Discussion of:

“Forecasting the price of crude oil via convenience yield predictions”

Thomas A. Knetsch

Chris D’Souza
Bank of Canada
Question?

• Can a focus on marginal convenience yields, $\gamma(t)$, improve the forecasts of future crude oil prices?
 – Comparison with FMH and random walk models
 – Multiple performance criteria
 – Numerous forecast horizons
 – Test are employed to determine if forecasting accuracy differences are statistically significant

• So what are convenience yields?
Expected Net Return on Investment

Equities:
\[
\frac{Ep(t + 1) - p(t) + Ed(t)}{p(t)} = (\rho_s + r)
\]

Commodities:
\[
\frac{Ep(t + 1) - p(t) + E\psi(t,1)}{p(t)} = (\rho + r)
\]

\[
p(t) = \delta \sum_{i=0}^{\infty} \delta^i \psi(t + i,1) \quad \text{with} \quad \delta = 1/(1 + r + \rho)
\]
Bias in Futures Prices

\[FMH : Ep(t + 1) = f(t,1) \]

\[E\psi(t,1) = (1 + \rho + r)p(t) - Ep(t + 1) \]

\[E\psi(t,1) = (1 + r)p(t) - f(t,1) \]

Alternative Benchmark: \[Ep(t + 1) = f(t,1) + \rho \cdot p(t) \]
Calculating Convenience Yields

\[E\psi(t, T) = (1 + r_T) p(t) - f(t, T) \quad \forall T \]

\[E\psi(t + T, 1) = E\psi(t, T + 1) - (1 + \mu)E\psi(t, T) \quad \forall T \]

\[\Rightarrow \{E\psi(t + T, 1)\}^N_{T=0} \]
Forecasting model based solely on market expectations of convenience yields

\[p(t + h) = \delta \sum_{i=0}^{\infty} \delta^i E\psi(t + h + i) \quad \text{with} \quad \delta = 1/(1 + r + \rho) \]
Main Models

• Models: together with PV equation,
 – \(E_m ? (t,T)'s \) from cost of carry relationship
 – Estimate AR(p) model of \(? (t,T)'s \)
 – Univariate model of \(? (t,T+h) \) with \(? (t-k,1) \)
 – Combined model

• Benchmarks:
 – RWA: \(E_p(t+T) = \) current spot price
 – Futures market hypothesis: \(E_p(t+T) = f(t,T) \)
Forecasting Exercise

• Complete, Robust
 – Many alternatives compared to accepted benchmarks
 – A number of forecast accuracy criteria
 – Different estimation and evaluation periods
 – Lag length criteria

• Findings
 – Proposed models out-forecast FMH
 – RW not statistically significantly outperformed
 – Proposed models out-performs a coin-flip in predicting the future direction of crude oil prices
Estimating the Risk Premium

\[f(t,1) - (1 - \rho) p(t) \]

- Campbell and Shiller (1987)
- Is this difference stable in the long-run?
 - Only if \(\kappa(t) \) is I(1)
 - Pindyck (1993) finds that \(\kappa(t) \) is stationary
 - AR(p) model, \(\kappa(t) \) is stationary

\[E\psi(t) = (1 + r) p(t) - f(t,1) \]
Additional Variable to Consider: Inventories

• Brennan (1958)
 – Risk premia vary with inventories

• Reliable data over same sample period
 – e.g., American Petroleum Institute’s weekly bulletin

• Khan, Khokher and Simin (2006)
 – Convenience yields and inventories are related