Housing and the Macroeconomy: The Role of Implicit Guarantees for Government Sponsored Enterprises*

Karsten Jeske
Federal Reserve Bank of Atlanta

Dirk Krueger
University of Pennsylvania, CEPR and NBER

June 4, 2004

Abstract

This paper studies the macroeconomic effects of implicit government bailout guarantees on debt issued by Government-Sponsored Enterprises (such as Fannie Mae and Freddy Mac). We construct a model with competitive housing and mortgage markets where the government provides banks with insurance against aggregate shocks to mortgage default risk. We use this model to evaluate aggregate and distributional impacts of this implicit government subsidy to owner-occupied housing. Preliminary findings indicate that the subsidy leads to higher equilibrium housing investment, higher mortgage default rates and lower welfare. The welfare effects of this policy vary substantially across members of the population with different economic characteristics.

Keywords: Housing, Mortgage Market, Default Risk
JEL codes: E21, G11, R21

*Very Preliminary and Incomplete; please do not cite. The authors can be reach at Karsten.Jeske@atl.frb.gov and dkrueger@econ.upenn.edu. We have benefitted from helpful comments by seminar participants at the Wharton macro lunch and the Federal Reserve Bank of Atlanta. Krueger acknowledges financial support from the National Science Foundation.
1 Introduction

With close to 70% the United States displays one of the highest home ownership ratios in the world. Part of the attractiveness of owner-occupied housing stems from a variety of subsidies the government provides to homeowners. Apart from direct subsidies to low-income households via HUD programs, three important indirect subsidies exist. The first and most well known is the fact that interest payments for mortgages up to 1 million Dollars are tax-deductible. Second, the implicit income from housing investment, in other words the imputed rental-equivalent, is not taxable, while other forms of capital income, for example interest, dividend and capital gains income are being taxed. Gervais (2001) addresses the adverse effects of these two subsidies within a general equilibrium life-cycle model.

The third subsidy is a result of the special structure of the US mortgage market. Essentially all home mortgages in the US are being sold from individual banks to so called Government Sponsored Enterprises (GSEs) who in turn refinance themselves via the bond market. The close link of GSEs to the federal government creates the impression that the government provides a guarantee to GSEs shielding them from aggregate risks, most notably aggregate credit risk which lowers their refinancing cost to below what private institutions would have to pay. Our paper is - to our knowledge - the first attempt to quantify the macroeconomic effects of this subsidy.

A formidable summary of the institutional details surrounding GSEs can be found in Frame and Wall (2002a) and (2002b). The three most important GSE are the two privately owned and publicly traded companies Fannie Mae (Federal National Mortgage Association) and Freddie Mac (Federal Home Loan Mortgage Association), and the FHLB (Federal Home Loan Bank system), a public and non-profit organization.

According to Frame and Wall, GSEs enjoy an array of government benefits for example being exempt from state and federal income taxes, a line of credit with the Treasury Department and very importantly a special status of GSE-issued debt. In particular, GSE securities can serve as substitutes to government bonds for transactions between public entities that normally require to be done in Treasuries. The Federal Reserve System also accepts GSE debt as a substitute for Treasuries in their portfolio of repurchase agreements. While no written federal guarantee for GSE debt exists, market participants view the special status of GSE debt as an indication of an implicit guarantee making them almost as safe as Treasury bills. The perception of a federal
guarantee is further fueled by the sheer size of the GSE mortgage portfolio amounting to about 3 trillion dollars, 2.4 trillion dollars of which coming from the larger two GSEs, Fannie Mae and Freddie Mac. Insolvency of any one or both of these companies, say, due to an adverse shock in the real estate market that increases aggregate mortgage delinquency, will cause major disruptions in the financial system, which is why market participants consider housing GSEs to be too large to fail. Finally, two previous government bailouts of housing GSEs impression - Fannie Mae in the early 1980s and one of the smaller housing GSEs in the late 1980s - are further evidence of a bailout in case housing GSEs were to get into financial trouble.

The implicit federal guarantee is more than mere perception but most importantly it is reflected in interest rates GSEs pay when borrowing. GSEs can borrow at rates only marginally higher than the Treasury but about 40 basis points lower than private companies without a government guarantee according to the Congressional Budget Office CBO (2001). This is despite the fact that GSEs are highly leveraged entities with an equity cushion of only about 3% of their obligations, much lower than the 8.45% in the thrift industry (figures taken from Frame and Wall (2002a)).

To the extent that part of the interest advantage of GSEs is passed through to homeowners, there exists a subsidy from the federal government to homeowners. The purpose of this paper is to set up a general equilibrium model with mortgage-financed housing to assess the macroeconomic effects of this subsidy on aggregate variables and the distributional effects. To this end we set up a heterogeneous agent model with aggregate uncertainty that drives the aggregate rate of mortgage delinquency. The aim is then to compare two economies, one in which the aggregate risk is priced into mortgages and one economy in which the government offers a tax-financed bailout in case of a bad aggregate shock, that is, the aggregate delinquency risk is not priced into mortgages. The preliminary findings are that the subsidy produces over-investment in housing, reduces aggregate welfare, and creates adverse distributional effects.\(^1\) \(^2\)

\(^1\)In the numerical example in the current version of this paper aggregate uncertainty is not yet included. Due to the major computational burden of a model with aggregate uncertainty and heterogeneous agents we postpone that exercise to a later version of this paper and instead use a tax-financed direct subsidy on mortgage interest rates.

\(^2\)Gruber and Martin (2003) also study the distributional effects of the inclusion of housing wealth in a general equilibrium model, but do not address the role of government housing subsidies for this question.
The remainder of the paper is organized as follows. Section 2 introduces the model and defines equilibrium in an economy with a housing and mortgage market. Section 3 characterizes equilibria. Section 4 details a numerical example of a simplified version without aggregate uncertainty. The numerical simulations are not yet based on a careful calibration, but rather serve as a numerical example only. Section 5 gives a glimpse at future research and the steps to be taken to incorporate aggregate uncertainty into the model. Section 6 concludes the paper.

2 The Model

The endowment economy is populated by a continuum of measure one of infinitely lived households, a continuum of competitive banks and a continuum of housing construction companies. Households face idiosyncratic endowment and housing depreciation shocks. In addition there may be aggregate shocks affecting endowments and housing depreciation. In what follows we will immediately proceed to describing the economy recursively, thereby skipping the (standard) sequential formulation of the economy.

2.1 Households

Households have endowment of the perishable consumption good given by $yz$. The aggregate part of endowments $z \in Z$ follows a finite state Markov chain with transition probabilities $\pi(z'|s)$ and unique invariant distribution $\Pi(z)$. The idiosyncratic part of endowments $y \in Y$ follows a finite state Markov chain with transition probabilities $\pi(y'|y, z', z)$ and unique invariant distribution $\Pi_y(y)$. That is, the distribution over idiosyncratic income shocks is allowed to depend on the aggregate state of the economy.

Households derive period utility $U(c, h)$ from consumption and housing services $h$, which can be purchased at a price $p_l$ (relative to the numeraire consumption good). In addition to consumption and housing services the household can purchase two types of assets, one period bonds $b'$ and houses $g'$. The price of bonds is denoted by $P_b$ and the price of houses by $P_h$. Whereas households cannot short-sell bonds, they can borrow against their real estate property. Let by $m'$ denote the size of their mortgage, and by $P_m$ the receipt of resources (the consumption good) for each unit of mortgage issued and to be repaid tomorrow. These receipts will be determined in equilibrium by
competition of banks, and will depend on the characteristics of households as well as the size of the mortgage $m'$ as well as the size of the collateral $g'$. Houses depreciate stochastically; let $F_{\delta,z',y'}(\delta')$ denote the cumulative distribution function of the depreciation rate $\delta'$ tomorrow, which has support $D = [\delta, \bar{\delta}]$ and may depend on the realized depreciation rate $\delta$ today as well as on the endowment realization of the household $(z', y')$. Households possess the option of defaulting on their mortgages, at the cost of losing their housing collateral. They will choose to do so whenever

$$m' > P_h(1 - \delta')g'$$

If there is a government bailout guarantee, then the government levies taxes $\tau$ on endowments. It will use the receipts from these taxes to bail out part of the mortgages that private households have defaulted on. Finally let $a$ denote cash at hand, that is, after tax endowment plus receipts from all assets brought into the period.

The individual state of a household consists of $s = (a, \delta, y)$, which reduces to $s = a$ in case idiosyncratic endowments and housing depreciation are iid. Let the cross-sectional distribution over individual states be given by $\mu$; the aggregate state of the economy then consists of $(z, \mu)$. The dynamic programming problem of a household then reads as

$$v(s, z, \mu) = \max_{c, h, b', m', g' \geq 0} \left\{ U(c, h) + \beta \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z') \int_{\delta}^{\bar{\delta}} v(s', z', \mu') dF_{\delta, z', y'}(\delta') \right\}$$

s.t. $c + b'P_b(z, \mu) + hP_l(z, \mu) + g'P_h(z, \mu) - m'P_m(s, g', m', z, \mu) = a + g'P_l(z, \mu)$

$$a'(\delta', y', m', g', z', \mu') = b' + \max\{0, P_h(z', \mu')(1 - \delta')g' - m'\} + (1 - \tau(z', \mu'))z'y'$$

with $\mu' = T(z, z', \mu)$. Note that the budget constraint implies the timing convention that newly purchased real estate $g'$ can immediately be rented out in the same period. The function $T$ describes the aggregate law of motion.
2.2 The Real Estate Construction Sector

Firms in the real estate construction sector act competitively and face the linear technology

\[ I = A_h C_h \]

where \( I \) is the output of houses of a representative firm, \( C_h \) is the input of the consumption good and \( A_h \) is a technological constant, measuring the amount of consumption goods required to build one house. For now we assume that this technology is reversible, that is, real estate companies can turn houses back into consumption goods using the same technology. Thus the problem of a representative firm reads as

\[
\max_{I, C_h} P_h(z; \mu) I - C_h
\]

s.t.

\[ I = A_h C_h \]

Thus the equilibrium house price necessarily satisfies

\[ P_h(z; \mu) = \frac{1}{A_h}. \]

2.3 The Banking Sector

We assume (for now) that the risk free interest rate on one-period bonds \( r_b \) is exogenously given; one may interpret our economy as a small open economy. Thus \( P_b = \frac{1}{1 + r_b} \) is exogenously given as well. Mortgage receipts \( P_m \) for a mortgage of size \( m' \) against real estate of size \( g' \) are determined by perfect competition in the banking sector, which implies that banks make zero profits for each mortgage they issue (as in Chatterjee et al. (2002)), Banks take account of the fact that household may default on their mortgage, in which case the bank recovers the collateral value of the house, which we assume to be a fraction \( \gamma \leq 1 \) of the value of the real estate.

In order to define a typical banks’ problem we first have to define the depreciation cut-off at which a household defaults on her mortgage. Define as \( \kappa' = \frac{m'}{g'} \) the leverage (for \( g' > 0 \)) of a mortgage \( m' \) backed by real estate
$g'$. The default cutoff is defined by

$$m' = (1 - \delta^*(m', g', z', \mu')) P_h(z', \mu') g'$$

$$\delta^*(m', g', z', \mu') = \begin{cases} 
\delta & \text{if } 1 - \frac{m'}{g' P_h(z', \mu')} < \delta \\
1 - \frac{m'}{g' P_h(z', \mu')} & \text{if } 1 - \frac{m'}{g' P_h(z', \mu')} \in [\delta, \delta] \\
\frac{m'}{g' P_h(z', \mu')} & \text{if } 1 - \frac{m'}{g' P_h(z', \mu')} > \delta 
\end{cases}$$

Evidently a household that obtains a mortgage $m' > 0$ without collateral, i.e. with $g' = 0$ defaults for sure. The receipt for this mortgage thus necessarily has to equal 0 as well, i.e. $P_m(s, g' = 0, m', z, \mu) = 0$. For other types of mortgages $(m', g')$ with $m' > 0$ and $g' > 0$, the banks’ problem is to choose the price $P_m(s, g', m', z, \mu)$ to maximize

$$\max_{P_m(s, g', m', z, \mu)} \left[ -m' P_m(s, g', m', z, \mu) + P_b(z, \mu) \sum_{z', \mu'} \pi(z' | z) \sum_{y'} \pi(y' | y, z', z) \right]$$

$$\left\{ m' F_{h, z', y'} (\delta^*(m', g', z', \mu')) + \gamma P_h(z', \mu') g' \int_{\delta^*(m', g', z', \mu')}^{\frac{\kappa'}{\kappa}} (1 - \delta') dF_{h(z', y')} (\delta') \right\}$$

$$= m' \max_{P_m(s, g', m', z, \mu)} \left\{ -P_m(s, g', m', z, \mu) + P_b(z, \mu) \sum_{z'} \pi(z' | z) \sum_{y'} \pi(y' | y, z', z) \right\}$$

$$\left\{ F_{h, z', y'} (\delta^*(m', g', z', \mu')) + \frac{P_h(z', \mu')}{\kappa} \int_{\delta^*(m', g', z', \mu')}^{\frac{\kappa'}{\kappa}} (1 - \delta') dF_{h(z', y')} (\delta') \right\}$$

In the presence of a government bailout, the government effectively subsidizes mortgages, in forms to be specified below.

### 2.4 The Government

As stated above the government levies endowment taxes $\tau(z, \mu)$ on households to subsidize mortgages. Subsidies take the form of interest rate subsidies (other forms of mortgage subsidies can be easily mapped in to these interest rate subsidies.

Define the interest rate on a mortgage with characteristics $(m', g')$ as

$$r_m (s, g', m', z, \mu) = \frac{1}{P_m(s, g', m', z, \mu)} - 1$$

where $P_m(s, g', m', z, \mu)$ is the mortgage pricing function without subsidy. Define as $\hat{r}_m (s, g', m', z, \mu)$ and $\hat{P}_m (s, g', m', z, \mu)$ the corresponding entities with subsidy. Since the subsidy is a mortgage interest rate subsidy we model this as

$$\hat{r}_m (s, g', m', z, \mu) = r_m (s, g', m', z, \mu) - \text{sub}(s, g', m', z, \mu)$$
and thus
\[
P_m(s,g',m',z,\mu) = \frac{P_m(s,g',m',z,\mu)}{1 - \text{sub}(s,g',m',z,\mu) \cdot P_m(s,g',m',z,\mu)} \geq P_m(s,g',m',z,\mu)
\]

The total subsidy for a mortgage of characteristics \((s,g',m',z,\mu)\) is thus
\[
\text{Sub}(s,g',m',z,\mu) = m' \left( \hat{P}_m(s,g',m',z,\mu) - P_m(s,g',m',z,\mu) \right)
\]
\[
= m' P_m(s,g',m',z,\mu) \left( \frac{\text{sub}(s,g',m',z,\mu) P_m(s,g',m',z,\mu)}{1 - \text{sub}(s,g',m',z,\mu) P_m(s,g',m',z,\mu)} \right)
\]
and the total economy-wide subsidy is
\[
\text{Aggsub}(\bar{z},\mu) = \int \text{Sub}(s,g',m',z,\mu) d\mu
\]

Thus taxes have to satisfy
\[
\tau(\bar{z},\mu) \int z y d\mu = \text{Aggsub}(\bar{z},\mu)
\]
\[
\tau(\bar{z},\mu) = \frac{\text{Aggsub}(\bar{z},\mu)}{\bar{y}_z} \quad (4)
\]
where \(\bar{y}_z\) is average (aggregate) endowment if the aggregate state of the economy is \(z\).

### 2.5 Equilibrium

We are now ready to define a Recursive Competitive Equilibrium. Let \(S = R_+ \times D \times Y\) denote the individual state space and \(\mathcal{M}\) the space of finite measures over the measurable space \((S,S)\), where \(S = B(R_+) \times B(D) \times \mathcal{P}(Y)\) and \(B\) is the Borel \(\sigma\)-algebra and \(\mathcal{P}\) is the power set, so that \(S\) is a well-defined \(\sigma\)-algebra over \(S\).

**Definition 1** Given a government subsidy policy \(\text{sub} : S \times R_+ \times R_+ \times Z \times \mathcal{M} \to R\), a Recursive Competitive Equilibrium are value and policy functions for the households, \(v,c,h,b',g' : S \times Z \times \mathcal{M} \to R\), policy functions for the real estate construction sector \(I,C_h : Z \times \mathcal{M} \to R\), pricing functions \(P_t,P_h,P_b : Z \times \mathcal{M} \to R\), mortgage pricing functions \(P_m,\hat{P}_m : S \times R_+ \times R_+ \times Z \times \mathcal{M} \to R\), a government tax policy \(\tau : Z \times \mathcal{M} \to R\) and an aggregate law of motion \(T : Z \times Z \times \mathcal{M} \to \mathcal{M}\) such that
1. *(Household Maximization)* Given prices $P_l, P_h, P_b, \hat{P}_m$ and government policies the value function solves (1) and $c, h, b', m', g'$ are the associated policy functions.

2. *(Real Estate Construction Company Maximization)* Given $P_h$, policies $I, C_h$ solve (2).

3. *(Bank Maximization)* Given $P_h, P_b$, the function $P_m$ solves (3)

4. *(Small Open Economy Assumption)* The function $P_b$ is exogenously given by

$$P_b(z, h) = \frac{1}{1 + r_b}$$

where $r_b$ is the exogenously given fixed world risk free interest rate

5. *(Government Budget Balance)* The tax rate function $\tau$ satisfies (4), given the functions $m', P_m, \hat{P}_m, \text{sub.}$

6. *(Market Clearing in Rental Market)* For all $(\mu, z)$

$$\int g'(s, z, \mu) d\mu = \int h(s, z, \mu) d\mu$$

7. *(Aggregate Law of Motion)* The aggregate law of motion $T$ is generated by the exogenous Markov processes $\pi$ and the policy functions $m', g', b'$

3 **Theoretical Results**

In this section we state theoretical properties of our model the use of which makes the computation of the model easier. These results consist of a characterization of the mortgage interest rate, a partial characterization of the solution to the household maximization problem and, finally, bounds on the equilibrium rental price $P_l(z, h)$. 


### 3.1 Mortgage Interest Rates

From equation (3) and the fact that competition requires profits for all mortgages issued in equilibrium to be zero we immediately obtain a characterization of equilibrium mortgage payoffs as

\[
P_m(s, g', m', z, \mu) = P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z') * \\
\left\{ F_{b,z',y'}(\delta^*(m', g', z', \mu')) + \frac{\gamma P_h(z', \mu')}{\kappa'} \int_{F_{b,z',y'}(\delta')}^{\delta^*(m', g', z', \mu')} (1 - \delta') dF_{b,z',y'}(\delta') \right\}
\]

\[
= P_m(s, \kappa', z, \mu)
\]

with implied interest rates

\[
r_m(s, \kappa', z, \mu) = \frac{1}{P_m(s, \kappa', z, \mu)} - 1
\]

We note the following facts:

1. Besides the aggregate state variables the only information determining mortgage interest rates are the individual states \( \delta, y \) and the leverage of the mortgage \( \kappa' = \frac{m'}{g'} \). If income and depreciation shocks are iid, then \( P_m(s, \kappa', z, \mu) = P_m(\kappa', z, \mu) \) and mortgages are priced exclusively based on leverage and aggregate conditions.

2. \( P_m(s, \kappa', z, \mu) \) is decreasing in \( \kappa' \), strictly so if the household defaults with positive probability. Thus mortgage interest rates are increasing in leverage \( \kappa' \).

3. Households that repay their mortgage with probability one have \( \delta^*(m', g', z', \mu') = \delta \) and thus \( P_m(s, g', m', z, \mu) = P_b \), i.e. can borrow at the risk free rate \( r_b \).

4. Since for all \( \delta' > \delta^*(m', g', z', \mu') \) we have \( \gamma P_h(z', \mu') \kappa'(1 - \delta') < 1 \), households that do default with positive probability tomorrow receive \( P_m(s, g', m', z, \mu) < P_b \) today, that is, they borrow with a risk premium \( r_m(s, g', m', z, \mu) > r_b \).
3.2 Simplification of the Household Problem

In the household problem define as

\[ u(c; P_l) = \max_{\tilde{c}, h \geq 0} U(\tilde{c}, h) \]

\[ \tilde{c} + P_l(z, \mu)h = c \]

Then the above problem can be rewritten as

\[ v(s, z, \mu) = \max_{c, b', m', g' \geq 0} \left\{ u(c; P_l(z, \mu)) + \beta \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z') \int_{\delta} v(s', z', \mu')dF_{\delta, z', y'}(\delta') \right\} \]

s.t. \( c + b'P_b(z, \mu) + g' [P_h(z, \mu) - P_l(z, \mu)] - m' \tilde{P}_m(s, g', m', z, \mu) = a \)
\( a'(\delta', h', m', g', z', \mu') = b' + \max\{0, P_h(z', \mu')(1 - \delta')g' - m')\} + (1 - \tau(z', \mu'))z'y' \)
\( \mu' = T(z, z', \mu) \)

For future reference, in the absence of aggregate uncertainty and with individual shocks being iid the individual state variables collapse to just cash at hand \( a' \) and the problem becomes

\[ v(a) = \max_{c, b', m', g' \geq 0} \left\{ u(c; P_l) + \beta \sum_{y'} \pi(y') \int_{\delta} v(a')dF(\delta') \right\} \]

s.t. \( c + b'P_b + g' [P_h - P_l] - m' \tilde{P}_m(m'/g') = a \)
\( a'(\delta', y', m', g') = b' + \max\{0, P_h(1 - \delta')g' - m')\} + (1 - \tau)y' \)

3.3 Endogenous Borrowing Limit

We now want to show that it is never strictly beneficial for a household to obtain a mortgage with higher leverage than that level which will lead to default for sure. We will carry out the discussion in the next two subsections for the case without government bailout policy; the analysis goes through unchanged with government policy, mutatis mutandis. Remember that by
construction $P_h(z', \mu') = P_h = \frac{1}{A_h}$. Define the leverage that leads to certain default by the smallest number $\bar{\kappa}$ such that

$$\delta^*(\bar{\kappa}, z', \mu') = \frac{\bar{\delta}}{A_h}$$

$$\bar{\kappa} = (1 - \bar{\delta})P_h = \frac{1 - \delta}{A_h}$$

Now we rewrite the budget constraint as

$$c + b'P_b(z, \mu) + g' \left[ P_h(z, \mu) - P_l(z, \mu) - \frac{m'}{g'} P_m(s, \frac{m'}{g'}, z, \mu) \right] = a$$

$$c + b'P_b(z, \mu) + g' [P_h(z, \mu) - P_l(z, \mu) - \kappa' P_m(s, \kappa', z, \mu)] = a$$

$$c + b'P_b(z, \mu) + g' P(s, \kappa', z, \mu) = a$$

where

$$P(s, \kappa', z, \mu) = P_h(z, \mu) - P_l(z, \mu) - \kappa' P_m(s, \kappa', z, \mu)$$

is the is downpayment per unit of real estate purchased, net of rental income. With this definition the total downpayment is given by $g'P(s, \kappa', z, \mu)$

For all $\kappa' \geq \bar{\kappa}$ we have

$$\kappa' P_m(s, \kappa', z, \mu) = P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z', z) *$$

$$\left\{ \kappa' F_{\delta, z', y'}(\bar{\delta}) + \gamma P_h(z', \mu') \int_{\bar{\delta}}^{\delta}(1 - \delta')dF_{\delta, z', y'}(\delta') \right\}$$

$$= P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z', z) \gamma P_h(z', \mu') \int_{\bar{\delta}}^{\delta}(1 - \delta')dF_{\delta, z', y'}(\delta')$$

$$= P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z', z) \gamma P_h(z', \mu')(1 - E_{\delta, z', y}(\delta'))$$

$$= \bar{\kappa} P_m(s, \bar{\kappa}, z, \mu)$$

and thus leveraging further does not bring extra revenues today and does not change resources obtained tomorrow (since the household defaults for sure and thus loses all real estate).\footnote{The household is obviously indifferent between choosing $\kappa' = \bar{\kappa}$ and $\kappa' > \bar{\kappa}$; from here on we resolve any indifference of the household by assuming that in this case he chooses $\kappa' = \bar{\kappa}$.} That is, the household faces an endogenous
effective borrowing constraint of the form

\[ \kappa' \leq \bar{\kappa} \text{ or } \]

\[ m' \leq \left[ \frac{1 - \delta}{A_h} \right] g' \]

One can interpret \( 1 - \bar{\kappa} \) as the minimum downpayment requirement in this economy.

### 3.4 Bounds on the Rental Price of Housing

#### 3.4.1 An Upper Bound

Evidently for all admissible choices of the household it has to be the case that \( P(s, \kappa', z, \mu) \geq 0 \), otherwise the household can obtain positive cash flow today by buying a house; the default option on the mortgage guarantees that the cash flow from the house is non-negative. Thus, the absence of this arbitrage in equilibrium requires \( P(s, \kappa', z, \mu) \geq 0 \). Therefore in particular

\[ P(s, \kappa' = \bar{\kappa}, z, \mu) = P_h(z, \mu) - P_l(z, \mu) - \bar{\kappa} P_m(s, \kappa' = \bar{\kappa}, z, \mu) \geq 0 \]

But

\[
P(s, \bar{\kappa}, z, \mu) = P_h(z, \mu) - P_l(z, \mu) - \bar{\kappa} P_m(s, \bar{\kappa}, z, \mu)
= P_h(z, \mu) - P_l(z, \mu) - P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z', z) \gamma P_h(z', \mu')(1 - E_{\delta, z', y} (\delta'))
\geq 0
P_l(z, \mu) \leq P_h(z, \mu) - P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z', z) \gamma P_h(z', \mu')(1 - E_{\delta, z', y} (\delta'))
\]

which places an upper bound on the equilibrium rental price.

Without aggregate uncertainty and iid income and depreciation shocks this inequality becomes

\[
P_l \leq P_h - \gamma P_b P_h (1 - E(\delta'))
= P_h * \left[ \frac{r_b + \gamma E(\delta) + 1 - \gamma}{1 + r_b} \right]
\]

If \( \gamma = 1 \), this condition simply states that the rental price \( P_l \) cannot be larger than the user cost of housing \( \frac{r_b + E(\delta)}{1 + r_b} \).
3.4.2 A Lower Bound

Housing is an inherently risky asset. Since households are risk averse, for them to purchase the housing asset the expected return of housing at zero leverage has to be at least as high as the risk free interest rate. This implies

$$P_b(z, \mu) \sum_{z'} \pi(z'|z) \sum_{y'} \pi(y'|y, z') P_h(z', \mu') \int_{\delta} (1 - \delta') dF_{\delta, z', y'}(\delta') \geq P_h(z, \mu) - P_l(z, \mu)$$

Remembering that $P_h(z, \mu) = P_h(z', \mu') = P_h = \frac{1}{A_h}$ yields

$$P_b(z, \mu) P_h(1 - E_{\delta, z, y}(\delta')) \geq P_h - P_l(z, \mu) \text{ or } P_l(z, \mu) \geq P_h \left[ r_b + E_{\delta, z, y}(\delta') \right]$$

which states that the rental price of housing cannot be smaller than the (expected) user cost of housing in equilibrium (otherwise nobody would invest in housing, which cannot be an equilibrium given strictly positive demand for housing services by consumers).4

In summary, what these theoretical results buy us, besides being interesting in its own right, is a simplified household problem, a concise characterization of the high-dimensional equilibrium mortgage interest rate function and bounds for the equilibrium rental price, the only endogenous price to be determined in our analysis.

4 Calibration

For the utility function we choose a CES functional form:

$$u(c, h) = \frac{(\theta c^\nu + (1 - \theta) h^\nu)^{\frac{1-\sigma}{\nu}} - 1}{1 - \sigma}$$

4Without aggregate uncertainty and $\gamma = 1$ we thus immediately obtain that the rental price of housing equals its user cost. In fact, what happens in this equilibrium is that households purchase houses, leverage such that they default for sure tomorrow and the houses end up in the hand of the banks. Since these are risk-neutral, default is fully priced into the mortgage and banks receive the full (depreciated) value of the house, banks rather than households (which are risk averse) should and will end up owning the real estate.
Notice that the first order conditions in the intratemporal optimization problem yield the well-known condition

\[ \frac{h}{c} = \left( \frac{P_l \theta}{1 - \theta} \right)^{\frac{1}{\nu}} \]

In the numerical example where we simply compare steady states, the rental price \( P_l \) will be constant. Hence, we cannot calibrate both parameters \( \theta \) and \( \nu \) with just steady state housing vs. consumption ratio. We therefore use the Cobb-Douglas case \( \nu = 0 \) and set \( \theta = 0.70 \) in order to generate a ratio of housing expenditures to total expenditures of 0.30. The curvature parameter is chosen to be 2.0 and the depreciation factor is 0.9.

The probability distribution for the idiosyncratic housing depreciation will eventually be indexed by the aggregate shock \( z \) but for the preliminary computations it is assumed to be constant over time. We choose a triangular distribution on the interval \([\delta, \bar{\delta}]\) with mode \( \delta_m \in [\underline{\delta}, \bar{\delta}] \):

\[
f(\delta) = \begin{cases} 
2 \frac{\delta - \underline{\delta}}{(\bar{\delta} - \delta)(\delta_m - \underline{\delta})} & \text{if } \underline{\delta} \leq \delta \leq \delta_m \\
2 \frac{\delta - \bar{\delta}}{(\bar{\delta} - \delta)(\delta - \delta_m)} & \text{if } \delta_m < \delta \leq \bar{\delta} \\
0 & \text{otherwise}
\end{cases}
\]

The cdf is then:

\[
F(\delta) = \begin{cases} 
0 & \text{if } \delta < \underline{\delta} \\
\frac{(\delta - \underline{\delta})^2}{(\bar{\delta} - \delta)(\delta_m - \underline{\delta})} & \text{if } \underline{\delta} \leq \delta \leq \delta_m \\
1 - \frac{(\delta - \bar{\delta})^2}{(\bar{\delta} - \delta)(\delta - \delta_m)} & \text{if } \delta_m < \delta \leq \bar{\delta} \\
1 & \text{if } \delta > \bar{\delta}
\end{cases}
\]

In the numerical example we use

\[
\underline{\delta} = -0.40 \\
\delta_m = -0.05 \\
\bar{\delta} = 0.75
\]

which generates an average housing depreciation of 10% per year.

The endowment process can take on two values \( \{0.7, 1.3\} \). Moreover, endowments are drawn iid with probabilities \( \frac{1}{2} \) each. By using iid endowments
we can cut down on the number of states in the consumer’s problem, because only to only state will be the cash at hand at the beginning of the period.

The subsidy on mortgages is chosen to be 40 basis points on an annual basis. The parameter $\gamma$ is chosen to be 0.9, that is, banks recover only 90% of the house value in the case of default. Finally, the parameter in the real estate production function $A_h$ is set to 1.0 which immediately pins down the real estate price to $P_h = 1.0$.

5 Thought Experiments

Our investigation of the economic effects of government mortgage subsidies will proceed on three levels of generality:

1. First, we will compare two steady states of our economy, one with no policy, one with the government providing a subsidy on mortgage interest financed by a proportional income tax. The size of the subsidy is set equal to empirical estimates for the effects of Fannie Mae and Freddy Mac on mortgage interest. This experiment allows us to study both the size of the misallocation of resources towards housing as well as the distributional effects of a subsidy policy.

2. In order to appropriately document the welfare consequences of introducing a subsidy policy one needs to explicitly compute and analyze the transition path induced by the introduction of the policy.

3. Finally we will introduce aggregate uncertainty and study a bailout guarantee that only comes into effect in bad aggregate states of the world, as is likely to be the case in reality. This experiment allows us to trace out the dynamic consequences that a bailout has on the economy, at the expense of being a costly computational exercise.

6 Results

In this section we document preliminary results from the first thought experiment, that is, we compare steady states of economies without and with a mortgage interest rates subsidy of 40 basis points. Table I summarizes the main macroeconomic aggregates
Table 1: Aggregate Consequences of Subsidy

<table>
<thead>
<tr>
<th>Variable</th>
<th>No Subsidy</th>
<th>Subsidy</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{p}_t$</td>
<td>0.19171</td>
<td>0.19169</td>
<td>−0.01%</td>
</tr>
<tr>
<td>$H$</td>
<td>1.836</td>
<td>1.839</td>
<td>0.16%</td>
</tr>
<tr>
<td>$M/\bar{y}$</td>
<td>0.38%</td>
<td>1.83%</td>
<td>1.45%</td>
</tr>
<tr>
<td>$Sub/\bar{y}$</td>
<td>0</td>
<td>0.0049%</td>
<td>n.a</td>
</tr>
<tr>
<td>$\tau$</td>
<td>0</td>
<td>0.0128%</td>
<td>n.a</td>
</tr>
<tr>
<td>Def. prob</td>
<td>0.369%</td>
<td>0.957%</td>
<td>0.588%</td>
</tr>
<tr>
<td>$EV^{ss}$</td>
<td>−1.018747</td>
<td>−1.018934</td>
<td>−0.018%</td>
</tr>
</tbody>
</table>

We see that the introduction of the subsidy increases the equilibrium housing stock and rental demand $H$ by about 0.2%, and reduces the rental price of housing slightly. More mortgages are issued (although the equilibrium amount of outstanding mortgages is still very small). The overall size of the subsidy and thus the tax rate to finance it remain modest. The most significant impact of the subsidy is on mortgage default rates, which increase substantially, driven by the higher issue of mortgages, some of which turn delinquent. In terms of welfare, the subsidy policy reduces steady state welfare by a modest 2/100 of a percent: households consumption (of nondurables and housing services) in the steady state with the subsidy has to be increased by this amount to be indifferent between the steady state with and the one without subsidy policy.

In terms of its distributional impact, the wealth (cash at hand) distribution in the economy with subsidy policy is slightly more equal than in the economy without policy; the Gini coefficient with policy falls to 0.4165 from 0.4168. Figure 1 shows the distribution of cash at hand without policy (the one with subsidy policy is visually hard to distinguish from the presented one).
7 Conclusions

We constructed a model with competitive housing and mortgage markets where the government provides banks with insurance against aggregate shocks to mortgage default risk. We used this model to evaluate aggregate and distributional impacts of this implicit government subsidy to owner-occupied housing. Our main findings are that the subsidy policy leads to lower welfare, more mortgages issued and a higher housing stock as well as more mortgage delinquencies. Quantitatively, however, the effects are small, with the exception of the substantial increase in mortgage default rates.
References


