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Abstract

This paper is a user’s guide to a set of Gauss procedures developed at the Bank of Canada
for estimating regime-switching models. The procedures can estimate relatively quickly a
wide variety of switching models and so should prove useful to the applied researcher.
Sample program listings are included.

Résumé

La présente étude constitue un guide d'utilisation d'un ensemble de procédures de Gauss
mises au point à la Banque du Canada en vue de l'estimation des modèles à changement de
régime.  Ces procédures permettent d'estimer de façon assez rapide une vaste gamme de
modèles à changement de régime et devraient s'avérer utiles pour la recherche appliquée.
Des échantillons de programmes sont inclus dans l'étude.
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1.0  Introduction

This paper is a manual for using a set of Gauss procedures developed at the Bank of
Canada to estimate regime-switching models. In these models, the observable dependent
variable’s behavior is state-dependent. The state (which itself is unobservable) determines
the process that generates the dependent variable.

The relationship between this period’s state and the previous periods’ states determines
what set of procedures one uses. In a first-order Markov model, hereafter referred to as the
Markov model, the current state is dependent on only the last period’s state. In a simple-
switching model, the current state is independent of the previous periods’ states.

The Bank of Canada procedures are for two state models with a single dependent variable.
The model can be either a Markov model or a simple-switching model. The procedures
allow switching in the parameters for any number of explanatory variables, including non-
constant transition probabilities.

Several Bank of Canada working papers have used earlier versions of this code. Van Nor-
den (1996) and van Norden and Schaller (1993) both use the simple-switching code, while
Vigfusson (1996) uses the Markov switching code. A Bank of Canada working paper by
Gable, van Norden, and Vigfusson (1995) provides more detail on the analytic gradients
for the Markov switching model.

The Gauss procedures described in this paper are available from the Bank of Canada’s
Library Website (http://www.bank-banque-canada.ca/library) under working papers or by
anonymous FTP to ftp.bank-banque-canada.ca in the directory pub/vigfuss. Use of this
code requires Gauss version 3.1. The maximum-likelihood estimation also requires Max-
lik version 3. While Gauss itself is available on many platforms, these procedures have
been developed and used on Unix workstations. Some conversion may be necessary to use
them on other operating systems. For example, several of the file names are longer than
the DOS name length limit.

The rest of the paper is organized along the following lines. Section 2 describes the proce-
dures used for estimating simple-switching models. Section 3 describes the procedures
used for estimating Markov switching models. Section 4 describes specification testing to
be used after estimation of a switching model. Section 5 contains a bibliography.

1.1  What Is New in This Version

There are some large differences between this and earlier releases of the switching proce-
dures. A library file has been written making the procedures easier to use. The Markov
switching code has seen dramatic changes. Most are related to the development of a fast
algorithm for calculating full sample (or smoothed) probabilities (Kim 1994). These prob-
abilities are necessary to make practical use of the analytic gradients that are discussed in
Section 3.
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2.0  Simple Switching

2.1  Maximum-Likelihood Methods

This section documents the procedures used for maximum-likelihood estimation of sim-
ple-switching and normal-mixture models. These procedures calculate the likelihood
function and its as well as starting parameter estimates.

There are four files containing procedures:

SWLI_NEW.G contains likelihood function and gradients for the general switching
model.

SWINIT2.G produces starting parameter values for the above.

SWCONTAM.G contains likelihood function and gradients for restricted model with
identical means in both regimes.

SWINTCON.G produces starting parameter values for the above.

SWLI_NEW.G and SWINIT2.G are for the most general model, which has the form

(EQ 1)

 is our observable dependent variable, which is generated by a mixture of different

regimes, captured by the unobservables .  is a latent variable that perfectly

classifies  into the two regimes, and  represents whatever extra information we have

to make this classification. Conditioning only on , the probability of being in regime 1

at t is ,1 whereas if we also condition on  it becomes

1. Alternatively, one could use logit equations to determine the probability of being in the different regimes.
See Section 2.1.1 for more information.

Y1t X1t β1⋅ ε1t+=

Y2t X2t β2⋅ ε2t+=

Y3t X3t β3⋅ ε3t+=

Yt Y1t=( ) Y3t 0<⇔

ε1t ε2t ε3t, , N 0

σ1 σ12 0

σ12 σ2 0

0 0 1

,

 
 
 
 
 

∼

Yt
Y1t Y2t,( ) Y3t

Yt X3t
X3t

Φ X3t– β3⋅( ) Yt
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(EQ 2)

where  is the standard normal p.d.f. and  is the corresponding c.d.f. In the simplest

case,  and we just have a mixture of two normal distributions

 and .

SWLI_NEW.G contains the likelihood and gradient procedures swli and swgrad. It fol-

lows the standard syntax required by maxlik and assumes that the data in the data matrix

are of the form  and that the parameter vector  is of the form

(EQ 3)

The user must set the global variables_n1, _n2and_n3to tell the procedure the dimen-
sions of the elements in the data set and .

SWINIT2.G has the procedure binitial for generating initial values for the parameters and
requires the same three global variables to be set before it is called. It divides the sample
into positive and negative values of , then regresses the positive on  and the negative
on  to generate .2  comes from the regression of a scaled version of Y on .
This seems to work well enough if Y has a mean very close to zero. Note that it omits rows
in the data set containing missing values. The procedure is called using the syntax
theta =binitial(Xdata)
whereXdata has the same form as the data matrix for swli and swgrad.

SWCONTAM.G and SWINTCON.G estimate a special case of the general model
described above: where and we wish to restrict . This means the model
reduces to

2. The ambitious user would want to program Goldfeld and Quandt (1973)’s method of moments estimator
for this kind of thing, but that is definitely non-trivial. However, this procedure seems to work well for data
with a mean close to zero.

Φ X3t– β3⋅( ) φ
Yt X1t β1⋅( )–

σ1
-----------------------------------

 
 
  1

σ1
------⋅

Φ X3t– β3⋅( ) φ
Yt X1t β1⋅( )–

σ1
-----------------------------------

 
 
  1

σ1
------⋅ Φ X3t β3⋅( ) φ

Yt X2t β2⋅( )–

σ2
-----------------------------------

 
 
  1

σ2
------⋅+

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

φ Φ
X1t X2t X3t 1= = =

N β1 σ1,( ) N β2 σ2,( )

Y X1 X2 X3 Θ

Θ′ β1 β2 β3 σ1 σ2=

Θ

Yt X1
X2 β1 β2, β3 X3

X1 X2= β1 β2=
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(EQ 4)

This says that Y and X now have the usual linear relationship, aside from a particular kind
of heteroscedasticity; some errors are generated by a high-variance regime and some from
a low.3 The main use of this model is in tests of non-switching models against switching
alternatives. For example, suppose we wanted to test the hypothesis that

(EQ 5)

against the alternative of (EQ 1). Econometrically, this is difficult, since some of the
parameters of (EQ 1) are unidentified under the null.4 Typically, however, what we care
about is whether there is switching in means (i.e., whether ), since evidence
switching due solely to some form of heteroscedasticity may be cured by some other
model of heteroscedasticity. By estimating (EQ 4), we have a model where we allow for
heteroscedasticity and where all parameters are identified under the null. Therefore, we
can use standard likelihood-ratio tests of (EQ 1) versus (EQ 4).

SWCONTAM.G contains the procedures swecli and swecgrad, which are analogues of

swli and swgrad in SWLI_NEW.G. The only functional differences are that they assume

the data matrix is of the form  and the parameter vector  is of the form

(EQ 6)

Accordingly, only _n1 and_n3 need be set before the procedure is called, and _n2 is
ignored. The same applies to the procedure becinit in SWINTCON.G, which is analogous
to binitial in SWINIT2.G. However, becinit uses an iterative weighted least squares
(WLS) method of approximating the robust estimator of  and then regresses the final
weights on  to estimate .

3. In the heteroscedasticity literature, this kind of model is formally known as the error contamination model
– hence the names of the files and procedures.

4. Recent work has been done on this issue for the Markov regime-switching case (Hansen 1992).

Yt Xt β⋅ εt+=

Y3t X3t β3⋅ ε3t+=

εt N 0 σ1,( )∼ Y3t 0<⇔

εt N 0 σ2,( )∼ Y3t 0≥⇔

E εt ε3t,( ) 0=

Yt Xt β εt+⋅=

εt N 0 σ,( )∼

β1 β2=

Y X X3 Θ

Θ′ β β3 σ1 σ2=

β
X3 β3
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2.1.1  Logit Probabilities

There is an alternative version of the above programs, where the above probit weights are
replaced with logit weights. For the switching regression model of (EQ 1), this means

(EQ 7)

is replaced with

(EQ 8)

and similarly, for the error contamination model of (EQ 4),

(EQ 9)

is replaced with

(EQ 10)

Note that in both cases, the probability is still bounded asymptotically between 0 and 1,
and that the probability of observing regime2 increases with .

This slight change allows one to examine the sensitivity of estimation results to minor
changes in the weights accorded to each regime, as the logit weights converge to their lim-
its more slowly than do the probit, so they discount unlikely regimes less heavily. In addi-
tion, the exponential expressions given in (EQ 8) and (EQ 10) can be calculated more
quickly and accurately than the cumulative normal distribution function, which does not
allow a closed-form solution and usually requires a series of iterative approximations.
Finally, the two weighting systems are similar enough that the existing procedures for gen-
erating initial parameter estimates for  may be used without modifica-
tion for either probit or logit models.

Procedures for use with these new models may be found in the files SWLILOGT.G and
SWCONLGT.G. Each file contains procedures returning the log-likelihood function and
its gradient. The names and formats of the procedures are identical to those used in the
original probit procedures (swli and swgrad for SWLILOGT, swecli and swecgrad for
SWCONLGT). Only the library file SWITCH.LCG needs to be modified for a user to
switch from using the probit model to the logit model. One comments out the library refer-
ences to the original probit procedures and removes the comments from the logit proce-
dures.

Pr Yt Y2t=( ) Φ X3t β3⋅( )=

Pr Yt Y2t=( ) 1

1 e Xβ3––
----------------------=

Pr εt N 0 σ2,( )∼( ) Φ X3t β3⋅( )=

Pr εt N 0 σ2,( )∼( ) 1

1 e Xβ3––
----------------------=

Xβ3

β1 β2 β3 σ1 σ2, , , ,( )
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The only lines that differ from the probit version are those calculating the weights given to
each regime (phi3), and those calculating the derivative with respect to , which is given
by the formula

(EQ 11)

where  are the probability density functions of the residuals from regime 1

and 2 respectively. Note that the accuracy of the gradient procedures has been checked

against the numerical derivatives of the likelihood function using the Gauss procedure

maxgrd.

2.2  EM algorithm

Hartley (1978) described an EM algorithm to estimate the parameters of a switching
regression. The algorithm is an alternative to maximum-likelihood estimation (MLE), and
simply uses a combination of ordinary least squares (OLS) and WLS. The EM algorithm
converges more slowly than MLE near the final estimates, but is thought to be more robust
to poor starting values. This should make it a natural complement to existing MLE proce-
dures. This algorithm is now available as a set of Gauss procedures.

We will first describe the application of the EM algorithm to the estimation of switching
regression systems. The remainder of the section lists three Gauss procedures that imple-
ment this estimation technique. The first procedure, SWEM.G, performs one iteration of
the EM algorithm. The second procedure, SWECMEM.G, is the analogue of SWEM.G for
the case where we restrict the coefficients in the two regimes to being identical. The final
procedure, SWEMMLE.G, both controls the EM estimation and integrates it with the
existing MLE procedures.

2.2.1  The EM Algorithm

Suppose an observable variable (yt) is generated by two different latent unobservable vari-
ables (yt1, yt2). yt3 is also a latent variable and classifies yt in either regime.

, (1)

, (2)

, (3)

if

β3

β3d
d

ln L β1 β2 β3 σ1 σ2, , , ,( )( )
φ β2( ) φ β1( )–( )X3

φ β2( ) φ β1( )e X3β3–+{ } 1 eX β3+( )⋅
--------------------------------------------------------------------------------------=

φ β1( ) φ β2( ),

yt1 x′t1 β1 εt1+⋅= εt1 N 0 σ2,( )∼

yt2 x′t2 β2 εt2+⋅= εt2 N 0 σ2,( )∼

yt3 x′t3 β3 εt3+⋅= εt3 N 0 1,( )∼

yt yt1= yt3 0≤
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if

The EM algorithm is an iterative method for estimating such systems that relies on simple
OLS and WLS regressions. Given starting values for , we begin by
calculating weights for a WLS regression.5 These weights are computed as:

(4)

(5)

where  is the normal probability density function for each regime:

(6)

 is the cumulative density function of , which represents the probability that

. It is calculated as:

(7)

where  is the standard normal cumulative density function. Finally  is the proba-
bility density function of the observed variable  and is calculated as:

(8)

Hartley(1979) suggests the following WLS regression to obtain estimates of  (i=1,2)

(9)

(10)

 is computed using OLS:

(11)

where  is the conditional expectation of  given .

(12)

Finally, to calculate the variance estimates the following WLS regression is
employed:

(13)

5. The aforementioned procedure, SWINIT2.G, could be used to find starting values.

yt yt2= yt3 0>

β1 β2 β3 σ1 σ2, , , ,( )

w1 yt( ) λt f 1 yt( )( ) h yt( )( )⁄[ ]⋅=

w2 yt( ) 1 λt–( ) f 2 yt( )( ) h yt( )( )⁄[ ]⋅=

f i yt( )

f i yt( ) 1

2π( )1 2⁄ σi

-------------------------exp
1–

2σi
2

---------- y x' βi⋅( )–( )2=

λt ε3t

yt yt1=

λt Φ xt3 β3⋅–( )=

Φ h yt( )
yt( )

h yt( ) λt f 1 yt( ) 1 λt–( ) f 2 yt( )⋅+⋅=

βi

βi X′i Wi Xi⋅ ⋅[ ] 1– Xi ′ Wi y⋅ ⋅[ ]=

Wi diag w1i … wTi, ,{ } i, 1 2,= =

β3

β3 X3′X3[ ] 1– X3′ξ3=

ξt3 yt3 yt

ξt3 E yt3 yt⁄[ ] xt3′β3 w1 yt( )
f 3 0( )

λt
--------------⋅

 
 
 

– w2 yt( )
f 3 0( )
1 λt–
--------------⋅

 
 
 

+= =

σi
2 i; 1 2,=( )

σi
2 1

Σwi yt( )------------------- y Xiβi–( )′ Wi y Xiβi–( )⋅ ⋅⋅=
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These new estimates can be used as new starting values, and the calcu-
lations of equations (1)-(13) repeated. It can be shown that this iterative estimation process
converges to the maximum-likelihood estimates of .

2.2.2  Gauss Programs

A single iteration of the EM algorithm can be found in SWEM.G. It takes a data matrix
and a set of parameter estimates, calculates equations (1)-(13), and returns the new param-
eter estimates. This may be used in a simple loop for model estimation.

The MLE procedures for estimating switching regressions also consider the special case

where we impose the restriction  in estimation. Imposing this restriction in

the EM algorithm requires only slight modifications to the algorithm and procedure

described above. In particular, we would now replace the 2 WLS regressions with a single

WLS regression using weights  to estimate . The unweighted residu-

als from this regression are then weighted by  and  to generate estimates of  and

, respectively. These modifications are embodied in the Gauss procedure SWEC-

MEM.G, which is otherwise analogous to SWEM.G.

In order to use the above procedures, all one needs is a simple loop that updates the param-
eter estimates at each pass and tests them for convergence. To make the most of the rela-
tive strengths of the EM and MLE procedures, however, one might wish to begin
estimation with the EM procedures, to take advantage of their greater robustness. As these
estimates begin to converge, one might then want to change to MLE because of its faster
convergence.6 The procedure listed below, SWEMMLE.G, incorporates both of these fea-
tures. Furthermore, it is structured to return the same information as the Gauss maxlik pro-
cedure, which allows existing MLE programs to be easily adapted to joint EM-ML
estimation.

These procedures are part of the library file SWITCH.LCG. The output produced is con-
trolled by the same global variable “__output” used to control maxlik(). There are four
other global variables that control other features of the procedure. One (_emprint) controls
whether the final MLE results are printed. Another (_emecm) controls whether the unre-
stricted or restricted ( ) versions of the model are estimated. The other two con-
trol when estimation is passed from the EM to the MLE procedures. This occurs as soon
as either a maximum number (_emmaxit) of EM iterations have been completed, or when
the relative change in each component of the parameter vector is less than some fraction
(_emconvg).

6. Even more generally, if the MLE “gets stuck,” one might want to change to the EM procedure for several
iterations before returning to the MLE. Unfortunately, we could find no way of aborting the Gauss maxlik
procedure to do this in a flexible way. However, we are talking to Aptech Systems about ways to accomplish
this, and may incorporate such features in a future version of SWEMMLE.G.

β1 β2 β3 σ1 σ2, , , ,( )

β1 β2 β3 σ1 σ2, , , ,( )

β1 β2 β= =

W1 σ1
2⁄ W2 σ2

2⁄+ β
w1 w2 σ1

σ2

β1 β2=
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2.3  A Sample Program For Simple-Switching Models

To give the user an understanding of how these procedures can be used, let’s look at sam-
ple program swbasic.prg.

The first thing that is required is to have a library statement that references the maxlik and
switch.lcg libraries. After this library statement, the program can then call all the proce-
dures mentioned above.

library maxlik,switch.lcg
_swclass = “PROBIT”;

The next step is to load in the data. The exact method of loading in the data is dependent
on whether the data are in ASCII format or in the form of a Gauss data set. After the data
have been read in, they must be in the form of: dependent variable, explanatory variables
regime 1, explanatory variables regime 2, and then the probability of being in regime 1’s
variables.

@ 3)Load the data set. @
/* The dataset SWREVBUB.DAT has the format
VWRETD EXCESS BUBBLE_A BUBBLE3A BUBBLE_B BUBBLE_C BUBBLE3C */
open fdata = ^dataset;      nobs = rowsf(fdata);    nvars = colsf(fdata);
“Loading “;; nobs;; “ observations and “;; nvars;;
“ variables from “;; dataset; ?; ?;
crsp = readr(fdata,nobs);
?;”Using EXCESS and BUBBLE_A.”;;
swd = crsp[.,2 3];nobs = rows(swd);
“This leaves “;;  nobs;; “ observations.”;
@============================================================@
swd = swd[.,1]~ones(nobs,1)~swd[.,2]~ones(nobs,1)~swd[.,2]~ones(nobs,1)
~((swd[.,2].^2)-meanc(swd[.,2].^2));

The global variables now need to be set. In particular, the globals _n1, _n2, and _n3 must
be set. There are others that are optional, like the maxlik variables. Consult the user’s man-
ual for information on them.

@ 4)Choose Settings for the SWEM procs if desired @
 _emmaxit=100;_emconvg=0.002;

@ 5)Choose settings for the MAXLIK proc;  @
__row=0;  _mlalgr=5;   _mlstep=2;   _mlcovp=2;  _mlndmth=”NEWTON”;  __output=0;
_mlgtol=1E-5; _mlmiter=500;
_n1=2;  _n2=2;  _n3=2;_emprint=1;_emecm=0;
__title=”A Switching Regression Model”;
_mlparnm = “B_S0 “ | “B_Sb “  | “B_C0 “ | “B_Cb “ | “B_q  “ | “B_qb2”  | “S_S  “
| “S_C  “;

The next step is to provide some initial starting values.

let beta0 = 0.0074, -0.0146, -0.0298, -0.0533, -1.3723, 2.4154, 0.0405, 0.1334;

Finally, there is a call to the swemmle procedure to estimate the model.

{xswp,llfswp,g,h,retcode}=swemmle(beta0,swd);
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3.0  Markov Regime Switching

The section on Markov regime-switching models consists of two parts. First, the proce-
dures used for maximum likelihood are explained. Second, an example program is given.

The Markov switching code has had four substantial improvements. First, Hamilton’s
original code was generalized and made faster. Second, analytic gradients were developed
that made estimation even faster. Third, a C procedure was written to further speed up esti-
mation. Finally, Hamilton’s EM algorithm (1994) has been programmed in Gauss. This
algorithm can reduce greatly the time consumed by bad starting values in comparison with
the other methods.

Hamilton’s textbookTime Series Analysis (1994) devotes a chapter to Markov regime-
switching models. Anyone interested in working with Markov switching models should
consult it or another textbook for more details on the Markov switching models.

3.1  Maximum-Likelihood Estimation

The general regime-switching model that we consider describes the generation of a single
variable  by2 distinct states. In any given statei,  is generated by a linear regression
model

, (EQ 12)

where  is a vector that is exogenous with respect to . The states are assumed to follow
a first-order Markov process, with transition probabilities that may vary over time accord-
ing to the formula7

(EQ 13)

where  is the standard normal cumulative distribution. The probability of being in the
given state is dependent on last period’s state. This is what distinguishes this from “sim-
ple” mixtures of distributions. In simple mixture models the probability of being in a given
state is independent of last period’s state. In the two-state model this “simple”- switching
model is nested into the Markov switching model when

(EQ 14)

7. We assume that  is also exogenous with respect to .

yt yt

yt xt βi⋅ εit+= εit i.i.d. N 0 σi,( )∼

xt εit

zt εi t

P st i= st 1– j=( ) Φ zt γ ij⋅( )=

Φ

Pr St 0 St 1– 0=( )=( ) 1 P– r St 1 St 1– 1=( )=( )=
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3.1.1  The Likelihood Function

The dependence of this period’s state on the previous period’s state has a major effect on
the difficulty of estimating the parameters of the mixture model. To understand why, note
that the p.d.f. of , given  in the simple mixture model, can be written
as

(EQ 15)

(EQ 16)

(EQ 17)

where  is the standard normal p.d.f. The key is that the probability of observing
depends only on the parameters  and not on other observations of .
In the Markov switching case, however, we are unable to duplicate the step from (EQ 15)
to (EQ 16). This is because the probability of being in a given state now depends on the
state the period before, which is not observed. Since the p.d.f. of  is necessary to calcu-
late the model’s likelihood function, this greatly complicates maximum-likelihood estima-
tion.

Hamilton gets around this problem by replacing  in (EQ 15) with8

(EQ 18)

and  with

(EQ 19)

He then shows that  can be calculated from

 using a simple updating formula that depends only on

 and . In effect, this means we can recursively calculate the

likelihood function of  given that of . However, to start the process off, we must

8. The observant reader will notice that this means we are now dealing with theconditional likelihood func-
tion instead of the usualunconditional function. As Hamilton (1992) notes, the difference is that the former
treats the initial probability  as given, a constant independent of the other parameters of the
model. If we endogenize it by imposing (EQ 20), however, then we have the usualunconditional likelihood
function.

Yt µ0 µ1 σ0 σ1 p, , , ,( )

Pr St 0=( ) pdf Yt St 0=( )( )⋅ Pr St 1=( ) pdf Yt St 1=( )( )⋅+

p pdf Yt St 0=( )( )⋅ 1 p–( ) pdf Yt St 1=( )( )⋅+

p

φ
Yt µ0–

σ0
-----------------

 
 
 

σ0
--------------------------⋅ 1 p–( )

φ
Yt µ1–

σ1
-----------------

 
 
 

σ1
--------------------------⋅+

φ Yt
µ0 µ1 σ0 σ1 p, , , ,( ) Yt

Yt

Pr St 0=( )

Pr S0 0=( )

Pr St 1– 0 Yt 1– … Y1, ,{ }=( ) p⋅ Pr St 1– 1 Yt 1– … Y1, ,{ }=( ) 1 q–( )⋅+

Pr St 1=( )
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supply another parameter . In the absence of strong priors about which

state we start in, this can be set equal to the unconditional probability of being in state 0,

which is

(EQ 20)

Alternatively, we could set  arbitrarily to zero or one, implying that we know with cer-
tainty the regime at time zero, or we could have  be a parameter of the model to be esti-
mated.

3.1.2  The Smoothed Probabilities

Hamilton (1989) also mentions a related but more complex function he calls a “full-sam-
ple smoother.” This gives the probability that  conditioning on all the available data
and not just that available up to timet. In other words, the smoother gives

(EQ 21)

instead of

(EQ 22)

Previously, calculating the smoothed probability at any timet requires that we work out

the conditional p.d.f. ( ) for each observation  from t to T and

then go back and re-evaluate it for each  under the assumption that . This means

that if the number of calculations required to evaluate the likelihood function is a linear

function of the number of observations, say , then the number of calculations required

to calculate the full-sample smoother from 1 to T will be roughly .

Kim (1994) provides a simpler method. Based upon the fact that for the last observation
the smoothed and ex post probabilities are equal, he develops a recursive formula for the
smoothed probabilities.

This reduces the number of calculation from almost  to about .
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3.1.3  Differences Between Hamilton’s and Our Code

There are some features in Hamilton’s procedures that are not present in our code. As pre-
viously noted, Hamilton’s allow for autocorrelation within states while the new proce-
dures do not. His EM procedures also handle vector Markov switching systems; that is,
where  is a vector of variables governed by a single state variable . Hamilton’s pro-
grams also contain code for imposing a Bayesian prior on the likelihood function to help
ensure convergence, as described in Engel and Hamilton (1990).

The new likelihood routines are much more efficiently coded than those available from
Hamilton. Much of this stems from dropping the serial correlation option. However, the
biggest difference comes from minimizing the amount of calculation “inside the loop.”
Since the likelihood function is evaluated with a non-linear recursive formula, any proce-
dure returning the likelihood function must have a loop that calculates the likelihood func-
tion of observationt given that fort-1. However, like all interpreted computer languages,
Gauss is extremely inefficient at processing instructions inside a loop. Therefore, moving
as many instructions as possible outside the loop greatly speeds execution.

 The above table shows the results of an experiment to compare the speeds of the new like-
lihood function procedure with that of Hamilton’s with Gauss version 2.0.9 It uses the
GNP data from Hamilton (1989) and estimates a Markov mixture model with unequal
variances in the two states and (EQ 20) imposed. The evaluation of the likelihood function
with the new procedure is over 9 times faster than with Hamilton’s procedures, and the
time required to estimate this simple model is cut from over 20 to less than 5 minutes.

9. These results have not been updated to the current version. However, there is no reason that the newer ver-
sion should produce very different results.

Table 1: Speed Comparisons of Likelihood Functions and Maximum-
Likelihood Estimation

Hamilton’s New

Evaluation of Likelihood Function:

Elapsed Time in Seconds 10.38 1.15

% Time Savings 0.00 88.92

Speed-up Factor 1.00 9.03

Maximum-Likelihood Estimation:

Elapsed Time in Seconds 1246.3 297.09

% Time Savings 0.0 76.16

Speed-up Factor 1.0 4.19

Yt St
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3.1.4  Analytic Gradients

The availability of the smoothed probabilities makes it feasible to calculate the likelihood
function’s analytic gradients. These gradients further increase the speed of estimation of
the models.

To estimate by maximum-likelihood methods requires calculating the derivatives of the
likelihood function with respect to the parameter vector.10 (This vector is also referred to
as thescoreor thegradient vector.) This is usually done using numerical techniques that
approximate the derivative by the change in the likelihood function for small changes in
the parameter vector. This is not especially efficient, however, as such techniques typically
requireN+1 evaluations of the likelihood function to calculate theN elements of the score,
and  to calculate the Hessian (the matrix of second derivatives). The use of analyti-
cal gradients can greatly reduce the number of calculations required to evaluate either of
these objects. This in turn considerably speeds up maximum-likelihood estimation of such
models with no loss in accuracy.

These gradients are further detailed in Gable, van Norden and Vigfusson 1995. The gradi-
ents are derived and comparisons are made between the analytical and numerical methods.

In general, the analytic derivatives can improve calculation efficiency by roughly a factor
of four.11 The relative speed of the analytic derivatives increases with sample size, but the
improvement seems to slow as samples become large.

An analysis of the code illustrates why the analytic derivatives are typically faster than the
numerically calculated derivatives. The numerically calculated derivatives make P (the
number of parameters) calls to the likelihood function. Most of the time the likelihood
function is in turn spent in a loop over the sample size (N). One therefore could approxi-
mate the amount of calculations in the numeric derivatives as P*N.

The analytic derivatives make one call to the smoother, which in turn calculates the likeli-
hood function and then performs an additional loop over the sample size. Hence, the
smoother requires approximately 2*N calculations. Calculating the gradient then requires
a loop over the number of states (S) for a set number of calculations (L). In total, therefore,
this requires approximately 2*N+S*L calculations.

10. Alternatives to gradient-based maximum-likelihood estimation include the EM algorithm and simulated
annealing. However, simulated annealing is also inefficient, and the EM algorithm has a lower rate of con-
vergence near the optimum than do most popular gradient-based maximization methods (such as the Newton
algorithm.) The score is also useful for the calculation of standard errors, and for diagnostic tests (see White
1994).

11. Our likelihood function was used for both methods of calculating the gradients. So using our likelihood
function with analytic gradients should result in its being about 15-20 times faster than Hamilton’s original
code.

N2 1+
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With the above analysis, we can predict that the analytic gradient procedure will be faster
as either the sample size or the number of parameters increases. In the unlikely case that
the number of states increases with the number of parameters held constant, there may be
a relative improvement of the numeric technique. More likely, an increase in the number
of states will cause a substantial increase in the number of parameters.

3.2  A Sample Program for Markov Switching Models

There is now a library file for the procedures, switch.lcg. Hence it is no longer necessary
to have a number of #include statements. Rather one merely needs to have a line such as

library maxlik, switch.lcg;

The next required step is to clear the globals that will be used in the estimation. These
includenstat, vei, ix, iy, nrows, sameness,and terms.The variablenstat is the number of
states. At presentnstatmust be equal to two. The variablevei is annstat2 by 1 vector. The
first nstat entries specify the number of variables in the corresponding level equation. The
nextnstat (nstat-1) specify the number of variables in the corresponding transition equa-
tion. The variableix controls whether variances differ across states or are equal. The vari-
ableiy sets the starting condition for the probability of being in the different states at time
0. TABLE 2. gives the possible settings forix, samenessand iy.

Each row ofterms,annstat2 by two matrix, specifies what data are used by a particular
equation. The firstnstat rows are for the level equations. The rest are for the transition
equations. The first column ofterms specifies the first column of data used in an equation.
The second specifies the last. The dependent variable is assumed to occupy the first col-
umn of the data matrix. The elements intermsmay be specified such that the same vari-
ables are used in more than one equation.

TABLE 2. Settings for ix and iy

Value ix sameness iy

0 Variances Equal Across States Different explanatory variables in
all equations.

rho=

1 Variances Differ Across States Same explanatory variables in all
level equations. Different in tran-
sition equations.

rho is a parameter

2 Different explanatory variables in
all level equations. Same explana-
tory variables in transition equa-
tions.

rho =0

3 Same variables for level equations
and same variables for transition
equations.

rho=1

4 Same variables for level equations
and transition equations.

1 q–
2 p– q–
---------------------
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To use analytic derivatives in the maximum-likelihood estimation, one must add the line

_mlgdprc= &ANGRAD;

Next make a call to the procedure mkvstart, which returns the value ofterms, the vector
that specifies which columns of the data matrix to use for each equation andnrows, the
number of observations. It is assumed that the data are formatted such that the dependent
variable is in the first column, then the explanatory variables for the level equations, and
then the explanatory variables for the transition equations.

{terms}=mkvstart(DATA,vei,nstat);

After loading in the data and setting all the necessary globals for maximum-likelihood
estimation, including starting values, make a call to the maximum-likelihood procedure.
See Aptech’s Maximum Likelihood manual for more information.

{a,b,c,d,e}=maxlik(DATA,0,&swmkv,StartValues);

3.3  Speeding up Estimation with C procedures

Besides the procedures already mentioned, code exists to make estimating Markov switch-
ing models faster. We speed up the calculations of the likelihood function and the
smoothed probabilities by replacing the main loop with a C language procedure.

The C code actually only replaces a small portion of the code. Because C handles do-loops
much more efficiently than Gauss, the C-augmented estimation is several times faster than
the same procedure that uses the Gauss do-loops.

To use the C procedures, ones needs a C compiler and a version of Gauss no older than
version 3.1.14. Before the C procedures can be used, their source code has to be com-
piled.12 Using these procedures on a computer running Unix13 requires the Gauss
dynamic libraries feature that was introduced in version 3.1.14. The dynamic libraries
commands allow Gauss to use functions written in other computer languages.

After the C procedures are compiled, using them is fairly simple. At the start of the pro-
gram include a line with the Dlibrary14 function referencing the compiled library. For
example, with our compiled library libmkz.so, the line would be:

DLIBRARY /home/int/vigf/regswt/ccode/libmkz.so;

12. The compiler to be used will depend on the computer where the programs will be run. We used the GNU
C compiler GCC.

13. The dynamic library interface is currently (as of 5/25/95) supported on the SunOS 4.1.3, Solaris 2.x,
AIX, HPUX, IRIX, and OSF1 platforms (Aptech README file). In DOS, instead of the dynamic libraries,
one uses the foreign language interface. See the Gauss user manual for details.

14. The Gauss on-line help system gives further details on using the DLIBRARY command.
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To access the C procedures, set the global variableNewalg in your main program equal to
one. No other changes are necessary.

3.4  EM algorithm

We have written the Gauss code for the EM algorithm for the case of constant transition
probabilities (Hamilton 1994). The algorithm is useful for getting close to a maximum in
spite of potentially bad starting values. The algorithm does have difficulties in final con-
vergence to the maximum. Therefore, we recommend using the EM algorithm first to
come close to the maximum and then passing this coefficient vector to the standard maxlik
approach for final convergence. IfNewalg equals one, then the EM algorithm will use a C
procedure augmented version of Kim’s smoother.

Something, however, is not right with our programmed version of the EM algorithm.
A slight discrepancy exists between the EM algorithm’s results and the maxlik package’s
results. In these cases, if the maxlik estimate is used as a starting value for the EM algo-
rithm, then the EM algorithm will move away from this estimate to its own, even if the
maxlik estimate has a higher likelihood. The difference between these two estimates is
slight, so the EM algorithm continues to be useful for coming close to a maximum. We are
looking for a reason for the difference and would appreciate feedback on possible solu-
tions.

3.5  Future Developments

The analytic gradients and likelihood function currently can be used only for a two-state
system. The code has been written such that the change to an n-state system, while non-
trivial, is certainly feasible. The code for the derivatives of (EQ 12) is already capable of
handling n-states. The global variablesvei, terms, andnstatshould facilitate the transition
to the n-state system.

The EM algorithm currently estimates only models with constant transition probabilities.
Diebold, Lee and Weinbach (1994), however, have an EM algorithm for the non-constant
transition probabilities model that we hope to include in a latter release of this software.

4.0  Specification Tests for Regime-Switching and Other Models

White (1987, 1994) and Hamilton (1990, 1996) suggested a set of specification tests based
on the serial correlation properties of the gradient vectors at a given set of parameter esti-
mates. These tests can be adapted to the case of simple-switching regressions. They allow
one to construct simple tests for serial correlation, ARCH and Markov switching.

Section 4.1 reviews the econometric basis of these tests. Section 4.1.1 lists a Gauss proce-
dure that can be used to calculate such tests for virtually any model whose gradient can be
calculated. Section 4.2 discusses the application and interpretation of the misspecification
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tests in the context of switching regressions, while Section 4.2.1 lists a Gauss procedure
that applies a series of such tests to a standard switching regression.

4.1  The Theory of Score-Based Specification Tests

Let  denote the likelihood function of a given observation  conditional on
some information set  and a choice of parameters . The score  is simply the gradi-
ent of  with respect to . Subject to a few regularity conditions (such as no cor-
ner solutions and ergodicity), it can be shown that at the true parameter estimates ,

 should be unforecastable on the basis of any information available at , which
includes . Since  is a vector with the same dimensions as  (say,mx1), this
implies that the absence of any first-order serial correlation in  alone gives usmxm
testable restrictions. While in theory, we could test all of these conditions, or test even
higher-order restrictions on its serial correlation, in practice, most of these restrictions are
very difficult to interpret. In what follows, attention will limited to those restrictions that
are most easily understood.

White (1987) constructs the general test by listing thosel elements of themxm matrix
 that we wish to test in thelx1 vector . He then lets  denote our maxi-

mum-likelihood estimate of , and lets  be the (2,2) subblock of theinverse of the parti-
tioned matrix

(14)

where  is the sample size. In this case, he shows that if the model is correctly specified,
the matrix product

(15)

will have a  asymptotic distribution.

4.1.1  General Procedure for Score-Based Tests: wmisspec()

The Gauss procedure, wmisspec(), may be used to calculate the test statistics defined by
(15). Since the theory is completely general, this can be applied to almost any econometric
model for which we can calculate the gradient vector.15 For any of these models, we can
select any parameter or combination of parameters to use in our test for misspecification.
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Accordingly, this procedure may be useful in a wide variety of situations. The procedure
does not require that the model be estimated by maximum likelihood. All that is required
is the actual gradient matrix. For some models, such as the switching-regression case con-
sidered below, this can simply be done using a procedure that calculates gradients analyti-
cally. Otherwise, it will be necessary to supply a procedure that calculates the likelihood
function, and use the gradp() function in Gauss to provide numerical gradient estimates.

As written, the procedure requires as arguments only theTxm matrix of gradients evalu-
ated at the parameter estimates, and a column vector that lists the numbers of the columns
in the gradient vector that we wish to include in the test.16 It then returns the test statistic
and its  marginal significance level.

4.2  Misspecification Tests in Switching Regressions

The specification tests are similar whether one is testing simple switching or Markov
switching. If we assume that the level equations each contain a constant, then testing
whether each of these gradients are autocorrelated amounts to testing whether there is
omitted serial correlation in  or . The intuition here is that serial correlation in these
gradients implies that we tend to find “runs” where the constant should be higher or lower,
which in this context implies persistence in the residuals, or serial correlation. For the sim-
ple-switching case, testing the gradient of the probability of being in a regime gives a test
for neglected Markov-like switching effects, since serial correlation here implies that
regimes seem to be more persistent than indicated. For the Markov switching case, testing
the gradient of the constant term in the transition equation gives a test for neglected
higher-order Markov switching effects. Finally, tests of the gradients of  and
amount to tests for first-order regime-specific ARCH effects, since persistence here
implies that the volatility in each regime seems to vary over time in a way captured by a
first-order autoregression.

4.2.1  Testing Simple-Switching Models: swmisspc()

The Gauss program swmisspc() calculates and prints the test statistics discussed in the
previous section for the simple-switching model. It is designed to be used immediately
after the estimation of a switching regression by maxlik(). It accepts as arguments the final
parameter estimates and the data set used by swli() and swgrad(), and prints the test statis-
tics and their marginal significance levels.

The procedure assumes that swgrad() has been defined, as have the global variables_n1,
_n2, and_n3. Finally, the procedure also assumes that the first regressor in each equation
is a constant.

15. More precisely, the model must satisfy certain regularity conditions, such as ergodicity. See White
(1987).

16. In the notation of the previous section, this means that  can include only diagonal elements of
. However, these are the ones that are most likely to be of interest.

ct θ( )
ht θ( ) ht θ( )′⋅

χ2

εt1 εt2

σS σC
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4.2.2  Testing Markov Switching Models: mkvspec()

The Gauss program mkvspec() calculates and prints the test statistics or the Markov
switching model. It is designed to be used immediately after estimation using the same
data set as and final estimates from maxlik. The procedure assumes that the global vari-
ables discussed in subsection 3.2 have been defined and that the first regressor in each
equations is a constant.
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