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Abstract

Financial and monetary variables have long been known to contain useful lea
information regarding economic activity. In this paper, the authors wish to determine whethe
forecasting performance of such variables can be improved using neural network models. Th
findings are that, at the 1-quarter forecasting horizon, neural networks yield no significant for
improvements. At the 4-quarter horizon, however, the improved forecast accuracy is statis
significant. The root mean squared forecast errors of the best neural network models are abo
19 per cent lower than their linear model counterparts. The improved forecast accuracy m
capturing more fundamental non-linearities between financial variables and real output gro
the longer horizon.

Résumé

Les variables financières et monétaires sont reconnues depuis longtemps comm
indicateurs fiables de l’activité économique future. Dans cette étude, les auteurs tente
déterminer si le recours à des réseaux neuronaux permet d’améliorer les prévisions réal
l’aide de ces variables. Ils constatent qu’à l’horizon d’un trimestre, les réseaux neurona
produisent pas de meilleures prévisions que les modèles linéaires traditionnels. À l’horiz
quatre trimestres toutefois, on observe une amélioration significative des prévisions sur l
statistique. Les erreurs quadratiques moyennes de prévision des meilleurs modèles neurona
inférieures de 15 à 19 % à celles des modèles linéaires. Cette précision accrue des pré
pourrait indiquer la présence de relations non linéaires fondamentales entre les var
financières et la croissance de la production réelle à l’horizon d’un an.
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1. Introduction

The objective of this paper is to forecast output growth using neural networks, an
compare the forecasting performance of such non-linear models with traditional li
specifications. Neural networks can be thought of as “black box” models, as sometimes
difficult to give economic meaning to the estimated relationships that emerge from t
Nevertheless, they have proven particularly useful as forecasting tools in the physical and n
sciences (e.g., see Ding, Canu, and Denoeux (1996)) and finance (e.g., see Angstenberger
Neural network models, due to their lack of structure, can be best viewed as indicator m
Thus, the present paper should be viewed as a contribution to, and extension of, the indicator
literature at the Bank, in the spirit of Muller (1992).

Neural networks allow for very general non-linear relationships between variables. In
when properly specified, they can approximateany non-linear function. It is known that
explanatory variables such as monetary aggregates or yield spreads lead GDP growth a
therefore be used to anticipate future economic activity. If there are any non-linearities be
such variables, then neural networks can exploit them to provide more accurate foreca
economic activity.

Friedman (1968) argued that monetary policy may have an asymmetric effect on
economic activity. Tightening monetary conditions slows output growth to a greater degree th
equivalent expansion of monetary policy stimulates it. Researchers such as Cover (1992), M
(1993), and Rhee and Rich (1995) have found empirically that expansionary monetary poli
measured by either money or interest rates, has a marginally lower impact on output growt
contractionary policy in the United States. These findings lend credence to Friedman’s propo
Thus, non-linearities may very well exist in indicator models of output growth that are constru
using monetary and financial variables, and they may be representative of asymmetric effe
monetary policy on the real economy.

This paper shows that linear models are in effect constrained neural network mo
Therefore, neural networks should provide forecasts that are at least as accurate as those o
from linear indicator models. Results indicate that the neural network models perform quite
compared with linear models in a forecasting exercise conducted between 1985 and 1998, a
of about one and a half business cycles. On average, the best neural networks yield foreca
are 15 to 19 per cent more accurate than the corresponding linear models for the 4-quarter
rate of real output. Sequentially updating the neural network models over the forecast hori
computationally intensive. However, this updating does yield slightly better forecasts than
from a neural net model whose weights are initially estimated using data from 1968 to 1985. A
1-quarter horizon, no model—linear or non-linear—performs exceptionally well.
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The paper is organized as follows. The next section explains the intuition behind n
networks, demonstrating how they can in fact be viewed as generalizations of linear mo
Section 3 reviews some of the literature on neural networks in economics, an area that ha
blossoming during the last five years. However, this literature has still been relatively scarce
area of macroeconomics. In Section 4, linear and neural network models of output grow
constructed, using financial and monetary variables. Both types of models are compared in a
of-sample forecasting exercise. Section 5 concludes and suggests avenues for future rese

2. Neural networks: A brief exposition

This section explains some of the intuition underlying neural networks and introduce
distinctive terminology. Neural networks are first defined and then a simple linear mod
presented. This model can be viewed as a special case of the more general neural networ

Animals (including humans) can make sense out of the large amount of visual inform
in their surroundings with very little effort. If this form of perception, or pattern recognition, c
be transported to computing systems, then the analysis of complicated data structures co
improved. It is against this backdrop that Mehrotra, Mohan, and Ranka (1997, 1) present
networks: “The neural network of an animal is part of its nervous system, containing a
number of interconnected neurons (nerve cells). ‘Neural’ is an adjective for neuron, and ‘net
denotes a graph-like structure. Artificial neural networks refer to computing systems whose c
theme is borrowed from the analogy of biological neural networks.” To simplify the terminolo
many authors drop the word “artificial” when describing their neural network models, since
such model outside of biology must almost certainly be artificial.

Neural network models therefore attempt to emulate the impressive pattern recog
skills of animals. This is achieved by constructing a map of neurons, the simplest bein
traditional linear regression model withJ explanatory variables:1

, ( 1)

or,

. ( 2)

In words, (2) states thatY is a weighted sum of theXj. This relationship is shown in
Figure 2.1 withJ = 4, where eachXj (the input neurons) is linked toY (the output neuron) by the

1. The constant is omitted for expositional purposes, but it can easily be incorporated into neural network models; it
referred to as a “bias term.” The time subscript is also initially omitted to simplify the notation.

Y β1X1 β2X2 … βJXJ+ + +=

Y β jX j
j 1=

J

∑=
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parametersβj (the input weights). In this linear model, it is easy to see the impact of changes in
of theXj. As Xj changes by one unit, thenYwill change byβj units. For this reason, linear model
are ideally suited for policy analysis as it is straightforward to perform comparative statics.

Figure 2.1: The linear regression model

Now (2) is generalized by the introduction of non-linearities into the relationship. As is
relationship betweenY and the weighted sum of the inputs is the same regardless of the valu
the inputs. But suppose there is reason to believe that there may be asymmetries between th
and the output. For example, there is Friedman’s (1968) argument, “pushing versus pulling
string,” which states that contractionary monetary policy will have a relatively larger impac
GDP growth than an equivalent expansionary policy. If theXj represent policy variables andY
output growth, then one would expect the relationship between these variables to be depen
the magnitude or direction of the input variables. This could be accomplished through a s
threshold function, where a large value of the weighted sum of the inputs would initiate a dis
regime change. In many practical applications, the regime changes may not be so abrup
therefore smooth activation functions are used. Popular choices include any type of sigmo
shaped) function, such as the logistic function

. ( 3)

Hence, to allow for a non-linear relationship between the weighted inputs and the outpu
function (3) can be applied on the linear model (2), yielding

. ( 4)

Input layer

Output layer
= Single neuron

Y

X1 X2 X3 X4

βj

(explanatory
variables)

(dependent
variable)

g u( ) 1

1 e u–
+

----------------=

Y g β jX j
j 1=

J

∑
 
 
 

=
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Now, suppose the link between theXj andY is not direct. In the case of the relationshi
between interest rates and output, one would expect interest-sensitive intermediate variables
as investment—to be affected before output. For example, a drop in current investment d
higher interest rates leads to lower output in the current period. However, it also leads to
output in future periods due to the loss of potential future income flows resulting from the ca
expenditures that were not initiated.2 More generally, the intermediate variables in neural netwo
need not be identified in order to forecastY; they can simply be treated as unknown. Th
intermediate variables (referred to as hidden neurons in the literature) are intermediate proc
stages where the inputsXj, and their corresponding weightsβj, are subject to another re-weightin
prior to affectingY. In other words, a hidden layer of neurons is introduced. Proceeding with
hypothetical example, if an intermediate variable can be thought of as representing inves
then the neural net model can allocate larger weights for investment levels that
proportionately larger effects on output growth.

Figure 2.2 shows a feedforward neural network map withJ = four input neurons,K = three
hidden neurons, one hidden layer, and one output neuron. It is called a feedforward mode
theXj affectY, while the converse is not true. (In some neural net models, one can allow for cha
in Y to affect theXj.) The connection strengthsαk, k = 1,2,3, link the hidden neurons toY; the
connection strengthsβjk, j = 1,2,3,4, andk = 1,2,3, link the input neurons to the hidden neuron
Analytically, the neural network model can be represented as

. ( 5)

Thus, it is seen that the connection strengthsαkg(⋅) are summed and filtered through anoth
activation functionh(⋅). For practical purposes,g(⋅) andh(⋅) are the same. The significance of th
single hidden layer of neurons between the inputs and the output may not seem apparent
time. However, if there are sufficient hidden neurons, (5) can approximate any non-linear fun
to an arbitrary degree of accuracy. This is known as the universal approximation property of n
networks, and such approximation is not possible in the absence of the hidden layer (see
(1992)).

2. If the interest sensitivity of investment is not constant for all interest rate levels, then this may be a source of any non-lin
between interest rates and output growth.

Y h αkg β jkXj
j 1=

J

∑
 
 
 

k 1=

K

∑
 
 
 

=
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Figure 2.2: The feedforward neural network with a single hidden layer

The estimation ofαk andβjk in (5) (also referred to as “learning”) is fairly straightforward
as one seeks to minimize the sum of squared deviations(SSD)between the output and the network

. ( 6)

This is accomplished by adjusting the weightsαk andβjk until the desired pre-specified level o
convergence is achieved. Any number of numerical algorithms can be used for this,3 although the
back-propagation method is often employed. This is a grid search method that readjusts the w
sequentially to minimize the errors.4

The neural network (5) should be sufficient for most economic applications, but it ca
generalized further. For example, nothing prevents the existence of multiple hidden laye
multiple outputs. This could be useful if one wanted to forecast, say, output growth and infl
simultaneously. However, since this is a data-intensive technique and the number of parame
be estimated quickly increases with every additional layer of neurons, such a practice m

3. For example, simulated annealing and genetic algorithms are powerful, recently developed estimation methods. Ch
and 8 of Masters (1993) are a readable introduction to such methods.

4. Chapter 3 of Mehrotra, Mohan, and Ranka (1997) describes this algorithm in more detail.

X1 X2 X3 X4

Input layer

Hidden layer

Output layer

βjk

αk

= Single neuron

Y

minαk β jk, SSD Yt h αkg β jkXjt
j 1=

J

∑
 
 
 

k 1=

K

∑
 
 
 

–
2

t 1=

T

∑=
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constrained by lack of data. For forecasting purposes, neural networks typically require
different data sets. First, a training sample is needed for the initial estimation of param
Second, a testing sample is required to verify the accuracy of the forecasts of the trained mo
the testing sample forecasts poorly, one has to return to the training stage and re-estimate the
by modifying the number of hidden neurons and/or the duration of the training by tightenin
loosening the convergence criterion. With the newly trained model, one then returns to the t
sample. Third, a forecasting sample is needed for which the model can be used in forec
exercises. In this paper, there are only 30 years of quarterly data, which means that data s
becomes an issue. For this reason, the testing sample has to be omitted and the freshly
neural net models used in the forecasting exercises. In spite of this, they still outperform the
models at the longer forecasting horizon.

Finally, it is worth mentioning that neural networks are most convenient for forecas
purposes, not for comparative statics. Computing an elasticity is not as straightforward as it
be in a linear regression model. To determine what impact a 1 per cent increase in interes
would have on output, one must pick two different interest rates and filter them through the m
while keeping other variables constant. In a univariate neural net model, this is f
straightforward. One can simply read the changes in the output variable on the vertical axis,
multivariate models, this is not feasible.5

3. Literature review

The use of neural networks in economics is still in its relative infancy. The article by K
and White (1994) is likely the definitive introduction of neural networks to the econome
literature. Kuan and White draw many of the parallels between econometrics and neural net
as we have attempted in Section 2. Kuan and White’s theoretical contribution has been fol
with some applied work by Maasoumi, Khotanzad, and Abaye (1994). These authors demon
that the 14 macroeconomic series analyzed in the seminal article by Nelson and Plosser (19
be nicely modelled using neural networks, casting strong doubt that these series follow un
processes. Indeed, this is consistent with the conclusions of Perron (1989), who finds that al
for one or two structural breaks renders such series stationary. The major strength of neu
models is that they are better capable of modelling breaks such as stock market crashes
shocks, since these may denote significant departures from linearity.

Swanson and White (1997) represent another major attempt at using neural nets to fo
macroeconomic variables. This paper compares the relative usefulness of different linear an
linear models using a wide array of out-of-sample forecasting performance indicators. Their

5. For additional introductions to neural networks, see McMenamin (1997), Campbell, Lo, and MacKinlay (1997), and Ku
White (1994). The first of these references is the simplest, the last the most rigorous.
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conclusion is that multivariate linear models are marginally better overall. However, they
trouble finding consistent results, as some perform better for selected variables and for se
performance statistics. Apart from a corporate bond yield, they use no other monetary or fin
variables in their models.

Kohzadi et al. (1995) is a good introduction to neural networks and their uses in econo
with an application to the forecast of corn futures. Comparing a neural network to an AR
model, they find that the forecast error of the neural net model is between 18 and 40 per cen
than that of the ARIMA model, using different forecasting performance criteria.

In the finance literature, Angstenberger (1996) develops a neural net model that has
success at forecasting the S & P 500 index. Hutchinson, Lo, and Poggio (1994) find that n
network models can sometimes outperform the parametric Black-Scholes option pricing for
However, Campbell, Lo, and MacKinlay (1997) caution that this finding is model specific, and
one should not conclude that neural network models are generally superior until they have
tested against additional parametric models.

4. Models of output growth

As stated in the introduction, this paper can be viewed as an extension of tradit
indicator model research at the Bank. Models such as those estimated by Muller (1992
example, have been almost universally linear. Innovations to these models have inc
experimentation with the right-hand side variables and the lag structure, but no attempt ha
made to modify the functional form. Meanwhile, in the neural network literature, there has
little effort thus far to experiment with the right-hand side variables, as authors have been
concerned with functional forms. The innovation of the present paper is therefore to combin
known indicator properties of selected monetary and financial variables with the prom
forecast performance of neural network models. First, the forecasting performance of some
models is assessed as this can act as a gauge of the forecasting success (or failure) o
network models. After this assessment, neural network models are estimated.

4.1 Linear models

The variables to be forecast in this paper are the 1-quarter and 4-quarter cumulative g
rate of real GDP. The list of explanatory variables includes a long-short interest rate sprea
90-day commercial paper and real long-term bond rates, the growth rates of narrow (real M
broad (real M2) monetary aggregates, and the growth rate of the real TSE 300 index. The
models are of the form
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where∆mYt is them-quarter growth rate of real output (m= 1 or 4), andX is one of the explanatory
variables outlined above. In the specification search for the best linear models, these variab
allowed to enter the model both individually and in combination with other variables. Tab
presents only the results for the best univariate and multivariate linear models taken fro
extensive specification search—five models each for the 1- and 4-quarter growth rates o
output. The parameter estimates are presented for data over the entire sample, 1968:1 to 19
Table 2, the out-of-sample forecasting statistics were generated for forecasts from 1985:1m to
1998:1. A number of forecast performance indicators are considered. The RMSE, MAD, and
U statistics are measures of the size of forecast deviations from the actual values; the lowe
statistics, the more accurate the forecasts. The confusion rate is a measure of the dire
accuracy of forecasts; the closer this statistic is to zero, the better the forecasts of the direc
output growth. The formulas for the computation of each statistic are given in the Appendix

For 1-quarter output growth, the yield spread, real M1 growth, and short-term rates a
found to be significant explanatory variables. The model with the best fit in-sample, 1e, has
quarter growth of real M1 and real R90 as regressors. In the forecasting exercise, howeve
model is clearly beaten by model 1d, which includes the yield spread and real R90 as right
side variables. This is a case where good in-sample fit is no guarantee of good forec
performance. Notice as well that, for the univariate models 1a, 1b and 1c, the yield spread is a
out-of-sample performer than M1, based on the performance statistics. Real money, ho
seems to be a good forecaster of the direction of output growth, as the confusion rate is u
lower with the 4-quarter growth rate of M1 as a regressor. Thus, money seems to have t
forecasting the magnitude of output growth, but does relatively better on the direction.

In all models of the 4-quarter growth rate of output, the yield spread is kept as a regre
since it is always highly significant. Real M2 also outperforms real M1 at this horizon, so b
money is used in these models. Overall, the smoother 4-quarter growth series is found ea
forecast, as can be seen from the improved forecast performance statistics. The best model,
out-of-sample, is model 4e, which consists of the yield spread, real R90, and the 4-quarter g
rate of real M2. It has both the best in-sample fit and the lowest forecast errors.

4.2 Neural network models

In this section, neural network models of 1- and 4-quarter output growth are constru
To make the comparison to linear models tractable, the same explanatory variables are use

∆mYt α β jX jt m–
j 1=

J

∑ εt+ +=



9

nd
hite

nomic
s, as
ed the
gests
idden

the
model

5:1+
d, an
curve
on

ad,
pact

urve).
ted as
ure 2
1998:1,
lope for

put in
g the
nd the
owth
re is

quarter
ould
odel,

s. In the
ts are not
the 10 linear models in Table 1.6 The models are therefore of the form of (5), with the right-ha
side variables taken from the linear models. Following the recommendation of Kuan and W
(1994), a single hidden layer is used as this seems to be appropriate for most eco
applications.7 The number of hidden units within the hidden layer was set to two in all case
this provided adequate forecasting performance. Three hidden units sometimes lower
accuracy of forecasts. A rough rule of thumb proposed by Bailey and Thompson (1990) sug
that the number of hidden units be set to 75 per cent of the number of inputs; therefore two h
units should suffice.

For forecasting purposes with neural networks, we proceed in two different ways. In
first instance, static forecasts are computed, based on the estimation of the neural network
from 1968:1 to 1985:1 (i.e., the training sample). Estimates of the parametersαk andβjk in (5) are
thus obtained. This model is then used to forecast 1- and 4-quarter output growth from 198m
to 1998:1. For example, if the only explanatory variable is the 4-quarter lag of the yield sprea
in-sample fitted curve as in Figure 1 (see page 19) is obtained. Note that the neural network
is concave, implying thatpositive values of the yield spread have marginally lower impacts
output growth than negative values. If monetary policy were to have some control over this spre
then a tight policy (represented by an inverted yield curve) would have a relatively larger im
on economic activity than an expansionary policy (as denoted by an upward-sloping yield c
The finding of non-linearities between financial variables and output growth can be interpre
being generally consistent with the asymmetry findings of Cover (1992) and others. In Fig
(see page 19), where the models are estimated over the entire sample period from 1968:1 to
the asymmetry becomes even more pronounced as the neural net curve has a steeper s
negative spreads, and a flatter slope for positive spreads.

For a univariate model such as 4a, a forecast of the 4-quarter growth rate of real out
1986:1 consists of taking the yield spread on the horizontal axis at 1985:1, and readin
corresponding output growth rate on the vertical axis. The spread for 1985:2 is then taken a
corresponding growth rate for 1986:2 obtained. This practice is continued until an output gr
forecast for 1998:1 is obtained. For the multivariate models, the forecasting procedu
analogous, as the input data is filtered through the model at timet to obtain forecasts att+4.

A problem with this methodology is that the parametersαk and βjk are not updated to
account for newly available data. The parameters of the linear model (7) are updated each
to produce a forecast, but this is not the case for the static neural network model. Ideally, it w
be useful to perform the same kind of sequential updating exercise for the neural network m

6. Also used were variables, such as stock prices, that were found to contain little forecasting power in the linear model
current forecasting context, these variables did not improve neural network forecasts either, and therefore those resul
presented.

7. There were also experiments with two hidden layers, but the results were not significantly different.
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but unfortunately some logistical problems are encountered. The greatest problem is that the
network model is computationally intensive. It may sometimes require several hundre
thousands of epochs (replications, or passes through the data) during the back-propagation
technique to find parameters that will meet the pre-specified convergence criterion. And som
the search technique may become “stuck” in a plateau or valley, causing the procedure to co
indefinitely.8

However, such an intensive updating of the neural network model is impractical, s
several factors need to be specified by the user each time the parameters are estimated.
choose to update the model less frequently than each quarter. For example, for the 4-quarter
rate forecasts, 49 forecasts are required between 1986:1 to 1998:1. Thus the model
sequentially updated every seven quarters, with the implication that it requires updating only
times. This is far more manageable as the pre-specified convergence criterion need not be c
with each update. This is a fairly common practice and was used by, for example, Kohzadi
(1995). Our model is therefore estimated with data from 1968:1 to 1985:1; 4-quarter forecas
the 4-quarter output growth rate for 1986:1 to 1987:3 are performed. The neural net model i
re-estimated with data from 1968:1 to 1986:4, and forecasts for 1987:4 to 1989:2 are obtaine
is repeated until a forecast for 1998:1 is found. The forecasts from models that are seque
updated in such a manner are referred to as dynamic forecasts. For the 1-quarter models, th
52 observations to forecast from 1985:2 to 1998:1, implying the model can be updated ever
quarters for a total of 13 updates.

Tables 3 and 4 present the forecasting performance statistics for the static and dy
neural network models.9 For forecasts of the 1-quarter growth rate, the static model perfo
relatively poorly compared with the linear model, as it only marginally outperforms the latte
one instance. The dynamic forecasts in Table 4 are noticeably better, as the neural network
outperforms the linear model by just over 5 per cent in terms of forecast accuracy for
specifications. The confusion rates for the dynamic forecasts are also marginally lower, imp
improved forecast directions. The poor forecasting performance of the static model is
because output growth is highly volatile and the training sample is too small to map the patt
the data adequately. This can be seen in Figure 3 (see page 20) where no model is a

8. Estimating neural network models requires some care, as the modeller must use a pre-specified convergence criterio
back-propagation search. If the criterion is too tight, the model can overfit in-sample, causing it to miss the trend of the
variable, and thereby producing poor forecasts. If the criterion is too loose, the model may not capture the underlying
of the data. The results in Tables 3 and 4 were obtained after searching for the optimal convergence criteria. Furthermo
the parameter search begins with random values, the results can differ slightly each time the estimation proce
performed.

9. The estimated parameters are not presented, since they have little economic meaning. A large value forβ11 should not imply
that the first input variable has a strong impact on output growth, since its impact could be mitigated by the activation fu
andα1 andα2. Similarly, small values ofβ11 could be amplified by the activation functions andα1 andα2, making direct
interpretation difficult. If one wants to perform comparative statics using neural network models, there is no alternative
vary the chosen input by, say, 1 per cent, and to observe the percentage change in output growth.
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performer. All models appear to adequately capture the general trend of this series but are
to properly capture the volatility. It can be concluded therefore that financial variables are rela
poor predictors of economic activity at the 1-quarter horizon, as average forecast errors o
2.5 per cent should not be acceptable to policy-makers.10

At the 4-quarter horizon, the neural net models perform much better. The output gr
series is far less volatile, and financial variables are known to be better indicators at this ho
The two best linear models are 4d and 4e, both of which include the yield spread and real R9
the 4-quarter growth of real M2 in the case of model 4e. These models are also the best for th
and dynamic neural network models—the root mean squared errors are between 15 and 19 p
lower than those for the linear models, with the dynamic models outperforming the static mo
Figure 4 (see page 20) shows that the linear model has been overpredicting output growth by
0.5 to 1 per cent in many periods since 1991. In fact, linear model forecasts are usually highe
neural net forecasts at all peaks between 1985 and 1998. Meanwhile, in the troughs, the m
produce nearly identical forecasts. This is again mild evidence of asymmetry between the fin
variables and output growth, consistent with the pictures of the kinked relationship betwee
yield spread and GDP growth in Figures 1 and 2 (see page 19).

It is also interesting to note that the directions of the forecasts in Figures 3 and 4
page 20) are very similar for all three models. In other words, there does not appear to be an
in directional accuracy of forecasts. Any forecast gains from neural nets emerge only i
magnitudes of the forecasts. It is not clear whether this is a general feature of neural netwo
whether this is specific to the present models.

For growth up to 1999:1, all three models agree on the direction of GDP growth, as
clearly falling. The linear model has the 4-quarter growth rate of real GDP falling to 2.0 per
in 1999:1, the dynamic neural net model to 2.8 per cent, and the static neural net model as th
optimistic with forecasted growth of 3.2 per cent for the same period.

5. Conclusion and discussion

This paper seeks to determine whether more accurate indicator models of output g
based on monetary and financial variables can be developed using neural networks. No in
model appears to perform exceptionally well for 1-quarter forecasts, as such variables are
to explain adequately the volatility of the 1-quarter growth rate of real output. At this horiz
dynamic neural network models outperform the linear models in terms of forecast accura
about 5 per cent, while the static models fail to outperform the linear models. However, a

10. If such variables are indicators of policy, then they should be more useful for forecasting output growth at longer ho
consistent with the lag with which monetary policy is thought to affect the economy.
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4-quarter horizon, monetary and financial variables are found to be much better predict
output growth than at the 1-quarter horizon. Furthermore, the best neural network m
outperform the best linear models by between 15 and 19 per cent at this horizon, implyin
neural network models can be exploited for noticeable gains in forecast accuracy. The ga
forecast accuracy seem to originate from the ability of neural networks to capture asymm
relationships. The data reveal that positive yield spreads (which may be an indicator
expansionary monetary policy) have a relatively lower impact on output growth than negative
spreads (which may be an indicator of contractionary monetary policy).11

In future work, we hope to further refine the best neural network models in this pape
considering additional layers, different training periods, etc.) for use as forecasting tools to e
readily available monetary and financial data in order to gauge future economic activity. For
comparisons with more complex models, such as a vector error-correction model or the B
own Quarterly Projection Model, may also be undertaken. As well, future projects may involv
construction of neural net models to forecast inflation. Projects could also examine the poss
of combining forecasts from different models, as Donaldson and Kamstra (1996) have had
success combining forecasts of linear and neural network models for stock prices.

As a broader guide for future research, it is perhaps constructive to identify some o
areas in economics where neural networks could be expected to be of use, as well as some
potential limitations. Based on our experiments and reading of the literature, we believe that
networks may be of use in the following situations:

• Generally poor linear models:If linear models have traditionally performed poorly i
forecasting exercises in spite of well-developed economic theory, then non-linearities
exist in the data, so neural networks can be potentially useful. The classic example
involves the modelling of exchange rates, as it is generally understood that exchange
should be functions of, among other factors, domestic and foreign price levels and in
rates. Empirically, however, such models perform poorly (e.g., see Amano and van No
(1993) for a discussion).

• Unknown parametric form:Economic theory does not always yield a specific function
form that is to be used for empirical verification of the theory. Researchers h
traditionally relied on linear models because of their ease of estimation, but with the ad
of modern computing technology, one can venture beyond the bounds of linearity.

11. The improvement over linear models is even more impressive when it is recalled that the linear models used in the com
exercise were among the best univariate and multivariate indicator models identified in the specification search. Poor
models, such as those based on stock prices, might in fact be poor due to marked non-linearities that the linear mod
unable to capture. In such instances, one can suspect that neural network models could provide even greater forecas
over linear models.
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• Structural breaks:If linear models suffer from structural breaks, and if the training peri
is sufficiently long to incorporate different interesting episodes in the history of a varia
then the estimated parameters in the neural net model will have incorporated un
movements in the data. This implies that neural net models may be more robust to stru
breaks than linear models. A structural break is, in essence, just a special form of
linearity, to which the neural net can adapt.

• Benchmarks:When assessing the forecasting performance of a new (linear) mo
researchers have traditionally compared the model to the forecasting ability of a si
ARIMA model. In many applications, it has been found that neural networks outperf
ARIMA models (e.g., see Kohzadi et al. (1995)). Hence, one can “raise the bar” by u
neural network forecasts as a benchmark instead of the ARIMA model. The neural ne
benchmark can either be univariate (using lags of the independent variable as inpu
multivariate (incorporating the variables of the model whose forecast performance
researcher wishes to assess).

In spite of their numerous strengths, neural nets suffer from a number of weaknesse
researchers should keep in mind.

• Sample size:Neural networks, more than linear models, need larger samples in ord
be estimated properly. This is due to the large number of parameters introduced in
models that link the inputs to the hidden neurons, which are then linked to the ou
variable. As the data available for the training and testing of the model increase, one w
then expect the marginal gains in forecast accuracy over linear models to increase. T
no rule of thumb for the “optimal” sample size for which one can expect neural net
improve noticeably over linear models A “guesstimate” at this point would be around
observations. This explains why, for example, there have been few macroecon
applications of neural networks thus far in the literature. Forty years of quarterly dat
usually judged insufficient to learn the relationships between the input and output vari
properly. As such, neural networks should noticeably outperform linear models in fore
of higher-frequency variables.

• Lack of economic structure:Due to the black box nature of neural networks, users
forecasts may feel some uneasiness if they are unable to give proper econ
interpretation to the estimated relationships. At the same time, it is difficult to determ
which of the explanatory variables are driving the bulk of the forecasts, as compar
statics are difficult to perform.
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Table 1: Linear models, in-sample, 1968:1 to 1998:1

 for m = 1, 4

Newey-West correctedt-statistics are in parentheses.

Model Regressors Constant α1 α2 α3 R2

1a Spreadt-1 2.711

(7.825)

0.713

(4.456)

-- -- 0.112

1b ∆RM1t-1 2.739

(8.669)

0.185

(4.787)

-- -- 0.166

1c ∆4RM1t-1 2.553

(8.019)

0.261

(5.160)

-- -- 0.185

1d Spreadt-1
RR90t-1

4.108

(7.289)

0.543

(3.513)

-0.371

(-3.299)

-- 0.170

1e RR90t-1
∆4RM1t-1

3.787

(7.829)

-0.332

(-3.281)

0.220

(4.559)

-- 0.234

4a Spreadt-4 2.610

(13.491)

0.807

(7.543)

-- -- 0.348

4b Spreadt-4
∆4RGDPt-4

2.025

(6.010)

0.796

(7.688)

0.188

(2.480)

-- 0.379

4c Spreadt-4
∆4RM2t-4

1.385

(3.253)

0.962

(9.176)

0.233

(3.302)

-- 0.449

4d Spreadt-4
RR90t-4

3.924

(17.52)

0.650

(7.419)

-0.348

(-6.173)

-- 0.479

4e Spreadt-4
RR90t-4

∆4RM2t-4

2.803

(5.956)

0.792

(8.206)

-0.294

(-5.103)

0.171

(2.478)

0.540

∆mYt α0 α jX jt m–
j 1=

J

∑ εt+ +=
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Table 2: Linear model forecast performance statistics

Best statistics for each performance criterion are highlighted. The model is
initially estimated from 1968:1 to 1985:1; a single forecast is generated; the model
is then re-estimated with one additional observation; and another forecast is
generated. The model’s parameters are sequentially updated until a forecast is
obtained for 1998:1.

Model Regressors RMSE MAD Theil U
Confusion

rate

1a Spreadt-1 2.925 2.359 0.830 0.48

1b ∆RM1t-1 3.088 2.625 0.877 0.58

1c ∆4RM1t-1 2.966 2.527 0.842 0.42

1d Spreadt-1
RR90t-1

2.611 2.156 0.741 0.50

1e RR90t-1
∆4RM1t-1

2.691 2.261 0.764 0.36

4a Spreadt-4 2.459 2.126 0.822 0.32

4b Spreadt-4
∆4RGDPt-4

2.420 2.065 0.809 0.32

4c Spreadt-4
∆4RM2t-4

2.214 1.868 0.740 0.32

4d Spreadt-4
RR90t-4

2.042 1.736 0.682 0.34

4e Spreadt-4
RR90t-4

∆4RM2t-4

1.899 1.580 0.635 0.32
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Table 3: Static neural network forecast performance statistics

Best statistics for each performance criterion are highlighted. Negative values for the percentage
difference in the RMSE between the static neural network forecasts and the linear forecasts
indicate that the neural network forecasts are more accurate; positive signs imply the opposite. The
model is estimated from 1968:1 to 1985:1, and these parameters are used to generate forecasts for
each period until 1998:1.

Model Inputs RMSE MAD Theil U
Confusion

rate
%(RMSEsta -

RMSElinear)

1a Spreadt-1 3.181 2.672 0.903 0.44 +8.8%

1b ∆RM1t-1 2.970 2.470 0.843 0.58 -3.8%

1c ∆4RM1t-1 2.976 2.455 0.845 0.40 +0.3%

1d Spreadt-1
RR90t-1

2.639 2.209 0.749 0.46 +1.1%

1e RR90t-1
∆4RM1t-1

2.733 2.166 0.776 0.38 +1.6%

4a Spreadt-4 2.345 2.023 0.784 0.32 -4.6%

4b Spreadt-4
∆4RGDPt-4

2.225 1.906 0.744 0.32 -8.1%

4c Spreadt-4
∆4RM2t-4

2.174 1.839 0.727 0.32 -1.8%

4d Spreadt-4
RR90t-4

1.710 1.410 0.572 0.34 -16.3%

4e Spreadt-4
RR90t-4

∆4RM2t-4

1.620 1.251 0.542 0.34 -14.7%



18
Table 4: Dynamic neural network forecast performance statistics

Best statistics for each performance criterion are highlighted. Negative values for the percentage
difference in the RMSE between the dynamic neural network forecasts and the linear forecasts
indicate that the neural network forecasts are more accurate. The model is initially estimated from
1968:1 to 1985:1. These parameters are used to generate forecasts for the next four quarters for
models 1a to 1e, and for seven quarters for models 4a to 4e. The network is then trained anew, and
forecasts are again generated. The model’s parameters are updated thirteen times between 1985:1
and 1998:1 for models 1a to 1e, and seven times for models 4a to 4e.

Model Inputs RMSE MAD Theil U
Confusion

rate
%(RMSEdyn

- RMSElinear)

1a Spreadt-1 2.775 2.207 0.788 0.42 -5.1%

1b ∆RM1t-1 2.825 2.264 0.802 0.54 -8.5%

1c ∆4RM1t-1 2.768 2.221 0.786 0.38 -6.7%

1d Spreadt-1
RR90t-1

2.456 1.909 0.697 0.48 -5.9%

1e RR90t-1
∆4RM1t-1

2.627 2.043 0.746 0.34 -2.4%

4a Spreadt-4 2.097 1.750 0.701 0.32 -14.4%

4b Spreadt-4
∆4RGDPt-4

2.106 1.733 0.704 0.32 -13.0%

4c Spreadt-4
∆4RM2t-4

2.095 1.762 0.700 0.32 -5.4%

4d Spreadt-4
RR90t-4

1.645 1.304 0.550 0.36 -19.4%

4e Spreadt-4
RR90t-4

∆4RM2t-4

1.575 1.267 0.526 0.36 -17.1%
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Figure 1: Linear and neural network fitted curves, 1968: 1 to 1985:1 (model 4a)

Figure 2: Linear and neural network fitted curves, 1968: 1 to 1998:1 (model 4a)
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Figure 3: Forecasts of 1-quarter real GDP growth rate, 1985:2 to 1998:2 (model 1d)

Figure 4: Forecasts of 4-quarter real GDP growth rate, 1986:1 to 1999:1 (model 4e)
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Forecast performance statistics

The criteria used to evaluate the accuracy of the out-of-sample forecasts are fairly
known. The first three can be found in Holden, Peel, and Thompson (1990), while the fou
discussed in Swanson and White (1997). In what follows,A represents the actual observation, a
F the forecast.

•  Root mean squared error:

(A1)

•  Mean absolute deviation:

(A2)

•  Theil U statistic:

(A3)

• Confusion rate: This measures the accuracy of thedirectionsof the forecasts. This is the
ratio of the number of incorrect forecast directions and the total number of forecasts.
between 0 and 1, being equal to 0 if all the forecast directions are correct, and 1 wh
the forecast directions are incorrect.

RMSE
Ft At–( )2∑

n
-------------------------------=

MAD
Ft At–∑

n
---------------------------=

U RMSE2

At
2∑( ) n⁄

---------------------------=
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	-8.1%
	4c
	Spreadt-4
	D4RM2t-4
	2.174
	1.839
	0.727
	0.32
	-1.8%
	4d
	Spreadt-4
	RR90t-4
	1.710
	1.410
	0.572
	0.34
	-16.3%
	4e
	Spreadt-4
	RR90t-4
	D4RM2t-4
	1.620
	1.251
	0.542
	0.34
	-14.7%
	1a
	Spreadt-1
	2.775
	2.207
	0.788
	0.42
	-5.1%
	1b
	DRM1t-1
	2.825
	2.264
	0.802
	0.54
	-8.5%
	1c
	D4RM1t-1
	2.768
	2.221
	0.786
	0.38
	-6.7%
	1d
	Spreadt-1
	RR90t-1
	2.456
	1.909
	0.697
	0.48
	-5.9%
	1e
	RR90t-1
	D4RM1t-1
	2.627
	2.043
	0.746
	0.34
	-2.4%
	4a
	Spreadt-4
	2.097
	1.750
	0.701
	0.32
	-14.4%
	4b
	Spreadt-4
	D4RGDPt-4
	2.106
	1.733
	0.704
	0.32
	-13.0%
	4c
	Spreadt-4
	D4RM2t-4
	2.095
	1.762
	0.700
	0.32
	-5.4%
	4d
	Spreadt-4
	RR90t-4
	1.645
	1.304
	0.550
	0.36
	-19.4%
	4e
	Spreadt-4
	RR90t-4
	D4RM2t-4
	1.575
	1.267
	0.526
	0.36
	-17.1%
	(A1)
	(A2)
	(A3)


	References
	Bank of Canada Working Papers Documents de travail de la Banque du Canada


