri, which means no trade.

Now consider regions where Re > Ri. In A2,

V 2e (m̂) =

�0m̂Z
0

B(Ri)Z
Ri

W 0
e(m̂� p;Re)dFe(RejRi)dFi(Ri)

is the expected outcome when they trade at p � m̂. In A3,

V 3e (m̂) =

�0m̂Z
0

H(Ri)Z
B(Ri)

W 0
e(0; Re)dFe(RejRi)dFi(Ri)

is the expected outcome when they trade at m̂. And in A4 and A5,

V 4e (m̂) =

�0m̂Z
0

1Z
H(Ri)

W
0
edFe(RejRi)dFi(Ri)

V 5e (m̂) =

1Z
�0m̂

1Z
Ri

W
0
edFe(RejRi)dFi(Ri)

with W
0
e given in (6). We show in Appendix A how to reduce all of this to

Ve(m̂) = �W 0
e(m̂; 0) + �e��

�0m̂Z
0

B(Ri)Z
Ri

(Re �Ri)dFe(RejRi)dFi(Ri)

+�e�

�0m̂Z
0

H(Ri)Z
B(Ri)

(Re � �0m̂)dFe(RejRi)dFi(Ri) (10)

+�e��

�0m̂Z
0

1Z
H(Ri)

(Re �Ri)dFe(RejRi)dFi(Ri)

+�e��

1Z
�0m̂

1Z
Ri

(Re �Ri)dFe(RejRi)dFi(Ri):
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A similar exercise can be performed for i. We do not provide the details,

however, because it turns out that

Vi(m̂) = ��
0m̂+ v; (11)

where v does not depend on m̂. Intuitively, for i, neither the probability

of trade nor the terms of trade depend on his own money holdings (they

depend on the money on the other side of the market). So whatever money

i brings to the DM, he simply takes back to the next CM.

5 Equilibrium

We now combine the DM and CM to get equilibrium. The key condition

from the CM is the FOC for m̂, given by (3). All we need to do is insert the

derivative of the DM value function Vj to determine the choice of m̂j . For

j = i this is easy: by (11), @Vi=@m̂ = ��0, so (3) becomes

��+ ���0 � 0, = 0 if m̂ > 0:

As in standard in these models (see Lagos and Wright 2005), we only con-

sider equilibria where ���0 < �, and hence we conclude that m̂i = 0.

In case it is not clear, the reason we only consider equilibria satisfying this

condition is that when ���0 > � no equilibrium exists, and when ���0 = �

equilibrium is indeterminate. One way to understand this is to use the

Fisher equation: 1+ in = (1+ ir)�=�0, where in is the nominal interest rate,

ir the real rate, and �=�0 the in�ation rate between two meetings of the CM.

In this model, 1 + ir = 1=��, since preferences are quasi-linear. Hence the
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condition ���0 < � simply says that the nominal interest rate is positive.

To restate what we said above, in < 0 is inconsistent with equilibrium and

in = 0 implies equilibrium is indeterminate. Although we do not allow

in = 0, we do consider the limit as in ! 0, which is called the Friedman

rule. In any case we have m̂i = 0.

A similar exercise for j = e is less simple. First, in Appendix A, we

derive from (10)

@Ve=@m̂ = ��0
�
1 + `(�0m̂)

�
; (12)

where for any z = �0m̂ we de�ne l(z) as follows:

(i) if  > 0 and � < 1 then

`(z) � (1� )�e
zZ
0

z�Ri
2(1��)2F

0
e

h
z�Ri(1�+�)

(1��) jRi
i
dFi(Ri) (13)

��e
zZ
0

n
Fe

h
z�Ri(1�+�)

(1��) jRi
i
� Fe

h
z��Ri
1�� jRi

io
dFi(Ri);

(ii) if  = 0 then

`(z) � �eF
0
i (z)

1Z
z

(Re � z)dFe(Rejz) (14)

��e
zZ
0

n
1� Fe

h
z��Ri
1�� jRi

io
dFi(Ri);

(iii) � = 1 then

`(z) � (1� )�eF 0i (z)
1Z
z

(Re � z)dFe(Rejz): (15)

Obviously the reason for the di¤erent cases is that we have to be careful

about dividing by 0 in (13). In any case, `(z) is simply the expected marginal
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bene�t of having more cash in a meeting.13

Inserting (12) into (3), we get

��+ ���0
�
1 + `(�0m̂)

�
� 0, = 0 if m̂ > 0: (16)

Given any path for fMg, equilibria can be de�ned in terms of a path for f�g,

satisfying (16) plus some side conditions, but to simplify the discussion we

focus on steady state equilibria where the growth rate of the money supply

� and real balances z = �M are constant. Since m̂e = M 0 (entrepreneurs

hold all the money), again using the Fisher equation, (16) can be simpli�ed

in steady state to

`(z) � in, = in if z > 0: (17)

Note that in this condition in is exogenous �it is a policy variable.14

From (16), a nonmonetary steady state with � = z = 0 always exists.

A monetary steady state exists at any z > 0 such that `(z) = in and,

in addition, `0(z) = @2Ve=@m̂
2 � 0, which is obviously necessary because

otherwise m̂e yields a minimum rather than a maximum in the CM problem.

For the record we formalize this as:

De�nition: A monetary steady state equilibrium is a z > 0 such that

`(z) = in and `0(z) � 0.
13Consider  = 0. The �rst term in (14) is the probability of meeting i with idea

Ri = z, which is F 0i (z), times the net gain for e from buying the idea, Re � z, integrated
over Re. And the second term is the probability of (Ri; Re) 2 A3 times �1, since in in
A3 the constraint binds and a marginal dollar is simply taken by i. A similar intuition
applies to (13), except things are complicated by the fact that sometimes deals are put on
hold. Notice also that @Ve=@m̂ = [1 + `(z)] @Vi=@m̂, since for e the return on m̂ includes
a liquidity component that is not there for i. See Lagos (2005) for an extensive analysis
of similar equations in a model of liquidity.

14The central bank can either set in directly and let the money growth rate � adjust,
or they can �x � and �=�0 = 1 + � will pin down in through the Fisher equation.
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Once we know z, the other endogenous variables can be easily recovered.

Hence, we concentrate on �nding solutions to `(z) = in with `0(z) � 0.

Consider the generic case,  2 (0; 1) and � 2 (0; 1). In the Appendix we

verify that `(0) = 0 and limz!1 `(z) = 0. Under standard conditions, ` is

continuous and `(z) > 0 for some z > 0.15 Hence there exist a solution to

`(z) = in i¤ in is not too big, and these solutions generically come in pairs.

For each pair of solutions, the higher z constitutes a monetary equilibrium,

while the lower one does not, because it violates the second order condition

`0(z) � 0. The main point is that a steady state monetary equilibrium exists

i¤ in is not too big. Figure 2 shows two examples. The �rst panel is drawn

assuming Fi and Fe are independent lognormal distributions; the second

assuming they are independent uniform distributions.

Figure 2 about here.

For completeness, consider the case where  =2 (0; 1) or � =2 (0; 1). The

results are essentially the same when � = 1 or  = 0, except that we may have

`(0) > 0, but this is irrelevant for the economics.16 When  = 1, however,

things are quite di¤erent, because then `(z) = 0 for all z and the only

equilibrium is the nonmonetary equilibrium, z = 0. Given in > 0, if  = 1

then e has no demand for liquidity, since agents can always raise funds in

the next CM without fear that a deal will fall through. The friction  < 1 is

15Continuity is not not necessarily needed (for existence e.g.) but it makes the presen-
tation easier.

16 If `(0) > 0, as opposed to `(0) = 0, we may lose the �rst solution to `(z) = in, but
this is irrelevant because this solution is not an equilibrium, due to the fact that it violates
the second order condition `0(z) � 0.
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crucial. Also, perhaps surprisingly, when � = 0 a monetary equilibrium can

still exist, contrary to the typical search and bargaining model. Usually when

� = 0 money cannot be valued because the buyer gets 0 surplus from trade.

However, here e still gets positive surplus in region A3, where the constraint

p � m̂ is binding. This is because in A3 there is really no bargaining: i

simply swaps his idea for m̂ i¤ �0m̂ > Ri.17

In any case, when  < 1, given Re > Ri, i and e want to trade, but not

every deal can get done in the next CM. Without liquidity, with probability

1� the less e¢ cient agent i will implement the project. It is clear what the

role for money is here: if e had su¢ cient cash on hand in the DM, they could

close the deal then and there and not risk it falling through. With money it

is less likely that the less e¢ cient agent will have to implement the project.

Yet money does not overcome the frictions in this market completely: even

in the monetary equilibrium, however, not all potentially pro�table deals

get done.

The optimal monetary policy minimizes the probability that deals fall

through. This requires e to carry su¢ cient liquidity to close deals with

Re > Ri with probability 1. By running the Friedman rule, in = 0, monetary

policy can make liquidity essentially free. This minimizes the probability

that deals fall through, but notice that it does not necessarily achieve the

�rst best outcome where agents trade whenever Re > Ri, unless � = 1. It

is obvious from Figure 2 that when � < 1 the equilibrium has z too low to

17The indivisibility of the idea is what drives this result; it is not true when we introduce
lotteries below.
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yield the �rst best even when in = 0. It is also obvious from (15) that when

� = 1 we do get the �rst best at in = 1.

Summarizing the results of this section:

Proposition: A nonmonetary equilibrium always exists. A monetary equi-

librium exists i¤ in is not too big. In any monetary equilibrium, @z=@in � 0.

Monetary equilibrium yields the �rst best outcome i¤ � = 1 and in = 0.

6 Extensions

6.1 An Explicit Example

Consider the case where Ri = R with probability 1, while for now Fe(�) is

general (but of course we do not need to condition on Ri explicitly since it

is degenerate). There are two relevant cases to consider: z < R and z > R.

In the former case z < R, there are essentially only two outcomes, (Ri; Re)

is either in A1 or A5, and18

Ve(m̂) = �W
0
e(m̂; 0) + �e��

1Z
R

(Re �R)dFe(Re):

In the other case z < R, (Ri; Re) may be in A1, A2, A3 or A4, and hence

Ve(m̂) = �W 0
e(m̂; 0) + �e��

B(R)Z
R

(Re �R)dFe(Re)

+�e�

H(R)Z
B(R)

(Re � �0m̂)dFe(Re) + �e��
1Z

H(R)

(Re �R)dFe(Re):

18Notice that having a little more money does not improve one�s trading prospects in
this case, because any pro�table deal will be put on hold anyway.
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A little calculus yields V 0e = ��
0 [1 + `(z)] where `(z) = 0 if z < R, while

if z > R

`(z) =
�e(1� )(z �R)
2(1� �)2 F 0e [H(R)]� �e fFe [H(R)]� Fe [B(R)]g :

The �rst term is gain from relaxing the probability of just hitting the H

condition, times the gain to closing the deal now rather than taking a chance

on meeting later; the second term is the loss to ending up in region A3, where

any additional cash is simply taken by i. It is clear that `(R) = 0, and that

`(z) > 0 for some z > R if F 0e is continuous and Fe(R) < 1. Hence there is

a monetary equilibrium as long as in is not too high.

Suppose Re is uniform on [0; 1]. Straightforward algebra yields

`(z) =

8>>><>>>:
0 z < R

�e(1�)(1�+�)(z�R)
2(1��)2 R < z < zH

�e(z��R�1+�)
1�� zH < R < zB
0 R > zB

where

zH = (1� �) + (1�  + �)R and zB = 1� � + �R

solve H(zH) = 1 and H(zB) = 1 (this is a relevant value because 1 is the

upper bound of Re). As seen in the �rst panel of Figure 3, `(z) is piece-wise

linear with a discontinuity at zH .

Figure 3 about here.

Hence, for any in < {̂n, where

{̂n =
�e(1� )(1� � + �)(1�R)

(1� �) ;
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there is a unique monetary equilibrium at z = zH . At z = zH � " the

marginal value of additional liquidity exceeds in, at z = zH + " marginal

value is actually negative, and so e chooses z = zH . This example is nice

because it is easy to solve for everything explicitly, but it has the property

that the equilibrium z is insensitive to in (up to {̂n). The second panel

in Figure 3 shows the case where everything is the same except Re is log-

normal; here `(z) is continuous and it is clear that the equilibrium z is

smoothly decreasing in in.

6.2 Lotteries

When ideas are indivisible, based on previous work in monetary theory and

elsewhere, one might think that agents should be allowed to trade using

lotteries.19 Appendix C shows that lotteries are never be used in the CM,

because even if ideas are indivisible, when there is no liquidity constraint

the bargaining problem is still convex; but they are used in the DM when

the constraint p � m̂e binds. Appendix C also shows that deals are not put

on hold if we have lotteries: when the constraint p � m̂e binds, e gives i all

his money in exchange for a probability � 2 (0; 1) of transferring the idea. If

e does not win this lottery he does not get the idea, but if they meet again

in the next CM he gets it p0 = [�Ri + (1� �)Re] =�0. Hence e potentially

pays twice: once for the lottery in the DM, and again if he loses the lottery

but meets i in the next CM.

19The analysis here follows Berentsen, Molico and Wright (2002), although that paper
only considers the simple case where agents are restricted to m̂ 2 f0; 1g.
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The payo¤ for e from this lottery is

�W 0
e(m̂e � p;Re) + (1� �)[W 0

e(m̂e � p� p0; Re) + (1� )W 0
e(m̂e � p; 0)];

and his threat point is W 0
e(m̂e� p0; Re)+ (1� )W 0

e(m̂e; 0). By linearity of

W 0
e, his surplus is ��0p+�(1� )Re+��0p0. Similarly, the surplus for i is

�0p� �(1� )Ri � ��0p0. Hence the bargaining problem reduces to

max
p;�

�
��0p+ �(1� )Re + ��0p0

�� �
�0p� �(1� )Ri � ��0p0

�1��
subject to the constraints p � m̂e and � � 1 (as well as nonnegativity, but

this will not be binding as long as Re > Ri).

Ignoring the constraints, the FOC wrt p and � are

0 = �
�
�0p� �(1� )Ri � ��0p0

�
(18)

�(1� �)
�
��0p+ �(1� )Re + ��0p0

�
0 = �

�
�0p� �(1� )Ri � ��0p0

� �
(1� )Re + �0p0

�
(19)

�(1� �)
�
��0p+ �(1� )Re + ��0p0

� �
(1� )Re + �0p0

�
These cannot both hold when Re > Ri; hence we cannot have p < m̂e and

� < 1. If � = 1 and p < m̂e then (18) implies p = p0. If p = m̂e and � < 1

then (19) implies � = 
�0m̂e, where


 =
(� +  � 2�)Re + (1� � �  + 2�)Ri

[(1� �)Re + �Ri][(1� �)Re + (1�  + �)Ri]
:

Appendix C veri�es that @
=@Ri < 0 and @
=@Ri < 0, and that � =


�0m̂e < 1 i¤ Re > B(Ri), where B is the same as in the model without

lotteries. Appendix C also shows that @�=@� > 0 and @�=@ < 0.

24



Figure 4 about here.

All of this implies that the outcome is as depicted in Figure 4, which

shows the bargaining solution (p; �) as a function of Re for a given Ri,

assuming Ri < �0m̂e, which guarantees � = 1 and p < m̂e when Re = Ri.

As Re increases, p increases while � stays at 1, until p hits m̂e, after which

� decreases while p stays at m̂e. The main impact of introducing lotteries is

to allow trade to potentially occur in what was region A4 [A5 in Figure 1,

where previously the deal was necessarily put on hold. However, the lottery

only allows the idea to be transferred with probability �; with probability

1�� the agents can only hope to reconvene next period to exhaust the gains

from trade. And note that it is still the best deals that have the greatest

risk of falling through; indeed, �! 0 as Re !1.

One can write the DM value function with lotteries in a way similar to

(10), and di¤erentiate to get V 0e (m̂) as before. The same method leads to an

equilibrium condition with the same form, in = `(z), except `(z) is slightly

di¤erent. For the record, with lotteries we have

`(z) � �e

zZ
0

n
�(1�)(z�Ri)

(1��)2 � �(1�)(z�Ri)
(1��)2[z+Ri(1�)]

o
F 0e [B(Ri)jRi] dFi(Ri)

+�e

zZ
0

1Z
B(Ri)

�(1� )(Re �Ri)
(1� �)Re + (1�  + �)Ri

dFe(RejRi) dFi(Ri)

+�e

1Z
z

1Z
Ri

�(1� )(Re �Ri)
(1� �)Re + (1�  + �)Ri

dFe(RejRi) dFi(Ri):
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6.3 Non-rival Ideas

One thing potentially true about (some) good ideas is that I can let you use

it without reducing its value to me. Thus, assume now that an idea can

be implemented by the innovator and the entrepreneur simultaneously. For

example, if I give you the idea for a very good restaurant, you can open up

for business in a di¤erent part of town, and we do not compete, while in

out baseline model there is only room for one. Of course intermediate cases

are also interesting, but for the sake of example here we take up the purely

non-rival case.

Assume that there is a �rst mover advantage, in which if only one agent

decides to implement the idea, the other agent will get zero return from

entering the market late. As before, if the idea is not implemented, the

innovator receives an i.i.d update of the return every time he enters the

decentralized market. Thus, innovators will implement their idea in every

period. By consequence of the assumptions above, every time an entrepre-

neur gets a project he will also choose to implement it right away.

Here we will highlight the main di¤erences from the original model. Be-

cause of the non-rivalry assumption, even when Re < Ri there may be gains

from trade. The bargaining problems are modi�ed as follows. Indeed, as

long as Re > 0, e would be willing to pay something for the idea. The

bargaining problem in the next CM becomes:

max
p0

�
Re � �p0

�� �
�p0
�1��
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Solving this, we get �p0 = (1� �)Re. The DM bargaining problem becomes:

max
p
[��p+ �p0 + (1� )Re]�[�p� �p0]1��

subject to p � m. The solution is

�p = min f�m; (1� �)Reg :

The constraint m � p binds i¤ Re � B = �m
1�� , and i prefers to put the

deals on hold rather than trade for m now rather i¤Re � H = �m
(1��) . Also,

we have

Ve(m) = (1� �e)�We(m; 0) + �e�
3X
j=1

V je (m);

where the �rst term is the expected value of not meeting someone and going

to the next CM with (m; 0), and V je (m) is the expected value of a meeting

when (Ri; Re) falls in region �Aj of Figure 5, j = 1; 2; 3. Notice there are

only three relevant regions in this version of the model.

Figure 5 about here.

In region �A1

V 1e (m) =

1Z
0

BZ
0

We(m� p;Re)dFe(RejRi)dFi(Ri)

is the expected outcome of a meeting where p � m. In �A2,

V 2e (m) =

1Z
0

HZ
B

We(0; Re)dFe(RejRi)dFi(Ri)
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is the expected outcome when p > m, but they trade at m rather than

putting the deal on hold. Finally, in �A3,

V 3e (m) =

1Z
0

1Z
H

W edFe(RejRi)dFi(Ri)

is the expected return to putting a deal on hold.

Simplifying, we get

Ve(m)

�
= We(m; 0) + �e�

1Z
0

BZ
0

Re dFe(RejRi)dFi(Ri)

+�e

1Z
0

HZ
B

(Re � �m) dFe(RejRi)dFi(Ri)

+�e�

1Z
0

1Z
H

Re dFe(RejRi)dFi(Ri):

The rest of the analysis is similar to the baseline model. Taking the deriva-

tive, e.g., we get
@Ve
@m

= �� [1 + l(z)] ;

where for any z

l(z) � (1� )�e
1Z
0

(1�)
2(1��)2 z F

0
e

h
z

(1��) jRi
i
dFi(Ri) (20)

��e
1Z
0

n
Fe

h
z

(1��) jRi
i
� Fe

h
z
1�� jRi

io
dFi(Ri)

as long as  > 0 and � < 1.

6.4 Ideas as Intermediate Inputs

To Be Added.
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7 Conclusion

To Be Added.

Appendix A: Derivation of (10)-(15)

First combine the expressions for V je (m0), j = 1; :::5, to write (9) as

Ve(m̂) = (1� �e)�W 0
e(m̂; 0) + �e�

Z
A1

W 0
e(m̂; 0)

+�e�

Z
A2

W 0
e(m̂� p0; Re) + �e�

Z
A3

W 0
e(0; Re) + �e�

Z
A4[A5

W
0
e

where
R
Aj
(�) denotes the integral over region Aj , and it is understood thatR

(�) =
R R
(�)dFe(RejRi)dFi(Ri). Using the linearity of W 0

e, we can simplify

this to

Ve(m̂) = �W 0
e(m̂; 0) + �e�

Z
A2

(Re � �0p0)

+�e�

Z
A3

(RE � �0m̂) + �e�
Z

A4[A5

(Re � �0p0):

Inserting p0, we have

Ve(m̂) = �W 0
e(m̂; 0) + �e��

Z
A2

(Re �Ri)

+�e�

Z
A3

(Re � �0m̂) + �e��
Z

A4[A5

(Re �Ri)

Inserting the limits for the integrals over the various regions Aj yields (10).

We now show how to di¤erentiate this to get the expressions for Z(�) for

the various cases. When  > 0 and � < 1, by Leibniz Rule, the derivatives
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of the integrals in the di¤erent regions are:

@

@m̂

Z
A2

(�) = �0
�0m̂Z
0

�
�0m̂�Ri

�
(1� �)2 F 0e[B(Ri)jRi]dFi(Ri)

@

@m̂

Z
A3

(�) = �0
�0m̂Z
0

(�0m̂�Ri)(1�  + �)
2(1� �)2 F 0e[H(Ri)jRi]dFi(Ri)

��0
�0m̂Z
0

�(�0m̂�Ri)
(1� �)2 F 0e[B(Ri)jRi]dFi(Ri)

��0
�0m̂Z
0

H(Ri)Z
B(Ri)

dFe(RejRi)dFi(Ri)

@

@m

Z
A4

(�) = �0F 0i (�
0m̂)

1Z
�0m̂

(Re � �0m̂)dFe(Rej�0m̂)

��0
�0m̂Z
0

�0m̂�Ri
2(1� �)2F

0
e[H(Ri)jRi]dFi(Ri)

@

@m̂

Z
A5

(�) = ��0F 0i (�0m̂)
1Z

�0m̂

(Re � �0m̂)dFe(Rej�0m̂)

Substituting these into @V=@m̂ and simplifying yields (13).

In the case  = 0, still maintaining � < 1, the results similar except

that region A4 vanishes, and where the above derivative in region A3 is not
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correct because H(Ri) =1. In this case, the correct derivative in A3 is:

@

@m̂

Z
A3

(�) = �0F 0i (�
0m̂)

1Z
B(Ri)

(Re � �0m̂)dFe(Rej�0m̂)

�
�0m̂Z
0

�(�0m̂�Ri)
(1� �)2 F 0e[B(Ri)jRi]dFi(Ri)

��0 �(�
0m̂�Ri)
(1� �)2

�0m̂Z
0

1Z
B(Ri)

dFe(RejRi)dFi(Ri)

Following the procedure that previously gave us (13) now leads to (14).

When � = 1, B(Ri) = H(Ri) =1 both become vertical at z, and A3 as

well as A4 vanish. In this case

@

@m̂

Z
A2

(�) = �0F 0i (Ri)
1Z
0

�
Re � �0m̂

�
dFe(Rejz)

@

@m̂

Z
A5

(�) = ��0F 0i (Ri)
1Z
0

�
Re � �0m̂

�
dFe(Rejz)

Following the same procedure now leads to (15).

Appendix B: Existence

Here we derive some properties of l(z) and use them to show that a

monetary steady state exists i¤ in is not too big, assuming for simplicity

a continuous joint density for (Ri; Re) and ERj < 1. We claim �rst that

limz!1 l(z) = 0. Consider the generic case  > 0 and � < 1, and begin by
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rewriting (13) as l(z) = �e
P
j Ij(z), where

I1(z) � 1�
2(1��)2

zZ
0

zF 0e [H(Ri)jRi] dFi(Ri)

I2(z) � � 1�
2(1��)2

zZ
0

RiF
0
e [H(Ri)jRi] dFi(Ri)

I3(z) � �
zZ
0

Fe [H(Ri)jRi] dFi(Ri)

I4(z) �
zZ
0

Fe [B(Ri)jRi] dFi(Ri):

We claim each Ij(z)! 0 as z !1.

Consider I1(z), and suppose that
R1
0 zF 0e [H(Ri)jRi] dFi(Ri)9 0 as z !

1. Making a change of variable using Re = z�Ri(1�+�)
(1��) = H(Ri) = H,

this is equivalent to
1Z
0

[(1� �)H +Ri(1�  + �)]F 0e(HjRi)dFi(Ri)9 0 as H !1:

Integrating with respect to H over (0;1), this implies

1 =

1Z
0

1Z
0

[(1� �)H +Ri(1�  + �)]F 0e(HjRi)dFi(Ri)dH

= (1� �)
1Z
0

1Z
0

HF 0e(HjRi)dFi(Ri)dH

+(1�  + �)
1Z
0

1Z
0

RiF
0
e(HjRi)dFi(Ri)dH

But this implies either ERe = 1 or ERi = 1, a contradiction. Hence

I1(z) ! 0 as z ! 1. Similar arguments can be used to show Ij(z) ! 0 as

z !1, j = 2; :::4. Hence `(z)! 0 as z !1 when  > 0 and � < 1.
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The same basic approach works when  = 0 and � < 1. Rewrite (14) as

`(z) =
P
j Ij(z) where now I1(z) � F 0i (z)

R1
z RedFe(Rejz) and so on. For

example, consider I1(z), and suppose F 0i (z)
R1
0 RedFe(Rejz)9 0. Integrat-

ing with respect to z, this implies the contradiction

ERe =

1Z
0

F 0i (z)

1Z
0

RedFe(Rejz)dz =1:

Similar arguments show Ij(z)! 0 as z !1, j = 2; :::4. Hence `(z)! 0 as

z !1 when  = 0. The same basic approach works for � = 1. However, to

ease the presentation somewhat, for the rest of the discussion we focus on

the generic case  > 0 and � < 1 and leave other cases as exercises.

The next thing we prove is that, in the generic case, `(R) = 0 and `(z) >

0 for some z in the neighborhood of R, where R = inffRjF 0i (R)F 0e(RjR) >

0g. For this we assume that R < 1, since otherwise the DM shuts down.

For the �rst result, notice that

`(R) = 1�
2(1��)2

RZ
0

(R�Ri)F 0e[H(Ri)jRi]dFi(Ri)

�
RZ
0

fFe[H(Ri)jRi]� Fe[B(Ri)jRi]g dFi(Ri)

= 1�
2(1��)2 (R�R)F

0
e[H(R)jR]F 0i (R)

�fFe[H(R)jR]� Fe[B(R)jR]gF 0i (R) = 0;

because H(R) = B(R) = R when z = R.
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Now consider

`0(R) = 1�
2(1��)2

RZ
0

n
F 0e[H(Ri)jRi] +

R�Ri
(1��)F

00
e [H(Ri)jRi]

o
dFi(Ri)

� 1
(1��)

RZ
0

�
F 0e[H(Ri)jRi]� F 0e[B(Ri)jRi]

	
dFi(Ri)

= 1�
2(1��)2

n
F 0e(RjR) +

R�R
(1��)F

00
e (RjR)

o
F 0i (R)

� 1
(1��)

�
F 0e(RjR)� F 0e(RjR)

	
F 0i (R)

= 1�
2(1��)2F

0
e(RjR)F 0i (R) [1� (1� �)] :

By de�nition of R, l0(R + ") > 0 for some " > 0. Hence, `(z) > 0 for some

z near R. The combination of the results in this Appendix, `(z) > 0 for z

near R and limz!1 `(z) = 0, tells us that for small in there always exists a

solution to `(z) = in with `0(z) < 0, and for big in there does not.

Appendix C: Lotteries

First, we verify that agents never use lotteries in the CM. Assume e pays p0

to i in exchange for a lottery that gives e the idea with probability �0 (the

possibility that e pays a random amount is easily ruled out as in Berentsen

et al. 2002). The payo¤ to e is �0W 0
e(m̂e � p0; Re) + (1� �0)W 0

e(m̂e � p0; 0)

and the payo¤ to i is �0W 0
i (p

0; 0)+(1��0)W 0
i (p

0; Ri), while the threat points

are as before. Using the linearity of W 0
j , the analogue of (5) is:

max
p0;�0

�
�0Re � �0p0

�� �
�0p0 � �0Ri

�1��
Maximizing wrt p0, we get �0p0 = �0 [�Ri + (1� �)Re]. Using this, we
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can reduce the derivative wrt �0 to

(1� �)(Re �Ri)(�0Re � �0p0):

As long as Re > Ri and �0Re > �0p0, both of which are necessary for trade,

this is strictly positive for all �0 > 0. Hence, for a maximum �0 = 1.

Returning to the DM, the next claim to verify is that pro�table deals are

never put on hold when we have lotteries. The usual calculation indicates

that i puts the deal on hold i¤ Re > H(Ri), except that with lotteries we

have H(Ri) =
�0m̂�Ri�(1�+�)

�(1��) . Substituting � from the bargaining solution

into H, it is easy to show Re > Ri implies Re < H(Ri), establishing the

claim.

Next we verify @
=@Rj < 0, j = i; e. Considering i (the other case is

symmetric), straightforward algebra yields @
=@Ri ' �c1R2e � c2RiRe �

c3R
2
i , where ' means �equal in sign� and c1, c2 and c3 are functions of

(�; ). One can show c1, c2 and c3 are positive, the only tricky case being

c1, which is a complicated polynomial in � and . Consider minimizing c1

over (�; ). First we checked that c1 > 0 on the boundary of [0; 1]2, then

we checked that it is positive at every possible critical point in [0; 1]2. This

establishes the claim.

Next we verify � < 1 i¤ Re > B(Ri). This actually follows easily from

inspection of Figure 4. Suppose we �x Ri and increase Re starting at Re =

Ri. Then we switch from � = 1 to � < 1 at some point, say ~Re = ~Re(Ri).

Since this is the same point at which switch from p = [�Ri + (1� �)Re] =�0 <

m̂ to [�Ri + (1� �)Re] =�0 > m̂, we conclude that this point is ~Re(Ri) =
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�m̂��Ri
1�� , which tells us that ~Re = B(Ri).

Finally, we verify that @�=@� > 0 and @�=@ < 0. The �rst derivative

is simple, the second less so. It is easy to show @�=@ ' �, where

� � �(1�+2�)R3i+(1�3+6�)ReR2i+(1+3�6�)R2eRi�(1�+2�)R3e:

Notice that  = 0 implies � < 0. Can � ever be positive? Suppose we try to

maximize it. Since @�=@� = 2(Re�Ri)3 > 0, this means, as long as  > 0

which is must be if we are to have any hope of � > 0, we must set � = 1.

Then @�=@ = (Re � Ri)3(2� � 1), which is also positive given � = 1, and

we must also set  = 1. Hence, the unique maximum occurs at  = � = 1,

where � = �2Ri(Re �Ri)2 < 0. This completes the argument.
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Graphs

Figure 1: Meeting outcomes for (Ri,Re).
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Figure 2: Plots for independent Lognormal and Uniform distribution.

43



Figure 3: Plots for Re uniform and lognorm and Ri degenerate.
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Figure 4: Lottery outcomes given z and Ri.
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Figure 5: Meeting outcome for Non-rivalrous ideas.
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