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Résumé

Les chercheurs recourent de plus en plus au prix des options pour évaluer les attentes et les

opinions du marché au sujet de la politique monétaire. L’auteur analyse ici les options sur contrats

à terme sur le marché de l’eurodollar afin d’examiner l’évolution des attentes des opérateurs

concernant les taux d’intérêt futurs des emprunts en eurodollars. Il fait appel à des fonctions de

densité des probabilités neutres à l’égard du risque pour synthétiser l’information que renferment

les prix de ces options sur contrats à terme. Il compare plusieurs méthodes d’estimation courantes

de ces fonctions de densité des probabilités. Celle qui se révèle la meilleure repose sur l’emploi

d’une combinaison de densités lognormales; elle est suivie au second rang d’une méthode fondée

sur une approximation polynomiale de Hermite. L’auteur étudie aussi diverses mesures

statistiques standards, à savoir la volatilité, l’asymétrie et l’aplatissement. La mesure de la

volatilité n’est pas très sensible à la méthode utilisée, contrairement aux deux autres, qui sont

influencées par le modèle retenu. L’auteur se sert d’un exemple concret, à savoir la période

entourant la réunion tenue en septembre 1998 par le Comité de l’open market de la Réserve

fédérale, pour illustrer l’approche adoptée.

JEL: G14

Classifications de la banque : Marchés financiers; taux d’intérêt

Abstract

Options prices are being increasingly employed to extract market expectations and views about

monetary policy. In this paper, eurodollar options are monitored to examine the evolution of

market sentiment over the possible future values of eurodollar rates. Risk-neutral probability

functions are employed to synopsize the information contained in the prices of euro/dollar futures

options. Several common methods of estimating risk-neutral probability density functions are

examined. A method based on a mixture of lognormals density is found to rank first and a method

based on a Hermite polynomial approximation is found to rank second. Several standard summary

statistics are also examined, namely volatility, skewness, and kurtosis. The volatility measure is

fairly robust across methods, while the skewness and kurtosis measure are model-sensitive. As an

example, the days surrounding the September 1998 Federal Open Market Committee are

examined.

JEL classification: G14

Bank of Canada classifications: Financial markets; interest rates
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Introduction and overview

Timely information is crucial to central banks for formulating and implementing monetary policy.

There are of course many sources of information. Macroeconomic data releases, regional industry

visits and surveys, and financial market data are all examples of sources that central Banks use.

This paper focuses on the latter source—in particular, the derivative markets sector of financial

markets, which has gained prominence as a source of information.

Derivative markets have the desirable property of being forward-looking in nature and

thus are a useful source of information for gauging market sentiment about future values of

financial assets. Indeed, several studies have used option prices to extract market expectations and

views about monetary policy [Bahra (1996), Söderlind and Svensson (1997), Söderlind (1997),

Butler and Davies (1998), and Levin, Mc Manus, and Watt (1998)]. In particular, Bahra noted that

option prices may prove to be useful to monetary authorities as valuable sources to (i) assess

monetary conditions, (ii) assess monetary credibility, (iii) assess the timing and effectiveness of

monetary operations, and (iv) identify market anomalies.

In this paper, eurodollar futures options are monitored to examine the evolution of market

sentiment over the possible future values of eurodollar rates. The key tool used to synopsize the

information contained in the prices of eurodollar futures options is the risk-neutral probability

density function (PDF). Risk-neutral PDFs provide the probabilities attached by a risk-neutral

agent to particular outcomes for future values of eurodollar rates. In addition, changes in the

shape and location of the risk-neutral PDF can point to changes in the tone of the market.

Many methods exist to extract risk-neutral PDFs from option prices. This paper compares

several common methods of estimating risk-neutral PDFs with the aim of determining which

method most accurately prices observed market options. Encouragingly, the mixture of

lognormals method ranked first—this method is now used at the Bank for examining the

information content of foreign exchange futures options.1 However, the mixture of lognormal

method can occasionally run into problems. When it does, an alternative method called the

Hermite polynomial method is more appropriate. The Hermite method ranked second and yielded

similar results to the mixture of lognormal method.

Several standard summary statistics can be derived from the risk-neutral PDFs, namely

volatility, skewness, and kurtosis. Invariably, these statistics are always quoted in conjunction

with the risk-neutral PDF estimates.

A second objective of the paper is to ascertain the robustness and usefulness of these

statistics. The volatility measure was found to be fairly robust across the different risk-neutral

1. Foreign exchange futures options are examined to monitor the evolution of the markets’ sentiment over future
Canadian dollar exchange rates.
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PDFs. However, the estimates of skewness and kurtosis were found to be model-dependent. The

skewness measure for the exchange rate is now quoted weekly at the Bank. The results of this

paper show that further research needs to be conducted on an appropriate measure of market

sentiment asymmetry.

As a concrete example, the days surrounding the September 1998 Federal Open Market

Committee (FOMC) meeting are examined using the risk-neutral PDF methodology. Risk-neutral

PDFs are used to monitor the response of market sentiment over the future levels of the eurodollar

rates to the 29 September FOMC statement. The risk-neutral PDFs indicated an increase in

market uncertainty prior to the 29 September meeting date, a lessening of uncertainty on the

meeting date, and a renewed increase in uncertainty the day after the meeting. The risk-neutral

PDFs clearly suggest a bearish market sentiment for the eurodollar rate, both prior to and after the

FOMC meeting. Thus, some market participants expected the Fed easing and also anticipated

further rate cuts would follow before mid-December 1998.

This paper is organized as follows: Section 1 reviews exchange-traded interest rate futures

and interest rate futures options. Section 2 presents the general theory behind the pricing of

interest rate futures options. Section 3 gives an overview of several of the common methods that

are used to extract risk-neutral PDFs. (Those readers not interested in the technical details of the

various option-pricing models may wish to skip section 3.) Section 4 describes the data. Section 5

compares the risk-neutral PDFs from the various estimation methods. Section 6 presents a study

of the September 1998 FOMC meeting, focusing on the response of the risk-neutral PDF to the

meeting. Section 7 concludes the paper and discusses possible further work.

The work in the present paper closely follows the work and methodologies of Jondeau and

Rockinger (1998), and Coutant, Jondeau, and Rockinger (1998).

1. The instruments

The primary focus of this paper is exchange-traded interest rate futures and interest rate futures

options. In the United States and Canada, the main exchanges for interest rate products are the

Chicago Merchantile Exchange (CME) and the Montreal Exchange (ME). The CME lists a host

of contracts on short-term U.S. and foreign securities. For example, both futures and futures

options are listed for 3-month eurodollars, 1-month LIBOR, 13-week Treasury bills, euroyen and

eurocanada. On the other hand, the ME lists relatively few interest rate futures, namely, 1-month

Canadian bankers’ acceptance futures (BAR), 3-month Canadian bankers’ acceptance futures

(BAX), 5-year Government of Canada bond futures (CGF), and 10-year Government of Canada

bond futures (CGB). Futures options are listed for the 3-month Canadian bankers’ acceptance
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futures (OBX) and the 10-year Government of Canada bond futures (OGB). Options are also

listed for a small selection of Government of Canada bonds.

According to the CME, the eurodollar futures (ED) are “the most liquid exchange-traded

contracts in the world when measured in terms of open interest” (Chicago Mercantile Exchange

1999). For example, a snapshot of the futures market on 15 January 1999 reveals that the March

99 ED contract had a trading volume of 76,109 and an open interest of 465,398. The eurodollar

futures options (ZE) on this contract, March 99 ZE, had a combined trading volume of 27,939 and

a combined open interest of 748,664. The numbers for the eurocanada futures contract pale in

comparison; on 14 January 1999 the March 99 futures contract had zero trading volume and an

open interest of only 190.

Statistics from the ME reveal that the BAX contract is the most actively traded contract at

that exchange. The average daily volume and open interest for all BAX contracts for 1998 was

27,104 and 171,354, respectively. In comparison, the OBX futures options had an average daily

volume and open interest of 840 and 15,505, respectively. The OBX volume and open interest are

minuscule compared with the figures for the ZE contracts, especially considering the fact that the

OBX data is aggregated across all maturity dates trading while the ZE data refers to a single

maturity date. Thus, for the remainder of the paper, only CME futures and futures option data will

be used.

ED contracts are listed for the quarterly cycle of March, June, September, and December,

and also for the two nearest serial (non-quarterly) months. ED futures contracts are traded using a

price index. The futures interest rate is calculated by subtracting the futures price from 100. For

example, a ED price of 95.80 corresponds to a futures interest rate of 4.20 per cent. Thus if

investors expect short-term interest rates to decline (increase), they would go long (short) the

futures contract. ED contracts have a contract size of U.S.$1 million. They also feature a

minimum allowable price move or tick size of 0.01, with the single exception of when a futures

contract is in its expiration month, in which case the minimum tick size is reduced to 0.005. A tick

value of 0.01 corresponds to a value of U.S.$25 ( Contract size ¥ Tick Value ¥ Maturity of the

underlying futures contract = 1,000,000 ¥ 0.01/100 ¥ 3/12). Futures contracts cease trading at

11:00 am London time on the second London business day prior to the third Wednesday of the

contract month.

The ZE contract cycle, maturity date, and minimum tick size are the same as those of the

underlying ED contract. The ZE contract size is simply one futures contract. Eurodollar futures

options consist of American-style2 call and put3 options written on the underlying ED futures

contract. A 3-month ED futures call option gives the holder the right but not the obligation to buy

a 3-month ED futures contract. Now, investors who expect U.S. short-term interest rates to decline

would also be expecting the price of the futures contract to increase. Thus, they might be inclined
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to purchase a 3-month ED futures call option to speculate on their belief. Hence, an exchange-

listed interest rate futures call option is equivalent to a put option on the futures interest rate

because of the inverse relationship between prices and interest rates, and the fact that exchange-

listed interest rate futures options are quoted in units of price rather than percentage interest rates.

For notational convenience, exchange-listed call (put) options that are quoted in units of

price are converted to put (call) options that have units of interest rate, that is, to percentage

interest rates.

2. General theory

The valuation of interest rate futures options is best illustrated by first considering the pricing of

European-style options. Let  denote the futures interest rate at timet—recall

, where  is the listed futures price at timet. LetX andT denote the strike

price and the time to maturity of the option, respectively. Note that the strike price of a call option

on the futures interest rate is equal to 100 minus the listed strike price of an interest rate futures

put option. First, note that on their maturity dates the price of a call and put option will be

 . (1)

Prior to maturity, European options are priced by taking the expectation of the discounted

future cash flows. In this case, the future cash flows are the possible payouts of the options at

maturity; see equation (1). The cash flows are discounted using the future values of the

instantaneous risk-free rate. Thus, the value of European call and put options prior to maturity are

given by the following formulae, respectively:

 , (2)

2. An American option allows the holder to exercise the option on any date up to and including the maturity
date—the maturity date is also referred to as the expiration date or the exercise date. European options only
allow exercise on the expiration date. American options are always more expensive than European options
with the same characteristics because of the added feature of early exercise. In general, the early exercise
feature of American options makes these options more difficult to price than European options.

3. A call option gives the holder the right but not the obligation to buy the underlying asset at a predetermined
strike price. A put option gives the holder the right but not the obligation to sell the asset at the strike price.

r̃ t( )
r̃ t( ) 100 p̃ t( )–= p̃ t( )

C̃ T X,( ) = max 0 r̃ t( ) X–{ , } r̃ t( ) X–( )+≡

P̃ T X,( ) = max 0 X r̃ t( )–,{ } X r̃ t( )–( )+≡

C 0 X,( ) = E0 exp r̃ i τ( ) τd
0

T

∫–
 
 
 

C̃ T X,( )

P 0 X,( ) = E0 exp r̃ i τ( ) τd
0

T

∫–
 
 
 

P̃ T X,( )
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where represents the risk-neutral expectation, as opposed to the true or actual expectation, and

 refers to the continuously compounded instantaneous interest rate. To simplify matters, the

instantaneous rate is taken to be a fixed risk-free interest rate . Strictly speaking, this

assumption is incorrect, however it is common practice among market participants and academics

alike.

Thus, the value of the European call and put options can then be expressed as:

 . (3)

2.1 American-style interest rate futures options

Exchange- traded interest rate futures options are typically American-style options. Thus, the

above pricing formulae for European-style options needs to be adjusted to account for the

possibility of early exercise. Explicit formulae for American-style options are generally not

available. However, Melick and Thomas (1997), Leahy and Thomas (1996), and Söderlind (1997)

have shown that the following bounds can be placed on the prices of American-style currency

futures options:

. (4)

American-style options can then be priced as a weighted average of the upper and lower bounds,

namely:

 wherei =1,2 and . (5)

Following Melick and Thomas (1997), the weights applied will depend on whether the particular

option is in-the-money4 or out-of-the-money. That is, by convention,i = 1 for in-the-money call or

put options, andi = 2 for out-of-the-money call or put options.

4. A European interest rate call (put) option is in-the-money if the futures interest rate is above (below) the strike
interest rate, out-of-the-money if the futures interest rate is below (above) the strike interest rate, and at-the-
money if the futures interest rate equals the strike interest rate.

E0
r̃ i τ( )

r f

C 0 X,( ) = exp r f T–{ } E0 r̃ T( ) X–( )+[

P 0 X,( ) = exp r f T–{ } E0 X r̃ T( )–( )+[ ]

CA 0 X,( ) E0 max 0 r̃ T( ) X–,{ }[ ]=

CA 0 X,( ) max E0 r̃ T( )[ ] X r f T–( )E0 max 0 r̃ T( ) X–,{ }[ ]exp,–{ }=

PA 0 X,( ) E0 max 0 X r̃ T( )–,{ }[ ]=

PA 0 X,( ) max X E0 r̃ T( )[ ] r f T–( )E0 max 0 X r̃ T( )–,{ }[ ]exp,–{ }=

Cθ 0 X,( ) ωi C
A

0 X,( ) 1 ωi–( ) CA 0 X,( )+=

Pθ 0 X,( ) ωi P
A

0 X,( ) 1 ωi–( ) PA 0 X,( )+=
0 ωi 1≤ ≤
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2.2 General methodology

The formulae for the prices of European options, (3), can be written explicitly in terms of the risk-

neutral PDF, , as follows:

 . (6)

The risk-neutral PDF for the interest rate, , provides the probabilities attached by a risk-

neutral agent today (that is, timet = 0) to particular outcomes for future interest rates5 that could

prevail on the maturity date of the option contract.

Various methodologies have been proposed to obtain the risk-neutral PDF from observed

futures option prices.6 The techniques used in this paper—a full discussion follows later—all

allow the risk-neutral PDF to be expressed in a parametric form. Thus, it is helpful to introduce

the following notation: letθ denote the parametric vector for the risk-neutral PDF—of course the

makeup of this vector will vary depending on the technique being used. Now, let , and

be the theoretical call and put futures option prices with exercise priceX [the theoretical

prices are calculated from equation (5) with the aid of equations (4) and (6)]. Also, let and

 be the observed call and put futures option prices with exercise priceX. Finally, let the

theoretical interest rate futures price derived from the option-pricing model under risk-neutral

density, , be given by (= ), and let the observed interest rate futures

price be given by .

The parameters of the risk-neutral PDFs,θ, are estimated by minimizing the squared

pricing errors associated with the call futures option prices, the put futures options prices, and the

interest rate futures price. The minimization problem is:

(7)

where the number of call and put options are allowed to differ.

5. In the context of this paper, the future interest rate refers to the 3-month eurodollar rate.
6. There are four main methods of extracting risk-neutral PDFs from option prices: (i) specify a generalized

stochastic process for the price of the underlying asset, (ii) specify a parametric form for the risk-neutral PDF,
(iii) smooth the implied volatility function, and (iv) use non-parametric techniques. For a broad review of
these techniques see Levin, Mc Manus, and Watt (1998).

q r̃ T( )[ ]

C 0 X,( ) r f T–{ } r̃ T( ) X–{ }
X

∞
∫ q r̃ T( )[ ] r̃ T( )dexp=

P 0 X,( ) r f T–{ } X r̃ T( )–{ }
0

X

∫ q r̃ T( )[ ] r̃ T( )dexp=

q r̃ T( )[ ]

Cθ 0 X,( )
Pθ 0 X,( )

C X( )
P X( )

q r̃ T( )[ ] Fθ 0 T,( ) E0 r̃ T( )[ ]
F 0 T,( )

min
θ

C Xi( ) Cθ 0 Xi,( )–[ ]2

i 1=

n

∑ P Xj( ) Pθ 0 X j,( )–[ ]2

j 1=

m

∑ F 0 T,( ) Fθ 0 T,( )–[ ]2
+ +
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3. Overview of some specific techniques

As mentioned earlier, many techniques exist to extract risk-neutral PDFs from option prices. In

this section, the theory behind some of the more common techniques is reviewed. In general, the

techniques considered in this paper fall, with one exception, into two broad categories: a

stochastic process for the evolution of the short-term interest rate is specified, or a parametric

form for the risk-neutral PDF over the interest rate on the maturity date of the option is specified.

The former category contains Black’s model and a jump-diffusion model. The latter category

contains methods based on a mixture of lognormal density functions and a Hermite polynomial

expansion. The single exception is the method of maximum entropy.

3.1 Black’s model

Black’s model (1976) is the baseline model for pricing futures options. The model is very similar

to the Black–Scholes model (1973). The futures interest rate, , is assumed to follow a

lognormal process

(8)

where is the volatility of the futures interest rate, and is a Wiener process, that isW(t) is a

geometric Brownian motion process in a risk-neutral world. For such a process, the risk-neutral

PDF is a lognormal density:

, (9)

whereF(0,T) is the interest rate futures rate. Furthermore, in Black’s model the theoretical prices

of European call and put futures options are given by

(10)

, (11)

where

 and (12)

andN(x) represents the standardized cumulative normal probability distribution function

evaluated atx.

At this point, it is worthwhile giving an example of how interest rate futures options are

priced using Black’s model. Consider the March 1999 ED futures and futures options listed on the

CME on January 29, 1999. The March 1999 three-month ED futures contract had a listed

settlement price of 95.04. The ZE call contract with strike price 95.00 had a settlement price of

r̃ t( )

dr̃ t( ) σ r̃ t( ) dW t( )=

σ dW

q r̃ T( )[ ] 1

2π σ T r̃ T( )
--------------------------------------- 1

2
---–

F 0 T,( ) r̃ T( )⁄( ) 1
2
---σ2

T–log

σ T
-------------------------------------------------------------------

 
 
 
 

2

 
 
 
 
 

exp=

Cθ 0 X,( ) r f T–{ }exp F 0 T,( )N d1( ) XN d2( )–[ ]=

Pθ 0 X,( ) r f T–{ }exp XN d2–( ) F 0 T,( )N d– 1( )–[ ]=

d1
F 0 T,( ) X⁄{ }log

σ T
-----------------------------------------

1
2
---σ T+= d2 d1 σ T–=
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0.060 and the ZE put contract with the same strike price had a settlement price of 0.020. The other

inputs required for Black’s model are the time-to-maturity of the contracts, the risk-free rate, and

the instantaneous volatility. There are 45 days until the expiration of the contracts on March 15.

Thus, the time to maturity isT = 0.125 (= 45/360). The risk-free rate is 4.97 per cent, which was

calculated as weighted average of 30-day and 60-day eurodollar spot rates. The volatility is 6.02

per cent. First, convert the futures price and the strike price to interest rates. ThusF(0,T) = 4.96

per cent ( =100 – 95.04) andX = 5.00 per cent (= 100 – 95.00). Recall that a price call is

equivalent to an interest rate put. Hence, the listed call can be priced by using equation (11) to

yield a theoretical price of 0.065. The listed put can be priced using equation (10) to yield a

theoretical price of 0.025. The theoretical prices are fairly close to the listed prices. Note that the

discrepancies in the theoretical and listed price increase as the strike price moves away from the

futures price. Table 1 compares the listed and theoretical option prices for a few different strike

prices.

3.2 Mixture of lognormals

A popular choice for the risk-neutral PDF is that of a weighted sum of independent lognormal

density functions, which is referred to as a mixture of lognormals. Levin, Mc Manus, and Watt

(1998) used this technique to extract the Canada–U.S. exchange rate from Canadian dollar futures

options listed on the CME. The mixture of lognormal distributions is a flexible way to deal with

departures from the assumptions underlying Black’s model without having to specify a stochastic

process for the evolution of the futures rate. As well, the mixture of lognormals has the advantage

of retaining Black’s model as a special subcase. The number of lognormals is usually dictated by

the data constraints. Two lognormals are chosen for the present study.

The risk-neutral PDF with a weighted mixture of two lognormal distributions is given by

Table 1: Listed and theoretical prices of eurodollar futures options

Strike
CME call

price
CME put

price
Theoretical
call price

Theoreticalput
price

94.875 0.170 0.005 0.167 0.003

95.000 0.060 0.020 0.065 0.025

95.125 0.020 0.105 0.012 0.097

The option contracts refer to March 1999 3-month eurodollar futures
options. The CME prices are settle prices for these options for
29 January 1999. The settlement price for 3-month eurodollar futures
contract on that date is 95.04. The theoretical prices are calculated using
Black’s model with a risk-free interest rate of 4.97 per cent and a volatil-
ity of 6.2 per cent.
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, (13)

where  and

, for i = 1,2.

Black’s model is given by the special case ,  and .

The theoretical European call and put prices for the mixture of lognormals are

(14)

where

. (15)

The theoretical futures price is given by

 . (16)

3.3 Jump diffusion

Black’s model can be extended to account for asymmetries by adding a jump-diffusion process to

Black’s basic model. Thus,  is assumed to follow a lognormal jump-diffusion process. The

evolution is characterized by two components, a lognormal process and a Poisson jump process,

, (17)

where is a Poisson counter on the time interval (0,t), is the average rate of occurrence of

the jumps, andk is the jump size. In other words, the probability that one jump occurs within the

q r̃ T( )[ ] φ1q1 r T( )[ ] 1 φ1–( )q2 r̃ T( )[ ]+=

0 φ1 1≤<

qi r̃ T( )[ ] 1

2πσi r̃ T( )
------------------------------- 1

2
---–

r̃ T( )( ) µi–log

σi
-----------------------------------

 
 
 2

 
 
 

exp=

φ1 1= µ1 F 0 T,( ) 1
2
---σ2

T–log= σ1 σ T=

Cθ 0 X,( ) = φ1 exp µ1
1
2
---σ1

2
+ 

  N d1( ) XN d2( )–

+ 1 φ1–( ) exp µ2
1
2
---σ2

2
+ 

  N d3( ) XN d4( )–

Pθ 0 X,( ) = φ1 exp µ1
1
2
---σ1

2
+ 

  N d1–( )– XN d– 2( )+

+ 1 φ1–( ) exp µ2
1
2
---σ2

2
+ 

  N d3–( )– XN d– 4( )+

d1
1

σ1
------ µ1 σ1

2
X( )log–+[ ]= , d2 d1 σ1–=

d3
1

σ2
------ µ2 σ2

2
X( )log–+[ ]= , d4 d3 σ2–=

Fθ 0 T,( ) φ1exp µ1
1
2
---σ1

2
+ 

  1 φ1–( )exp µ2
1
2
---σ2

2
+ 

 +=

r̃ T( )

dr̃ t( ) µ λE k[ ]–( ) r̃ t( ) dt σ ω r̃ t( ) dW t( ) kr̃ t( )dq0 t,+ +=

dq0 t, λ
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time intervaldt is  and the probability that no jumps occur is

. For simplicity,k is assumed to be constant. In general k is

stochastic.

Bates (1991) showed that a European call could be priced as

, (18)

where

.

A similar formula exists for European puts. For simplicity, assume that at most one jump

can occur over the lifetime of the option [see Malz (1996, 1997)]. Ball and Torous (1983, 1985)

call this the Bernoulli version of the model. The price of a European call then becomes

(19)

where

. (20)

The price of a European call then becomes

(21)

Furthermore, the theoretical futures price is . Note that the future interest

rates conditional on no jump occurring and one jump occurring are

Prob dq0 dt, 1=[ ] λ dt=

Prob dq0 dt, 0=[ ] 1 λ dt–=
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∞
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Prob n jumps
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λT( )n

n!
-------------- e

λT–
=
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exp r f T–{ } Prob 1 jump
occurs

E0 r̃ T( ) X–( )+ 1 jump
occurs

+

= 1 λ T–( ) exp r f T–{ } F 0 T,( )
1 λkT+
------------------- N d1( ) XN d2( )–

λ T exp r f T–{ } F 0 T,( )
1 λkT+
------------------- 1 k+( )N d3( ) XN d4( )–+

d1
1

σω T
--------------- F 0 T,( )

1 λkT+
------------------- 

 log X( )log
1
2
---σω

2
T+–= , d2 d1 σω–= T

d3
1

σω T
--------------- F 0 T,( )

1 λkT+
------------------- 1 k+( ) 

 log X( )log
1
2
---σω

2
T+–= , d4 d3 σω–= T
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λ T exp r f T–{ } F 0 T,( )
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Fθ 0 T,( ) F 0 T,( )=
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. (22)

Thus, the option-pricing formulae consist of a weighted sum of Black’s option-pricing formulae

where the weights are given by the probability of no jumps occurring and one jump occurring

over the lifetime of the option. The option-pricing formulae are very similar to the formula for the

mixture of lognormals. Indeed, the jump diffusion is a subcase of the mixture of lognormals PDF.

The jump-diffusion PDF is given by equation (13) with ,

, , and .

3.4 Hermite polynomial approximation

Asymmetries in the option data can also be modelled by adding perturbations to Black’s baseline

model. The Hermite polynomial approximation is a scheme to add perturbations such that

successive perturbations are orthogonal. A Hermite polynomial expansion around the baseline

lognormal solution is analogous to performing a Fourier expansion. Each additional term in the

Hermite polynomial expansion is related to higher moments of the distribution. The general idea

is that the Hermite polynomials act as a basis for the set of risk-neutral PDFs. In other words, the

risk-neutral PDF can be approximated by a linear summation of Hermite polynomials—the more

polynomials the better the approximation; in theory, an infinite series of polynomials gives an

almost perfect fit. The technique was developed by Madan and Milne (1994) and later employed

to price eurodollar futures options by Abken, Madan, and Ramamurtie (1996).

As a starting point, consider the following lognormal diffusion process:

, (23)

which can be solved to yield

, (24)

wherez is distributed as standard normal, that is . The Hermite polynomial adjustments

are constructed with respect to the normalized variable

. (25)

The risk-neutral PDF forz is denoted byQ(z) and can be written as

, (26)

E0 r̃ T( ) no jumps

occur
=

F 0 T,( )
1 λkT+
-------------------

E0 r̃ T( ) 1 jump

occurs
=

F 0 T,( )
1 λkT+
------------------- 1 k+( )

φ1 1 λT–=

µ1 F 0 T,( )log 1 λκ T+( )log–
1
2
---σω

2
T–= µ2 µ1 1 κ+( )log+= σ1 σω T σ2= =

dr̃ t( ) µ r̃ t( ) dt σ r̃ t( ) dW t( )+=

r̃ t( ) F 0 T,( )exp µ 1
2
---σ2

– 
  T σ Tz+=

z N(0,1)∼

z
r̃ T( ) F 0 T,( )⁄[ ]log µ 1

2
---σ2

– 
  T–

σ T
---------------------------------------------------------------------------------=

Q z( ) λ z( )n z( )=
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where n(z) is the reference PDF and  captures departures from the reference PDF. The

reference PDF is taken as the standardized unit normal PDF, . The

departures from normality are captured by an infinite summation of Hermite polynomials, that is:

, (27)

where are constants and

(28)

are an orthogonal system of standardized Hermite polynomials.7

The price of any contingent claim payoffg(z) is given by

, (29)

where . Now, European call and put options have the contingent claim

payoffs, respectively

. (30)

Thus, European call and put prices can be written as

, (31)

7. The first four standardized Hermite polynomials are , , ,

and . Higher-order Hermite polynomials can

be easily calculated using the recurrence relationship . The polynomials

are orthogonal because  equals one if  and zero otherwise.
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n z( ) exp z

2
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∞

∑=
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∞
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k 0=

∞

∑ n z( ) zd∫

= exp r f T–{ } gk bk
k 0=

∞

∑

gk g z( )φk z( )n z( ) zd∫=

g z call;( ) = F 0 T,( )exp µ 1
2
---σ2

– 
  T σ Tz+ X– 

  +

g z put;( ) = X F 0 T,( )exp µ 1
2
---σ2

– 
  T σ Tz+– 

  +

Cθ 0 X,( ) = exp r f T–{ } αk bk
k 0=

∞

∑

Pθ 0 X,( ) = exp r f T–{ } βk bk
k 0=

∞

∑



13

where and . Madan and Milne (1994)

show that

, (32)

where the generating function  is given by

, (33)

and that

. (34)

For empirical work, the Hermite polynomial expansion must be truncated at a finite order

in z. Two approximations are considered in this paper, a fourth-order and a sixth-order

approximation. First consider the sixth-order approximation. The risk-neutral PDF for the sixth-

order Hermite approximation is given by:

. (35)

Under the reference measure,z is normally distributed with a mean of 0 and a variance of

1. Under the measureQ(z), z has mean  and variance .

Furthermore, . Thus, the restriction  must be imposed to insure that the

PDFQ integrates to unity. The following restrictions on  and ,  and  are

imposed to insure thatz to have mean zero and unit variance with respect to the probability

densityQ(z). Hence, under the above restrictions the risk-neutral PDF forz is

(36)

and the risk-neutral PDF for is
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. (37)

Finally, the futures price is given by

 . (38)

The fourth-order approximation is simply given by setting  and  in the

above equations.

3.5 Method of maximum entropy

The concept of entropy originated in the world of classical thermodynamics as a measure of the

state of disorder of a system. Shannon (1948) later introduced the idea to information theory,

where entropy was taken as a measure of missing information. Jaynes (1957, 1982) extended the

idea to the field of statistical interference using the principle of maximum entropy (PME). Buchen

and Kelly (1996) applied the PME to estimating risk-neutral PDFs from option prices. This

estimate “will be the least prejudiced estimate, compatible with the given price information in the

sense that it will be maximally noncommittal with respect to missing or unknown information.”

The PME is a Bayesian method of statistical inference that only uses the price information

given and makes no parametric assumptions about the form of the risk-neutral PDF. The method

starts with a definition of the entropy of a distributionq:

, (39)

which is maximized subject to the constraints

, (40)
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-----------Q
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∞
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∞

∫
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∞
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where  is the market price of the contingent claim whose payoff at timeT is given by .

The risk-neutral PDF is then given by:

. (41)

Now suppose that the contingent claims consist of European call and put options.

Estimating the parameters  is simplified if only one type of contingent claim is used.

Thus, convert the put options to call options using put–call parity. Hence, a futures put option with

strike priceX and observed priceP is converted to a futures call option with the same strike price

and observed price . For notational convenience, order the

resulting set of call options in terms of increasing strike prices, that is, .

The futures contract is also considered to be a call option with strike price and an

observed price of . Thus, the constraints for the futures contract and

the futures call options can be written as

. (42)

Coutent, Jondeau, and Rockinger (1998) show that the risk-neutral PDF can be written as:

(43)

where  for  with  and  for  with

. The normalization constant is given by

. (44)
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Furthermore, the theoretical European call price for strike price  is given by  where

(45)

[see Coutent, Jondeau, and Rockinger (1998) for details].

The risk-neutral PDF is characterized by the parameters , which are estimated by

minimizing the squared call pricing errors; see equation (7). The convergence of the estimation

process is enhanced by picking initial values for the parameters that are reasonable. Coutent,

Jondeau, and Rockinger (1998) suggest choosing parameters so that the risk-neutral PDF, (43), is

approximately equal to Black’s risk-neutral PDF, (9).8

4. Data

The data consist of end-of-the-day settlement prices for American-style eurodollar futures options

and eurodollar futures that are traded on the CME, and covers 23 September 1998 to

30 September 1998, inclusively. The dates were chosen to include the Federal Open Market

Committee (FOMC) meeting on 29 September 1998. The data also consists of 60- and 90-day

spot eurodollar rates. The risk-free rate was constructed by linearly interpolating between these

rates and then converting the result to a continuously compounded rate.

The average daily trading volume of the ED futures and the Dec98 ED futures options

over the period 23–30 September 1998 was 110,217 and 74,030 contracts, respectively. The

average number of Dec98 ED futures options traded was 16. These contracts had a wide range of

strike prices, typically from 4.0 per cent to 6.5 per cent (see Table 2 for details).

5. Comparing the models

The various methods outlined in section 3 are compared in this section. First, the models are

compared according to their pricing errors—the pricing error is the difference between the

8. The initial values of the parameterss  can be estimated as follows. First, generate a data set of

interest rates, {x}, and the corresponding Black’s risk-neutral PDF, {qB(x)}. Next, estimate the parameters

 for the regression . The initial values are then

according to the algorithm used for equation (43).
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theoretical option price and the observed option price. Second, the models are compared using

several summary statistics, notably the mean, annualized volatility, skewness, and kurtosis (see

the Appendix for further discussion on these quantities). Third, the models are compared by

examining the risk-neutral PDFs. This comparison is both graphical and analytic—the analytic

analysis consists of comparing the cumulative distribution functions for the various PDFs.

5.1 Metrics for comparison

As mentioned above, the models are compared by examining the pricing errors associated with

each model. The pricing error, which is the basic building block, is the difference between the

theoretical option price and the observed option price. Thus, the pricing errors for call and put

futures options are  and , respectively. These raw pricing

errors are illustrated in Figures 1 through 6 [hollow bullets (o) indicate pricing errors for call

options and asterisks (*) indicate pricing errors for put options]. Strike prices are marked along

the horizontal axis. Black’s model clearly gives the highest pricing errors. The method of

maximum entropy appears to give the lowest pricing errors. The mixture of lognormals and the

Hermite polynomial approximations yield similar pricing errors. Not surprisingly, the mixture of

lognormals method has smaller pricing errors than the jump-diffusion method, and the sixth-order

Hermite polynomial approximation has smaller pricing errors than the fourth-order Hermite

approximation. The mixture of lognormals and both the Hermite methods tend to have similar

pricing errors.

An alternative to looking at the raw pricing errors is to combine the pricing errors into a

single quantity that measures the accuracy of fit. Several measures of accuracy of fit exist in the

literature. However, only two measures will be considered in this paper: the mean squared error

(MSE) and the mean squared percentage pricing error (MSPE). The choice of measures is

motivated by the fact that the loss function (7) is quadratic in the pricing errors. The MSE and the

MSPE are calculated as follows:

(46)

wheren andmare the number of observed call and put prices, andk is the number of independent

parameters for the risk-neutral PDF being used, . The MSE places more weight on

larger errors than smaller errors. The MSPE is dimensionless, and thus facilitates comparison

across both different methods and different data sets.
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Neither the MSE nor the MSPE measures point to a single method that always ranks first.

However, averaging the measures over the sample period yields a clear ranking. Both the MSE

and the MSPE measures rank the mixture of lognormal method first, the sixth-order Hermite

polynomial approximation a close second, and the fourth-order Hermite approximation third (see

Table 3). The results may of course be dependent on the ranking scheme employed. However, the

other ranking schemes that were considered ranked the mixture of lognormals method first and

either one of the Hermite approximations or the method of maximum entropy second. Finally, the

results may be dependent on the sample. Only further testing with more diverse data sets will

resolve this issue.

5.2 Summary statistics

The models can also be compared according to summary statistics that are calculated with respect

to the logarithm of the futures rate. The standard statistics examined are the mean, annualized

volatility, skewness, and kurtosis (see the Appendix for a more in-depth explanation). For any

given day, the means calculated from each model are practically identical. This result is not too

surprising, given that the PDFs are risk-neutral.

The evolution of volatility over the event period follows a fairly consistent pattern. All

methods have volatility increasing from 23 September to 24 September, decreasing from 28

September to 29 September, and increasing again from 29 September to 30 September (see Figure

7 and Tables 4a to 9a). The level of volatility from 24 September to 28 September varies across

models. On average, the mixture of lognormals yields the highest estimates of volatility and

Black’s model yields the lowest estimates. Also, the jump model tends to yield higher volatilities

than the sixth-order Hermite approximation, the sixth-order Hermite approximation tends to yield

higher volatilities than the fourth-order Hermite approximation, and the fourth-order Hermite

approximation tends to yield higher volatilities than the method of maximum entropy.

The skewness estimates vary widely across the models (see Figure 7), although all models

have negative skewness for each day of the study period. However, no consistent pattern exists for

the day-to-day evolution of skewness across methods. For example, from 25 September to

28 September, the mixture of lognormals method measure of skewness becomes more negative

while both the Hermite approximations becomes less negative. Likewise, the kurtosis estimates

vary dramatically across models. All the models do, however, yield kurtosis numbers greater than

3, indicating fat-tailed (leptokurtotic) distributions.

In summary, the lower moments of the distribution, namely the mean and the volatility,

tend to be consistent across models. But the discrepancies between the distributions tend to be

exaggerated when higher moments are considered. The skewness and kurtosis measures appear to

be very model-dependent, and thus are probably not reliable as indicators of market sentiment.
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5.3 The shape of things to come

The risk-neutral PDFs implied by the various models for 23 September to 30 September are

illustrated in Figures 1 through 6. The PDFs for the mixture of lognormals method, the jump-

diffusion method, and the Hermite polynomial-approximation methods are invariably bimodal.

The higher peak is situated almost directly above the futures rate, and in most cases a much lower

second peak is situated above a eurodollar rate that is roughly 100 basis points lower than the

futures rate (see Figures 1 through 6). However, most of the mixture of lognormal risk-neutral

PDFs have no lower peak. Instead, they have heavy left tails, indicating negative skewness. The

Black risk-neutral PDF is always unimodal. The method of maximum entropy risk-neutral PDF is

extremely spiky for all the dates considered. The method of maximum entropy estimates one

parameter for every strike price, and thus tends to overfit when there is a large number of strike

prices, which is the case in this study. Furthermore, the method of maximum entropy PDFs appear

choppy because the first derivative of the PDF is discontinuous at the strike prices.

The cumulative distribution functions (CDFs) are helpful in comparing models. The CDFs

are more easily interpreted than the PDFs, since they give the probabilities that the futures rate

will be less than a given rate on the maturity date of the futures contract. (Analytic expressions for

the CDFs for the various models are in the Appendix.) A selection of the probabilities can be

found in Tables 4b, 5b, 6b, 7b, 8b, and 9b. The CDFs are plotted in Figures 8a through 8d. Black’s

model consistently underestimates the probabilities in the left tail of the distribution compared

with the other models. Not surprisingly, the method of maximum entropy CDF is very different

from the other CDFs. The CDFs for the mixture of lognormals method, and the fourth- and sixth-

order Hermite polynomial approximation are very close to each other, as can seen both from

Tables 4b, 5b, 6b, 7b, 8b, and 9b and from Figure 8d. (For clarity, the aforementioned CDFs are

only plotted in Figure 8d).

5.4 General comments on estimation procedures

The method of maximum entropy tends to overfit. This is directly related to the small number of

degrees of freedom. Furthermore, the estimation procedure was the slowest to converge. The

mixture of lognormals method can also be slow to converge, especially if the true risk-neutral

PDF is close to being lognormal. The problem is that there is not a unique set of parameter values

that gives a lognormal distribution. Likewise, the jump-diffusion method is plagued by the same

problem. The jump-diffusion method works well when there is a reasonable likelihood of a jump

occurring. However, as with the mixture of lognormals method, the jump-diffusion method has

degenerate parameterizations for lognormal distributions. The Hermite polynomial-

approximation methods are quick to converge and do not admit degenerate parameterizations. The
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Hermite method always converges; the fourth-order approximation converges faster than the

sixth-order approximation. The only drawback with the Hermite polynomial-approximation

methods is that the estimation of the risk-neutral PDF can occasionally yield negative probability

values. These negative probability values can occur because the Hermite method employed is an

approximation method that involves truncating an infinite series.

Overall, the mixture of lognormals method and the sixth-order Hermite polynomial-

approximation method are probably the best methods to use for extracting risk-neutral PDFs from

interest rate option prices. Coutant, Jondeau, and Rockinger (1998) favoured the fourth-order

Hermite polynomial-approximation method in their comparison of various methods using French

data.

Finally, given the variability of the skewness estimates across methods and the relative

consistency of the CDFs, a more accurate measure of skewness could probably be constructed by

comparing the tails of the PDFs as opposed to using the third central moment of the distribution.

Such a measure exists in the literature: relative intensity [see Campa, Chang, and Reider (1997)]

compares the likelihood of large upward movements in the eurodollar rate to large downward

movements.

6. The event

As mentioned earlier, the dates of the study were chosen to coincide with the FOMC meeting on

29 September 1998. The FOMC is a 12-member committee, consisting of the seven members of

the Board of Governors of the Federal Reserve System, the president of the Federal Reserve Bank

of New York, and four of the presidents of the other 11 Reserve Banks; the latter positions rotate

yearly.

The FOMC meets eight times a year and has primary responsibility for conducting

monetary policy. The committee decides on the desired level of the federal funds rate. Press

releases are often posted immediately after meetings, especially if the Fed’s stance on monetary

policy has changed. For example, the press release following the 29 September 1998 meeting

started: “The Federal Open Market Committee decided today to ease the stance of monetary

policy slightly, expecting the federal funds rate to decline 1/4 percentage point to around 5 1/4 per

cent.” This reduction was the first of a series of reductions in the Fed fund target rate in 1998. Two

later reductions of 25 basis points each occurred on 15 October 1998 and 17 November 1998.

The annualized volatility numbers generally increased over the first half of the period—

based on the results of the previous section, the analysis of the present section uses the risk-

neutral PDF from the mixture of lognormals method—starting off at 17.82 per cent on

23 September, rising to a high of 19.20 per cent on 28 September, falling to a low of 15.24 per
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cent on 29 September, and finally starting upwards again on 30 September to 16.92 per cent.

Thus, uncertainty, as measured by annualized volatility, initially increased, and peaked the day

prior to the FOMC meeting. Uncertainty reduced on the day of the meeting but started to increase

again the following day.

The probability of the ED futures rate being below 5.00 per cent on 14 December 1998

rose from 33 per cent to 38 per cent over the period. In addition, the probability of the ED futures

rate being below 5.25 per cent rose from 63 per cent to 75 per cent. Furthermore, the skewness

numbers remained negative over the entire period, indicating a bearish market tone. Interestingly,

skewness became even more negative the day after the Fed easing, indicating that a further Fed

easing was expected by some market participants. These findings are consistent with the general

market views of the time. Anecdotal evidence suggests that, while market participants anticipated

an easing at the 29 September FOMC meeting, some were disappointed by the size of the move

(25 basis points) and immediately priced in a further rate reduction by the November meeting.

7. Conclusion

The information content of exchange-traded eurodollar futures options were examined in this

paper. Several techniques for extracting risk-neutral PDFs from ED futures option prices were

compared. The mixture of lognormals method ranked first, with both the lowest MSE and MSPE.

However, this method is occasionally slow to converge due to degeneracies in the parameter

space. Typically, the lack of convergence occurs when the risk-neutral PDF appears to be close to

a single lognormal distribution. In this case, the alternative sixth-order Hermite polynomial-

approximation method yields better results. The Hermite method is quick to converge and gives

comparable results to the mixture of lognormals method. However, the method occasionally

yields PDFs that have negative probabilities—these negative probabilities are an artifact of the

approximation method and are not too worrisome, since they tend to occur near the tails of the

distribution.

The higher central moments of the risk-neutral PDFs, namely skewness and kurtosis, are

unstable across estimation techniques and thus are probably not overly informative as measures of

asymmetry in market sentiment. In contrast, the CDF was found to be stable across the three

methods that yielded the lowest MSPEs, namely the mixture of lognormals and the two Hermite

polynomial-approximation methods. Thus, measures of skewness based on the CDF are probably

more appropriate. One candidate is relative intensity, which compares the likelihood of large

upward movements in the ED rate to the likelihood of large downward movements.

Risk-neutral PDFs are useful tools for monitoring market sentiment, as was indicated by

the analysis of the 29 September 1998 FOMC meeting. Various methods were used to extract
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risk-neutral PDFs from ED futures options over the period around the FOMC meeting in order to

examine the evolution of market sentiment over the future values of ED rates. Uncertainty grew in

the market prior to the meeting and abated on the day of the meeting, only to increase again the

following day. Market participants remained bearish on future ED rates both prior to and after the

Fed easing, indicating that some of them expected further rate cuts.

Information extracted from option prices can be used to monitor market sentiment.

However, the best way to present this information is still up for debate. In particular, work needs

to be done on appropriate measures of asymmetry and the predictive power of these measures.
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Appendix: PDF summary statistics

The risk-neutral PDF, , synopsizes the information contained in the price of interest rate

futures options. Thus, a graphical depiction of the risk-neutral PDF yields market perceptions

over the future value of interest rates. In addition, several numerical statistics also yield helpful

insights. In particular, the probability that the futures rate will be less than a given rate,R, on the

maturity date of the futures contract is insightful, namely

. (47)

In addition, several summary statistics calculated with respect to the logarithm of the futures rate

are useful, such as the mean, annualized volatility, skewness, and kurtosis. The annualized

volatility provides an indication of the dispersion of opinion in the market surrounding the future

interest rate. The skewness compares the probability of a large upward movement in the futures

rate to the probability of a large downward movement. Risk-neutral PDFs are either symmetric,

skewed left or skewed right. A skewed left distribution places greater weight on the likelihood the

future interest rate will be far below, as opposed to far above, the current futures price on the

maturity date of the option. Finally, kurtosis indicates the possibility of large changes in interest

rates prior to the maturity of the futures option.

Note that is the futures rate  has a PDF  then the logarithm of the futures

rate, , has a PDF . Thus, the mean, variance, skewness,

and kurtosis with respect to the logarithm of the futures rate are given, respectively, by

(48)

where represents expectations with respect to the PDFQ. The annualized volatility is given by

.

The PDF summary statistics for the models outlined in section 3 are as follows.
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A.1 Black’s model

The cumulative distribution function is

(49)

The variance, skewness, and kurtosis are

, , and . (50)

A.2 Mixture of lognormals

The cumulative distribution function is

(51)

The variance, skewness, and kurtosis are

(52)

A.3 Jump diffusion

The cumulative distribution and PDF summary statistics are given by equations (51) and (52)

above with , ,

, and .

A.4 Hermite polynomial approximation

The cumulative distribution is

(53)
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where  and the restrictions ,

and  have been imposed. (The fourth-order approximation is given by setting

and .) Under the same restrictions, the variance, skewness, and kurtosis are

. (54)

A.5 Method of maximum entropy

The cumulative distribution is given by equation (55) if

(55)

and by equation (56) if :

. (56)

(57)

(58)

No closed-form solutions exist for the mean, variance, skewness, and kurtosis. These

statistics are calculated by numerical integration. (59)

Z
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Table 2: Federal Open Market Committee meeting, September 1998

September
1998

60-day
euro-
dollar
rate

90-day
euro-
dollar
rate

Risk-free
rate

Euro-
dollar
futures

rate

Trading
volume
of euro-
dollar
futures

Number
of

different
option

contracts

Trading
volume of

euro-
dollar
futures
options

Wednesday 23 5.5313 5.5000 5.3620 5.115 101,026 16 79,626

Thursday 24 5.5000 5.4688 5.3333 5.035 121,205 18 74,215

Friday 25 5.3907 5.3594 5.2306 5.040 124,453 15 96,714

Monday 28 5.3594 5.3282 5.2039 5.060 78,949 15 84,918

Tuesday 29 5.3438 5.3750 5.2217 5.110 142,304 14 50,615

Wednesday 30 5.3594 5.4063 5.2430 5.050 93,363 18 58,089

Note: The day of Federal Open Market Committee meeting is highlighted.
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Table 3: Eurodollar futures options:
Pricing errors for call and put futures options, September 1998

Measure Model 23 Sept.
24

Sept.
25

Sept.
28

Sept.
29

Sept.
30

Sept. Average Ranking

Mean
squared

error

( )

Black 10.610 8.066 9.771 8.626 7.000 9.230 8.884 6

MLN a

a. Mixture of lognormals

0.777 0.558 0.987 0.863 0.796 1.108 0.848 1

Jump 1.482 0.604 0.930 0.928 1.983 1.735 1.277 4

Hermite (4) 0.857 0.591 1.193 1.046 0.945 1.099 0.955 3

Hermite (6) 0.779 0.608 1.093 0.892 0.667 1.181 0.870 2

Maximum
entropy

2.763 2.974 0.945 0.720 0.609 2.588 1.767 5

Mean
squared

per-
centage
pricing
error

( )

Black 7.458 12.754 16.310 18.210 9.302 18.798 13.805 5

MLN 0.292 0.151 0.201 3.401 0.179 2.735 1.160 1

Jump 7.071 0.121 0.209 6.914 1.357 5.054 3.454 4

Hermite (4) 0.249 0.378 2.221 4.808 0.098 2.731 1.748 3

Hermite (6) 0.896 0.563 0.538 1.887 0.114 3.506 1.251 2

Maximum
entropy

60.805 40.399 4.005 3.146 0.560 38.907 24.637 6

See Section 5.1 for further details.

10
5–×

10
2–×
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Table 4a: Eurodollar futures options, 23 September 1998

23 September Mean Volatility Skewness Kurtosis

Black 1.629 15.85 0 3

MLN a

a. Mixture of lognormals

1.629 17.82 –0.956 5.877

Jump 1.629 17.52 –1.133 5.254

Hermite (4) 1.629 17.66 –0.866 5.438

Hermite (6) 1.629 17.26 –0.719 3.774

Maximum entropy 1.627 16.55 –1.170 5.341

Table 4b: Eurodollar futures options, 23 September 1998
Probabilities for the eurodollar rate on 14 December 1998

23 September
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.05 0.17 0.40 0.65 0.84 0.94

MLN a

a.  Mixture of lognormals

0.08 0.14 0.32 0.63 0.87 0.96

Jump 0.07 0.14 0.33 0.62 0.85 0.96

Hermite (4) 0.08 0.13 0.33 0.63 0.86 0.96

Hermite (6) 0.10 0.14 0.32 0.63 0.87 0.96

Maximum entropy 0.10 0.14 0.30 0.70 0.83 0.99

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 5a: Eurodollar futures options, 24 September 1998

24 September 1998 Mean Volatility Skewness Kurtosis

Black 1.613 16.97 0 3

MLN a

a. Mixture of lognormals

1.613 18.35 –0.808 3.987

Jump 1.613 18.47 –0.978 4.801

Hermite (4) 1.613 18.37 –0.806 4.524

Hermite (6) 1.613 18.48 –0.998 4.592

Maximum entropy 1.611 17.56 –1.023 4.622

Table 5b: Eurodollar futures options, 24 September 1998
Probabilities for the eurodollar rate on 14 December 1998

24
September 1998

4.50 4.75 5.00 5.25 5.50 5.75

Black 0.09 0.25 0.48 0.71 0.87 0.95

MLN a

a.  Mixture of lognormals

0.09 0.20 0.43 0.70 0.88 0.97

Jump 0.09 0.20 0.43 0.70 0.89 0.97

Hermite (4) 0.10 0.20 0.43 0.70 0.89 0.97

Hermite (6) 0.09 0.20 0.43 0.70 0.88 0.97

Maximum entropy 0.12 0.18 0.47 0.68 0.89 0.99

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 6a: Eurodollar futures options, 25 September 1998

25 September 1998 Mean Volatility Skewness Kurtosis

Black 1.614 16.75 0 3

MLN a

a.  Mixture of lognormals

1.614 19.03 –1.208 5.646

Jump 1.613 19.19 –1.280 6.305

Hermite (4) 1.614 18.26 –0.813 4.735

Hermite (6) 1.614 18.96 –1.227 5.971

Maximum entropy 1.614 18.26 –0.697 3.680

Table 6b: Eurodollar futures options, 25 September 1998
Probabilities for the eurodollar rate on 14 December 1998

25 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.08 0.24 0.48 0.71 0.87 0.96

MLN a

a.  Mixture of lognormals

0.08 0.19 0.42 0.69 0.88 0.97

Jump 0.08 0.19 0.43 0.69 0.88 0.97

Hermite (4) 0.09 0.19 0.42 0.70 0.89 0.97

Hermite (6) 0.07 0.19 0.43 0.70 0.88 0.97

Maximum entropy 0.13 0.15 0.49 0.67 0.90 0.96

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]



33

Table 7a: Eurodollar futures options, 28 September 1998

28 September 1998 Mean Volatility Skewness Kurtosis

Black 1.619 16.21 0 3

MLN a

a. Mixture of lognormals

1.618 19.20 –1.712 10.699

Jump 1.618 18.66 –1.563 7.842

Hermite (4) 1.619 17.55 –0.749 5.017

Hermite (6) 1.618 18.51 –1.168 6.897

Maximum entropy 1.617 17.43 –0.596 4.681

Table 7b: Eurodollar futures options, 28 September 1998
Probabilities for the eurodollar rate on 14 December 1998

28 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.06 0.21 0.45 0.70 0.87 0.96

MLN a

a.  Mixture of lognormals

0.06 0.16 0.40 0.69 0.89 0.97

Jump 0.06 0.16 0.40 0.69 0.89 0.97

Hermite (4) 0.08 0.16 0.39 0.69 0.90 0.97

Hermite (6) 0.05 0.16 0.41 0.69 0.89 0.98

Maximum entropy 0.11 0.14 0.45 0.67 0.89 0.98

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]



34

Table 8a: Eurodollar futures options, 29 September 1998

29 September 1998 Mean Volatility Skewness Kurtosis

Black 1.629 13.74 0 3

MLN a

a.  Mixture of lognormals

1.629 15.24 –0.711 6.681

Jump 1.629 15.46 –1.754 9.955

Hermite (4) 1.629 15.07 –0.608 6.026

Hermite (6) 1.629 14.45 –0.952 3.206

Maximum entropy 1.629 14.86 –0.718 5.984

Table 8b: Eurodollar futures options, 29 September 1998
Probabilities for the eurodollar rate on 14 December 1998

29 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.02 0.12 0.37 0.68 0.89 0.97

MLN a

a.  Mixture of lognormals

0.05 0.11 0.30 0.70 0.92 0.97

Jump 0.03 0.10 0.33 0.67 0.90 0.98

Hermite (4) 0.06 0.09 0.31 0.69 0.92 0.98

Hermite (6) 0.08 0.09 0.30 0.71 0.90 0.95

Maximum entropy 0.06 0.10 0.30 0.71 0.92 0.96

The probabilities are the risk-neutral probabilities that the market assigns on the given date for
the eurodollar rate on 14 December to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 9a: Eurodollar futures options, 30 September 1998

30 September 1998 Mean Volatility Skewness Kurtosis

Black 1.617 14.19 0 3

MLN a

a.  Mixture of lognormals

1.617 16.92 –1.434 8.794

Jump 1.617 16.88 –1.755 8.810

Hermite (4) 1.618 15.58 –0.848 5.623

Hermite (6) 1.618 15.39 –0.700 5.294

Maximum entropy 1.615 15.09 –1.216 5.216

Table 9b: Eurodollar futures options, 30 September 1998
Probabilities for the eurodollar rate on 14 December 1998

30 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.04 0.18 0.45 0.74 0.91 0.98

MLN a

a.  Mixture of lognormals

0.07 0.13 0.37 0.75 0.93 0.98

Jump 0.05 0.14 0.40 0.73 0.92 0.99

Hermite (4) 0.07 0.13 0.38 0.74 0.94 0.99

Hermite (6) 0.08 0.14 0.38 0.74 0.94 0.99

Maximum entropy 0.07 0.14 0.40 0.76 0.95 1.00

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Figure 1: Eurodollar futures options, 23 September 1998
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Figure 2: Eurodollar futures options, 24 September 1998
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Figure 3: Eurodollar futures options, 25 September 1998
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Figure 4: Eurodollar futures options, 28 September 1998
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Figure 5: Eurodollar futures options, 29 September 1998
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Figure 6: Eurodollar futures options, 30 September 1998
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Figure 7: Eurodollar futures options, moments
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Figure 8a: Cumulative distributions

3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
September 23, 1998

Black

Mixture

Jump

Hermite(4)

Hermite(6)

Max. Entropy

3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
September 24, 1998

Futures
rate

90-day
eurodollar
rate



44

Figure 8b: Cumulative distributions
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Figure 8c: Cumulative distributions
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Figure 8d: Cumulative distribution
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