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Classifying asset-pricing models is a treacherous venture, bec
many seemingly distinct modelling frameworks are intricately relat
However, for this discussion, I will put all financial asset-pricing mode
into two broad categories: equilibrium models and arbitrage-based mod

Carmichael’s paper focuses on the first group of models. Luc
seminal 1978 article laid the foundation of consumption-based or dynam
equilibrium models, and his 1982 article extended the model to a t
country setting. Other major contributors in this area includ
Merton (1973); Breeden (1979); and Cox, Ingersoll, and Ross (1985).

A distinctive feature of consumption-based models is that the age
risk-preference or utility functions must be specified. Once a utility funct
is in place, maximizing the intertemporal expected utility leads to the us
first-order conditions, the so-called Euler equations, which ultimat
govern the prices of financial assets. Insofar as Euler equations are
source of asset price dynamics, specifying the agent’s utility function
crucial. In contrast, arbitrage-based models are free of investors’
preferences.

In the remainder of this discussion, I will mainly review arbitrag
based models to complement Carmichael’s paper. The review will dis
the framework of arbitrage pricing as it is applied to derivative financ
assets. In the spirit of the conference theme, I will try to relate
discussions to the market’s information structures, and compare the
groups of models whenever possible and appropriate. Most of the mate
Discussion
Jason Wei
36



Discussion: Wei 37

soll

6).
64)
ors’
of
to

nd,

sk.
ion
of
ary
what
of

risk
ess:
ctors
are
has
ive
y to

ust
ilding
the

he
and
th
ing,

ian
row
dern

ble
g a
are drawn from Dothan (1990), Huang and Litzenberger (1988), Inger
(1987), Duffie (1996), Neftci (1996), and Pliska (1997).

Background

The arbitrage-pricing theory (APT) was pioneered by Ross (197
Unlike the capital-asset-pricing model (CAPM), credited to Sharpe (19
and Lintner (1965), the APT requires no assumptions about invest
preferences or return distributions. It builds on the concepts
diversification and the absence of arbitrage in equilibrium. It is similar
CAPM, in that both models treat idiosyncratic risks as diversifiable a
hence, do not assign a risk premium to them.

However, the two models differ in the way they treat systematic ri
Under CAPM, the risk premium is quantified through two-fund separat
and utility maximization, whereas under APT, it is based on the principle
no arbitrage. Since the two models were developed to value prim
financial assets such as stocks, and since APT itself does not specify
the systematic risk factors are, CAPM has historically won the favour
practitioners and most academics.

APT is more powerful than CAPM for recovering information from
securities returns, in that it allows an unlimited number of systematic
factors to affect returns. But this also becomes its chief weakn
researchers must assign economic meanings to the systematic risk fa
recovered from securities returns. As far as pricing primary securities
concerned, APT is handicapped by its own merits. However, as history
proven, the principle of no arbitrage, when applied to valuing derivat
financial securities, is not only powerful but also readily feasible. The ke
its success, of course, lies in relative pricing.

Before we explore the deeper world of arbitrage pricing, we m
introduce another key element, namely, stochastic processes, the bu
block for financial modelling. The most widely used process is perhaps
“Brownian motion,” named after the British botanist Robert Brown. But t
actual development was due to Bachelier (1900) and Einstein (1905)
other mathematicians in the first half of the century. Although bo
Bachelier (1900) and Samuelson (1965) applied the tools to options pric
with the former using Brownian motion and the latter geometric Brown
motion, the early work of Merton (1969 and 1971) planted the seeds to g
the modern applications. The apparatus in stochastic calculus and mo
probability theory, together with the principle of no arbitrage, ena
researchers to conveniently value derivative securities while maintainin
realistic information structure.
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Black and Scholes (1973) derived their celebrated options-pric
formula by solving a partial differential equation that is independent of
on expected return on the underlying asset. Three years later, Cox
Ross (1976) derived an important implication from the Black–Scho
differential equation: Since the expected return of the underlying asset
not enter into the pricing, one can assume that the investors are risk-ne
hence, the expected return is the risk-free rate. This observation
formalized by Harrison and Kreps (1979), who showed that risk-neu
valuation is equivalent to arbitrage-free pricing, and in this system all pr
are Martingales upon proper normalization and change of probab
measure.

In the next section, I will survey the key elements of arbitrage pric
for derivative securities. We will start with a discrete setting and then m
on to a continuous setting.

Arbitrage Pricing in a Single-Period Model

The economic meaning of arbitrage-free

A single period model can be specified as:

• initial time

• terminal time

• trading is possible only at

• sample space is finite:

• there exists a probability measure  on , with

• a money-market account , with

• a price process for risky securities wher

Definition

Trading strategy:
where is number of dollars in a money-
market account and  is number of share
in security .

Value process: where

.

t 0=

t 1=

t 0 1,=

Ω ω1 ω2 ω3 … ωK, , , ,{ } K ∞<( )=

P Ω P ω( ) 0 ω Ω∈∀,>
B Bt : t 0 1,={ }= B0 $1=

S St : t 0 1,={ }= N
St S1 t( ) S2 t( ) S3 t( ) … SN t( ), ,,,( ) .=

H H0 H1 H2 … HN, , , ,( )=
H0

Hn
n n 1 2 3 … N, , , ,=( )

V Vt : t 0 1,={ }=

Vt H0 Bt HnSn t( ),
n 1=

N

∑+= t 0 1,=
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Gains process:

where  is the interest rate, and
. Also,

.

Discounted price process: where
and
;

.  is the numeraire.

For any modelling to be sensible, the resulting price system m
comply with economic rationale. For instance, if there are two trad
strategies and such that and y

, then the law of one price is violated. This is the least desira
system because there is ambiguity of prices—portfolios with ident
payoffs can have differing current values, a result flying in the face
economic reality. When the law of one price does not hold, an investor
be able to obtain a sure amount of trading profits today with zero
investment.

Will the prevalence of the law of one price guarantee a sensible p
system? Hardly. The law of one price merely ensures that trading strate
with the same terminal values have the same current values. However
trading strategies with differing terminal valuesmayhave the same curren
values. For instance, if there exists and such that ,

, then the law of one price is not violated, but th
price system is not sensible. In this case, there are “dominant tra
strategies” that allow investors to guarantee a strictly positive-dollar re
with zero net investments (by shorting with strategy and going lo
with strategy ). Equivalently, a dominant trading strategy can also
characterized as a strategy where , and .

A securities-market model allowing a dominant trading strategy
exist will not be realistic, because it leads to illogical prices. When domin
trading strategies exist, an investor can guarantee a positive-dollar re
with zero net investments; but the investor is no longer sure of the do
amount of returns, unlike when the law of one price is broken. Depending
which state of the world is realized, the dollar return could be high or lo
but it is always positive. So, the absence of dominant trading strategies
more stringent condition than is the prevalence of the law of one price.

Perhaps the condition of no dominant trading strategy would lead
sensible securities-market model. Unfortunately, this is not so. A tigh

G H0 Bt 1–( ) Hn∆Sn
n 1=

N

∑+=

Bt 1–( )
∆Sn Sn 1( ) Sn 0( )–=
V1 V0 G+=

S∗ { St
∗ : t 0 1},==

St
∗ S1

∗ t( ) S2
∗ t( ) S3

∗ t( ) … SN
∗ t( ), ,,,( )=

Sn
∗ t( ) Sn t( ) Bt ,⁄≡ n 1 2 3 … N, , , ,=

t 0 1,= Bt

HA HB V1
A ω( ) V1

B ω( ) ω Ω∈∀=
V0

A V0
B>

HA HB V0
A V0

B=
V1

A ω( ) V1
B ω( ) ω Ω∈∀>

HB

HA

V0 0< V1 ω( ) 0 ω Ω∈∀≥
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condition is needed to ensure stable, equilibrium securities prices, and
condition is the absence of arbitrage opportunities. Formally, an arbitr
opportunity is a trading strategy , such that , an

. Here, an investor can expect to achieve a positive-dollar ret
with zero investment, and he may end up with a zero return. An arbitr
opportunity is still riskless because it requires zero investment and ca
bring the investor into debt.

It becomes clear to this point that the three conditions
progressively more stringent. A violation of the law of one price implies
existence of dominant trading strategies, which in turn implies arbitr
opportunities. The reverse is not necessarily true. The set of securities pr
that are compatible with the absence of arbitrage is the smallest. Only t
prices are sensible prices. Therefore, any sensible pricing model must e
the absence of arbitrage opportunities. How does one verify that a mod
free of arbitrage opportunities?

Arbitrage-free versus risk-neutral probability measures

It turns out that there is a close link between the absence of arbit
opportunities and the existence of a risk-neutral probability measure.

Definition: Probability measure is a risk-neutral probability

measure if:

and .

Obviously, a probability measure should satisfy a

. The termrisk-neutral refers to , which

says the discounted prices are Martingales under or, equivalently
current price of a security is the expected future price discounted at the
free rate. An important result:

A pricing model is arbitrage-free only if there exists a risk-neutral

probability measure, . (1)

Because the condition is both necessary and sufficient, the existence
risk-neutral probability measure would fully guarantee the absence
arbitrage opportunities. To understand the above, let’s look at an exam
Suppose there are two risky securities besides the risk-free asset, whic

H V0 0= V1 0≥
E V1( ) 0>

Q

Q ω( ) 0 ω Ω∈∀,> E
Q

Sn
∗ t( )[ ] 0 n = 1 2 3 … N, , , ,( )=

Q ω( ) 0 ω Ω∈∀,>

Q ωk( )
k 1=

K

∑ 1= EQ Sn
∗ t( )[ ] 0=

Q

Q
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payoffs are:

If the Arrow–Debreu prices are , and , then:

(2)

Define . Then the above equation syste
becomes:

.

. (3)

(4)

. (5)

Clearly, can be interpreted as probabilities, and the requirement
discounted prices are Martingales is evidently satisfied. When the numb
states equals the number of securities (as in this example), the sy
always yields solutions. For example, for:

, and

,

we have

, and .

Unfortunately there is no guarantee that . In th
case a risk-neutral probability measure does not exist and arbitrage e
For instance, for:

, and

,

State Money market account S1(1) S2(1)

ω1 1 + r S1(1)(ω1) S2(1)(ω1)
ω2 1 + r S1(1)(ω2) S2(1)(ω2)
ω3 1 + r S1(1)(ω3) S2(1)(ω3)

S1 0( ) S2 0( ) ω1 ω2, ω3

ψ1 ψ2, ψ3

1 1 r+( )ψ1 1 r+( )ψ2 1 r+( )ψ3+ +=

S1 0( ) S1 1( ) ω1( )ψ1 S1 1( ) ω2( )ψ2 S1 1( ) ω3( )ψ3+ +=

S2 0( ) S2 1( ) ω1( )ψ1 S2 1( ) ω2( )ψ2 S2 1( ) ω3( )ψ3 .+ +=

Q ωk( ) 1 r+( )ψk (k≡ 1 2 3), ,=

1 Q ω1( ) Q ω2( ) Q ω3( )+ +=

S1 0( ) S1 1( ) ω1( )Q ω1( ) S1 1( ) ω2( )Q ω2( )+[=

S3 1( ) ω3( )Q ω3( ) ] 1 r+⁄+

S2 0( ) S2 1( ) ω1( )Q ω1( ) S2 1( ) ω2( )Q ω2( )+[=

S2 1( ) ω3( )Q ω3( ) ] 1 r+( )⁄+

Q ω( )

r 0.2 S1 1( ), 2 3 6, ,{ } S2 1( ), 4 9 6, ,{ } S1 0( ), 2.5= = = =

S2 0( ) 5.0=

Q ω1( ) 1 2 Q ω2( ),⁄ 1 3⁄= = Q ω3( ) 1 6⁄=

Q ω( ) 0 ω Ω∈∀,>

r 0.2 S1 1( ), 2 3 8, ,{ } S2 1( ), 4 8 6, ,{ } S1 0( ), 5= = = =

S2 0( ) 7.5=
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, and .

These solutions are not probabilities and arbitrage exists. (One arbitr
trading strategy would be to short one unit of each risk security and in
the proceeds of $12.50 into the risk-free asset to yield $15. At time 1,
maximum short-position liability is $8 + $6 = $14, and a positive return
$1 is guaranteed without initial investment.) The negative probabi
corresponds to a negative Arrow–Debreu state price.

Note that the risk-neutral probability measure does not have to
unique to exclude arbitrage opportunities. As long as at least one vi
measure can be identified, then arbitrage is excluded. To continue the a
example, if we modify the payoff and price of the second risky security 

 and ,

then we have a set of risk-neutral probability measures:

.

In this case, the second risky security is redundant and there is no arbi
opportunity. Of course, if the number of securities is bigger than the num
of states, a risk-neutral probability measure certainly does not exist, un
there are redundant securities.

The formal proof of the equivalence between the existence of r
neutral probability measures and the absence of arbitrage is a
complicated. But we could at least summarize matters so far by identify
three possible situations for any pricing model: (i) a risk-neutral probabi
measure does not exist (either because there are more independent sec
than there are states or because there are negative Arrow–Debreu p
(ii) there are more than one risk-neutral probability measures; and (iii) th
is a unique risk-neutral probability measure.

According to the result in (1), arbitrage exists only under (i). Here
an intuitive explanation. When there are more independent securities
there are states, a set of Arrow–Debreu prices will fail to fit all securit
prices—state prices can be security-specific. But this contradicts the
definition of state prices, which should be the same for all securities.
discrepancy in state price for a particular state between two securities i
source of arbitrage.

How about negative Arrow–Debreu prices? This is an easy one.
possible positive payoff should command a positive price per unit of pay
A negative price implies that an investor is paid up front, and at the sa

Q ω1( ) 1 2 Q ω2( ),⁄– 1= = Q ω3( ) 1 2⁄=

S2 1( ) 4 6 16, ,{ }= S2 0( ) 10=

Q 5λ 3 4 6λ 2 3 λ 3 5⁄> >⁄,–,–{ }=
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time is granted another possible payment in the future. This is of cour
money machine, or a source of arbitrage.

Contingent-claims pricing and market completeness

We have established that as long as a risk-neutral probability mea
exists, there will be no arbitrage opportunities. No arbitrage would
associated with “reasonable” prices. Does this mean that contingent-cl
pricing can be accomplished once a risk-neutral probability measur
identified? Before we answer the question, let me clarify that the price
any contingent claim, if it exists at all, should simply be:

, (6)

where are payoffs of the claim. In light of (2) an
(3), the above amounts to weighing the payoffs by Arrow–Debreu pric
which is how any security should be priced. To continue the first exam
following (3), suppose a call option with a strike price of $5 is written on t
second risky security. The payoff is , and by (4) the c
price is $1.25.

Now I will return to the previous question. It turns out that once
risk-neutral probability measure is identified, some value can always
found for a contingent claim, but it is uncertain if this value is unique.
continue the previous example, in which infinitely many risk-neut
probability measures are found,

,

if a call with a strike price of $6 is written on the second security with pay
, then the call option’s payoff is ,

and by (4) the price of the call is 10 . Since , all that
known about the call’s value is its lower and upper bounds (5, 50 ⁄ 9).
price is not unique.

It becomes evident that absence of arbitrage is not sufficient for u
obtain a unique value of a contingent claim. For a contingent claim to ha
unique value, it must be “marketable” or “attainable.” A contingent claim
marketable if its payoff can be replicated by a trading strategy , o
replicating portfolio. When marketable, the contingent claim has a va
equal to that of the replicating portfolio, and this value is unique under m
potentially risk-neutral probability measures. To understand this res
suppose a model consists of a money-market account and a risky sec
and there are three possible states. Then there will be an infinite numb
risk-neutral probability measures, as I showed before. Suppose a contin

V
1

1 r+
----------- G ωk( )Q ωk( )

k 1=

K

∑=

G ωk( ) (k 1 2 … K ), , ,=

G ωk( ) 0 4 1, ,{ }=

Q 5λ 3 4 6λ 2 3 λ 3 5⁄> >⁄,–,–{ }=

S2 1( ) 4 6 16, ,{ }= G ω( ) 0 0 10, ,{ }=
λ 1.2⁄ 2 3⁄ λ 3 5⁄> >

H
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claim has a payoff and the underlying security
current price is with payoffs . The replicating
portfolio is . Then by (4), the value of the claim is:

Clearly, when the contingent claim is marketable, its value is unique
independent of the many risk-neutral probability measures. This is the h
of valuation by replication.

Within a particular model, some contingent claims are marketa
and some are not. When every contingent claim is marketable, then
market is said to be “complete.”

The market is complete only if the number of possible states equals
number of independent securities. Alternatively, the market is
complete only if the risk-neutral probability measure is unique.

At this point, I will summarize for single-period, discrete-tim
pricing: (i) in a complete market, arbitrage does not exist and all conting
claims can be valued; and (ii) in an incomplete market where multiple r
neutral probability measures prevail, arbitrage does not exist, and
marketable or attainable contingent claims can be valued; prices
unmarketable claims are bound within a known range.

Remarkably, the above results also hold for multi-period, discre
time models and continuous-time models. The generalization to multi
period models does not involve new concepts, and will be omitted
brevity. Generalization to the continuous case requires some additi
apparatus. Owing to space limits, I will only highlight the essence
continuous-time arbitrage-free pricing.

Arbitrage Pricing in a Continuous-Time Model

In a continuous-time model, information is revealed through
“filtration,” which is a growing area of sub- -algebra. If the stochas
processes modelling the economic variables are the sole sourc

G ω( ) X1 X2 X3, ,{ }=
S 0( ) S ω( ) S1 S2 S3, ,{ }=

H H0 H1,{ }=

1
1 r+
----------- X1Q1 X2Q2 X3Q3+ +( )

=
1

1 r+
----------- H0 1 r+( ) S1H1+( )Q1 H0 1 r+( ) S2H1+( )Q2+[

H0 1 r+( ) S3H1+( )Q3]+

= H0

S1Q1 S2Q2 S3Q3+ +( )
1 r+

---------------------------------------------------------H1+

= H0 S 0( )H1 .+

σ
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information, then we say the processes are “adapted” to the filtrat
meaning that investors always know the current and past prices o
securities concerned.

Many other new concepts are required to fully discuss continuo
time models, two of which are “self-financing” and “admissible” tradin
strategies. We define them only loosely.

A trading strategy is self-financing if, after initialization, are neithe
additional funds invested into it nor are funds withdrawn from it.

Harrison and Kreps (1979) showed that if none of the self-financing trad
strategies in a model leads to arbitrage opportunities, then there exi
probability measure equivalent to such that all discounted pr
processes areQ-Martingales. This is the origin of risk-neutral valuation an
valuation by replication in a continuous-time setting. But the picture is
complete yet.

A self-financing trading strategy is admissible if the process for ga
and losses is aQ-Martingale.

It can be shown that when all the trading strategies are admissible, ther
no arbitrage opportunities. As in the discrete case, a contingent claim is
to be marketable or attainable if it can be dynamically replicated by
admissible trading strategy.

When all trading strategies are admissible, arbitrage opportunities
absent and an equivalent probability measure exists. A contingent cl
if marketable, can be valued by discounting its expected payoff under
This is valid because the value of a marketable contingent claim is al
Q-Martingale.

There is only one remaining question now: When is a conting
claim marketable? As in the discrete case, all contingent claims
marketable if the securities market is dynamically complete. Markets
dynamically complete if allQ-Martingales can be represented as stocha
integrals with respect to theQ-Martingale prices of the underlying risky
securities. This is the “Martingale representation property.” In most ca
diffusion processes, together with continuous trading, would ensure ma
completeness.

In summary, in a continuous-time model, a unique price for
contingent claim can be found if the model is dynamically complete. In t
event, the unique price is the expected payoff of the claim under
equivalent Martingale measure , discounted at the risk-free rate.

Q P

Q
Q

Q
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Comparing Consumption-Based and Arbitrage-Based
Pricing Models

It would be difficult to judge which type of model is superior. But
will make the following remarks.

First, as Carmichael pointed out, consumption-based models off
unified framework; all securities are priced via a Euler equation, whereb
cash flows are discounted at the marginal rate of intertemporal substitu
of consumption. As such, the models usually involve parameters
investors’ consumption choices and risk preferences, which can be a so
of difficulty. Most works in this area derive pricing results for
“representative agent.” It is an open question as to how close investors’
preference profiles can be. If diverse risk preferences (or utility functio
are used, then obtaining a unique security price is nearly impossible. Ag
as Carmichael shows, the commonly used isoelastic utility function and
variants perform poorly when fitting market data to the derived pric
models.

Second, it appears that consumption-based models are often
when the market is not yet complete. For example, most stochastic vola
models complete the market by specifying investor’s risk preferen
Studies of this include Hull and White (1987), Johnson and Shannon (19
Scott (1987), Wiggins (1987), Melino and Turnbull (1990), Stein a
Stein (1991), Heston (1993), and Duan (1995). Duan’s study is uniqu
that it combines the consumption-based approach with the Martingale-b
approach in a GARCH1 setting, and the final pricing equation is independe
of the utility function parameter (but still dependent on the risk premium2

When the market is incomplete due to discontinuous information (or jum
consumption-based models can also be used. The study by Naik
Lee (1990) is an example.

Third, and perhaps this is a biased personal observation, practitio
seem to prefer arbitrage-based models. This is especially true with t
structure modelling and the pricing of interest rate-derivative securities.
instance, the popular models by Heath, Jarrow, and Morton (1992) and
and White (1990) and their variants are all arbitrage-based. These mo

1. Generalized autoregressive conditional heteroscedasticity.
2. Kallsen and Taqqu (1998) are able to complete the market for an autoregre

conditional heteroscedasticity (ARCH)-type setting by letting the process ev
continuously between two discrete ARCH times. Rubinstein (1976) and Brennan (1
have shown that when particular combinations of consumption preference and distrib
are assumed, risk-neutral pricing obtains.
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are appealing partly because of the ease of estimation and the indepen
of risk-preference parameters.

It is remarkable that, by excluding arbitrage and ensuring mar
completeness, investors can agree on a unique price for a security. Afte
different investors would value the same payoff contingency differently
their risk preferences differ. Of course, there is no contradiction. Invest
preferences are built into underlying securities prices already. Contin
claims in a complete market are redundant securities by definition, and
do not represent new consumption opportunities. To put it another w
contingent-claims pricing is relative pricing, which should be free of r
preferences.
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