Oil Shocks and Monetary Policy in an Estimated DSGE for a Small Open Economy

Juan Pablo Medina Central Bank of Chile Claudio Soto Central Bank of Chile

July 2006 Bank of Canada Workshop on Commodity Price Issues

The Paper

- Develops a DSGE model for a small open economy that explicitly introduces oil, both in consumption and in the production technology
- Key parameters of the model are estimated by a Bayesian approach
- The estimated model is utilized to analyze the counterfactual effects of an oilprice shock under different monetary frameworks
- Methodological approach should "alleviate" Luca's critique

Main Results

- An oil-price shock has a contractionary effect on output. An increase in the real price of oil by 13% (one standard deviation) leads to a fall in output of about 0.5% and an increase in inflation of about 0.4%
- The contractionary effect of the oil shock is due mainly to the endogenous tightening of the monetary policy
- A policy that counteracts wages rigidities delivers a aggregate real allocation that is closer to the second-best outcome at a cost of much higher inflation
- A policy rule that targets CPI inflation delivers an outcome that is very close to the one obtained under *core* inflation targeting. If the central bank tries to fully stabilize inflation there would be a considerably decrease in output

Model's Main Elements

- Small open economy setup
- Prices and wages are optimally adjusted infrequently, and they are partially indexed to past inflation
- Domestic households consume three types of goods: Home goods, Foreign goods, and Oil
- Consumption exhibits habit formation
- Each household has a monopolistic power over the type of labor service it provides
- Firms produce with a technology that combines labor and Oil in a flexible way
- Monetary policy is modelled as Taylor type rule

Households

• Representative household maximizes:

$$\sum_{t=0}^{\infty} \beta^t \left[log \left(C_t(j) - h(1+g_y)C_t \right) + \frac{a}{\mu} \left(\frac{\mathcal{M}_t(j)}{P_t} \right)^{\mu} - \frac{\zeta_t}{1+\sigma_L} l_t(j)^{1+\sigma_L} \right]$$

• Consumption bundle:

$$C_{t} = \left[\delta^{\frac{1}{\eta}}(O_{C,t})^{\frac{\eta-1}{\eta}} + (1-\delta)^{\frac{1}{\eta}}(Z_{t})^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

• Core Consumption:

$$Z_{t} = \left[\gamma^{\frac{1}{\theta}} \left(C_{F,t} \right)^{\frac{\theta-1}{\theta}} + (1 - \gamma)^{\frac{1}{\theta}} \left(C_{H,t} \right)^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}$$

Price Indices

• Consumer price index (CPI)

$$P_{t} = \left[\delta P_{O,t}^{1-\eta} + (1-\delta)P_{Z,t}^{1-\eta}\right]^{\frac{1}{1-\eta}}$$

• Core consumption price index

$$P_{Z,t} = \left[\gamma P_{F,t}^{1-\theta} + (1-\gamma) P_{H,t}^{1-\theta} \right]^{\frac{1}{1-\theta}}$$

Wages Setting

- Households face a $(1 \phi_L)$ probability of re-optimizing wages
- If re-optimization is allowed, they chose $W_t(j)$ to maximize

$$E_{t} \left\{ \sum_{i=0}^{\infty} \phi_{L}^{i} \Lambda_{t,t+i} \left(\frac{W_{t}(j) \Gamma_{W,t}^{i}}{P_{t+i}} - \zeta_{t} MRS_{t+i} \right) l_{t+i}(j) \right\}$$

• If re-optimization is not allowed between t and t+i then wage is set to

$$W_{t+i}(j) = \Gamma_{W,t}^{i} W_{t} = \prod_{j=1}^{i} (1 + \pi_{t+j-1})^{\xi_{L}} (1 + \overline{\pi}_{t+j})^{1-\xi_{L}} (1 + g_{y}) W_{t}$$

• Linearized real wages evolution

$$\frac{1 + \nu_L \phi_L + \sigma_L \epsilon_L (\phi_L + \nu_L)}{1 + \sigma_L \epsilon_L} \widehat{wr}_t - \phi_L \widehat{wr}_{t-1} - \nu_L E_t \widehat{wr}_{t+1} = \frac{(1 - \nu_L)(1 - \phi_L)}{1 + \sigma_L \epsilon_L} \widehat{mrs}_t - (\phi_L + \nu_L \xi_L) \widehat{\pi}_t + \phi_L \xi_L \widehat{\pi}_{t-1} + \nu_L E_t \widehat{\pi}_{t+1} + \widehat{\zeta}_t$$

Firms

• Technology

$$Y_{H,t}(z_H) = A_{H,t} \left[(1 - \alpha)^{\frac{1}{\omega}} \left(L_{H,t}(z_H) \right)^{1 - \frac{1}{\omega}} + \alpha^{\frac{1}{\omega}} \left(O_{H,t}(z_H) \right)^{1 - \frac{1}{\omega}} \right]^{\frac{\omega}{\omega - 1}}$$

• Real marginal cost

$$\frac{MC_{H,t}}{P_t} = A_{H,t}^{-1} \left[(1 - \alpha) \left(\frac{W_t}{P_t} \right)^{1 - \omega} + \alpha \left(\frac{P_{O,t}}{P_t} \right)^{1 - \omega} \right]^{\frac{1}{1 - \omega}}$$

Price Setting

- \bullet A firm faces a $(1 \phi_H)$ probability of re-optimizing its price
- ullet If re-optimization is allowed firms chose $P_{H,t}^{op}(z_H)$ to maximize

$$\sum_{i=0}^{\infty} \phi_{H}^{i} E_{t} \left\{ \Lambda_{t,t+i} \frac{\Gamma_{H,t}^{i} P_{H,t}^{op}(z_{H}) - M C_{H,t+i}}{P_{t+i}} Y_{H,t+i}(z_{H}) \right\}$$

• If re-optimization is not allowed between t and t+i then price is set to

$$P_{H,t+i}(z_H) = \Gamma_{H,t}^i P_{H,t} = \prod_{j=1}^i \left(1 + \pi_{H,t+j-1}\right)^{\xi_H} \left(1 + \overline{\pi}_{t+j}\right)^{1-\xi_H} P_{H,t}$$

• Linearized Phillips curve

$$\widehat{\pi}_{H,t} = \frac{(1 - \phi_H)(1 - \beta\phi_H)}{\phi_H(1 + \beta\xi_H)} \widehat{mc}_t + \frac{\beta}{1 + \beta\xi_H} E_t \widehat{\pi}_{H,t+1} + \frac{\xi_H}{1 + \beta\xi_H} \widehat{\pi}_{H,t-1}$$

Oil Price and Exogenous Processes

• Domestic currency real Oil price

$$\widehat{pr}_{O,t} = \widehat{rer}_t + \widehat{pr}_{O,t}^* + \widehat{\psi}_t$$

• Exogenous processes

$$\widehat{pr}_{O,t}^* = \rho_o \widehat{pr}_{O,t-1}^* + \varepsilon_{o,t}$$

$$\widehat{\psi}_t = \rho_\psi \widehat{\psi}_{t-1} + \varepsilon_{\psi,t}$$

$$\widehat{a}_{H,t} = \rho_a \widehat{a}_{H,t-1} + \varepsilon_{a,t}.$$

$$\widehat{\zeta}_t = \rho_\zeta \widehat{\zeta}_{t-1} + \varepsilon_{\zeta,t}$$

$$\widehat{\pi}_t^* = \rho_{\pi^*} \widehat{\pi}_{t-1}^* + \varepsilon_{\pi^*,t}$$

$$\widehat{y}_{S,t} = \rho_S \widehat{y}_{S,t-1} + \varepsilon_{S,t}$$

$$\widehat{c}_t^* = \rho_c \widehat{c}_{t-1}^* + \varepsilon_{c^*,t}$$

$$\widehat{i}_t^* = \rho_i \widehat{i}_{t-1}^* + \varepsilon_{i^*,t}$$

Output

• Gross output in Home goods sector

$$\widehat{y}_{H,t} = \widehat{a}_{H,t} + (1 - \alpha)\,\widehat{l}_t + \alpha\widehat{o}_{H,t}$$

• Gross domestic product (GDP)

$$\widehat{y}_t = \frac{Y_H}{Y} (1 - \alpha) \widehat{l}_t + \frac{Y_H}{Y} \left(\alpha - \frac{O_H}{Y_H} \right) \widehat{o}_{H,t} + \frac{Y_H}{Y} \widehat{a}_{H,t} + \frac{Y_S}{Y} \widehat{y}_{S,t}$$

Monetary Policy

• Monetary policy rule

$$\widehat{r}_t = \rho_i \widehat{r}_t + (1 - \rho_i) \varpi_x g_{y,t} + (1 - \rho_i) \varpi_\pi (\pi_t - \overline{\pi}_t) + \nu_t$$

Empirical Methodology

- Bayesian approach
- Log-likelihood function for the solved model is evaluated using the Kalman filter
- Mode of the posterior is obtained with a standard optimization routine
- Posterior distribution, $\mathbf{p}\left(\vartheta\mid\mathcal{Y}^{T}\right)$, is constructed using the Metropolis-Hasting algorithm, where

$$\mathbf{p}\left(\vartheta \mid \mathcal{Y}^{T}\right) = \frac{L(\vartheta \mid \mathcal{Y}^{T})\mathbf{p}\left(\vartheta\right)}{\int L(\vartheta \mid \mathcal{Y}^{T})\mathbf{p}\left(\vartheta\right) d\vartheta}$$

• Observable variables: $\mathbf{y}_t = \{\widehat{y}_t, \widehat{\pi}_{Z,t}, \widehat{r}_t, \Delta \widehat{e}_t, \widehat{rer}_t, \widehat{wr}_t, \widehat{l}_t, \widehat{o}_t, \widehat{pr}_{O,t}^*\}$

Table 1: Prior Densities

Param.	Description	Density	mean/moda	sd/df	90%	interval
σ_L	Inv. labor elasticity	Inverse Gamma	1.00	3.00	0.64	4.89
h	Habit coefficient	Beta	0.50	0.25	0.10	0.90
ϕ_H	Price rigidity	Beta	0.75	0.05	0.66	0.83
ϕ_L	Wage rigidity	Beta	0.75	0.05	0.66	0.83
θ	H/F elast. substit.	Inverse Gamma	1.00	3.00	0.64	4.89
η^*	Elast. frgn demand	Inverse Gamma	1.00	3.00	0.64	4.89
ϱ	Elast. risk. premium	Inverse Gamma	0.10	4.00	0.06	0.37
ξ_L	Weight past inflation	Beta	0.50	0.25	0.10	0.90
ξ_H	Weight past inflation	Beta	0.50	0.25	0.10	0.90
η	Core/oil elast. subst.	Inverse Gamma	0.20	4.00	0.13	0.73
ω	Labor/oil elasticity	Inverse Gamma	0.20	4.00	0.13	0.73
$ ho_i$	AR policy rule	Beta	0.75	0.20	0.35	0.99
$arpi_\pi$	Inf. weight pol. rule	Normal	0.75	0.15	0.50	1.00
w_x	Out. weight pol. rule	Normal	0.50	0.15	0.25	0.75

For inverse gamma distribution, mode and degrees of freedom are presented

Table 2: Posterior distributions

Param.	Description	Monetary Policy reacts		Monetary Policy reacts		
		to CPI Inflation		to core Inflation		
		mean	st. Dev.	mean	st. Dev.	
$\overline{\sigma_L}$	Inv. labor elasticity	0.781	0.141	0.959	0.102	
h	Habit coefficient	0.324	0.104	0.254	0.040	
ϕ_H	Price rigidity	0.166	0.013	0.159	0.026	
ϕ_L	Wage rigidity	0.819	0.019	0.804	0.005	
θ	H/F elast. substit.	0.616	0.183	0.612	0.143	
η^*	Elast. frgn demand	1.140	0.174	1.052	0.178	
ϱ	Elast. risk. premium	0.012	0.004	0.010	0.001	
ξ_L	Weight past inflation	0.908	0.079	0.920	0.028	
ξ_H	Weight past inflation	0.257	0.143	0.276	0.081	
η	Core/oil elast. subst.	0.656	0.006	0.568	0.010	
ω	Labor/oil elasticity	0.507	0.045	0.660	0.095	
$ ho_i$	AR policy rule	0.331	0.256	0.247	0.112	
$arpi_\pi$	Inf. weight pol. rule	0.850	0.032	0.835	0.028	
ϖ_x	Out. weight pol. rule	0.120	0.263	-0.004	0.147	
Log marginal likelihood		-3049.3		-3021.9		

Current Work

• Model

- Introduce imperfect exchange rate pass-through
- Introduce copper price shocks

• Estimation

- Enhance the set of observable variables
- Structural foreign block: endogenous response of foreign interest rate, foreign inflation and foreign output to oil-price shock
- Optimal monetary policy