Discussion

Jason Wel

Classifying asset-pricing models is a treacherous venture, because
many seemingly distinct modelling frameworks are intricately related.
However, for this discussion, | will put all financial asset-pricing models
into two broad categories: equilibrium models and arbitrage-based models.

Carmichael’s paper focuses on the first group of models. Lucas’s
seminal 1978 article laid the foundation of consumption-based or dynamic-
equilibrium models, and his 1982 article extended the model to a two-
country setting. Other major contributors in this area include:
Merton (1973); Breeden (1979); and Cox, Ingersoll, and Ross (1985).

A distinctive feature of consumption-based models is that the agent’s
risk-preference or utility functions must be specified. Once a utility function
IS in place, maximizing the intertemporal expected utility leads to the usual
first-order conditions, the so-called Euler equations, which ultimately
govern the prices of financial assets. Insofar as Euler equations are the
source of asset price dynamics, specifying the agent's utility function is
crucial. In contrast, arbitrage-based models are free of investors’ risk
preferences.

In the remainder of this discussion, | will mainly review arbitrage-
based models to complement Carmichael’s paper. The review will discuss
the framework of arbitrage pricing as it is applied to derivative financial
assets. In the spirit of the conference theme, | will try to relate the
discussions to the market's information structures, and compare the two
groups of models whenever possible and appropriate. Most of the materials
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are drawn from Dothan (1990), Huang and Litzenberger (1988), Ingersoll
(1987), Duffie (1996), Neftci (1996), and Pliska (1997).

Background

The arbitrage-pricing theory (APT) was pioneered by Ross (1976).
Unlike the capital-asset-pricing model (CAPM), credited to Sharpe (1964)
and Lintner (1965), the APT requires no assumptions about investors’
preferences or return distributions. It builds on the concepts of
diversification and the absence of arbitrage in equilibrium. It is similar to
CAPM, in that both models treat idiosyncratic risks as diversifiable and,
hence, do not assign a risk premium to them.

However, the two models differ in the way they treat systematic risk.
Under CAPM, the risk premium is quantified through two-fund separation
and utility maximization, whereas under APT, it is based on the principle of
no arbitrage. Since the two models were developed to value primary
financial assets such as stocks, and since APT itself does not specify what
the systematic risk factors are, CAPM has historically won the favour of
practitioners and most academics.

APT is more powerful than CAPM for recovering information from
securities returns, in that it allows an unlimited number of systematic risk
factors to affect returns. But this also becomes its chief weakness:
researchers must assign economic meanings to the systematic risk factors
recovered from securities returns. As far as pricing primary securities are
concerned, APT is handicapped by its own merits. However, as history has
proven, the principle of no arbitrage, when applied to valuing derivative
financial securities, is not only powerful but also readily feasible. The key to
its success, of course, lies in relative pricing.

Before we explore the deeper world of arbitrage pricing, we must
introduce another key element, namely, stochastic processes, the building
block for financial modelling. The most widely used process is perhaps the
“Brownian motion,” named after the British botanist Robert Brown. But the
actual development was due to Bachelier (1900) and Einstein (1905) and
other mathematicians in the first half of the century. Although both
Bachelier (1900) and Samuelson (1965) applied the tools to options pricing,
with the former using Brownian motion and the latter geometric Brownian
motion, the early work of Merton (1969 and 1971) planted the seeds to grow
the modern applications. The apparatus in stochastic calculus and modern
probability theory, together with the principle of no arbitrage, enable
researchers to conveniently value derivative securities while maintaining a
realistic information structure.
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Black and Scholes (1973) derived their celebrated options-pricing
formula by solving a partial differential equation that is independent of the
on expected return on the underlying asset. Three years later, Cox and
Ross (1976) derived an important implication from the Black—Scholes
differential equation: Since the expected return of the underlying asset does
not enter into the pricing, one can assume that the investors are risk-neutral,
hence, the expected return is the risk-free rate. This observation was
formalized by Harrison and Kreps (1979), who showed that risk-neutral
valuation is equivalent to arbitrage-free pricing, and in this system all prices
are Martingales upon proper normalization and change of probability
measure.

In the next section, | will survey the key elements of arbitrage pricing
for derivative securities. We will start with a discrete setting and then move
on to a continuous setting.

Arbitrage Pricing in a Single-Period Model
The economic meaning of arbitrage-free

A single period model can be specified as:
* initial timet = 0
e terminal timet = 1
* trading is possible only at= 0, 1
+ sample space is finit€ = {w;, Wy, W5, ..., W} (K <)
» there exists a probability measire @n , wRitw) >0, JwQ
« amoney-market accoudt = {B, :t=0,1} ,wiB = $1
e a price procesS={§:t=0,1} foN risky securities where

S = (Sy(1), Sy(1), S5(t), -, Sy()) -

Definition

Trading strategy H = (Hg Hp Hy, ..., HY)
whereH, is number of dollars in a money-
market account and, is number of shares
in securityn(n=1,2, 3 ..., N).

Value process V = {V,:t=0,1} where

N
Vi = HoBi+ 3 HS(b), t=0,1.
n=1
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N
Gains process: G = Hy(B,—-1) + 2 H.AS,
n=1
where(B, —1) is the interest rate, and
AS, = S,(1)-S,(0). Also,
V, = Vy+G.
Discounted price process SH = {S[D: t =0, 1} where
§' = (Si(1), S(1), S3(1). ., SN(1) and
SH(t)=S,(t)/B;, n=1,23...,N;

t = 0, 1. B; is the numeraire

For any modelling to be sensible, the resulting price system must
comply with economic rationale. For mstance if there are two trading
strategies HA anHB such tha‘vl(oo) = Vl(oo)DooDQ and yet
Vo >V0 then the law of one price is violated. This is the least desirable
system because there is ambiguity of prices—portfolios with identical
payoffs can have differing current values, a result flying in the face of
economic reality. When the law of one price does not hold, an investor will
be able to obtain a sure amount of trading profits today with zero net
investment.

Will the prevalence of the law of one price guarantee a sensible price
system? Hardly. The law of one price merely ensures that trading strategies
with the same terminal values have the same current values. However, two
trading strategies with differing terminal valuegyhave the same current
values For instance, if there exigis®  aH® such tshét— VO , but
Vl(oo) > Vl(w)Doo [0 Q, then the law of one price is not violated, but the
price system is not sensible. In this case, there are “dominant trading
strategies” that allow investors to guarantee a strictly positive-dollar return
with zero net mvestments (by shorting with strateg and going long
with strategyH” ). Equivalently, a dominant trading strategy can also be
characterized as a strategy whefg< 0 , 9d) 200w 0 Q

A securities-market model allowing a dominant trading strategy to
exist will not be realistic, because it leads to illogical prices. When dominant
trading strategies exist, an investor can guarantee a positive-dollar return
with zero net investments; but the investor is no longer sure of the dollar
amount of returns, unlike when the law of one price is broken. Depending on
which state of the world is realized, the dollar return could be high or low,
but it is always positive. So, the absence of dominant trading strategies is a
more stringent condition than is the prevalence of the law of one price.

Perhaps the condition of no dominant trading strategy would lead to a
sensible securities-market model. Unfortunately, this is not so. A tighter
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condition is needed to ensure stable, equilibrium securities prices, and this
condition is the absence of arbitrage opportunities. Formally, an arbitrage
opportunity is a trading strategyd , such theflg = 0 V,=0 and
E(V,) >0. Here, an investor can expect to achieve a positive-dollar return
with zero investment, and he may end up with a zero return. An arbitrage
opportunity is still riskless because it requires zero investment and cannot
bring the investor into debt.

It becomes clear to this point that the three conditions are
progressively more stringent. A violation of the law of one price implies the
existence of dominant trading strategies, which in turn implies arbitrage
opportunitiesThe reverse is not necessarily true. The set of securities prices
that are compatible with the absence of arbitrage is the smallest. Only those
prices are sensible prices. Therefore, any sensible pricing model must ensure
the absence of arbitrage opportunities. How does one verify that a model is
free of arbitrage opportunities?

Arbitrage-free versus risk-neutral probability measures

It turns out that there is a close link between the absence of arbitrage
opportunities and the existence of a risk-neutral probability measure.

Definition: Probability measur® s a risk-neutral probability
measure if:

Q(w) >0, w0 Q andE[SYt)] = 0(N=1,23...,N).

Obviously, a probability measure should satispfw) >0, Dw 0 Q and
K

Z Q(wy) = 1. The termrisk-neutral refers to EQ[S,D](t)] = 0, which
k=1

says the discounted prices are Martingales urider  or, equivalently, the
current price of a security is the expected future price discounted at the risk-
free rate. An important result:

A pricing model is arbitrage-free only if there exists a risk-neutral
probability measureQ) . (1)
Because the condition is both necessary and sufficient, the existence of a
risk-neutral probability measure would fully guarantee the absence of

arbitrage opportunities. To understand the above, let’'s look at an example.
Suppose there are two risky securities besides the risk-free asset, which are
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priced atS(0) andS,(0). There are three statee);, w, , angt . The
payoffs are:

State Money market account Si(1) Sy(1)
0y 1+r Si(1)(wy) S(1)(wy)
0, 1+r Si(1)() S(1)(wy)
w3 1+r Si(1)(w) S(1)(ws)

If the Arrow—Debreu prices ang,, §,, andyi; , then:
1= 1+ +(1+n)P,+(1+r)Y,
S,(0) = §;(1)(w) Wy +S;(1) (W)W, + S (1)(wg) W4

S,(0) = Sy(1)(wp) Wy + Sy (1) (W)W, + Sy(1) (wg) W3 - (2)

Define Q(wy) =(1+r)y, (k = 1,2 3). Then the above equation system
becomes:

1 = Q(wp) +Q(ay) + Qo).
$1(0) = [S,(1)(w;)Q(wy) + S;(1) (@) Q(w,)

+55(1)(w3)Q(wg) ]/ 1+7. 3)
S,(0) = [S,(1)(wq)Q(wq) + S5(1)(wy) Q(wy) (4)
+5,(1)(w3)Q(wg) ]/ (1 +71). (5)

Clearly, Q(w) can be interpreted as probabilities, and the requirement that
discounted prices are Martingales is evidently satisfied. When the number of
states equals the number of securities (as in this example), the system
always yields solutions. For example, for:

r=028/(1) ={23 6},S,(1) ={4,9 6},S,(0) = 25,and
S,(0) = 5.0,

we have
Q(wy) = 172 Q(w,) = 1/3,andQ(w3) = 1/6 .

Unfortunately there is no guarantee tl@atw) >0, Jw O Q . In this
case a risk-neutral probability measure does not exist and arbitrage exists.
For instance, for:

r=025/(1) ={23 8,5(1) ={48 6,5,(0) =5, and
S,(0) = 7.5,
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we have
Q(wy) = -172,Q(w,) = 1, andQ(wy) = 1/2.

These solutions are not probabilities and arbitrage exists. (One arbitrage-
trading strategy would be to short one unit of each risk security and invest
the proceeds of $12.50 into the risk-free asset to yield $15. At time 1, the
maximum short-position liability is $8 + $6 = $14, and a positive return of
$1 is guaranteed without initial investment.) The negative probability
corresponds to a negative Arrow—Debreu state price.

Note that the risk-neutral probability measure does not have to be
unique to exclude arbitrage opportunities. As long as at least one viable
measure can be identified, then arbitrage is excluded. To continue the above
example, if we modify the payoff and price of the second risky security to

S,(1) = {4,6 16 andS,(0) = 10,
then we have a set of risk-neutral probability measures:
Q={5A-3,4-6\,2/3>A>3/5}.

In this case, the second risky security is redundant and there is no arbitrage
opportunity. Of course, if the number of securities is bigger than the number
of states, a risk-neutral probability measure certainly does not exist, unless
there are redundant securities.

The formal proof of the equivalence between the existence of risk-
neutral probability measures and the absence of arbitrage is a bit
complicated. But we could at least summarize matters so far by identifying
three possible situations for any pricing model: (i) a risk-neutral probability
measure does not exist (either because there are more independent securities
than there are states or because there are negative Arrow—Debreu prices);
(i) there are more than one risk-neutral probability measures; and (iii) there
is a unique risk-neutral probability measure.

According to the result in (1), arbitrage exists only under (i). Here is
an intuitive explanation. When there are more independent securities than
there are states, a set of Arrow—Debreu prices will fail to fit all securities
prices—state prices can be security-specific. But this contradicts the very
definition of state prices, which should be the same for all securities. The
discrepancy in state price for a particular state between two securities is the
source of arbitrage.

How about negative Arrow—Debreu prices? This is an easy one. Any
possible positive payoff should command a positive price per unit of payoff.
A negative price implies that an investor is paid up front, and at the same
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time is granted another possible payment in the future. This is of course a
money machine, or a source of arbitrage.

Contingent-claims pricing and market completeness

We have established that as long as a risk-neutral probability measure
exists, there will be no arbitrage opportunities. No arbitrage would be
associated with “reasonable” prices. Does this mean that contingent-claims
pricing can be accomplished once a risk-neutral probability measure is
identified? Before we answer the question, let me clarify that the price of
any contingent claim, if it exists at all, should simply be:

K

V= PRECNECH 6)

whereG(wy) (k = 1, 2, ..., K) are payoffs of the claim. In light of (2) and
(3), the above amounts to weighing the payoffs by Arrow—Debreu prices,
which is how any security should be priced. To continue the first example
following (3), suppose a call option with a strike price of $5 is written on the
second risky security. The payoff 8(w,) = {0,4, 1} , and by (4) the call
price is $1.25.

Now | will return to the previous question. It turns out that once a
risk-neutral probability measure is identified, some value can always be
found for a contingent claim, but it is uncertain if this value is unique. To
continue the previous example, in which infinitely many risk-neutral
probability measures are found,

Q = {5A—3,4-6\,2/3>A>3/5},

if a call with a strike price of $6 is written on the second security with payoff
S,(1) = {4, 6, 16, then the call option’s payoff i$&(w) = {0, 0, 10t
and by (4) the price of the callis IX¥'1.2 .Sinegéd3>A>3/5 ,allthatis
known about the call’s value is its lower and upper bounds (5, 50/9). The
price is not unique.

It becomes evident that absence of arbitrage is not sufficient for us to
obtain a unique value of a contingent claim. For a contingent claim to have a
unique value, it must be “marketable” or “attainable.” A contingent claim is
marketable if its payoff can be replicated by a trading strategy , or a
replicating portfolio. When marketable, the contingent claim has a value
equal to that of the replicating portfolio, and this value is unique under many
potentially risk-neutral probability measures. To understand this result,
suppose a model consists of a money-market account and a risky security,
and there are three possible states. Then there will be an infinite number of
risk-neutral probability measures, as | showed before. Suppose a contingent
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claim has a payofflG(w) = { X1, X2, X3} and the underlying security’s
current price isS(0) with payoffSS(w) = {S;, Sy, S3} . The replicating
portfolioisH = {Hq, H1} . Then by (4), the value of the claim is:

1
To7(K1Q1 + XQz + X3Q3)

o (Ho(1+ 1)+ S{HYQp + (Ho(1+1) + S,H;)Q,
+(Hp(1+r1)+S3H,)Q4]

N ($1Q1+S,Q,+ S3Q3)H

=Hp T+r1 1

Ho+ S(0)H, .

Clearly, when the contingent claim is marketable, its value is unique and
independent of the many risk-neutral probability measures. This is the heart
of valuation by replication.

Within a particular model, some contingent claims are marketable
and some are not. When every contingent claim is marketable, then the
market is said to be “complete.”

The marketis complete only if the number of possible states equals the
number of independent securities. Alternatively, the market is
complete only if the risk-neutral probability measure is unique. (7)

At this point, | will summarize for single-period, discrete-time
pricing: (i) in a complete market, arbitrage does not exist and all contingent
claims can be valued; and (ii) in an incomplete market where multiple risk-
neutral probability measures prevail, arbitrage does not exist, and only
marketable or attainable contingent claims can be valued; prices of
unmarketable claims are bound within a known range.

Remarkably, the above results also hold for multi-period, discrete-
time models and continuous-time models. The generalization to multiple-
period models does not involve new concepts, and will be omitted for
brevity. Generalization to the continuous case requires some additional
apparatus. Owing to space limits, | will only highlight the essence of
continuous-time arbitrage-free pricing.

Arbitrage Pricing in a Continuous-Time Model

In a continuous-time model, information is revealed through a
“filtration,” which is a growing area of sul- -algebra. If the stochastic
processes modelling the economic variables are the sole source of
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information, then we say the processes are “adapted” to the filtration,
meaning that investors always know the current and past prices of all
securities concerned.

Many other new concepts are required to fully discuss continuous-
time models, two of which are “self-financing” and “admissible” trading
strategies. We define them only loosely.

A trading strategy is self-financing if, after initialization, are neither
additional funds invested into it nor are funds withdrawn from it.

Harrison and Kreps (1979) showed that if none of the self-financing trading
strategies in a model leads to arbitrage opportunities, then there exists a
probability measureQ equivalent t&  such that all discounted price
processes ar®@-Martingales. This is the origin of risk-neutral valuation and
valuation by replication in a continuous-time setting. But the picture is not
complete yet.

A self-financing trading strategy is admissible if the process for gains
and losses is @-Martingale.

It can be shown that when all the trading strategies are admissible, there are
no arbitrage opportunities. As in the discrete case, a contingent claim is said
to be marketable or attainable if it can be dynamically replicated by an
admissible trading strategy.

When all trading strategies are admissible, arbitrage opportunities are
absent and an equivalent probability measQre  exists. A contingent claim,
if marketable, can be valued by discounting its expected payoff u@der
This is valid because the value of a marketable contingent claim is also a
Q-Martingale.

There is only one remaining question now: When is a contingent
claim marketable? As in the discrete case, all contingent claims are
marketable if the securities market is dynamically complete. Markets are
dynamically complete if alQ-Martingales can be represented as stochastic
integrals with respect to th@-Martingale prices of the underlying risky
securities. This is the “Martingale representation property.” In most cases,
diffusion processes, together with continuous trading, would ensure market
completeness.

In summary, in a continuous-time model, a unique price for a
contingent claim can be found if the model is dynamically complete. In that
event, the unique price is the expected payoff of the claim under the
equivalent Martingale measu€ , discounted at the risk-free rate.
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Comparing Consumption-Based and Arbitrage-Based
Pricing Models

It would be difficult to judge which type of model is superior. But |
will make the following remarks.

First, as Carmichael pointed out, consumption-based models offer a
unified framework; all securities are priced via a Euler equation, whereby all
cash flows are discounted at the marginal rate of intertemporal substitution
of consumption. As such, the models usually involve parameters of
investors’ consumption choices and risk preferences, which can be a source
of difficulty. Most works in this area derive pricing results for a
“representative agent.” It is an open question as to how close investors’ risk-
preference profiles can be. If diverse risk preferences (or utility functions)
are used, then obtaining a unique security price is nearly impossible. Again,
as Carmichael shows, the commonly used isoelastic utility function and its
variants perform poorly when fitting market data to the derived pricing
models.

Second, it appears that consumption-based models are often used
when the market is not yet complete. For example, most stochastic volatility
models complete the market by specifying investor’s risk preferences.
Studies of this include Hull and White (1987), Johnson and Shannon (1987),
Scott (1987), Wiggins (1987), Melino and Turnbull (1990), Stein and
Stein (1991), Heston (1993), and Duan (1995). Duan’s study is unique in
that it combines the consumption-based approach with the Martingale-based
approach in a GARCHsetting, and the final pricing equation is independent
of the utility function parameter (but still dependent on the risk premitim).
When the market is incomplete due to discontinuous information (or jumps),
consumption-based models can also be used. The study by Naik and
Lee (1990) is an example.

Third, and perhaps this is a biased personal observation, practitioners
seem to prefer arbitrage-based models. This is especially true with term-
structure modelling and the pricing of interest rate-derivative securities. For
instance, the popular models by Heath, Jarrow, and Morton (1992) and Hull
and White (1990) and their variants are all arbitrage-based. These models

1. Generalized autoregressive conditional heteroscedasticity.

2. Kallsen and Taqqu (1998) are able to complete the market for an autoregressive
conditional heteroscedasticity (ARCH)-type setting by letting the process evolve
continuously between two discrete ARCH times. Rubinstein (1976) and Brennan (1979)
have shown that when particular combinations of consumption preference and distribution
are assumed, risk-neutral pricing obtains.
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are appealing partly because of the ease of estimation and the independence
of risk-preference parameters.

It is remarkable that, by excluding arbitrage and ensuring market
completeness, investors can agree on a unique price for a security. After all,
different investors would value the same payoff contingency differently if
their risk preferences differ. Of course, there is no contradiction. Investors’
preferences are built into underlying securities prices already. Contingent
claims in a complete market are redundant securities by definition, and they
do not represent new consumption opportunities. To put it another way,
contingent-claims pricing is relative pricing, which should be free of risk
preferences.
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