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Abstract 
Security prices contain valuable information that can be used to make a wide variety of 
economic decisions. To extract this information, a model is required that relates market 
prices to the desired information, and that ideally can be implemented using timely and 
low-cost methods. The authors explore two models applied to option prices to extract the 
risk-neutral probability density function (R-PDF) of the expected Can$/US$ exchange 
rate. Each of the two models extends the Black-Scholes model by using a mixture of two 
lognormals for the terminal distribution, instead of a single lognormal: one mixed 
lognormal imposes a specific stochastic process for the underlying asset, and the other 
does not. The contribution of the paper is to propose a simple methodology to build R-
PDFs with a constant time to maturity in the absence of option prices for the maturity of 
interest. The authors apply this methodology and find that the two models provide similar 
results for the degree of uncertainty (i.e., the variance) surrounding the future level of the 
exchange rate, but differ on the likely direction of the exchange rate movements (i.e., the 
skewness). 

JEL classification: C00, C02, G13 
Bank classification: Exchange rates; Econometric and statistical methods; Financial 
markets 

Résumé 
Les prix des titres renferment une information très utile pouvant servir à des décisions 
économiques multiples. Cette information est extraite au moyen d’un modèle qui met en 
relation les prix du marché avec les renseignements voulus et dont la mise en œuvre 
repose idéalement sur des méthodes rapides et peu coûteuses. Les auteurs comparent 
deux modèles appliqués à des prix d’options afin de trouver la densité de probabilité 
neutre à l’égard du risque (DPNR) correspondant au taux de change anticipé entre le 
dollar canadien et le dollar américain. Chaque modèle développe l’équation de Black et 
Scholes en combinant deux distributions lognormales pour obtenir la distribution finale, 
au lieu d’employer une distribution lognormale simple. L’une des distributions 
combinées impose à la trajectoire de l’actif sous-jacent un processus stochastique, 
contrairement à l’autre. L’originalité de l’étude réside dans le fait qu’elle propose, en 
l’absence de prix d’options pour l’échéance considérée, une méthode d’élaboration 
simplifiée des DPNR dans laquelle l’intervalle avant échéance est constant. L’application 
de cette méthode révèle que les deux modèles fournissent des résultats similaires pour le 
degré d’incertitude (variance) qui entoure le taux de change futur, mais différents pour le 
sens probable des mouvements de change (asymétrie). 

Classification JEL : C00, C02, G13 
Classification de la Banque : Taux de change; Méthodes économétriques et statistiques; 
Marchés financiers 



1 Introduction

Various agents in the economy are interested in obtaining information on the mar-
ket’s view of the Canada/U.S. exchange rate (Can$/US$) in the near future for
different reasons. Firms exposed to currency risk can use this information to deter-
mine the level of coverage they need in their hedging programs, the central bank
can use this information as an input in the formulation of monetary policy, and, in
general, agents can use this information to determine their desired portfolio alloca-
tion.

There are a number of approaches to extract information from market prices.
One approach is to estimate time-series models and treat their forecasts as repre-
senting the economic agents’ expectations. Others use forward prices as expectations
of future prices of the underlying asset (e.g., Fama 1984). And yet others use option
prices to potentially extract a much richer set of information than the other two ap-
proaches by recovering the entire distribution of the underlying asset at some point
in the near future. The approaches that use derivative prices have the advantage
that they refer explicitly to the future outcome of the underlying asset, whereas the
first approach uses historical data which, by definition, is based on the past.

In this paper, we obtain information on the market’s view of the Can$/US$
exchange rate in the near future (e.g., 45 days ahead) by recovering the risk-neutral
probability density function (R-PDF) from the price of European options. This
allows us to extract the distribution of the underlying asset, since we observe a
cross-section of prices for the exchange rate for a constant maturity.

We consider two models for the terminal distribution of prices for the underlying
asset. The first, a mixed lognormal model, assumes a flexible terminal distribution
for the underlying asset and makes no assumptions on its path from the time the
option originated until its expiry date. The second, a shifted mixed lognormal model,
assumes a specific stochastic process for the underlying asset that results in a mixed
lognormal terminal distribution. Both of these models are more flexible than the
widely used Black-Scholes model, in that their terminal distributions can better
capture some of the stylized facts observed in financial data, such as leptokurtic
series (“fat tails”) and high skewness.

We find that both models provide similar results for the degree of uncertainty
(i.e., variance) surrounding the future level of the exchange rate. However, the
results with respect to the likely direction of the exchange rate movements (i.e.,
skewness) across models are not robust.1 The standard mixed lognormal model
exhibits more intuitive results, because it allows for periods of appreciation and

1Unless otherwise specified, when we refer to the mean, variance, and skewness, we refer to the
model-implied risk-neutral moments, and not the moments of the real-world probability density
function.

1



depreciation, whereas the shifted lognormal model does not allow for depreciations in
the exchange rate, because it is not able to produce R-PDFs with negative skewness.

The main contribution of this paper is to propose a simple methodology to build
R-PDFs with a constant time to maturity. This methodology is applied to both
models and consists of interpolating the volatility curve between available contracts.

This paper is organized as follows. Section 2 briefly summarizes the theory
supporting these models. Section 3 describes an application of the methodology to
European options of the Can$/US$ exchange rate. Section 4 discusses the results.
Section 5 concludes.

2 Theory

2.1 Standard-model approach

Perhaps the most widely used model to describe the evolution of the price St of a
security is the geometric Brownian motion,

dSt = µStdt+ σStdWt, (1)

where dSt is the small (infinitesimal) change in the price of the underlying asset St
in a small interval of time dt, µ is the expected rate of return, σ is the volatility of
the underlying asset, and dWt is the Weiner process introduced to add “noise” or
variability to the path of St. Using this model, we can specify many possible paths
of the asset value, thus leading to a distribution of values at a set moment in time.

We can then transform Equation (1) by applying Itô’s rule on logSt to obtain

d logSt = (µ− σ2

2
)dt+ σdWt. (2)

Since Equation (2) no longer contains the term St on the right-hand side, and since
µ and σ are constant, we can conclude that logSt is normally distributed and that,
therefore, St is lognormally distributed, i.e.,

logST ∼ N(ln(S0) + (µ− σ2

2
)T, σ2T ). (3)

The modelling direction of the standard model presented above is as follows.
First, we use a stochastic process that reasonably describes the evolution of the
underlying asset. Next, we derive the risk-neutral distribution corresponding to
the stochastic process (e.g., lognormal in the case of Black-Scholes). Finally, we
calculate option prices as the discounted expected value of the payoff under the
risk-neutral probability distribution.
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Standard-Model Direction: Process → distribution → option prices

2.2 Inverse-model approach

An alternative modelling direction, sometimes referred to as the inverse problem,
can be summarized as follows. First, we observe option prices to learn about the
possible shape of the implied risk-neutral distribution. Next, we use this information
to determine a stochastic process that could result in the observed distribution.

Inverse-Model Direction: Option prices → distribution → process

One advantage of this approach over the standard-model approach is that it allows
us to learn about the distribution and the stochastic process of the underlying asset,
rather than assuming a particular form.

Our approach to capturing market expectations is based on the recent advance-
ments of the inverse-problem literature.

2.3 Models to obtain risk-neutral distributions

There are many models that address the inverse problem and allow us to estimate
the implied risk-neutral PDFs from option prices.2 We classify these models into two
broad groups. The first group encompasses the parametric models, which assume a
specific family of distributions for the terminal distribution of the underlying asset.
The second encompasses the non-parametric models, which interpolate either the
observed option prices or the observed implied volatilities for a constant maturity,
and then derive the risk-neutral PDFs as an approximation of the second derivative
of the call price with respect to the strike.3 In this paper, we focus on parametric
models, since we find them to be more efficient when automating across an entire
sample.4

A common extension of the Black-Scholes model uses a mixture of two lognor-
mals for the terminal distribution, rather than a single lognormal. Instead of working
with an entire stochastic process, this model simply uses a candidate for the ter-
minal distribution. The mixed lognormal distribution can take many forms, which
allows the call pricing model to better approximate observed option prices. We refer

2See Mandler (2003) for a broad survey of techniques.
3The relationship was discovered by Breeden and Litzenberger (1978).
4For papers that study non-parametric techniques, see Jackwerth and Rubinstein (1996), and

Jackwerth (2000, 2004).
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to this model as the standard mixed lognormal. A slightly different model, proposed
by Brigo and Mercurio (2002), also assumes a mix of lognormals, but derives the
specific stochastic process that would result in the mix distribution. It allows for
changing the volatility terms σi in each component, but does not allow for modifi-
cations to the mean levels. We refer to this model as the shifted mixed lognormal.
These models are explained in the following subsections.

2.3.1 Standard mixed lognormal

For this model, we assume that the terminal distribution is given by a mix of two
lognormal distributions. To illustrate the distributional assumption, let X1 and X2

be lognormal random variables, and let I be a random variable that takes the value
1 with probability p, and 0 with probability 1− p. The variable I could represent,
for example, whether an interest rate cut is going to occur, or whether the exchange
rate regime will change. Thus, I models two future states of the world: one where
the underlying asset has value X1, and one where it has value X2. We can model
this dependence on the future state of the world by setting X = I ·X1 + (1− I) ·X2.
Thus, when I = 1, X = X1, and when I = 0, X = X2. In other words, X is equal to
X1 with probability p, and equal to X2 with probability 1−p. The resulting density
for X is derived in Appendix C and corresponds to the following:

fX(x) = pfX1(x) + (1− p)fX2(x). (4)

One advantage of using a mixture of lognormals is that we still have analytical
Black-Scholes type equations for the options prices. For example, suppose that the
underlying asset given by St is an exchange rate. In the traditional Black-Scholes
model, under the risk-neutral measure, St is lognormally distributed such that

ln(ST ) ∼ N(ln(S0) + (r − rf −
σ2

2
)T, σ2T ),

where r is the domestic risk-free rate of interest, rf is the foreign risk-free rate of
interest, and σ is the volatility of the exchange rate. Note that this is the same as
Equation (3) with µ replaced by r− rf . Let us write lnXi ∼ N(ln(S0,i) + (r− rf −
σ2

i

2
)T, σ2

i T ) for i = 1, 2, and let ST have distribution mixed from X1 and X2 with
parameter p. Then, we can show that, under this model, the price of the call option
is given by5

C(S0, K, r, rf , T ) = p·CBS(S0,1, K, r, rf , T, σ1)+(1−p)·CBS(S0,2, K, r, rf , T, σ2), (5)

5See Appendix C.

4



where CBS denotes the Black-Scholes equation for the call option price:

CBS(S0,i, K, r, rf , T, σi) = S0,iN(d1)−Ke−(r−rf )TN(d2)

d1 =
ln(S0,i/K)− ((r − rf )− σ2

i /2)T

σi
√
T

d2 = d1 − σi
√
T .

Under the risk-neutral measure, the discounted expected value of ST should equal
the current observed level S0, which implies that S0 = pS0,1 + (1− p)S0,2. Given a
set of observed prices Cobs(Ki) for varying strikes Ki on a single underlying asset,
we perform the following minimization:

min
p,S0,1,S0,2,σ1,σ2

n∑
i=1

[Cth(Ki)− Cobs(Ki)]
2 + [S0 − (pS0,1 + (1− p)S0,2)]

2, (6)

where Cth(Ki) is the theoretical price of the option using Equation (5). After find-
ing the values for p, S0,1, S0,2, σ1, σ2 from Equation (6), we use them to obtain the
risk-neutral density using Equation (4).

One critique of the above mix of lognormal models is that we have not determined
a stochastic process St for the underlying asset. In order to apply the no-arbitrage
arguments leading to the risk-neutral pricing formula C0 = e−rTEQ[(ST −K)+] for
a risk-neutral probability measure Q, we need to be able to construct a portfolio
consisting of the underlying asset and bonds that replicates the payoff of Ct. This
would be possible if, for example, St was determined by a local volatility model,

dSt = (r − rf )Stdt+ σ(St, t)StdWt,

with σ(·, ·) being a well-behaved deterministic function. Hence, we interpret the
above standard mixed lognormal approach in a slightly different fashion by following
Brigo and Mercurio (2002). Suppose that we have two processes, each following a
geometric Brownian motion:

dS1
t = µ1S

1
t dt+ σ1S

1
t dWt,

dS2
t = µ2S

2
t dt+ σ2S

2
t dWt,

and both starting at the same value S0. Then, S1
T and S2

T are lognormally dis-
tributed. We wish to mix the above two processes to give risk-neutral dynamics of
our underlying asset as:

dSt = (r − rf )Stdt+ v(t, St)StdWt,
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with v(t, St) chosen so that

fSt(x) = pfS1
t
(x) + (1− p)fS2

t
(x).

For a fixed maturity time T , the relationship between this model and the stan-
dard mixed lognormal approach would be to set S0,1 = S0e

µ1T and S0,2 = S0e
µ2T .

Having knowledge of the entire stochastic process also aids in moving between
the real world and risk-neutral world. This is usually done by employing the Gir-
sanov theorem, which informally says that we can adjust the Brownian motion by a
drift λ(t) to get dW̃t = λ(t)dt + dWt, and that W̃t will be a new Brownian motion
under a new equivalent probability measure. This is the process by which we can
transform the drift term µ to r in the standard Black-Scholes context, where λ = µ−r

σ
is the market price of risk. Without having knowledge of a stochastic process, we
cannot directly apply the Girsanov theorem, and so it is not clear how to recover a
real-world distribution.6

2.3.2 Shifted mixed lognormal

This model was introduced by Brigo and Mercurio (2002). In this model, we force
S0,1 = S0,2 = S0 (or, equivalently, µ1 = µ2 = µ in the above alternate description),
but the underlying asset price at time t, At, is shifted from St so that

At = A0αe
(r−rf )t + St (7)

for some parameter α.

In order for Equation (7) to hold for t = 0, we need to have A0 = A0α+S0, and
so we set S0 = A0(1−α). Here, A0 is the current observed asset price. When α = 0,
this reduces to the standard lognormal approach with S0,1 = S0,2 = S0. The purpose
of the shifting in Equation (7) is to move the minimum point of the volatility smile;
that is, to add a skew component. Hence, the overall density of the term AT will be
a mixture of shifted lognormals.

In this case, we can explicitly write the dynamics of St as

dSt = (r − rf )Stdt+

√
aσ2

1tp
1
t (St) + (1− a)σ2

2tp
2
t (St)

pt(St)
StdWt. (8)

Here, the individual lognormal densities are

pit(x) =
1

xσi
√

2πt
exp

{
− 1

2σ2
i t

[ln(x)− ln(S0)− ((r − rf )−
1

2
σ2
i )t]

2

}
, (9)

6See Appendix E for a comparison of the differences of the implied distribution of the underlying
asset under the risk-neutral and real-world probability measures.
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and the mixed lognormal density is

pt(x) = ap1
t (x) + (1− a)p2

t (x). (10)

Note that pt(x) is a mixed lognormal density, but here we estimate only the
terms σi, unlike in the previous case, which had terms S0,1 and S0,2. Brigo and
Mercurio (2002) prove that the above stochastic process has the property that the
probability density of St given S0 is determined by pt(x) in Equation (10), and so
the density function for At is pAt(x) = pt(x− A0αe

(r−rf )t).

Using the above distribution of At, Brigo and Mercurio (2002) show that, assum-
ing K > A0αe

µt, call and put prices are each given by a sum of two Black-Scholes
type equations:

Cth = aC1 + (1− a)C2, (11)

P th = aP1 + (1− a)P2, (12)

where

Ci = A0e
−rfTN(di1)− e−rTKN(di2), (13)

Pi = −A0e
−rfTN(−di1) + e−rTKN(−di2), (14)

with A0 = A0(1− α), K = K − A0αe
(r−rf )T for i = 1, 2, and

di1 =
ln(A0/K) + (r − rf + 1

2
σ2

1)T

σi
√
T

,

di2 = di1 − σi
√
T .

Given a set of n strikes, let Cth(Ki) be the theoretical call price for strike Ki

given by Equations (11) and (13), and let Cobs(Ki) be the market-observed call price.
Then, we minimize the sum of squared errors:

min
α,σ1,σ2,a

N∑
i=1

(Cth(Ki)− Cobs(Ki))
2.

Note that we do not have an extra term to help ensure a risk-neutral constraint,
since it is already built in.

3 Application to Exchange Rate Options

3.1 Description of the data

The option price data used here are the daily bid and ask end-of-day price published
by the Montreal Exchange for European options on the Can$/US$ exchange rate.
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The quoted convention for Can$/US$ refers to the number of Canadian dollars re-
quired to by one U.S. dollar. This contract is called USX by the Montreal Exchange.
We obtain historical data from 2 January 2007 to 18 June 2008.7 The daily spot
exchange rate is obtained from Bloomberg and corresponds to the mid-rate for the
end of day.8

3.2 Data issues

There are three issues with the data. First, for a few days in our sample there
are no prices available (i.e., data are missing). Second, the relation between put
and call prices (put-call parity) does not always hold, which implies that there
could be arbitrage opportunities. Third, the monotonic relation that would be
expected between the price of the option and strikes does not always hold. Bliss and
Panigirtzoglou (2002) also document common sources of errors in observed option
prices. Similar to our findings, the authors find violations of arbitrage restrictions
such as put-call parity, and of a non-monotonic relation of prices with respect to
strikes. The authors point to four possible sources of errors: data-entry errors,
non-synchronicity from using multiple prices that should be recorded at the same
time, liquidity premia to compensate for differences between at-the-money and far
out-of-the-money options, and discrepancies due to reporting in discrete increments.

For the first issue, missing price data, we simply do not estimate the risk-neutral
PDF for days when no prices are recorded.

For the second issue, breakdown in put-call parity, we find the domestic and for-
eign risk-free rates that minimize the squared errors derived from the put-call parity
relation. We do this because the breakdown in parity may be the result of not using
the appropriate domestic and foreign risk-free rates. Initially, to check this relation,
we used yields from U.S. and Canadian treasury bills. Although treasury bill rates
seem a good proxy for the risk-free rates (it could be argued that other rates, such
as LIBOR, may be appropriate), we obtained very erratic implied volatility curves
when using treasury rates, and two different curves for puts and calls. To address
this issue, we instead determine the implied risk-free rates from the option data
itself by finding the domestic and foreign risk-free rates that minimize the put-call
parity errors. That is, we perform the following minimization:

min
rf ,rd

∑
i

(Ci − Pi −X0 · e−rfT +Ki · e−rdT )2, (15)

where X0 represents the spot price for the Can$/US$ exchange rate; Ci and Pi rep-
resent the call and put prices, respectively; Ki the strike price; and rf and rd foreign

7Further details on the options contracts are provided in Appendix B.
8Historical data on the spot price are obtained from Bloomberg using the command CADUSD

Curncy HP.
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and domestic interest rates, respectively. Nevertheless, after using the implied rates
from the minimization, some deviations from the put-call parity relation persist.
These remaining deviations, or errors, have been found previously by other authors.
For example, Kamara and Miller (1995) observe failures of put-call parity in Eu-
ropean option prices, and find that deviations in put-call parity are systematically
related to proxies for liquidity risk in the stock and option markets.

Figure 1 shows the implied risk-free rates obtained from Equation (15). The
implied rates thus obtained average around 5 per cent, which seems to be reasonable
for the initial time period in question, but they do not capture the rapid decline in
rates observed as the crisis intensified.9
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- - -  Bank of Canada announcement dates
......  U.S. Federal Reserve announcement dates

Figure 1: Implied Rates

For the third issue, monotonic relation between the option price and strikes,
we use only prices that changed with respect to the strikes in a monotonic way.
For example, for call prices, the price of the option should decrease as the strike
increases, and thus when we observe prices that did not change (or increased) as
strikes increased, we exclude them from the sample. By doing this, we are in fact
omitting prices for far in- or out-of-the-money contracts that may be determined by
the exchange rate when no price information is available.

9Treasury rates for both countries were around 5 per cent at the beginning of 2007 and dropped
significantly at the end of 2008 as a result of the financial crisis.
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3.3 Implementation

Our objective is to obtain a daily time series of risk-neutral PDFs and the associated
moments for a constant maturity, where the maturity dictates the time for which
the expectations are being extracted. To illustrate our results, we use a 45-day
maturity. To obtain the PDFs, we follow the sequence of steps outlined below.

1. For each trading day, find the two closest contracts expiring after and before
45 days from now.

2. For these two contracts, find risk-free rates that minimize put-call parity errors
by using Equation (15).

3. Find the implied volatility curves for puts and calls for the above contracts.

4. Calculate one implied volatility curve per contract by averaging across the
implied volatility curve for puts and the implied volatility curve for calls.

5. Calculate the implied volatility curve corresponding to the 45-day maturity
by taking a linear interpolation between the two above-mentioned implied
volatility curves. In other words, suppose that we have T1 < T45 < T2, with
T45 representing our forecast date 45 days from now, T2 the expiration date of
the next contract expiring after our forecast date, and T1 the expiration date
of the last contract expiring before our forecast date. Then, set

a =
T2 − T45

T2 − T1

to obtain
σ̃45-day(K) = aσ1(K) + (1− a)σ2(K),

where σ1(K) and σ2(K) are the implied volatility curves for the two contracts.

6. With the construction of a 45-day volatility curve, estimate call option prices
for each trading day using the standard Black-Scholes formula.

7. Apply the two models explained in section 2.3 to find the R-PDF from the
option prices.
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Figure 2: Example Construction of a 45-Day Volatility Curve

Figure 2 shows an example of the construction of a 45-day volatility curve. If the
current day is 1 August 2007, then the next two contracts expire on 17 August 2007
and 21 September 2007, which have 17 and 52 days to maturity, respectively. We
interpolate between the volatility curves of these two contracts to get a synthetic
45-day volatility curve. Once we have this curve, we can use the Black-Scholes
formula to get the synthetic/implied 45-day option prices. It is important to note
that the use of the implied volatility and Black-Scholes formula is just a mechanism
to interpolate, and says nothing regarding the validity of the Black-Scholes formula
for option pricing.

4 Results

We estimate the risk-neutral PDF for each trading day in 2007, using the two flexible
parametric models described earlier, and then compare the corresponding volatility,
skewness, and kurtosis measures obtained from the models. Figures 3 and 4 compare
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the second and third moments of the distribution.10
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Figure 3: Variance of 45-Day Expectations

10The mean of the mixed lognormal corresponds to the current value of the Can$/US$ exchange
rate plus an estimation error. We do not focus on the results of the mean, since they are, by
construction, very close to the current value of the Can$/US$ exchange rate. The kurtosis is
analyzed in Appendix A. Notice that the focus of the paper is not to explore the moments, but
to show how, under the proposed methodology, we can obtain moments for a constant maturity.
Therefore, we choose to illustrate the results with only the second and third moments.
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Figure 4: Skewness of 45-Day Expectations

The main results of our analysis are the following:

1. Figure 3 shows similar results for the variance of expectations for both models.

2. Both models show an increase in volatility from the end of July 2007; that
is, uncertainty in the expectations surrounding the level of the Can$/US$
exchange rate increased. This result is consistent with the high degree of
uncertainty in financial markets that was characteristic of the crisis and likely
also affected expectations for the exchange rate. In particular, on 17 August
2007 the volatility (from the standard model) reached its first peak (11.37),
which coincides with the vote by the Federal Reserve Board to reduce the
primary credit rate (discount window) by 50 basis points to 5.75 per cent and
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increase the maximum primary credit borrowing term to 30 days. And, in
Canada, on 15 August 2007 the Bank of Canada temporarily expanded the
list of collateral eligible for special purchase and resale agreement transactions.
The next peak in volatility (16.90) occurred on 19 October 2007. Later, on
31 October, the U.S. Federal Open Market Committee (FOMC) reduced its
target for the federal funds rate by 25 basis points to 4.50 per cent, and the
Federal Reserve Board reduced the primary credit rate by 25 basis points to
5.00 per cent. All of these events reflect the increased uncertainty associated
with the financial crisis.

3. The results for skewness shown in Figure 4, however, differ between the models.
The standard mixed lognormal model exhibits more intuitive results, because
it allows for periods of negative and positive skewness (appreciation and de-
preciation of the exchange rate), whereas the shifted mixed lognormal model
does not allow for negative skewness.

4. The skewness results for the shifted lognormal may be due to the fact that
we cannot have the same flexibility in changing the means as we do in the
standard mixed lognormal. For this reason, we consider that the standard
mixed lognormal model may give more reliable values for skewness.

Similarly, we can use the entire R-PDF to compare the impact of announcements
on the Can$/US$ exchange rate by comparing the densities on days before, during,
and after a given announcement. Figure 5 illustrates an example for Wednesday, 18
September 2007, when the FOMC decided to lower its target for the federal funds
rate by 50 basis points to 4 3/4 per cent. The figure also shows the densities for the
Can$/US$ exchange rate 45 days in the future observed on the Friday before and
after the announcement. The FOMC announcement seems to have led to a small
immediate appreciation and a wider dispersion of the expected outcome. After a few
days, an expectation of further appreciation became embedded in markets, but the
distributions became tighter, possibly showing a reduction in uncertainty. Although
it seems reasonable to consider that the decrease in U.S. interest rates could result
in an appreciation of the Canadian dollar, all else equal, these results should be
interpreted with caution, because the analysis can differ from the actual behaviour
of the real-world probability density. This is due to the effect of risk premiums,
which suggests that, to use the information extracted from option prices for policy
advice, further research is needed to find a reasonable mapping from the R-PDF
into the real-world density.
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Figure 5: Probability Density Functions Before, During, and After Announcement
On 18 September 2007, the Federal Open Market Committee decided to lower its target for the federal funds rate
by 50 basis points, to 4 3/4 per cent. The Friday before the announcement corresponds to 14 September 2007, and

the Friday after the announcement corresponds to 21 September 2007.

5 Conclusion

Our paper’s main contribution is to propose a simple methodology to build risk-
neutral PDFs with a constant time to maturity in the absence of option prices for
the maturity of interest. We show that, for two flexible parametric models, under
reasonable assumptions, the resulting estimates for the volatility of expectations are
consistent.

This paper has taken a first step at extracting information on market expecta-
tions. Future research to improve our estimates of the implied real-world distribution
would include (i) understanding how to move from the risk-neutral to the real-world
probabilities under less-restrictive assumptions, and (ii) comparing the results with
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a wider set of models for the terminal distribution.11

11Appendix E shows an example of the value of the real-world and risk-neutral distributions
under the assumption of a constant mean for the real-world distribution.
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Appendix A: Analysis of Kurtosis

Figure A1 shows the kurtosis in both models. The shifted mixed lognormal approach
seems to have times of much higher kurtosis. However, it is not easy to determine
whether this is from numerical instability or if it is an accurate reflection of the
data. The horizontal line is at 3, which is the kurtosis of a normal random variable.
The standard mixed lognormal dips below 3 at times, but this does not occur for
the shifted mixed lognormal.

01/08/07 02/27/07 04/18/07 06/07/07 07/27/07 09/15/07 11/04/07 12/24/07
0

5

10

15
Kurtosis Using Standard Mixed Lognormal

Date

K
ur

to
si

s

01/08/07 02/27/07 04/18/07 06/07/07 07/27/07 09/15/07 11/04/07 12/24/07
0

5

10

15
Kurtosis Using Shifted Mixed Lognormal

Date

K
ur

to
si

s

- - -  Bank of Canada announcement dates
......  U.S. Federal Reserve announcement dates
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18



Appendix B: Contract Specifications

The USX option contract on the U.S. dollar is a European-style option on the
Can$/US$ exchange rate. Options are listed in the first three months plus the
next two quarterly months in the March, June, September, and December cycles.
USX options expire at 12:00 p.m. (Montréal time) on the third Friday of the expiry
month. USX strikes are in minimum intervals of 50 cents, and quoted as the number
of Canadian dollars required to buy one U.S. dollar. The trading unit per contract
is US$10,000.

Appendix C: Formula Derivations

Consider a mixed lognormal random variable X = I · X1 + (1 − I) · X2, with X1

and X2 being lognormal, and I a Bernoulli(p) random variable. By the law of total
probability,

P (X ≤ x) = P (X ≤ x | I = 1)P (I = 1) + P (X ≤ x | I = 0)P (I = 0)

= p · P (X1 ≤ x) + (1− p) · P (X2 ≤ x).

Differentiating with respect to x gives

fX(x) = pfX1(x) + (1− p)fX2(x). (16)

If we have that lnXi ∼ N(ln(S0,i) + (r − rf − σ2
i

2
)T, σ2

i T ) for i = 1, 2, then

E[Xi] = e(r−rf )TS0,i for i = 1, 2. As well, because of the form of the density (16),
we have that

E[ST ] = p · E[X1] + (1− p) · E[X2]

= pe(r−rf )TS0,1 + (1− p)e(r−rf )TS0,2.

Under the risk-neutral measure, E[ST ] = e(r−rf )TS0. Substituting this into the above
equation for E[ST ] and dividing by e(r−rf )T gives us S0 = pS0,1 + (1− p)S0,2.

Next, let us derive the call option formula in the mixed lognormal case. In order
to apply risk-neutral pricing, an assumption that seems to be largely overlooked in
the literature is the existence of a local volatility model,

dSt = (r − rf )Stdt+ σ(t, St)StdWt,

with σ(·, ·) being a well-behaved deterministic function. This gives us a complete
market, so that a contract that has payoff depending on ST can be perfectly hedged.
Even if such a process does not exist, we could assume the existence of a process
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that gives terminal distributions sufficiently close to our mixed lognormal. Brigo
and Mercurio (2002) propose a process that allows for different terms σi, but we
have yet to discover a process that also allows for changing terms S0,1, S0,2, even
though the practice of having all four mixed lognormal parameters vary is widely
used in the literature.

In any case, consider the formula C0 = e−rTEQ[(ST − K)+] for a risk-neutral
measure Q. Recall that ST = X1 with probability p, and that ST = X2 with
probability (1 − p), where X1, X2 are lognormal variables. It follows, by taking
appropriate expected values, that

C0 = e−rTpEQ[(X1 −K)+] + e−rT (1− p)EQ[(X2 −K)+].

Since, under Q, lnXi ∼ N(ln(S0,i)+(r−rf − σ2
i

2
)T, σ2

i T ) for i = 1, 2, we can directly
compute the expected values EQ[(Xi−K)+] using the same substitution tricks when
deriving the standard Black-Scholes formula to obtain the result.

Appendix D: Expressions for Moments of the PDFs

We wish to compute the standardized central moments of a mixture of lognormals.
In particular, we are interested in the following:

variance = σ2 = E[(X − µ)2],

skewness = E[(X − µ)3]/σ3,

kurtosis = E[(X − µ)4]/σ4.

Suppose that a random variable X has probability density of the form

f(x) = pf1(x) + (1− p)f2(x),

where f1(x) and f2(x) are two other probability density functions for random vari-
ables X1 and X2. Then, for any integer k ≥ 1, we have that

E[Xk] = pE[Xk
1 ] + (1− p)E[Xk

2 ]. (17)

Hence, we can easily compute the non-central moments of X given the corresponding
non-central moments of X1 and X2. In particular, we have that µ = E[X] =
pE[X1] + (1− p)E[X2].

We can compute the higher central moments E[(X − µ)k] simply by expanding
(X − µ)k to express it in terms of non-central moments. In particular,

E[(X − µ)2] = E[X2]− µ2, (18)

E[(X − µ)3] = E[X3]− 3E[X2]µ+ 2µ3, (19)

E[(X − µ)4] = E[X4]− 4E[X3]µ+ 6E[X2]µ2 − 3µ4. (20)
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In the case that Xi is lognormal with logXi ∼ N(µi, σ
2
i ), then

E[Xk
i ] = ekµi+

1
2
k2σ2

i . (21)

By using equations (17) to (21), we can compute the moments of the mixed lognor-
mal variables.

Appendix E: Implied Real-World PDFs

This appendix compares the differences between the risk-neutral and real-world
distribution under the assumption of a constant mean for the stochastic process of
the underlying asset.

Recall that, in Brigo and Mercurio (2002), the real-world dynamics is described
by

dSt = µSt +

√
aσ2

1tp
1
t (St) + (1− a)σ2

2tp
2
t (St)

pt(St)
StdWt, (22)

for some drift term µ.

The risk-neutral dynamics is described by

dSt = (r − rf )St +

√
aσ2

1tp
1
t (St) + (1− a)σ2

2tp
2
t (St)

pt(St)
StdWt. (23)

Unfortunately, the problem of estimating µ is difficult. This is, in part, because the
drift of the underlying asset will change over time. Our goal in this appendix is not
to accurately determine the real-world PDF, but rather to simply determine what
differences there may be between the risk-neutral PDF and the real-world PDF, and
their moments. We try µ = 20 per cent and µ = −20 per cent to determine the
difference between the real-world and risk-neutral distributions under this model.
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Figure E1: Means of Distributions

We see that, in Figure E1, the mean of the risk-neutral distribution is almost
identical to the spot exchange rate. This is because, under the risk-neutral measure,
E[ST ] = e(r−rf )TS0. Recall that, in our case study, T = 45/360, and we usually have
that r ≈ rf , so that (r − rf )T ≈ 0 and E[ST ] ≈ S0. In the real-world measure,
the resulting means of the real-world and risk-neutral measures will differ because µ
could be, say, 20 per cent, which is much larger than any reasonable value for r−rf .
In general, our model shows that, when µ is positive, the mean of the real-world
expectations will be higher than the spot, and when µ is negative, it will be lower
than the spot.
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Figure E2: Variance of Distributions

In Figure E2, we see that the risk-neutral and real-world variances are very close
to each other. This is because the differences between the risk-neutral and real-
world distributions are mostly of level, and not of shape. Thus, even if µ were to
change, it would not have a large effect on the variance. Hence, if we see a change
in the risk-neutral variance, we can assume that, most likely, there is a change in
the real-world variance. Changes in the R-PDF variance can thus be used to deduce
information about the view of the markets.
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