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Abstract 

A sequential Monte Carlo method for estimating GARCH models subject to an unknown 
number of structural breaks is proposed. Particle filtering techniques allow for fast and 
efficient updates of posterior quantities and forecasts in real time. The method 
conveniently deals with the path dependence problem that arises in these type of models. 
The performance of the method is shown to work well using simulated data. Applied to 
daily NASDAQ returns, the evidence favors a partial structural break specification in 
which only the intercept of the conditional variance equation has breaks compared to the 
full structural break specification in which all parameters are subject to change. The 
empirical application underscores the importance of model assumptions when 
investigating breaks. A model with normal return innovations results in strong evidence 
of breaks; while more flexible return distributions such as t-innovations or a GARCH-
jump mixture model still favors breaks but indicates much more uncertainty regarding the 
time and impact of them. 

JEL classification: C11, C15, C22, C53  
Bank classification: Econometric and statistical methods; Financial markets  

Résumé 

Pour estimer les modèles GARCH susceptibles de compter un nombre indéterminé de 
ruptures structurelles, les auteurs proposent une méthode séquentielle de Monte-Carlo. 
Celle-ci fait appel à des techniques de filtrage particulaire qui permettent l’actualisation 
rapide et efficace de valeurs postérieures et de prévisions en temps réel. Cette méthode 
apporte une solution commode au problème de la dépendance du sentier, présent dans les 
modèles GARCH. Elle fonctionne bien lorsque les données utilisées sont issues de 
simulations. Appliquée aux rendements quotidiens des titres du NASDAQ, elle fournit 
des résultats qui avantagent plus une spécification où les ruptures ne concernent que 
l’ordonnée de l’équation de la variance conditionnelle qu’une spécification dans laquelle 
l’ensemble des paramètres sont variables. Cette application empirique fait ressortir 
l’importance revêtue par les hypothèses de modélisation pour l’étude des ruptures. Dans 
un modèle où les rendements sont soumis à des chocs distribués selon une loi normale, 
les données obtenues confirment l’existence de ruptures. Ces dernières se retrouvent 
également dans les distributions plus souples, c’est-à-dire en présence de chocs distribués 
selon une loi de Student, ou dans un modèle GARCH mixte avec processus de saut; 
seulement, la date et l’incidence des ruptures font alors l’objet d’une incertitude bien plus 
grande. 

Classification JEL : C11, C15, C22, C53  
Classification de la Banque : Méthodes économétriques et statistiques; Marchés 
financiers 



1 Introduction

This paper addresses the econometric challenges of estimating GARCH models subject

to structural breaks by using a Bayesian sequential Monte Carlo approach. We present a

particle filtering method to sequential estimation that builds on the change-point model of

Chib (1998). The approach allows the number of breaks as well as model parameters to be

estimated jointly in one run and can conveniently handle models with path dependence.

A particle filter is a class of sequential Monte Carlo filtering methods that approximate

the posterior distribution of the latent state variables by a set of particles and associated

probability weights. One approach to learning about fixed parameters is the mixture

kernel smoothing method of Liu and West (2001). This has been successfully applied in

Markov switching stochastic volatility (Carvalho and Lopes (2007), Casarin and Trecroci

(2006)) and stochastic volatility with jumps in a continuous time setting (Raggi and

Bordignon (2008)). Other work with sequential Monte Carlo filtering methods include

Johannes and Polson (2006) and Polson, Stroud, and Muller (2008).

A challenging problem for MCMC analysis of structural breaks is how to handle models

with path dependence, e.g. GARCH models. For example, a change in a parameter of the

conditional variance at time t will affect all future conditional variances (Gray 1996). Due

to this path dependence the dimension of the state space grows over time and becomes

computationally challenging for typical datasets used in finance. The problem is more

severe in the context of Markov switching. Bauwens, Preminger, and Rombouts (2007)

develop a single-move Gibbs sampler for a Markov switching GARCH model with a fixed

number of regimes. Our algorithm can jointly estimate the model parameters and the

number of structural breaks at each point in time based on a single run of the particle

filter algorithm making it computationally efficient.

Chopin (2007) proposes a particle filtering algorithm for estimating structural break

models in which the fixed model parameters are formulated as part of the state variables.

Local MCMC sampling based on Gilks and Berzuini (2001) is used to reduce degeneracy.

Our approach differs in that we use Chib’s formulation of structural breaks and the fixed
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parameters are treated separately from state variables. This has the advantage that it

can easily incorporate the case where only a subset of parameters have breaks while in the

Chopin approach, it is not straightforward, if not impossible, due to the path dependence

problem that occurs in local MCMC moves. In contrast, we are able to compare GARCH

specifications that allow breaks in all parameters with versions that allow breaks only to

the intercept of the conditional variance. It is this latter specification that isolates breaks

in the long-run variance and has empirical support (Starica and Granger 2005).

The proposed algorithm is applied to structural break GARCH (SB-GARCH) models.

We investigate 4 specifications, namely, a partial SB-GARCH model in which only the

intercept of the volatility equation has breaks with normal and t return innovations, and

a full SB-GARCH models in which all parameters are subject to breaks with normal

and t return innovations. Based on simulated data, we find that the algorithm performs

well in estimating the number and location of breaks as well as the fixed parameters.

Furthermore, the marginal likelihoods, computed as a byproduct of the particle filter, can

be used to identify the true model specification correctly. As an empirical application, we

analyze the daily NASDAQ returns from January 3, 1995 to December 29, 2006. Based

on marginal likelihoods, a partial SB-GARCH model with t-innovations has the highest

cumulative predictive power. The structural break GARCH model with student-t return

innovations outperforms the normal specification and indicates much more uncertainty

regarding the time and impact of breaks on the model.

We find it important to use a flexible model for daily returns; failure to do so may

result in the false identification of structural change. Our benchmark GARCH model with

normal innovations identifies two breaks in late 1997 and early 2004, which are associated

with changes in the long-run variance of returns. According to the filter estimates of the

states the evidence of structural change with normal return innovations is largely removed

once we consider t-innovations or a GARCH-jump mixture model. Nevertheless, Bayes

factors favor the structural break model even with the large amount of uncertainty about

breaks.
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The paper is organized as follows. Section 2 presents the general structural break

model we consider. Section 3 provides a brief review of particle filtering methods and the

algorithm for the general structural break model. In Section 4, we detail the SB-GARCH

models we estimate. Section 5 gives the simulation results of the algorithm and Section 6

is the empirical application on daily NASDAQ returns. The conclusions are presented in

Section 7. Additional results can be found in the working paper version, He and Maheu

(2008).

2 A General Structural Break Model

We consider a general structure break model in which the observation yt is drawn from an

analytically tractable density p(yt|Dt−1, θt), where Dt−1 is the set of information known

at time t− 1 and θt is the set of parameters. The changing parameters θt are assumed to

be driven by an unobservable state variable st such that

θt = θk when st = k, k ∈ {1, 2, ..., K}, (1)

where θk is the parameter value in state k, and K is a preset value for the maximum

number of states. Some of the elements of θt may be constant across states. The state

variable st is modeled as a Markov chain with the transition probability matrix

P =




p11 1− p11 0 ... 0

0 p22 1− p22 ... 0

...

0 0 ... pK−1,K−1 1− pK−1,K−1

0 0 ... 0 1




. (2)

This specification imposes many 0 restrictions on the more general first-order Markov

chain with K states. A structural break at time t occurs when st 6= st−1. This formulation

of structural breaks was originally proposed by Chib (1998) and is used extensively in
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subsequent papers in the literature, e.g. Pastor and Stambaugh (2001), Kim, Morley,

and Nelson (2005) and Liu and Maheu (2008). It has two major benefits. First, it

automatically enforces an ordering of break points in the series yt. Moreover, when viewed

as a hidden Markov model (HMM), it facilitates the marriage with the existing large

literature on HMM’s and hence the development of efficient estimation methods (Scott

(2002)). The regime-switching model of Hamilton (1988) can be viewed as a special case of

this setup if identical states are assumed to recur (Pesaran, Pettenuzzo, and Timmermann

(2006)).

Chib (1998) has developed a general MCMC algorithm for structural break models

with a fixed number of states. But there are important limitations to this approach. As a

smoothing algorithm, estimates of state variables rely on the information from the entire

sample. It is not computationally feasible to update estimates as each new observation

arrives in high frequency since the whole algorithm has to be re-run to incorporate this

new information. It is inconvenient to determine the number of states via the existing

MCMC methods. The usual practice is to run the algorithm repeatedly conditional on

a fixed number K of states specified a priori and calculate their marginal likelihoods for

several K. The number of states is then determined by comparing these marginal like-

lihoods. Computing the marginal likelihood is unfortunately often a complicated issue

in the MCMC context. The whole estimation process can be time-consuming and im-

practical in real applications where inference needs to be updated frequently. In the case

of models with path dependence such as the structural break GARCH model, which we

discuss next, the Chib algorithm is not directly applicable.

2.1 Structural Breaks and GARCH

In this section we review some of the computational issues in estimating structural breaks

in GARCH specifications and the resulting path dependence. The GARCH model of

Engle (1982) and Bollerslev (1986) has been widely used in practice for estimating the
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volatility of asset returns. One typical form is

yt = σtεt, εt ∼ i.i.d.(0, 1), σ2
t = c + αy2

t−1 + βσ2
t−1, (3)

where yt is the return of some financial asset. The sum α + β measures the persistence

of the volatility process. A common finding in the literature is that estimates of this sum

tend to be close to one, indicating that volatility is highly persistent. However, it has

been argued that this high persistence may be due to structural breaks in the volatility

process, e.g. see Diebold (1986), Lamoureux and Lastrapes (1990) and Mikosch and

Starica (2004), and the omission of possible shifts in parameters would bias upward the

estimate of persistence parameters and impair volatility forecasting (see Hamilton and

Susmel (1994), Gray (1996) and Klaassen (2002), among others).

Mikosch and Starica (2004) showed theoretically that structural breaks in the uncondi-

tional variance of the GARCH volatility process could cause spuriously high persistence

estimates. This motivates specifying a partial structural break GARCH (SB-GARCH)

model

yt = σtεt, σ2
t = cst + αy2

t−1 + βσ2
t−1, (4)

where st is the unobserved state variable governed by (2) and is independent of εt. The

unconditional variance in a regime cst/(1− α− β), can change over time.

Estimating SB-GARCH models is a challenging problem since the likelihood of yt

depends on the entire sequence of past states up to time t due to the recursive structure

of its volatility. For example, consider the evolution of the conditional variance given

a start-up value of σ2
1 and s1 = 1. At t = 2 there can be a break with s2 = 2 and

σ2
2 = c2 + αy2

1 + βσ2
1 or no break with s2 = 1, σ2

2 = c1 + αy2
1 + βσ2

1. It is clear that the

variance is a function of s2 so we denote it as σ2
2(s2). Now at time t = 3 there is again the

possibility of a break or no break. In this case the conditional variance is a function of s2

and s3, i.e. σ2
3(s2, s3). In general, the likelihood at time t is a function of the entire history
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of states {s2, s3, ..., st}. Efficient MCMC methods assume a first-order Markov chain for

the discrete state (Chib 1998) to implement the forward-backward smoother to draw

the states. Therefore, {s2, s3, ..., st} must be recast to a first-order Markov chain whose

dimension is increasing in t making the Chib (1998) approach infeasible. In addition,

the particle filter approach of Chopin and Pelgrin (2004) which is based on forward-

backward smoother is also not applicable due to the path dependence problem. The path

dependence in the conditional variance also occurs when α and/or β change from a break.

To circumvent the path dependence problem in the context of Markov switching

GARCH, a variety of alternative tractable approximations have been proposed in the

literature, e.g. Gray (1996), Klaassen (2002) and Haas, Mittnik, and Paolella (2004).

Bauwens, Preminger, and Rombouts (2007) develops a single-move MCMC algorithm

that could be adapted to estimate SB-GARCH models with a known fixed number of

states. However, this would not provide real time estimates, nor is it feasible to estimate

SB-GARCH models with an unknown number of states via existing MCMC methods. As

far as we know, no methods for computing marginal likelihoods of this class of models

are available. So it is effectively infeasible to estimate this class of models via existing

MCMC methods unless one is willing to assume that the number of break points is known

a priori.

By focusing on the sequential filtering problem rather than the smoothing problem

(MCMC), the path dependence that structural breaks induce in GARCH models is elim-

inated since only the one-step-ahead predictive distribution is needed in computation,

which is an integral over two possible states conditional on parameters in the proposed

structural break model.

3 Particle Filter

The foundational particle filtering algorithm is proposed by Gordon, Salmond, and Smith

(1993). For detailed discussions of the particle filter, see the books edited by Doucet,

de Freitas, and Gordon (2001) and Ristic, Arulampalam, and Gordon (2004). Roughly

7



speaking, the particle filter is a class of sequential Monte Carlo filtering methods which

approximate the posterior distribution of the state variables, p(st|Dt) , by a set of particles

{s(i)
t }N

i=1, with probability weights {w(i)
t }N

i=1, where N is the number of particles and
∑N

i=1 w
(i)
t = 1. This relation is conventionally denoted as {s(i)

t , w
(i)
t }N

i=1 ∼ p(st|Dt). Any

fixed model parameters θ, are assumed to be known and suppressed in the following.

Given a set of particles and weights, the posterior mean of any function of the state

variable f(st) can be directly estimated as

E[f(st)|Dt] ≈
N∑

i=1

f(s
(i)
t )w

(i)
t .

The predictive density is approximated as

p(st+1|Dt) =

∫
p(st+1|st)p(st|Dt)dst ≈

N∑
i=1

p(st+1|s(i)
t )w

(i)
t , (5)

and the filtering density is approximated as

p(st+1|Dt+1) ∝ p(yt+1|st+1)p(st+1|Dt) ≈ p(yt+1|st+1)
N∑

i=1

p(st+1|s(i)
t )w

(i)
t . (6)

The centerpiece of a particle filter algorithm is how to propagate particles forward

from {s(i)
t , w

(i)
t }N

i=1 to {s(i)
t+1, w

(i)
t+1}N

i=1. This step however is often vulnerable to the weight

degeneracy problem, that is, only a small subset of the particles is assigned appreciable

weights in the propagation stage and hence the effective size of particles is reduced, which

leads to greater approximation errors. A variety of particle filter algorithms have been

proposed to reduce the weight degeneracy problem, e.g. see Kitagawa (1996), Carpenter,

Clifford, and Fearnhead (1999) and Johannes and Polson (2006). In this paper, we fo-

cus on the auxiliary particle filter (APT) developed in Pitt and Shephard (1999) which is

widely used and reliable. By giving more importance to particles with large predictive val-

ues, the APF improves sampling efficiency while significantly reducing weight degeneracy

problems.
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3.1 Particle Filter with Unknown Parameters

We follow Liu and West (2001) to incorporate parameter learning which has been success-

fully used in several papers including Carvalho and Lopes (2007), Casarin and Trecroci

(2006) and Raggi and Bordignon (2008). The posterior density p(θ|Dt) is approximated

by a mixture of multivariate normals

p(θ|Dt) ≈
N∑

i=1

w
(i)
t N(θ|aθ

(i)
t + (1− a)θt, b

2Vt),

where θt =
∑N

i=1 w
(i)
t θ

(i)
t and Vt =

∑N
i=1 w

(i)
t (θ

(i)
t − θt)(θ

(i)
t − θt)

′, and N(θ|., .) is the

multivariate normal pdf. The constants a and b measure the extent of the shrinkage and

are determined via a discount factor δ ∈ (0, 1) as a =
√

1− b2 and b2 = 1− [(3δ−1)/2δ]2.

Conditional on samples of θ drawn from the mixture, the usual particle filters can

be applied to estimate the state variables. As shown in Liu and West (2001), the kernel

smoothing approach combined with an efficient particle filter such as the APF produces

efficient estimates. Casarin and Marin (2007) find this method to be the best among

several other alternatives for the estimation of fixed parameters and states for a stochastic

volatility model.

3.2 A Particle Filter for Structural Break Models

We combine the APF with the kernel smoothing approach to design a sequential Monte

Carlo algorithm for the general structural break model. The state at time t, st, will

equal the number of states that have actually appeared in the studied time series up

to time t. In contrast to the MCMC method of Chib (1998), this approach does not

enforce that all states be visited. The MCMC method in Chib (1998) samples the state

variables backward from the end of sample and assumes that the final state is K and the

first state in the sample is 1 so that all states are visited. For the particle filter there

can be redundant states and we follow Chopin and Pelgrin (2004) to specify an upper

bound K on the number of states to facilitate computation. As long as the upper bound
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on the number of states is large enough we can jointly estimate the model parameters

and the number of structural breaks at each point in time. Therefore, the problem of

determining the number of states is automatically solved by sequentially learning about

the state variables over time. We consider this a major benefit of sequential Monte Carlo

methods for structural break models.

The parameters θ should be reparameterized to take values on the real line since they

will be sampled through a mixture of normal kernels. For example, the probability pij

can be reparameterized as log(
pij

1−pij
). To simplify notation, we will use θ to denote the

transformed parameters as well in the following discussion.

To initialize the algorithm, we need to specify an upper bound K for the possible

number of states in the studied dataset. The only requirement for K is that it should

be larger than the estimated number of states so that the number of states is freely

determined. Let {θ(i)
k,t}N

i=1, k = 1, 2, ..., K, denote the particles of the parameters in state

k and let θ
(i)
t ≡ {θ(i)

1,t, ..., θ
(i)

K,t
}. Let p

(i)
t denote the transition probability components of

θ
(i)
t . Note the subscript t indicates that the parameter values are learned at time t, and

not necessarily time-varying. Initial particles and weights are set as s
(i)
1 = 1, w

(i)
1 = 1

N
, for

i = 1, 2, ..., N and parameters are drawn from the prior. The prior {θ(i)
1 }N

i=1 will depend

on the specific model.

Our initial algorithm which employed the standard multinomial resampling performed

poorly in practice, delivering rather unstable estimates of the parameters and states over

repeated runs. An efficient sampling scheme for drawing the auxiliary indices is necessary

to reduce the Monte Carlo variation and stabilize the estimates.

To stabilize estimates over multiple runs we use stratified sampling (Carpenter, Clif-

ford, and Fearnhead 1999). To produce a new sample of size m from a population {xt}N
t=1

with weights {wt}N
t=1, stratified sampling first produces stratified uniform random vari-

ables {ut}m
t=1 by drawing ut ∼ U( t−1

m
, t

m
) independently. From each of these draws xt is

selected based on multinomial sampling. This method is fast and effective in stabilizing

estimates across different runs.
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Given a set of particles and weights {θ(i)
t , s

(i)
t , w

(i)
t }N

i=1 ∼ p(st, θ|Dt), the following is a

general algorithm for structural break models.

1. For i = 1, 2, ..., N , let r be the mode of p(st+1|s(i)
t , θ

(i)
t ), i.e. the state with the

highest probability in p(st+1|s(i)
t , θ

(i)
t ). Compute the weights for the auxiliary index

w̃
(i)
t+1 ∝ p(yt+1|Dt, aθ

(i)
r,t + (1− a)θr,t)w

(i)
t , where θr,t =

∑N
i=1 w

(i)
t θ

(i)
r,t .

2. Draw stratified uniform random variables {uj}N
j=1 with uj ∼ U( j−1

N
, j

N
).

3. Produce the auxiliary indices {ri}N
i=1, ri ∈ {1, 2, ..., N}, by retaining N i copies

of i, i = 1, 2, ..., N , where N i is the number of {uj}N
j=1 falling in the interval

(
∑i−1

j=0 w̃j,
∑i

j=0 w̃j] with w̃0 = 0.

4. For i = 1, 2, ..., N , sample θ
(i)
t+1 from N(m

(ri)
t , b2Vt), where m

(ri)
t = aθ

(ri)
t + (1 −

a)θt, Vt =
∑N

i=1 w
(i)
t (θ

(i)
t − θt)(θ

(i)
t − θt)

′.

5. For i = 1, 2, ..., N , sample s
(i)
t+1 ∈ {1, 2, ..., K} from p

(i)
t+1(st+1|s(ri)

t ).

6. Let s = s
(i)
t+1. Compute w

(i)
t+1 ∝ p(yt+1|Dt, θ

(i)
s,t+1)/p(yt+1|Dt, aθ

(ri)
r,t + (1− a)θr,t).

This gives the sample {s(i)
t+1, θ

(i)
t+1, w

(i)
t+1}N

i=1 ∼ p(st+1, θ|Dt+1).

3.3 Predictive Likelihoods and Model Selection

The predictive likelihood p(yt+1|Dt) can be computed from

p(yt+1|Dt) =

∫ ∫ ∫
p(yt+1|st+1, θ)p(st+1|st, θ)p(st, θ|Dt)dst+1dstdθ. (7)

Once a set of particles and weights {s(i)
t , θ

(i)
t , w

(i)
t }N

i=1 ∼ p(st, θ|Dt) is available, one can

compute the approximation

p(yt+1|Dt) ≈
N∑

i=1

w
(i)
t

∫
p(yt+1|st+1, θ

(i)
t )p(st+1|s(i)

t , θ
(i)
t )dst+1,
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where

∫
p(yt+1|st+1, θ

(i)
t )p(st+1|s(i)

t , θ
(i)
t )dst+1 = p(yt+1|st+1 = s

(i)
t , θ

(i)
t )p(st+1 = s

(i)
t |s(i)

t , θ
(i)
t )

+p(yt+1|st+1 = s
(i)
t + 1, θ

(i)
t )p(st+1 = s

(i)
t + 1|s(i)

t , θ
(i)
t ). (8)

If the information set is Dt = {y1, y2, ..., yt}, the marginal likelihoods can be computed

sequentially via predictive likelihoods

p(y1, ..., yt) = p(y1)
t∏

τ=2

p(yτ |y1, ..., yτ−1), t = 2, ..., T.

By construction, the marginal likelihood can be interpreted as a measure of the cumulative

out-of-sample predictive power of the model under investigation. Sequential Bayes factors

(the ratio of marginal likelihoods of two specifications) can be then used to conduct model

selection. Given a model A with marginal likelihood p(y1, ..., yT |A), and model B with

marginal likelihood p(y1, ..., yT |B), the Bayes factor in favor of model A versus model B is

BFAB = p(y1,...,yT |A)
p(y1,...,yT |B)

. Kass and Raftery (1995) suggest interpreting the evidence for A as:

not worth more than a bare mention if 0 ≤ BFAB < 3; positive if 3 ≤ BFAB < 20; strong

if 20 ≤ BFAB < 150; and very strong if BFAB ≥ 150. To produce real time estimates of

the Bayes factor, two particle filters could be run in parallel for two different models.

4 Structural Break GARCH Models

As discussed above, the final state sT = k, where k ≤ K, is determined by the data rather

than being specified a priori. The state variable st evolves according to the transition

probability matrix in Equation 2. The chain can either stay in the current state or go

to the next one. The final state, k, is equal to the number of in-sample states and the

number of break points is k − 1.

Let θk = [ck, α, β, P ] be the model parameters in state k and θ = {θ1, ..., , θK}. The
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likelihood of yt for the partial break model in Equation 4, when εt ∼ NID(0, 1) is

p(yt|Dt−1, st, θ) = p(yt|Dt−1, θst) =
1√
2πσ2

t

exp

(
− y2

t

2σ2
t

)
, (9)

where σ2
t = cst +αy2

t−1 +βσ2
t−1. We refer to this structural break specification as a partial

SB-GARCH-N model since only the intercept of the conditional variance is subject to

breaks.

Empirical studies often suggest fat tails in the distribution of asset returns, therefore,

an alternative specification for the return innovation εt would be a student-t distribution

with v degrees of freedom. Let SB-GARCH-t denote this model and if θk = [ck, α, β, v, P ],

then the data density of yt becomes

p(yt|Dt−1, st, θ) = p(yt|Dt−1, θst) =
Γ(v+1

2
)

σtΓ(v
2
)
√

πv

(
1 +

y2
t

vσ2
t

)− v+1
2

, (10)

where σ2
t = cst + αy2

t−1 + βσ2
t−1.

It is possible that all parameters of the volatility process, not just the unconditional

variance, may be subject to structural breaks. So we also consider a full SB-GARCH

model (SB-GARCH-N and SB-GARCH-t)

yt = σtεt, σ2
t = cst + αsty

2
t−1 + βstσ

2
t−1, (11)

where θk = [ck, αk, βk, P ], or θk = [ck, αk, βk, v, P ], depending on the specification of the

innovation εt. The algorithm presented in Section 3.2 can be applied to estimate these

models and compute their marginal likelihoods for model comparison purposes.

A possibility is that outliers in returns may be identified as permanent structural

breaks. To investigate this we consider the following partial break GARCH-jump mixture

yt = σtεt + Jtηt, σ2
t = cst + αy2

t−1 + βσ2
t−1, (12)

Jt ∼ B(q), ηt ∼ N(0, h). (13)
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B(q) denotes a Bernoulli distribution where q is the probability of Jt = 1 and otherwise

Jt = 0. Jt, εt ∼ N(0, 1) and ηt, are independent. Estimation of the model (SB-GARCH-J)

can be done by augmenting the latent states with the jump indicator Jt and applying the

algorithm in Section 3 with straightforward extensions.

5 Simulation Evidence

To analyze the performance of the proposed algorithm, we simulated 3000 observations

from the partial SB-GARCH-N model with 2 break points. The parameter values are as

follows c1 = 0.2, c2 = 0.6, c3 = 0.1, α = 0.1, β = 0.8 with the break points at 1000 and

2000. A plot of the simulated data is presented in Figure 1.

The size of particles is set to be 300,000 and the upper bound of possible states K = 5.

Following Liu and West (2001), the discount factor is set as δ = 0.99. In the empirical

work we restrict pii = p for parsimony. The priors are as follows ci ∼ Ga(1, 0.2), i =

1, ..., K, α ∼ Be(1, 8), β ∼ Be(4, 1), log
(

p
1−p

)
∼ N(10, 1) and when using the student-t

distribution for returns the prior on the degrees of freedom is set as v ∼ Ga(1.2, 30).

In our experiments, we find that a prior on the transition probability p close to one is

critical for obtaining sensible results since estimates of states are sensitive to outliers. A

false estimate of states usually leads to poor estimates of parameters. A prior for log
(

p
1−p

)

centered on lower values (i.e. 5) quickly results in all states being visited and being stuck

in the final state K for the rest of the sample. Therefore, to avoid state saturation it is

necessary to have an informative prior. As such, our prior favors no breaks. On the other

hand the priors for remaining parameters cover a wide range of values consistent with

existing empirical studies on GARCH models.

All estimations in this paper are performed using the GNU scientific library in C. Each

filtering iteration takes about 2-3 seconds. The estimates of states are presented in the

middle panel of Figure 1. The lower panel of Figure 1 provides the distribution of the

state estimates (the filter P (st|Dt)) over time, which shows clearly the evolution of the

state particles. The algorithm is able to successfully identify the number and locations of
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break points. There are a few spikes in the filter estimates but they are quickly corrected.

Intuitively, these spikes are caused by outlier observations. The state particles in these

”false” states are subsequently dominated by particles which stay in the ”true” states as

the algorithm updates information by using new observations and gives higher weights to

these correct particles.

The full-sample parameter estimates are presented in Table 1. For all parameters,

the posteriors collapse to their true values as time increases and the estimates of the

parameters c2 and c3, which are specific to state 2 and 3 respectively, change sharply

upon the break points with their credible intervals quickly shrinking afterwards.

Table 1: Parameter Estimates for Simulated Data

True Value Partial Partial Full GARCH-N
SB-GARCH-N SB-GARCH-t SB-GARCH-N

c1 0.2 0.167 0.169 0.229 0.088
(0.102,0.259) (0.103,0.262) (0.076,0.541) (0.064,0.117)

c2 0.6 0.580 0.573 0.480
(0.333,0.946) (0.331,0.922) (0.242,0.852)

c3 0.1 0.098 0.098 0.160
(0.055,0.162) (0.055,0.159) (0.071,0.306)

α1 0.1 0.069 0.066 0.034 0.098
(0.039,0.112) (0.039,0.103) (0.006,0.108) (0.069,0.135)

α2 0.071
(0.036,0.124)

α3 0.072
(0.029,0.145)

β1 0.8 0.834 0.829 0.821 0.875
(0.751,0.898) (0.748,0.893) (0.617,0.941) (0.834,0.908)

β2 0.846
(0.757,0.912)

β3 0.755
(0.582,0.884)

v 42.734
(21.239,77.134)

LML -5463.023 -5464.364 -5466.228 -5507.791
This table reports the full-sample posterior means of parameters for simulated
data. Numbers in parenthesis are 95% credible sets. LML stands for log
marginal likelihood.

We also investigated the effective sample size, computed as 1/
∑N

i=1(w
(i)
t )2, to check

for weight degeneracy. There were sporadic drops in the effective sample size, usually
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Figure 1: State Estimates of the Partial SB-GARCH-N Model, Simulated Data. For the
distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt), dash: p(st = 3|Dt),
dash-dot: p(st = 4|Dt), solid: p(st = 5|Dt)
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around large outliers and break points, but they return to normal quickly afterwards,

suggesting that weight degeneracy is minor in this study.

To see if the algorithm has the power to detect the true model when there are compet-

ing ones, we also estimate a partial SB-GARCH-t model, a full SB-GARCH-N model and

a standard GARCH model with normal innovations for the simulated data. The results

are presented in Table 1. The partial SB-GARCH-N model has the largest marginal likeli-

hood, with the partial SB-GARCH-t model closely behind. The no-break GARCH model

has a much smaller marginal likelihood than the structural break alternatives. Based

on the time series of cumulative log-predictive likelihoods (not shown), the partial SB-

GARCH-N model consistently outperforms the full SB-GARCH-N and no-break GARCH

models whereas it does slightly better than the partial SB-GARCH-t model. In additional

simulation experiments we found the correct model was identified by the largest marginal

likelihood when the underlying DGP was a full SB-GARCH model.

6 Empirical Application

In this section, we apply the proposed algorithm to the daily NASDAQ composite returns

from January 3, 1995 to December 29, 2006 (3022 observations). The data source is the

Center for Research in Security Prices (CRSP). In estimation, returns are demeaned and

scaled up by 100. The priors, number of particles, K, a, b, and δ are the same as in the

simulation experiments.

6.1 Estimation Results

To compare the performance of competing SB-GARCH models for the NASDAQ returns,

we consider estimating 4 models: the partial SB-GARCH models with normal and t

innovations and the full SB-GARCH models with normal and t innovations. To explore

the importance of modeling structural breaks, we also fix K = 1 and estimate two no-

break GARCH models with normal and t innovations respectively. The estimated full-

sample marginal likelihoods of the six models are presented in Table 2. Based on these
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Table 2: Marginal Likelihoods

Partial Partial Full Full
SB-GARCH-N SB-GARCH-t SB-GARCH-N SB-GARCH-t

LML -5231.25 -5225.46 -5228.40 -5228.41
Partial

GARCH-N GARCH-t SB-GARCH-J
LML -5254.24 -5234.92 -5227.26

This table reports the full-sample log marginal likelihoods for NASDAQ return
series from Jan 03,1995 to Dec 29,2006. LML stands for log marginal likelihood.

estimates, the partial SB-GARCH-t model is the most favored while the versions in which

all parameters change after a break have lower marginal likelihoods.

We first provide a comparison of the SB-GARCH-t models with the SB-GARCH-N

models, which are the ones most commonly studied in the existing literature. The full-

sample marginal likelihoods of Table 2 provide overwhelming evidence in favor of the

specification with t-innovations: the t models have larger marginal likelihoods than the

normal models in both the partial SB-GARCH and the no-break categories. Second each

of the break models provides a large improvement over the no-break alternative. For

instance, the log-Bayes factors are 22.99 (normal innovations) and 9.46 (t-innovations) in

favor of the partial break model.

The sequentially filtered estimates of states of the partial SB-GARCH-N model are

presented in Figures 2. This model identifies two break points associated with a sustained

increase in NASDAQ volatility lasting from October 27, 1997 to January 23, 2004. The

full-sample posterior means and 95% credible sets of parameter estimates are reported in

Table 3. The resulting persistence estimate α + β = 0.966 is lower than the estimate of

0.983 by the no-break GARCH model with normal innovations. The full SB-GARCH-N

model has much smaller values of α + β in each regime. This finding is consistent with

the existing studies of GARCH models that find lower persistence once structural breaks

in the volatility process are taken into account.

The results are different when we fit the more flexible partial SB-GARCH-t model

to the data. Figure 3 and 4 present the sequentially filtered estimates of states and

parameters of this model. It identifies a similar pattern of breaks, but there is more
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Table 3: Parameter Estimates for NASDAQ Returns

Partial Partial Full Partial
SB-GARCH-N SB-GARCH-t SB-GARCH-N GARCH-N GARCH-t SB-GARCH-J

c1 0.070 0.043 0.274 0.052 0.033 0.048
(0.038,0.113) (0.027,0.067) (0.062,0.796) ( 0.032,0.071) (0.023,0.0448) (0.022,0.082)

c2 0.171 0.211 0.170 0.231
(0.090,0.303) (0.097,0.391) (0.100,0.273) (0.115,0.417)

c3 0.055 0.171 0.073
(0.006,0.324) (0.006,0.947) (0.029,0.153)

α1 0.074 0.062 0.137 0.095 0.070 0.064
(0.054,0.098) (0.043,0.085) (0.034,0.341) (0.072,0.124) (0.044,0.088) (0.046,0.090)

α2 0.087
(0.054,0.129)

α3 0.023
(0.007,0.054)

β1 0.892 0.890 0.632 0.888 0.909 0.875
(0.851,0.924) (0.848,0.924) (0.230,0.922) (0.859,0.912) (0.835,0.908) (0.846,0.919)

β2 0.882
(0.832,0.921)

β3 0.872
(0.749,0.946)

v 27.190 19.268
(16.021,43.337) (12.797,27.874)

q 0.041
(0.012,0.101)

h 2.149
(0.695,5.135)

This table reports the full-sample posterior means of parameters for NASDAQ
return series from Jan 03,1995 to Dec 29,2006. Numbers in parenthesis are
95% credible sets.
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Figure 2: State Variable Estimates of the Partial SB-GARCH-N Model, NASDAQ Data.
For the distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt), dash: p(st =
3|Dt), dash-dot: p(st = 4|Dt), solid: p(st = 5|Dt)
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uncertainty. Recall that our analysis addresses the real time filtering problem, and as

such smoothed historical estimates of breaks may be more precise. By the end of the

sample there is substantial probability that no break has occurred. For example, at the

end of the sample p(sT = 1|DT ) = 0.671, p(sT = 2|DT ) = 0.0002, and p(sT = 3|DT ) =

0.321. Compared to the specification with normal innovations this model has a built in

robustness from the fat-tailed t-innovations. A structural break can temporarily appear

as tail observations and it may take many observations to disentangle these effects. This

is consistent with Maheu and McCurdy (2009) who model the unconditional distribution

of returns and find less breaks when fat-tailed innovations are used instead of normal

innovations. Nevertheless, Bayes factors favor the structural break model even with the

large amount of uncertainty about breaks.

Sequential parameter estimates appear in Figure 4. Early in the sample the degree

of freedom parameter takes a large drop. The first break found in the SB-GARCH-N

model (Oct. 27,1997) is classified as an increase in tail thickness by this model (v drops

in Figure 4). It is not till closer to mid-sample that the evidence for a structural break

increases.

In common with the other break models Table 3 shows that α + β is lower for the

t-innovation specifications when breaks are allowed. We also find that by the end of the

sample the degree of freedom parameter is larger, (27 versus 19 for the no break model)

for the SB-GARCH-t model.

The filtered conditional standard deviations through time are displayed in Figure 5

for 2 alternative models. Although the volatility estimates are broadly similar, panel B

which displays their relative difference, show that the no break GARCH-N tend to produce

larger estimates and is persistently larger near the end of the sample. As was mentioned

above, model estimates may attribute higher persistence to volatility when breaks are not

modeled.

Figures 6 and 7 provide information on the predictive value of modeling breaks. The

first figure displays the cumulative log-Bayes factor in favor of the partial SB-GARCH-
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Figure 3: State Variable Estimates of the Partial SB-GARCH-t Model, NASDAQ Data.
For the distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt), dash: p(st =
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Figure 4: Parameters Estimates of the Partial SB-GARCH-t Model, NASDAQ Data

N against the no break alternative. There are some minor gains mid-sample but the

real improvements occur at the latter part of the sample. Here the improvements in the

predictive densities are consistent and ongoing. Similarly for the partial SB-GARCH-t

model, the gains come at the end of the sample. In the middle of the sample there are

some penalties incurred from the increased model complexity of the break specification.

There is always a trade-off between modeling the structural change and the resulting

increase in parameter uncertainty around break points.

6.2 Robustness

We found no evidence of weight degeneracy in our application (see He and Maheu (2008)).

We experimented running the programs under different seeds of the random number

generator to check the stability of estimates. The difference between parameter estimates

across runs is generally less than 0.01 while the difference between estimated marginal
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likelihoods is less than 1. We found that 100,000 or more particles produced reliable

results while less than this could be unstable across repeated runs.

For the SB-GARCH-J model, assuming independent priors q ∼ Be(40, 2), h ∼ Ga(2, 1),

while keeping priors of other parameters unchanged, we obtain similar estimates to the

SB-GARCH-t model. Model estimates appear in Table 3 while state and jump estimates

are plotted in Figure 8. In particular, the break points identified by the SB-GARCH-J

model are close to those of the SB-GARCH-t model. The marginal likelihood of the SB-

GARCH-J model is larger than that of the SB-GARCH-N model but slightly lower than

the SB-GARCH-t model. The parameter estimates of the SB-GARCH-J model are similar

to those of the SB-GARCH-N model. We conclude that it is important to use a flexible

model for daily returns, failure to do so may results in false identification of structural

change. Finally, we note that modeling jumps generally tends to reduce the effect of tem-

porary outliers and hence enables lowering the strong prior on the transition probabilities

of states. For example, using a prior of the transition probability log
(

p
1−p

)
∼ N(8.5, 1)

produces similar results.

Table 4 reports the sensitivity of the marginal likelihood for the preferred partial SB-

GARCH-t model for different priors. In each case, a change is made to the benchmark

prior and this is listed in the first column of the table. Although there are some changes

in parameter estimates and state inference, the improved predictions this model provides

are robust to different priors.

Table 4: Marginal Likelihood Estimates for Different Priors: Partial SB-GARCH-t

Prior LML
benchmark -5225.46
ci ∼ Ga(1, 0.4) -5227.18
α ∼ U(0, 1), β ∼ U(0, 1) -5226.46
log(pii/(1− pii)) ∼ N(8, 1) -5220.04
K = 7 -5225.91
ν ∼ Ga(1.2, 10) -5224.41

This table reports the log-marginal likelihood (LML) for the partial SB-
GARCH-t model based on the benchmark prior in Section 5 with any changes
listed in the first column.
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7 Conclusion

This paper proposes a sequential Monte Carlo filtering algorithm to estimate GARCH

models subject to structural breaks. There are several notable features of the proposed

algorithm: the number of breaks is estimated simultaneously with other model parameters

and states in a single run; the estimates of parameters and states are fast and efficiently

updated once new observations become available; and by focusing on the sequential filter-

ing problem the path dependence that structural breaks induce in GARCH models does

not cause any problems for estimation.

Simulation examples show that the algorithm is able to perform accurate sequential

inference. Our empirical application underscores the importance of model assumptions

when investigating breaks. A model with normal return innovations results in strong ev-

idence of breaks; while more flexible return distributions such as t-innovations or adding

jumps to the model still favors breaks but indicates much more uncertainty regarding

the time and impact of them. We also find that the partial structural break specifica-

tion delivers better performance than the full structural break specification in which all

parameters change from a break.
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