Do options contain information about excess bond returns?

by Almeida, Graveline, & Joslin

Discussion by Christopher Jones USC

Motivation

 $\mathsf{E}[\Delta \mathsf{Y}_{t+1}] = \mathsf{slope} - \lambda_t \, \sigma_t$

- Need good models of both λ_t and σ_t .
- Option prices contain information about – Volatility
 - Risk premia (esp. volatility risk premia)
- In general, all factors and risk premia are in theory recoverable from yields.
- In practice, options may add substantial info.

The results: improved vol fit using options...

... and better yield forecasting

An example: $A_1(3)$

• Risk-neutral dynamics:

$$\begin{split} dr(t) &= \mu^{Q}(t) \, dt + \sqrt{V(t)} \, dB^{r}(t) \\ d\mu^{Q}(t) &= [a_{0} + a_{r} \, r(t) + a_{\mu} \, \mu^{Q}(t) + a_{V} \, V(t)] \, dt + \dots \\ dV(t) &= \kappa [\theta - V(t)] dt + \sigma \sqrt{V(t)} \, dB^{V}(t) \end{split}$$

- V(t) has two roles here + 1 more under P
- Performance as "volatility" is lacking
- CDGJ (2005): separate processes are needed

Why don't models fit volatility?

Log likelihood "=" CS + TS components

Yield/cap errors assumed i.i.d.

 \Rightarrow CS component dominates

Why don't models fit volatility?

Log likelihood "=" CS + TS components

• Yield/cap errors assumed i.i.d.

 \Rightarrow CS component dominates

• By including caps, we put volatility in the CS.

• In affine models:

 $\mathsf{E}[\Delta \mathsf{Y}_{t+1}] = \mathsf{p}_0 + \mathsf{p}_1 \mathsf{X}_t$

But since

 $[Y_t^{3M} Y_t^{2Y} Y_t^{10Y}] = A + B X_t$, all models and all data produce X's with same span.

• In affine models:

 $\mathsf{E}[\Delta \mathsf{Y}_{t+1}] = \mathsf{p}_0 + \mathsf{p}_1 \mathsf{X}_t$

But since

 $[Y_t^{3M} Y_t^{2Y} Y_t^{10Y}] = A + B X_t$, all models and all data produce X's with same span.

- Thus, all models/data sets imply that E[∆Y_{t+1}] = q₀ + q₁ [Y_t^{3M} Y_t^{2Y} Y_t^{10Y}]
 Coefficients are restricted (≈10 free
- Demolerns are restricted (≈10 ne parameters, ≈30 coefficients).

- Without caps, the role of the λ 's is to fit $E[\Delta Y_{t+1}] = q_0(\lambda) + q_1(\lambda) [Y_t^{3M} Y_t^{2Y} Y_t^{10Y}]$
- With caps, the best fit for λ is a compromise.

• Yet R²'s are much lower without caps.

Possible explanations:
 – Roles of the square root processes (w/ restricted RP) change

- Possible explanations:
 - Roles of the square root processes (w/ restricted RP) change
 - Model is misspecified weekly component overfit without caps – long horizon forecasts are "out of sample"

- Possible explanations:
 - Roles of the square root processes (w/ restricted RP) change
 - Model is misspecified weekly component overfit without caps – long horizon forecasts are "out of sample"
 - Restrictions are more complex than I realize.

Suggestions

- Formalize motivation.
- More intuition for key results.

Suggestions

- Formalize motivation.
- More intuition for key results.
- Use a longer sample.

 Too short to estimate RP accurately.
 Could use yields since 1970, caps since 1995.

 Report more standard errors, esp. R²s.

Suggestions

- Formalize motivation.
- More intuition for key results.
- Use a longer sample.
 Too short to estimate RP accurately.
 Could use yields since 1970, caps since 1995.
- Report more standard errors, esp. R²s.
- Better tool for "inverting" for state vector.
 - If vol is unspanned, this method doesn't work.
 - Better to use MC or invert vol from caps?
- Use a 4-factor model?