Oil Price Shocks, Monetary Policy Rules and Welfare (Work in Progress)

Fiorella De FioreGiovanni LombardoViktors StebunovsECBECBBoston College

Workshop on Commodity Price Issues Bank of Canada, Ottawa 10-11 July 2006

The views expressed in this paper do not necessarily reflect the views of the ECB or the ESCB

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

Motivation

- The oil-price escalation since 2003 is reminiscent of the oil-crises of the 1970s.
- "With oil shocks, policymakers are confronted with a new dilemma" (Gramlich, Sept. 2004).
- A wrong policy can make more damage than the oil-shock per se (Bernanke, Gertler and Watson 1997)
- We study what a DSGE model can tell us on this issue.
- Apply second-order solution methods to a large DSGE model.

Related work

- Policy analysis in DSGE models
 - Schmitt-Grohè and Uribe (2004,2005): medium-scale closed economy models
- Oil prices
 - Leduc and Sill (2004): role of MP in oil-induced recessions
 - Kamps and Pierdzioch (2002): what inflation-measure should the CB target (SOE)
 - de Walque, Smets and Wouters (2005): estimated DSGE model
- Second-order-approximation solution technique
 - Lombardo and Sutherland (2006)

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

Main conclusion

- At present only results under complete markets
- The central bank should respond to a measure of core inflation: Oil-shocks should be partially accommodated.
- Welfare losses incurred in adopting alternative Taylor-type rules are relatively small.

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

The model

- Three-country model: euro area (EA), US and oil-exporting block
- US and EA
 - same economic structure
 - produce final consumer goods, import final goods and oil
 - independent fiscal and monetary authorities
 - sticky prices and wages with indexation
 - OIL enters consumption (CES) and production (linked to aggregate capital (Kim-Loungani) and firm-specific utilization (M.Finn) and
- Oil exporting block
 - no fiscal policy, currency is pegged to the dollar
 - produce only oil, import EA and US goods
 - flexible prices and wages

EA and US

Households

• Consume a basket of domestically produced goods, imported goods and oil.

$$(1a)C_{e,t} = \left[(1-o)^{\frac{1}{\xi}} C_t^{\frac{\xi-1}{\xi}} + o^{\frac{1}{\xi}} (e_{h,t})^{\frac{\xi-1}{\xi}} \right]^{\frac{\xi}{\xi-1}}$$

$$(1b) P_t^c = \left[n \left(P_t^H \right)^{1-\chi} + (1-n) \left(S_t P_t^F \right)^{1-\chi} \right]^{\frac{1}{1-\chi}}$$

$$(1c) P_t = \left[(1-o) \left[(1+\tau_{c,t}) P_t^c \right]^{1-\xi} + o \left[(1+\tau_{e,t}) \left(S_t P_t^e + \varpi \right) \right]^{1-\xi} \right]^{\frac{1}{1-\xi}}.$$

• Preferences display home bias and habit persistence in consumption.

Households cont'd

- Allocate savings in
 - investment goods (with adjustment costs)
 - financial assets: domestic government debt and either internationally traded bonds or state contingent assets.
- Supply a differentiated type of labour to a union that combines the different types and offers this aggregate labour input to firms.

Firms

• Produce differentiated goods using labour and energy-loaded capital

$$y_t = \epsilon_t L_t^{1-\alpha} \left(u_t K_{e,t} \right)^{\alpha}$$

- Set prices à la Calvo (1983).
- Oil enters production in two ways:
 - Capital can only be used to produce if combined with oil

$$K_{e,t} = \left[\varphi^{\frac{1}{\eta}} K_t^{\frac{\eta-1}{\eta}} + (1-\varphi)^{\frac{1}{\eta}} e_{p,t}^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

- Oil is needed to vary capital utilization and hence to produce capital services

$$e_{u,t} = a\left(u_t\right) K_{e,t}$$

The fiscal authority

X

- Levies taxes on labor income, final consumption and oil plus a lump-sum tax.
- Purchases the same basket of goods purchased by Households.
- Has positive net liabilities (in domestic currency): a debt-to-gdp ratio holds in steady state.

The central bank

• Monetary policy is characterized by a short-run nominal interest rate rule.

$$\begin{aligned} R_t &= \lambda_R R_{t-1} + (1 - \lambda_R) \left[\lambda_\pi \left(\frac{\pi_t}{\pi} - 1 \right) + \lambda_Y \left(\frac{Y_t}{Y} - 1 \right) + \lambda_{\Delta Y} \left(\frac{Y_t}{Y_{t-1}} - 1 \right) \right. \\ &+ \lambda_{\Delta Pe} \left(\frac{P_{e,t}}{P_{e,t-1}} - 1 \right) + \lambda_{Pe} \left(\frac{P_{e,t}}{P_e} - 1 \right) + R_0 \right] + \varepsilon_t^R \end{aligned}$$

Oil exporting country

- The price of oil is endogenous.
- There are increasing marginal costs of production of oil:

$$\underline{e_t^o} = \nu_t^e L_t^{\iota}, \ \iota < 1$$

• Productivity in the oil-sector is modelled as a stochastic process.

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

Solution method

- The calibration is based on a first-order approximation of the model (DYNARE + SYMBSOLVE).
- The welfare analysis is based on a second-order approximation of the model (SYMBSOLVE).

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

Calibration

- We calibrate the model under incomplete markets (similar calibration results obtains under complete markets).
- Procedure:
 - 1. start from parameter values estimated in empirical work;
 - 2. modify them to match sample moments and to produce a variance decomposition in line with that obtained in related works.

Shares of oil (+ nat. gas)

	Consum	ption	Production		
	data	model	data	model	
EA	$\sim 6.2\%$	6.03%	$\sim 1.5\%$	1.56%	
US	\sim 5.6 %	6.89%	EA+pprox 30%	1.96%	

Variance decomposition: contribution of oil to GDP

- The existing literature: wide range . . .
- Dotsey and Reid (1992) 5 to 6% (US real GNP).
- Jimènez-Rodrìguez and Sanchèz (2004): 7.5% (EA) and 10.9% (US GDP).
- De Walque et al. (2005) report small values in the order of 1.0% (EA) and 1.5% (US)
- We have 1.9% (EA) and 4.37% (US)

Moments matching

• The standard deviations and cross-correlations of most of the macroeconomic variables described by the model are broadly in line with those observed in the data.

The effects of an exogenous oil-price shock

• We model the exogenous oil-price shock as a negative transitory shock to the level of productivity of the oil-producing sector.

PRICES

- For the euro area a 10% increase in the dollar real price of oil would increase the GDP deflator by about 0.25% after 2 years. For the US this number is about 0.44% (twice as much for CPI).
 - in Bernanke et al. (1997) the monthly VAR yields an increase in the GDP deflator of about 0.2% two years after the oil-price shock. The quarterly VAR (Bernanke et al. (2004)) produces a milder increse (about 0.1%).

The effects of an exogenous oil-price shock cont'd

OUTPUT

- GDP at constant prices first increases then falls, reaching the trough after about 5-6 quarters at -0.14% (-0.24%) in the euro area (US)
 - Bernanke et al. (2004) (five-variable quarterly VAR): a 10% increase in the price of oil implies a change of GDP of about -0.7% (at the trough four quarters after the innovation).
 - Bernanke et al (1997) (seven-variable monthly VAR) a 10% increase in the price of oil produced a fall in GDP of around -0.25% about 24 months after the shock.

The effects of an exogenous oil-price shock cont'd

POLICY

- The nominal policy rate increases by about 28 (57) annualized basis points by the second quarter in the euro area (US).
 - Bernanke et al. (1997) estimate a value of about 63 bp after 6 months for the US
- The net foreign asset position, net-trade and the terms of trade (price of import over price of export) all worsen.

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

The welfare measure

- Each central bank chooses the simple interest rate rule that maximizes the aggregate households' welfare.
- In aggregating over households we neglect the real money-balance component of welfare obtaining

(2)
$$\mathbb{W}_{s} = E_{s-1} \sum_{t=s}^{\infty} \beta^{t-s} \varepsilon_{t}^{C} \left\{ \frac{\left(C_{e,t} - hC_{e,t}\right)^{1-\gamma}}{1-\gamma} - \zeta_{t} \frac{\int_{0}^{b} L_{i,t}^{1+\varsigma} \mathrm{d}i}{1+\varsigma} \right\}$$

• We use a steady-state-conditional measure of welfare

Optimality criteria

Our choice of a desirable monetary policy rule satisfies four criteria (as in Schmitt-Grohè and Uribe (2004,2005)

- 1. The rule must be simple and operational.
- 2. The rule must satisfy a zero-lower-bound condition definde by $\log (R_0) > 2\sigma_R$.
- 3. Among the rules satisfying criteria 1. and 2., we choose the rule that maximizes welfare.
- 4. The choice of policy parameters must constitute either a Nash equilibrium or a cooperative equilibrium.

Results

Three shocks: government spending, technology, oil-prices

• The optimal policy parameters if respond to oil

Country	λ_R	λ_π	$\lambda_{\Delta y}$	λ_y	λ_{Pe}	$\lambda_{\Delta Pe}$
EA	0.95	27.2	0	1.98	0	$27.2 \times (-0.088)$
US	0.95	20.8	0	1.98	0	$20.8 \times (-0.12)$

• The optimal parameters if don't respond to oil

$$\begin{array}{ccccccccc} \mathsf{Country} & \lambda_R & \lambda_\pi & \lambda_{\Delta y} & \lambda_y & \lambda_{Pe} & \lambda_{\Delta Pe} \\ \mathsf{EA} & 0.95 & 16.8 & 0 & 1.5 & 0 & 0 \\ \mathsf{US} & 0.95 & 18.8 & 0 & 2.5 & 0 & 0 \end{array}$$

Welfare losses in units of steady-state consumption:	EA	US
Optimal rule	0.128%	0.246%
Constrained Optimum	0.136%	0.252%
Benchmark rule	0.156%	0.279%
Flexible prices	0.074%	0.181%

- Some unconditional means relative to benchmark
 - Consumption increases
 - labour effort increases
 - inflation and short term interest rate fall
 - lower expected wage dispersion
 - Also, lower volatility of inflation

- In summary
 - 1. The optimal linear rule shows a very marked degree of inertia: due to zero-lower-bound condition
 - 2. The optimal response to inflation are, in the long run, extremely large. This suggests that the cost of inflation in our model is overwhelming.
 - 3. The optimal rule calls for a negative response to the oil-price inflation: i.e. respond to "core" inflation
 - 4. The size of the welfare losses is relatively small

- Optimal coefficients without oil-shocks and with oil-shocks only
- No oil-price shocks: While responding vigorously to headline inflation, the central bank responds positively to oil-price inflation.

Country	λ_R	λ_{π}	$\lambda_{\Delta y}$	λ_y	λ_{Pe}	$\lambda_{\Delta Pe}$
EA	0.95	29.7	0	1.98	0	1.23
US	0.95	27.2	0	1.98	0	2.72

Т

• Oil-price shocks only: Central bank would react less aggressively and would partially accommodate increases in oil-price inflation.

Country	λ_R	λ_{π}	$\lambda_{\Delta y}$	λ_y	λ_{Pe}	$\lambda_{\Delta Pe}$
EA	0.95	12.4	0	1.98	0	$12.4 \times (-0.081) \\ 12.4 \times (-0.14)$
US	0.95	12.4	0	1.98	0	

Plan of the talk

- Motivation
- Main conclusion
- Model description
- Solution method
- Calibration
- Optimal response to oil-price shocks and welfare
- Conclusion

Conclusion and future work

- We developed a three-country DSGE model with endogenous oil production which is able to replicate a number of open-economy stylized facts.
- This model suggests that under complete markets a welfare-maximizing central bank should respond to a particular measure of core inflation: i.e. it should partially accommodate oil-price increases.
- Caveat: We assume away problems of credibility and commitment
- related work in progress:
 - Study the interaction of fiscal and monetary policy (work in progress).
 - Improve the expectational channel of oil shocks: e.g. inventories .

Appendix

Price and wage setting

	Calvo probability	Degree of indexation
Prices	5	
EA	0.8	0.4
US	0.6	0.4
Wage	S	
EA	0.83	0.7
US	0.73	0.7

Taxes

- The labour income tax rate and the VAT are taken from Coenen et al. (2005).
- VAT taxes on oil are assumed to be the same as the VAT taxes on other final consumption goods: 18.3% (EA) and 7% (us).
- Excise tax are set at 70% (EA) and 20% (US) of the steady-state price of oil.

Monetary policy

We take the parameters of the interest rate rule from de Walque et al. (2005)

Country	λ_R	λ_{π}	$\lambda_{\Delta y}$	λ_y	λ_{Pe}	$\lambda_{\Delta Pe}$
EA	0.9	1.72	0.2	0.1	0.0	0.0
US	0.87	1.7	0.2	0.13	0.0	0.0

Monetary policy cont'd

X

- Note that the rule estimated in de Walque et al. (2005) differs from ours in two important respects.
 - It responds to aggregate demand while ours responds to real gdp.
 - It responds to deviations of aggregate demand from its flexible price equilibrium while our responds to deviation from the non-stochastic steady state.
- The stochastic properties of our model remain virtually unchanged under an alternative rule as estimated by Christiano et al. (2006) in a closed economy setting for the euro area and the US.

Tables of moments

Standard deviations in ppt

vbls	US	model	EA	model
GDP	1.02	1.42	0.93	1.22
С	.90	1.43	0.80	0.53
- I	4.90	4.00	2.6	2.56
NX	0.37	0.47	0.46	0.32
tot	1.4	5.5	1.2	3.32
RER	7.0	1.44	7.0	1.44
π	1.2	3.1	1.05	2.18
R	1.16	1.32	0.99	0.87
Pe	17.1	11.34	11.5	19.0

vbls	US	model	EA	model
(GDP, NX)	-0.39	-0.71	-0.69	-0.57
(C, NX)	-0.54	-0.20	-0.75	-0.072
(I, NX)	-0.51	0.27	-0.79	-0.11
(Pe, NX)	-0.25	-0.75	-0.41	-0.49
(tot, NX)	-0.51	-0.71	-0.38	-0.45
(Pe, tot)	0.80	0.98	0.76	0.88
(RER, NX)	0.08	-0.2	-0.15	-0.14
(REX, Pe)	0.05	0.09	0.43	0.21

x-correlations

Cross-country correlations

vbls	data	model
(C, C^*)	0.14	0.081
(I,I^*)	0.17	0.39
(GDP, GDP^*)	0.29	0.27
(R,R^*)	0.56	0.57
(π,π^*)	0.39	0.47
$\left(\left(C-C^*\right),RER\right)$	0.007	-0.028

X

X

- In particular, the optimal rule under the constraint of zero response to oil-prices (inflation or level) is about 0.008% and 0.006% worse than the optimal rule, for EA and US respectively.
- These small numbers are not unusual in the related literature.
 - For example, Schmitt-Grohè and Uribe (2005) report a welfare cost of using a simple interest rate rule (relative to the Ramsey-optimal rule) of about \$9.1 per US citizen per year (at 2003 prices).
 - Using the 2003 value of US GDP per capita (at PPP), our model implies that the constrained optimum costs about \$2.45 more per person and per year than the unconstrained optimum.
 - The cost to the household of the unconstrained optimum relative to the flexible price equilibrium is about \$24.05.

IR under the optimal rule vs. benchmark (complete markets)

X

- The negative coefficient on oil-price inflation implies that, on impact, the short-run nominal interest rate falls.
 - The government partially benefits from the fall in short term real rates and the households lose out.
 - Consumption and investment (to a first order of approximation) are affected by the short-run rates only to the extent that these bring about variations in the long-run real rate of interest.
 - Overall, to a first order of approximation the optimal rule does not bring about a clear pattern in the dynamics of the real variables.
- More evident is the effect on the dynamics of inflation:
 - except on impact, all measure of inflation approach the long run equilibrium more quickly under the optimal rule