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Abstract

Although the concept of monetary policy lag has historical roots deep in the monetary economics

literature, relatively little attention has been paid to the idea. In this paper, we build on Svensson’s

(1997) inflation targeting framework by explicitly taking into account the lagged effect of

monetary policy and characterize the optimal monetary policy reaction function both in the

absence and in the presence of the zero lower bound on the nominal interest rate. We numerically

show the function to be more aggressive and more pre-emptive with the lagged effect than without

it. We also characterize the long-run stabilization cost to the central bank by explicitly taking into

account the lagged effect of monetary policy. It turns out that, in the presence of the zero lower

bound constraint, the long-run stabilization cost is higher with the lagged effect than the case

without it. This result suggests that the central bank and/or the government should set a relatively

high inflation target when confronted with a relatively long monetary policy lag. This can be

interpreted as another justification for targeting a positive inflation rate in the long-run.

JEL classification: E52, E58, C63
Bank classification: Inflation targets; Monetary policy framework; Monetary policy implementa-
tion

Résumé

Le délai de transmission de la politique monétaire demeure une notion assez peu étudiée, même si

elle plonge loin ses racines dans les travaux d’économie monétaire. Prenant pour point de départ

le régime de cibles d’inflation modélisé par Svensson (1997), l’auteur de l’étude y intègre

explicitement l’effet à retardement des mesures de politique monétaire. Il caractérise la fonction

de réaction optimale de la politique monétaire tant avec que sans une borne inférieure limitant les

taux d’intérêt nominaux à zéro. De manière numérique, il montre que la politique monétaire doit

être mise en œuvre de façon plus énergique et plus préventive quand le délai de transmission de

ses effets est pris en compte. L’intégration de ce délai modifie le coût de stabilisation à long terme

supporté par la banque centrale : sous la contrainte de la borne du zéro, ce coût s’avère supérieur à

ce qu’il serait si l’on faisait abstraction du délai de transmission de la politique monétaire.

L’auteur en conclut qu’un délai de transmission relativement important devrait inciter les

banquiers centraux ou les gouvernements à viser des taux d’inflation plutôt élevés. On peut y voir

un argument supplémentaire en faveur de l’établissement d’une cible d’inflation supérieure à zéro

dans le long terme.

Classification JEL : E52, E58, C63
Classification de la Banque : Cibles en matière d’inflation; Cadre de la politique monétaire; Mise
en œuvre de la politique monétaire



“...monetary actions affect economic conditions only after a lag... .”
(Milton Friedman, 1961, p.447)

1 Introduction

Since Friedman’s (1961) article titled “The Lag in Effect of Monetary Policy,” most re-
searchers and practitioners in the field of monetary policy have been aware that it takes a
while for monetary policy action to have an effect on economic conditions such as output or

inflation. For instance, the Monetary Policy Committee of the Bank of England (1999, p.3)
states that “[a]s to timing, in the Bank’s macroeconomic model ..., official interest rate deci-
sions have their fullest effect on output with a lag of around one year, and their fullest effect
on inflation with a lag of around two years.” As another example, Bernanke (2004) states
that “[b]ecause monetary policy works with a lag, the ability of policymakers to stabilize
the economy depends critically on our ability to peer into our cloudy crystal balls and see
something resembling the future.” For nearly a half century since Friedman’s (1961) work,
the lagged effects of monetary policy action has remained a factor that central bankers take
into account when conducting monetary policy. Though the lagged effect of monetary policy
is an old issue, it is definitely not a moribund issue for central bankers.

Although the concept of monetary policy lag has historical roots deep in the monetary
economic literature, there have been only a few studies that focus on this issue. In an earlier
studies, Cagan and Gandolfi (1969) take the time pattern of monetary effects on interest
rates as an indirect measure of the movement in expenditures and income. They find the
lagged effect of monetary policy on income to be somewhere between six months to two
years. Friedman (1972), following up on his earlier work, reported empirical evidence on the
lag between monetary policy actions (i.e., change in the money stock) and the responses of
inflation using US and UK data and confirmed his earlier hypothesis. Tanner (1979) tested
the variability of the lag between monetary policy action and resulting changes in output.

He found the length of the lag to be significantly and substantially variable. Duguay (1994)
estimated the monetary policy lag for output to be 12 to 18 months and the lag for inflation
to be 18 to 24 months using Canadian data. Batini and Nelson (2001) reaffirmed Friedman’s
(1972) empirical results using US and UK data from 1953 to 2001 and found the lag length
to be 25 months for the US and 13 months for the UK. They also estimated the length of
the lag using different sample periods and found little evidence of the lag becoming shorter
in more recent years. Indeed, according to some estimates they reported, the length of the
lag became longer in more recent years. Hafer et al. (2007) re-examined the role of money
and reported a significant statistical relationship between the lagged change in the money
stock and the changes in the output gap.

From this empirical evidence, the existence of a monetary policy lag in the economy is
evident, both in the past and present, and remains a factor that influences the conduct of
monetary policy. Yet, theoretical development in the optimal monetary policy literature in
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the line of Woodford (1999, 2003) or Svensson (1997, 1999) has put little or no emphasis1

on the monetary policy lag, assuming that monetary policy action affects output or inflation
instantly. Given the empirical evidence of a monetary policy lag and, further, being aware
that central bankers are struggling with one-year to two-year lagged effects of monetary policy
in reality, this apparent lack of interest in incorporating the lagged effect into the theory of
optimal monetary policy seems odd.
In this paper, building on Svensson’s (1997) inflation targeting framework, we explicitly

take into account the lagged effect of monetary policy and characterize the optimal monetary
policy reaction function. Further, for the sake of exemplifying the role of the monetary policy
lag, we characterize the optimal monetary policy reaction functions both in the absence and
in the presence of the zero lower bound constraint on the nominal interest rate.2 Using a
numerical method to characterize the optimal monetary policy reaction function following
Orphanides and Wieland (2000) and Kato and Nishiyama (2005), the main findings are
as follows. First, with a lagged effect of monetary policy, the optimal monetary policy
reaction function will be more aggressive than in the case without a lag. Second, in the
presence of the zero lower bound, the optimal monetary policy reaction function with a

lagged effect will be more pre-emptive than in the case without a lag. Third, when lagged
effect of monetary policy is present, the optimal monetary policy characterized in this paper
reveals an offsetting behavior of current monetary policy vis-à-vis past monetary policy stance
which is in apparent conflict with the stylized fact of interest rate smoothing behavior by the
central banks reported by Sack and Wieland (2000) among others. Although this feature is
a drawback, this result suggests that the interest rate smoothing motive of the central banks
is not arising from the lagged effect of monetary policy.
Besides the monetary policy conduct in the short-run, another important issue for central

banks is the level of the inflation target. In other words, where should the central bank
(or the government, depending on who is responsible for setting the target) set its inflation

target? Should it be positive, negative, or zero?3 For any inflation targeting economy
— most of which choose targets between 1% and 3% — this is a crucial question. One
argument justifying a positive inflation target comes from Akerlof et al. (1996). They argue
that because of downward nominal wage rigidity, the real wage cannot adjust properly in a
deflationary environment. In order to avoid this inefficiency (or to keep the ‘grease’ in the
labour market), they argue that it is optimal for the central bank to target a positive inflation
rate in the long run.4 Another case justifying a positive inflation target comes from Summers

1A notable exception is Amato and Laubach (2004) where habit formation is introduced in a general
equilibrium model and the welfare-maximizing optimal monetary policy rule is developed.

2 In this paper, we have confined our analysis to a closed-economy model where an exchange rate channel
is absent. For an analysis of exchange rate policy in the presence of the zero lower bound, see, for instance,
Coenen and Wieland (2003).

3For instance, Friedman’s Rule, which is mainly stemming from the transaction motive for holding money,
suggests the optimal rate of inflation to be negative. On the other hand, the arguments based on the
unit-of-account function of money suggest the optimal rate of inflation to be zero.

4The hypothesis of downward nominal wage rigidity was faced by mixed empirical results. For instance,
Crawford and Harrison (1998) found base wage rates in Canada to be quite flexible especially in the non-union
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(1991). Summers (1991) was among the first to point out the risk stemming from the zero
lower bound constraint on the nominal interest rate, followed by Fuhrer and Madigan (1997),
Orphanides and Wieland (1998), Blinder (2000), Reifschneider and Williams (2000), Hunt
and Laxton (2003), and Coenen et al. (2004) among others. According to Summers (1991),
once the nominal interest rate (i.e., the policy instrument) binds at zero, the traditional
monetary policy channel for stabilizing the economy becomes ineffective — i.e., the central
bank will lose its main tool for controlling the economy. Consequently, the economy will

have to bear the higher cost from volatile economic conditions — a scenario known as the
‘liquidity trap’ or ‘deflationary trap.’ In order to avoid the risk of being caught in the
liquidity trap, Summers (1991) suggests setting a positive inflation target. Finally, there
is a well-known issue of measurement bias in the inflation rate championed by Boskin et al.
(1996). Clearly, measurement bias in the inflation rate is one of the primary reasons central
banks set a positive inflation target in reality. The preceeding three arguments are all valid
in justifying a positive inflation target. However, to the best of our knowledge, we are not
aware of any study5 that justifies a positive inflation target on account of a lag in the effect
of monetary policy action.

In this paper, in addition to the analysis of the optimal monetary policy conduct in
the short-run, we also investigate the implication of a monetary policy lag to the level of
the inflation target in the long-run. Specifically, we numerically characterize the long-run
stabilization cost for the central bank explicitly taking into account the lagged effect of
monetary policy both in the absence and presence of the zero lower bound. Our findings
can be summarized as follows. First, in the absence of the zero lower bound, the long-run
stabilization cost for the central bank is invariant to both the level of the inflation target
and the monetary policy lag. Second, in the presence of the zero lower bound, the long-run
stabilization cost for the central bank is higher with monetary policy lag compared to the
case without a lag. In reality, since there exists a zero lower bound constraint,6 this result

suggests that the central bank (or the government) should set a relatively high inflation target
when they are confronted with a relatively long monetary policy lag. Combined with the

sector and at smaller firms. Smith (2000), using UK microdata, found only 1% of workers facing downwardly
rigid nominal wage. Kimura and Ueda (2001), using aggregate time series data, found nominal wages in
Japan to be downwardly rigid until 1998, but less so after then. Kuroda and Yamamoto (2003a, b), using
Japanese microdata, found similar results. Lebow, Saks, and Wilson (2003), using the microdata underlying
the Bureau of Labor Statistics’ employment cost index, found stronger evidence of downward nominal wage
rigidity compared to the studies using the Panel Study of Income Dynamics (PSID).

5For instance, Bernanke and Mishkin (1997) and Mishkin (2007, Ch.19) offer a selective review on the
optimal level of inflation target, but there is no mentioning about the monetary policy lag. Bernanke (2002)
only mentions the zero lower bound and inflation measurement bias in justifying a ‘buffer zone’ with regard
to the inflation target, but does not mention the lagged effect of monetary policy. For a more thorough
review on the optimal level of the inflation target, see Konieczny (1994), Shiratsuka (2001) and Fuchi, Oda,
and Ugai (2007).

6This is evident from the Japanese experience in late 1990’s and early 2000’s. The overnight call rate,
which is the policy instrument of the Bank of Japan (BOJ), became virtually zero on February 12th, 1999.
Since then, with an exception of short-lived recovery period from 2000 to 2001, the BOJ commited to the
zero interest rate policy. This zero interest rate policy was finally lifted on July 14th, 2006.
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empirical evidence on monetary policy lag, which lasts one to two years, this result can be
interpreted as yet another justification for targeting a positive inflation rate in the long-run.
The remainder of this paper is organized as follows. Section 2 describes the set up of the

model with a monetary policy lag. Section 3 numerically characterizes the optimal monetary
policy reaction function with a monetary policy lag both in the absence and presence of the
zero lower bound constraint. Section 4 defines the concept of long-run stabilization cost for
the central bank and numerically characterizes its relationship with regard to both the level

of the inflation target and the monetary policy lag. Section 5 summarizes the main results
of this paper and discusses possible extensions of the model.

2 Model Description

2.1 Definition of Monetary Policy Lag

Before we describe the model in this paper, we start this section with a definition of monetary
policy lag. In this paper, we adopt the following definition for the monetary policy lag.

Definition 1 (Monetary Policy Lag)
A monetary policy lag is the length of the period that is required for a monetary policy action

(i.e., change in nominal interest rate) to take maximum effect on output gap or inflation
rate.

The above definition is more or less akin to Friedman’s (1961) original notion7 of ‘mone-
tary policy lag’, except that the monetary policy action is presumed to be a change in nominal
interest rate rather than a change in money stock. Since most of today’s central banks use
a short-term nominal interest rate as the policy instrument, in this paper, we regard changes
in the nominal interest rate as a monetary policy action.8

2.2 Setting up the Model with Monetary Policy Lag

In this paper, we adopt the Svensson (1997, 1999) and Ball (1999) type model as a base model
for our analysis and extend it by incorporating the monetary policy lag and the zero lower
bound on the nominal interest rate. The Svensson-Ball type model assumes a standard
quadratic loss function for the central bank and linear state transition equations for the
inflation rate and output gap. With these features, the dynamic optimization problem for
the central bank becomes a standard stochastic linear-quadratic regulator problem. As was
shown by Svensson (1997), this problem leads to a quadratic value function and a linear

monetary policy reaction function in the absence of a monetary policy lag and the zero

7For instance, Friedman (1961) notes “monetary policy actions that produce a peak in the rate of change
of the stock of money can be expected on the average to be followed by a peak in general business some
sixteen months later” (p.457) in the subsection titled “The Meaning of ‘the’ Lag.”

8 Indeed, Batini and Nelson (2001) which attempts to replicate and update Friedman ’s (1972) results
includes change in short term nominal interest as monetary policy measure.
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lower bound for the nominal interest rate. We modify the Svensson-Ball type model by
incorporating a monetary policy lag and the zero lower bound on the nominal interest rate,
and then characterize optimal monetary policy.
First, following Svensson (1997), we assume that a central bank’s period-by-period loss

function to be
Lt =

1

2

n
(πt − π∗)2 + λy2t

o
, (1)

where π and y denote the inflation rate and the output gap, respectively, and π∗ is the target
inflation rate of the central bank. λ is a positive weight which represents the preference of
the central bank.
The specification of the AS equation (or Phillips curve) also follows Svensson (1997),

πt+1 = πt + αyt + εt+1. (2)

As can be seen from eq. (2), next period’s inflation rate depends on the current inflation rate,
the output gap, and the AS shock, ε, where ε is assumed to be a normally distributed i.i.d.

error with mean zero and standard deviation σε. The parameter, α, pins down the short-
run sacrifice ratio between the output gap and the inflation rate. Given this formulation,
expected inflation can be fully characterized by current variables, i.e.,

Etπt+1 = πt + αyt. (3)

Next, we specify the IS equation. Unlike the Svensson-Ball type model where monetary
policy action can affect output gap without policy lag, we introduce policy lag. The IS
equation and the monetary policy lag equation are as follows:

yt+1 = ρyt − (1− ω)δ1(it −Etπt+1 − rr∗)− ωδ2rrlagt + νt+1 and (4)

rrlagt+1 = it −Etπt+1 − rr∗, (5)

where ρ is an autoregressive coefficient for the output gap, δ1 and δ2 are the parameters

governing the elasticity of the output gap vis-à-vis the nominal interest rate, ω stands for the
lag weight, and the AD shock ν is assumed to be i.i.d. normally distributed with mean zero
and standard deviation σν and uncorrelated with the AS shock ε. Next, rr∗ stands for the
neutral the real interest rate and rrlagt stands for the deviation of real interest rate from rr∗

in the previous period. Thus, rrlagt can be considered as the previous period’s monetary
policy stance. When rrlagt is positive (negative), it implies that last period’s monetary
policy stance was contractionary (expansionary) and when zero, it implies that last period’s
policy stance was neutral.
Now, as can be seen from eq. (4), next period’s output gap (i.e., yt+1) is affected by

the current nominal interest rate (i.e., it), but also by past the monetary policy stance (i.e.,

rrlagt). As such, under this setup, the current nominal interest rate is not only a control
variable affecting the output gap this period, but also becomes a state variable via rrlagt+1
(see eq. (5)) which affects the output gap next period. When considering the optimal
monetary policy, the central bank needs to take into account the current and lagged effects
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arising from a monetary policy action. Finally, it should be noted that when the lag weight
ω is set equal to zero, eq. (4) reduces back to Svensson’s (1997) IS equation. The lagged
monetary policy effect via the state variable rrlag will vanish.
The central bank’s problem is formulated as a dynamic optimization problem where it

minimizes the following objective function,

Et

∞X
j=0

βjLt+j , (6)

by controlling the nominal interest rate subject to eq. (2), eq. (4), and eq. (5) with the zero
lower bound constraint on the nominal interest rate,

it ≥ 0. (7)

We follow the treatment of the non-negativity constraint as in Kato and Nishiyama (2005)
and apply Kuhn-Tucker conditions in this dynamic optimization problem. Since this problem
can be interpreted as a conventional optimal bounded control problem with a linear-quadratic
system, we can set up a Bellman equation9 as follows,

V (yt, πt, rrlagt) = min
it≥0

½
1

2

³
(πt − π∗)2 + λy2t

´
+ ψtit + βEtV (yt+1, πt+1, rrlagt+1)

¾
s.t. yt+1 = ρyt − (1− ω)δ1(it − πt − αyt − rr∗)− ωδ2rrlagt + νt+1

πt+1 = πt + αyt + εt+1

rrlagt+1 = it − πt − αyt − rr∗ (8)

where ψt is a Lagrangian multiplier for the non-negativity constraint on it. From the Kuhn-
Tucker conditions, ψt takes positive value when the non-negativity constraint is binding and
zero otherwise. Also, note that we have substituted expected inflation rate for current state

variables using eq. (3). With this substitution, the RHS of the state transition equations are
now expressed in terms of current state variables — i.e., yt, πt, and rrlagt — and stochastic
shocks, whereas the LHS of the state transition equations are all in next period’s state
variables. As such, Bellman equation (8) is recursive and well-defined. Finally, note that
the value function V (·) in eq. (8) is a real-valued function, f : R3 → R, whose arguments
consist of the output gap, the inflation rate, and the past monetary policy stance. In Svensson
(1997), the value function was a real-valued function, f : R2 → R, whose arguments were
the output gap and the inflation rate. Thus, the introduction of the monetary policy lag
adds a dimension to the state space.10 In other words, in the presence of a monetary policy

9Here we assume a central bank’s discount factor β to be sufficiently small for the Contraction Mapping
Theorem to hold. For the list of regularity conditions regarding the Contraction Mapping Theorem, see
Stokey and Lucas (1989). Throughout this paper, we simply assume that regularity conditions are satisfied.
10 In this paper, we have introduced a one-period monetary policy lag in the IS equation (4). In principle, it

is possible to introduce higher-order monetary policy lags, such as two-period or three-period lags. However,
introduction of higher-order monetary policy lags will cause the dimensions of the state space to increase
proportionately (e.g. a two-period lag will add two dimensions) and one will inevitably face the ‘curse of
dimensionality’ (see for instance, Miranda and Fackler (2002, p.166)). In this paper, in order to avoid the
‘curse of dimensionality’, we have confined our analysis to a one-period monetary policy lag.
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lag, the central bank’s present-valued total loss will depend not only on the output gap and
inflation rate, but also on the past monetary policy stance. This implication is true even if
the period-by-period loss function (1) depends only on the output gap and inflation rate.

2.3 Parameter Settings

Table 1 describes the benchmark settings of the key parameters in the model. The meaning
of each parameters are provided in Table 1. It should be noted that parameters λ, ρ, δ1,
δ2, α, σν , σε, and rr∗ will be kept fixed throughout the paper and parameters ω and π∗ will
become variable during the sensitivity analysis exercise later in this paper.

Table 1: Benchmark Parameter Settings

Parameter Benchmark Value Meaning

λ 0.5 Central bank’s preference for output volatility

ρ 0.6 AR(1) parameter for output gap

δ1 and δ2 0.8 Elasticity of output gap w.r.t. nominal interest rate

α 0.4 Parameter controlling sacrifice-ratio

ω 0.7 Lag weight on past monetary policy stance

σν 0.5 IS shock volatility

σε 0.25 AS shock volatility

π∗ 2 Inflation target

rr∗ 2 Neutral real interest rate

3 Optimal Monetary Policy with a Monetary Policy Lag

In this section, we characterize the optimal monetary policy reaction function in the presence
of a monetary policy lag and the zero lower bound on nominal interest rates. For the sake
of comparison, we start this section by characterizing the optimal monetary policy reaction
function without the zero bound constraint.

3.1 Case 1: Without the Zero Lower Bound Constraint

Consider the dynamic optimization problem (8) without the zero bound constraint on the
nominal interest rate. Without a constraint on the control variable, the problem will reduce
to a standard linear-quadratic control problem. Using vector and matrix notation, the
problem can be restated as follows;

V LQ(st) = min
it

©
(st − s∗)0R(st − s∗) + βEtV

LQ(st+1)
ª

s.t. st+1 = Γ+Ast +Bit +Σet+1 (9)
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where st is a 3-by-1 vector of state variables (yt, πt, rrlagt)0, s∗ is a 3-by-1 vector of constants
(0, π∗, 0)0 which represents the target state for the central bank, and R is a 3-by-3 symmetric
matrix where the elements are given as

R =

 λ/2 0 0

0 1/2 0

0 0 0

 .
Notice that the third row of matrix R is given as zeros. This is because the volatility of the
nominal interest rate — and consequently the past monetary policy stance rrlagt — does not
enter into the loss function of a central bank. Also, notice that the first element of vector
s∗ is zero. This is due to an implicit assumption in the loss function (1) that a central bank
targets output gap to be zero in addition to targeting inflation. The relative importance of
inflation targeting (toward π∗) and output gap targeting (toward zero) is captured by the
parameter λ.

Turning to the state transition equation, Γ, A, B, and Σ are a 3-by-1 vector, 3-by-3
matrix, 3-by-1 vector, 3-by-2 matrix, respectively, and given as

Γ =

 (1− ω)δ1rr
∗

0

−rr∗

 , A =

 ρ+ (1− ω)δ1α (1− ω)δ1 −ωδ2
α 1 0

−α −1 0

 ,

B =

 −(1− ω)δ1

0

1

 , and Σ =
 1 0

0 1

0 0

 .
Finally, et+1 is a 2-by-1 vector of stochastic shocks (νt+1, εt+1)0 where the mean is zero and
the variance-covariance matrix,11 Ω, is given by

Ω = Et(et+1e
0
t+1) =

"
σ2ν 0

0 σ2ε

#
.

Since the dynamic optimization problem (9) is in the class of standard linear-quadratic
control problem, the optimal monetary policy reaction function for this problem can be
characterized analytically to some extent.12 It can be shown that the value function in (9)
to be linear-quadratic function as,

V LQ(st) = P0 +P1st + s0tP2st, (10)

11By the certainty equivalence property of the linear-quadratic control problem, the existence of stochastic
shocks will not affect the characterization of the optimal reaction function. However, it does affect the
characterization of the value function and will be used in Section 4.
12When the number of state variables is less than or equal to two, the optimal reaction function can be

fully characterized by the closed-form expression as in Svensson (1997). Unfortunately, when the number of
state variables is more than two (in our case three), as we will see later in this section, the optimal reaction
function cannot be characterized by the closed-form expression (for instance, see Ljungqvist and Sargent
(2004)). However, by exploiting the nature of the linear-quadratic problem, it is still possible to indirectly
characterize the optimal reaction function and this is what we do in this subsection.
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where P0 is a scalar, P1 is a 3-by-1 vector, and P2 is a 3-by-3 symmetric matrix. (See
Appendix for derivation of P0, P1, and P2.) Substituting eq. (10) into Bellman eq. (9)
yields the following relationship,

P0 +P1st + s0tP2st

= min
it

(
(st − s∗)0R(st − s∗) + βEt

"
P0 +P1(Γ+Ast +Bit +Σet+1)

+(Γ+Ast +Bit +Σet+1)
0P2(Γ+Ast +Bit +Σet+1)0

#)
.

Taking the FOC with respect to the nominal interest rate, it, the optimal monetary policy
reaction function can be characterized as

iLQt = −(B0P2B)−1(1
2
B0P01 −B0P2Γ)− (B0P2B)−1B0P2Ast (11)

where P1 and P2 are given as

P2 = R+ βA0P2A− βA0P2B(B0P2B)−1B0P2A (12)

P1 = 2
£
βΓ0(P2 −P2B(B0P2B)−1B0P2)A− s∗0R

¤ · £I− βA+ βB(B0P2B)−1B0P2A
¤−1

.(13)

As can be seen from eq. (12), the parameter matrix P2 is defined recursively by the non-
linear Riccati equation and does not have a closed-form solution whenever the matrix is larger

than 2-by-2. In Svensson (1997), it was possible to derive the closed-form expression for the
optimal monetary reaction function because there were only two state variables — i.e., the
output gap and the inflation rate. Unfortunately, the introduction of a monetary policy lag
increases the number of state variables beyond two so that it is no longer possible to derive
the exact analytical expression for the optimal monetary policy reaction function even in the
linear-quadratic environment.
In practice, given the parameter values, matrix P2 is numerically evaluated by function

iteration. Once P2 is numerically evaluated, vector P1 is evaluated sequentially and then
the coefficients of the optimal reaction function (11) are evaluated. In what follows, we
characterize the optimal monetary policy reaction function with two numerical examples; a

benchmark example where there is no monetary policy lag (ω = 0) and another example
with a monetary policy lag (ω > 0). By comparing the two cases, we aim to illustrate the
nature of the optimal monetary policy reaction function with and without monetary policy
lag when there is no zero lower bound constraint.

3.1.1 Example A: No Monetary Policy Lag (ω = 0)

In this example, we shut off the monetary policy lag effect in the model by setting ω = 0

and then we numerically characterize the optimal monetary policy reaction. All other
parameter settings are from Table 1. With no monetary policy lag effect (i.e., irrelevance
of past monetary policy stance, rrlagt, within the system), the model setup (9) reduces to
the original Svensson (1997) setup and, thus, the optimal monetary policy reaction function

10



is identical to that in Svensson (1997).13 A numerical illustration of this case is shown in
Figure 1.

Figure 1 Here

As can be seen in Figure 1, in the absence of the zero lower bound constraint, the optimal
monetary policy reaction function is linear in its state variables. Further, without a monetary
policy lag, the optimal reaction function is f : R2 → R and the optimal nominal interest rate
depends only on the inflation rate and the output gap. In this sense, in an environment where
there is no zero lower bound constraint and no monetary policy lag, the optimal monetary
policy reaction function will be similar to the specification of Taylor’s (1993) rule.

3.1.2 Example B: With a Monetary Policy Lag (ω > 0)

In this example, we numerically characterize the optimal monetary policy reaction function

with a monetary policy lag. Specifically, we set the monetary policy lag parameter ω = 0.7.
Again, all other parameter settings are from Table 1. With a monetary policy lag, the
optimal monetary policy reaction function now departs from Svensson’s (1997) canonical
policy function. A numerical illustration of this case is shown in Figure 2.

Figure 2 Here

In the presence of a monetary policy lag, the optimal monetary policy reaction function
will be f : R3 → R rather than f : R2 → R. Thus, it is not possible to capture the
entire functional space in three-dimensional figure. As such, we present multiple figures to
characterize the policy function. On the left-most panel of Figure 2, holding past monetary

policy stance “loose” at -3% (i.e., rrlagt = −3) the relationship between the optimal nominal
interest rate and the inflation rate and output gap is depicted. In the middle panel, the policy
function is depicted holding past monetary policy stance “neutral” at 0% (i.e., rrlagt = 0).
Finally, at the right-most panel of Figure 2, the policy function is depicted holding past
monetary policy stance “tight” at 3% (i.e., rrlagt = 3). Also, it should be noted from eq.
(11) that, in the absence of the zero lower bound constraint, the optimal monetary policy
reaction function is linear in its state variables. This property is visually confirmed in Figure
2.

3.1.3 Observations

From the numerical characterizations of Example A (no monetary policy lag) and Example
B (with monetary policy lag), we can make the following observations. By comparing Figure
1 and the middle panel of Figure 2, we observe that the optimal monetary policy reaction

13However, one qualification applies with regard to the constant term, Γ, in the state transition equation.
The existence of a constant term in state transition equation in this paper is due to consideration of the
neutral real interest rate, rr∗. In Svensson’s (1997) canonical model, the presence of the neutral real interest
rate is implicitly assumed away to keep the analysis simple.
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function is ‘steeper’ in the middle panel of Figure 2.14 From this observation, we infer
that the existence of monetary policy lag requires monetary policy to be more reactive (or
aggressive) compared to the case without lag.
It is worthwhile to understand why the existence of a monetary policy lag entails a more

aggressive conduct of monetary policy. The mechanism of aggressiveness comes two-fold.
First, with a monetary policy lag in IS equation (4), it will take at most two periods for a
central bank to exert control over the output gap. Consequently, the uncontrolled portion

of the output gap will affect the inflation rate through the AS equation (eq. (2)) twice —
i.e., through yt and yt+1 — and contribute to a larger movement in the inflation rate, ceteris
paribus. In order to counter this larger movement in inflation rate, naturally, the central
bank is forced to react to the shock more aggressively. Second, recall from the AS equation
in eq. (2) and eq. (3) that expected inflation depends on the current inflation rate and
output gap. In other words, in this economy, the expectation of future inflation is formed in
a backward-looking manner. With a larger movement in the current inflation rate, expected
inflation is also in a larger movement compared to the case without a monetary policy lag.
Since Taylor’s principle (see Woodford (2003, Ch.2)) dictates that the central bank should

adjust the nominal interest rate more than one-for-one for changes in expected inflation to
stabilize the economy, this larger movement in expected inflation will require the central
bank to adjust the nominal interest rate more aggressively than would be the case without
the monetary policy lag.
Next, by comparing the left, middle, and right panels of Figure 2, we observe that the

level of the optimal nominal interest rate declines as the past monetary policy stance moves
from loose (i.e., rrlagt = −3%) to tight (i.e., rrlagt = 3%). This implies that, as for the
characterization of the optimal policy function (11), the coefficient on rrlagt has a negative
value. From this observation, we infer that the presence of a monetary policy lag requires
monetary policy to offset its lagged effect by taking the opposite stance this period. In other

words, when past monetary policy stance was expansionary, the central bank offset its effect
by taking a contractionary stance this period, and vice versa. Another inference we make
is the absence of interest smoothing. As was reported by Sack and Wieland (2000), there is
empirical evidence that the central bank (FRB in Sack and Wieland’s (2000) case) tends to
smooth changes in policy instruments over time and, whenever a change is made, it is likely
for a central bank to keep in the same direction as previous changes. An abrupt reversal of
the direction of monetary policy is unlikely in reality. Thus, the tendency toward offsetting
behavior in settling the current stance vis-à-vis the past stance as observed in Figure 2 is
in apparent conflict with the stylized fact of interest rate smoothing. We concede that this
is one of the major drawbacks of the model considered in this paper. However, what we

can infer from this result is that the interest smoothing behaviors by central banks — the

14 Indeed, from eq. (11), we know that the coefficients for the output gap and the inflation rate are
independent of past monetary policy stance, rrlagt. Thus, the ‘steepness’ observed in the left, middle, and
right panels of Figure 2 are all equal regardless of the state rrlagt. In this sense, we can safely rephrase the
statement here by saying that each panel of Figure 2 depicts a ‘steeper’ optimal monetary policy reaction
function compared to Figure 1.
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motivation for which is still being debated15 — are not arising from the monetary policy lag
factor. Although this result itself is quite interesting and potentially can cast a new light
on the debate regarding the interest rate smoothing behavior, we will not pursue this topic
further in the rest of this paper.
In sum, from the numerical characterizations of the optimal monetary policy reaction

functions with and without monetary policy lag, we observe the following points.

Observation 1: In the model considered in this paper, the presence of a monetary policy lag requires
monetary policy to be aggressive.

Observation 2a: In the model considered in this paper, the presence of a monetary policy lag requires
monetary policy to offset its lagged effect by taking an opposite monetary policy stance
in the current period.

Observation 2b: The interest rate smoothing motive is not observed in the model considered in this
paper.

3.2 Case 2: With the Zero Lower Bound Constraint

So far, we have characterized the optimal monetary policy reaction function without the zero
lower bound constraint on the nominal interest rate. In this subsection, following Orphanides
and Wieland (2000) and Kato and Nishiyama (2005), we numerically characterize the optimal
monetary policy reaction function taking into account the presence of the zero lower bound
constraint. Consider the dynamic optimization problem (8). Using vector and matrix
notation, the problem can be restated as follows,

V ZLB(st) = min
it≥0

©
(st − s∗)0R(st − s∗) + ψtit + βEtV

ZLB(st+1)
ª

s.t. st+1 = Γ+Ast +Bit +Σet+1 (14)

where ψt is a Lagrangian multiplier for the non-negativity constraint on it. Due to this
Lagrangian multiplier, as shown by Chmielewski and Manousiouthakis (1996), the value
function in (14) will no longer be a linear-quadratic function and, further, it will no longer
have an analytical form. Consequently, the optimal monetary policy reaction function in

the presence of zero lower bound,

iZLBt = g(yt, πt, rrlagt), (15)

will be highly non-linear and no longer has an analytical expression. As such, rather than
pursuing an analytical approach, we adopt a numerical method known as the Collocation
method16 to characterize the optimal monetary policy reaction function. A description of
15Sack and Wieland (2000) point out three possible motives for the central bank to smooth interest rate:

forward-looking behavior by market participants, measurement errors associated with macroeconomic vari-
ables, and uncertainty regarding structural parameters. Besides these motives, several other explanations
have been proposed in the literature such as the maintenance of central bank reputation, motivation for not
disrupting the financial markets, among others. For more details, see Sack and Wieland (2000).
16For detailed explanation on the Collocation method, see, for instance, Judd (1998) and Miranda and

Fackler (2002).
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how we apply the Collocation method to the dynamic optimization problem (14) is provided
in the Appendix.

3.2.1 Numerical Characterization with the Zero Lower Bound Constraint

Based on the benchmark parameter settings in Table 1, the optimal monetary policy reaction
function in the presence of the zero lower bound is numerically characterized and is shown
in Figure 3.

Figure 3 Here

Again, in the presence of a monetary policy lag, the optimal monetary policy reaction
function will be f : R3 → R and requires multiple figures in capturing its nature. Following
the format as in Figure 2, the left panel of Figure 3 depicts the relationship of the optimal
nominal interest rate vis-à-vis the inflation rate and the output gap holding past monetary

policy stance expansionary at -3%; the middle panel depicts the policy function holding past
monetary policy stance neutral at 0%; and the right panel depicts the function holding past
monetary policy stance contractionary at 3%. In contrast to the case in Figure 2, the nominal
interest rate will no longer take a negative value in Figure 3. This is especially evident in
the right panel of Figure 3 when the past monetary policy stance was excessively tight.
Now, to illustrate the differences between the optimal monetary policy reaction function

with and without the zero lower bound and, further, to vividly capture the non-linearity of
the policy function, we define the concept of the ‘central bank’s pre-emption motive’ following
Kato and Nishiyama (2005).

Definition 2 (Central Bank’s Pre-emption Motive)
Let a monetary policy reaction function, inaı̈ve, be defined as inaı̈ve ≡ max©0, iLQª where
the function iLQ is the optimal monetary policy reaction function in the absence of the zero
lower bound constraint as in eq. (11). Let iZLB be the optimal monetary policy reaction
function in the presence of the zero lower bound constraint as in eq. (15). Then, in the
presence of the zero lower bound constraint, the central bank’s pre-emption motive is defined
as the difference between inaı̈ve and iZLB — i.e.,

Pre-emption Motive ≡ inaı̈ve(yt, πt, rrlagt)− iZLB(yt, πt, rrlagt).

As shown in Kato and Nishiyama (2005), in the presence of the zero lower bound, it is
in the interest of a central bank to set a lower nominal interest rate compared to the case
where there is no zero lower bound to pre-empt the risk of being caught in the liquidity trap
in the future. Note that the auxiliary definition of a monetary policy reaction function,
inaı̈ve, is made in order to eliminate negative values implied by the policy function, iLQ. It

is worthwhile to mention that since the parameter settings and the model environment are
exactly the same, except for the presence of the zero lower bound constraint, the difference in
inaı̈ve and iZLB is solely attributable to the central bank’s pre-emption motive in containing
the risk stemming from the zero lower bound (or liquidity trap). Nothing else, other than
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this pre-emption motive against the liquidity trap, is causing the difference between inaı̈ve

and iZLB.
Figure 4 depicts the central bank’s pre-emption motive for various states of the economy.

Figure 4 Here

Again, following the format of Figure 2 and Figure 3, the left panel of Figure 4 depicts the
central bank’s pre-emption motive vis-à-vis the inflation rate and the output gap, holding the

past monetary policy stance expansionary at -3%; the middle panel depicts the pre-emption
motive holding past monetary policy stance neutral at 0%; and the right panel depicts the
pre-emption motive holding past monetary policy stance contractionary at 3%. The first
aspect to note in Figure 4 is the non-linearity of the pre-emption motive which, in turn,
implies that the optimal monetary policy reaction function is non-linear in the presence of
the zero lower bound. Second, as can be seen from the left panel, when past monetary
policy stance is loose, the pre-emption motive can be as high as 2%. In contrast, as can be
seen from the right panel, when past monetary policy stance is tight, the level of the optimal
nominal interest rate is already very close to zero (see the right panel of Figure 3) and there
is virtually no latitude for a central bank in exerting the pre-emption motive. Overall, we do

observe a positive pre-emption motive regardless of past monetary policy stances, although
the magnitude of the pre-emption motive varies quite a bit depending on the past monetary
policy stance.
In sum, from the numerical characterization of the optimal monetary policy reaction

function in the presence of the zero lower bound, we observe the following points.

Observation 3a: In the model considered in this paper, the optimal monetary policy reaction function
will be highly non-linear in the presence of the zero lower bound constraint on the
nominal interest rate.

Observation 3b: In the model considered in this paper, the pre-emption motive is positive regardless of
the past monetary policy stance, although the magnitude varies substantially.

3.2.2 Sensitivity Analysis: Pre-emption Motive and Monetary Policy Lag

Based on the numerical characterization above, we next conduct sensitivity analysis with
respect to the monetary policy lag. In this exercise, we are interested to see how the
pre-emption motive is affected by the magnitude of monetary policy lag. In the previous
numerical characterizations (i.e., Figure 3 and Figure 4), the monetary policy lag weight

parameter, ω, was fixed at 0.7. In this sensitivity analysis, we vary this lag weight parameter,
ω, to see how the pre-emption motive is affected. Figure 5 shows the results from the
sensitivity analysis exercise.

Figure 5 Here
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The left panel of Figure 5 depicts the pre-emption motive when the lag weight, ω, is set
equal to 0 — i.e., no monetary policy lag. The middle panel depicts the pre-emption motive
when the lag weight is set equal to 0.25. Finally, the right panel of Figure 5 depicts the
pre-emption motive when the lag weight is set equal to 0.5. Here, it should be noted that all
results in Figure 5 are reported holding the past monetary policy stance neutral at 0% (note
the difference in reporting format from Figures 2, 3, and 4). As can be seen from Figure
5, the pre-emption motive is getting larger as the lag weight gets larger. This implies that

when there is a monetary policy lag, a larger pre-emptive action is required for a central bank
to contain the future risk of being caught in the liquidity trap, compared to the case when
there is no monetary policy lag. These observations from the sensitivity analysis exercise
can be summarized as follow.

Observation 4 In the model considered in this paper, the pre-emption motive becomes larger as the
weight on monetary policy lag gets larger.

4 Inflation Target and Monetary Policy Lag

So far we have discussed the design of monetary policy rule in the presence of a monetary

policy lag and the zero lower bound constraint, taking the level of the inflation target as
given. A natural next question is then, “What if the inflation target is variable? Can a
central bank further reduce stabilization cost by raising the inflation target?” As has been
pointed out by several researchers,17 there is potential for a central bank to reduce the risk
of falling into the liquidity trap by targeting some positive inflation rate, which Bernanke
(2002) coined as the ‘buffer’. This role of a buffer can be considered a social benefit, rather
than a social cost of inflation, in the sense that a central bank can reduce the stabilization
cost by targeting a positive inflation rate in the long run. The purpose of this section is to
analyze the buffer role of the inflation target in an environment where there is a monetary
policy lag.

4.1 Methodology to Assess Stabilization Cost

To demonstrate the relationship between long-run stabilization cost and the level of the
inflation target in the presence of the zero lower bound, several simulation studies have been
conducted. For instance, Coenen et al. (2004), employing a stochastic simulation approach
based on an estimated US model, showed that the frequency of the nominal interest rate
binding at zero is high when the inflation target is set low and vice versa. Hunt and

Laxton (2003), using the IMF’s MULTIMOD simulation model, showed that targeting too
low an inflation rate will induce a central bank to be susceptible to a deflationary spiral and
suggested to target the inflation rate higher than 2% in the long run. Lavoie and Pioro

17For instance, see Summers (1991), Orphanides and Wieland (1998), Blinder (2000), Reifschneider and
Williams (2000), Hunt and Laxton (2003), Nishiyama (2003), Teranishi (2003), Coenen et al. (2004) and
Lavoie and Pioro (2007) among others.
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(2007) conducted a simulation study based on the Bank of Canada’s ToTEM18 model and
showed that a 2% inflation target regime has lower stabilization costs (i.e., lower variance in
output gap and inflation rate) compared to a 0% inflation target regime. Although these
studies have demonstrated the predicament stemming from the zero lower bound, a drawback
of the simulation approach is its reliance to an ad-hoc monetary policy rule (most of them
being linear or piece-wise linear functions) in assessing stabilization costs. Since an ad-hoc
monetary policy rule is not the same as the optimal monetary policy reaction function, the

assessment of the stabilization cost for the central bank (as evaluated using the central bank’s
value function) may be misguided. Further, when the monetary policy lag is present as in
this paper, it is not clear what kind of functional form to adopt for the monetary policy rule
when conducting simulations.
In this section, rather than relying on a simulation method, we utilize a numerically

interpolated value function, V ZLB, defined in (14) to assess the stabilization cost for the
central bank. The strength of this approach is that since the central bank’s value function
defined in (14) is consistent with the optimal monetary policy reaction function (15), the
assessment of the central bank’s stabilization cost will be quite accurate.

4.2 Definition of Long-run Stabilization Cost

Here, we define the concept of long-run stabilization cost to the central bank. The value
of V ZLB(yt, πt, rrlagt) defined in (14) can be interpreted as the central bank’s ‘cost-to-
go’19 provided that the current state is (yt, πt, rrlagt)0. In other words, the value of V ZLB

evaluated at an arbitrary state (yt, πt, rrlagt)0 represents the expected discounted value of
the future stream of losses, provided that the initial state is (yt, πt, rrlagt)0. Now, it should
be noted that when V ZLB is evaluated at any state other than the steady state, then the

central bank’s cost-to-go includes the expected transitional losses that will be incurred while
converging from (yt, πt, rrlagt)

0 to the steady state (yss, πss, rrlagss)0. In order to separate
out these transitional losses from the pure stabilization cost, we need to evaluate V ZLB very
close20 to the steady state. As such, we define the long-run stabilization cost to the central

18ToTEM is a large-scale DSGE model developed at the Bank of Canada. It has the features such as
monopolistic competition, multi-sector production, open-economy characteristics, various types of nominal
rigidities including sticky price and wage among others. See Murchison and Rennison (2006) for a more
detailed description regarding ToTEM.
19The term ‘cost-to-go’ has a specific meaning in the optimal control literature. In order to have an

understanding of this concept, let us consider the deterministic case. Let the sequence {s∗t }∞t=0 and {x∗t }∞t=0
be the optimal path for the state variable and control variable, respectively, given the initial state s0. Let
f(st, xt) be the period-by-period loss function. Then the cost-to-go at state s0 is given as

V (s0) =
∞

t=0

βtf(s∗t , x
∗
t ),

where β is a discount factor. For more precise definition, see, for instance, Bertsekas (2005).
20 Ideally speaking, in order to completely seperate out the transitional losses from the pure stabilization

cost, we would like to evaluate V ZLB at the (stochastic) steady state — i.e., V ZLB(yss, πss, rrlagss). How-
ever, as was shown in Nishiyama (2003), the (stochastic) steady state of inflation rate will be slightly above
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bank as follows. In a similar fashion, we also define the long-run stabilization cost without
the zero lower bound.

Definition 3 (Long-run Stabilization Cost)
Let V ZLB be the value function in the presence of the zero lower bound constraint as given in
(14). Let s∗ be the target state and π∗ be the level of the inflation target. Then the long-run
stabilization cost in the presence of the zero lower bound constraint is defined as

V ZLB(s∗) = V ZLB(0, π∗, 0).

Let V LQ be the value function in the absence of the zero lower bound constraint as given in
(9). Then the long-run stabilization cost in the absence of the zero lower bound constraint
is defined as

V LQ(s∗) = V LQ(0, π∗, 0).

Based on the above definition, we next investigate the relationship between long-run
stabilization cost and the monetary policy lag.

4.3 Sensitivity Analysis: Long-run Stabilization Cost andMonetary
Policy Lag

In the previous section, we have fixed the inflation target, π∗, at 2%. In this section, we
now characterize the relationship bewteen the long-run stabilization cost and the inflation
targets. Further, we conduct a sensitivity analysis with respect to the monetary policy lag
(i.e., lag weight parameter, ω) and illustrate how it will affect the long-run stabilization cost
for the central bank. Figure 6 shows the results from the sensitivity analysis exercise.

Figure 6 Here

Figure 6 depicts the relationship between the long-run stabilization cost and the inflation
target. The range of inflation targets varies from 0% to 4%. Solid lines depict the relation-
ship between the long-run stabilization cost and inflation target with various values of lag
weights (ω being set equal to 0, 0.25, 0.5, and 0.7) in the presence of the zero lower bound
constraint. A dashed line represents the relationship between the long-run stabilization cost
and the level of the inflation target in the absence of the zero lower bound and is depicted
in the same figure. To facilitate comparison, the long-run stabilization cost in the absence
of the zero lower bound is normalized to one.

the inflation target that they will not take a same value in the presence of the zero lower bound constraint.
To avoid a techinical difficulty in finding the exact values for the (stochastic) steady state, as a compromise,
we evaluate V ZLB at the target state s∗ (i.e., yt = 0, πt = π∗, and rrlagt = 0), which is supposed to
be very close to the steady state, and call it the ‘long-run’ stabilization cost, rather than the ‘steady state’
stabilization cost. The long-run stabilization cost will include some portion of the transitional losses, but
the magnitude is deemed to be small because of its proximity to the steady state.
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As can be seen from Figure 6, solid lines reveal a downward-sloping feature which implies
that, in the long-run, the stabilization cost for the central bank diminishes as the level of
inflation target is set higher in the presence of the zero lower bound. As the level of the
inflation target gets large enough, the long-run stabilization cost in the presence of the zero
lower bound asymptotes to that without the zero lower bound. The intuition is as follows.
Suppose the inflation target is set at an extremely low value, say, at 0%. Since the risk of
being caught in the liquidity trap will be high in this case, the long-run stabilization cost is

also high. On the other hand, setting a high inflation target will mitigate the risk of being
caught in the liquidity trap that the long-run stabilization cost becomes lower. Further, as
the target gets high enough, the risk becomes virtually zero that the long-run stabilization
cost with and without the zero lower bound virtually become the same.
Next, let us shift our attention to the lag weights. As can be seen from Figure 6, the

long-run stabilization cost becomes higher as the lag weight is set higher. This is the main
feature of this section and deserves some close attention. Consider the case where there is
no monetary policy lag (i.e., lag weight, ω, is set equal to zero). Then it is relatively easy for
the central bank to stabilize the movement of the state variables, in the sense that they can

immediately affect the output gap and inflation rate through a change in nominal interest
rate. Consequently, the central bank can contain the risk, if not completely, of being caught
by the liquidity trap with a relative ease, resulting to a relatively low long-run stabilization
cost. In contrast, consider the case where there exists a monetary policy lag — say the value
of lag weight, ω, is 0.7. In this case, it will take some time for the central bank to affect the
output gap and inflation rate, making it more difficult to exert control over the movements
of state variables. As such, it will be more difficult for the central bank to contain the
risk of being caught in the liquidity trap, resulting in a higher long-run stabilization cost
compared to the case when there is no monetary policy lag. This is essentially the reason
why the long-run stabilization cost for the central bank increases as the monetary policy lag

gets longer as we see in the figure.
Finally, let us turn to the case where there is no zero lower bound, which is shown by a

dashed line in Figure 6. As can be seen, the line is essentially horizontal implying that the
long-run stabilization cost is constant regardless of the level of inflation target. The reason
is quite simple. In the absence of the zero bound constraint, there will be no risk of being
caught in the liquidity trap. Therefore the long-run stabilization cost is now composed of
the standard stabilization cost arising from IS-AS shocks only. Since the variance of IS-AS
shocks is invariant with respect to the choice of inflation target, the stabilization cost is
constant regardless of the level of the inflation target. Now, as it turns out, in the absence
of zero lower bound, the long-run stabilization cost is also constant regardless of the length

of the monetary policy lag. In other words, the long-run stabilization cost is unaffected
by the length of the monetary policy lag and will be exactly the same as in the case where
there is no lag (i.e., ω = 0). In comparison to the case with the zero lower bound, this is a
strikingly different outcome. This result tells us that, in the absence of the zero lower bound,
the central bank can perfectly offset the cost arising from the lag by conducting aggressive
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monetary policy (as in Observation 1) in the short-run. By conducting such monetary
policy, the central bank will be able keep the stabilization cost as low as in the case without
a monetary policy lag in the long-run. In this sense, the existence of the monetary policy lag
itself does not pose any threat to the central bank. However, the existence of the monetary
policy lag becomes threatening to the central bank when combined with the zero lower bound
and aggravates the long-run stabilization cost as the lag gets longer.
In sum, we can make the following observations from the sensitivity analysis exercise

conducted in this section.

Observation 5a In the model considered in this paper, in the presence of the zero lower bound constraint,
the long-run stabilization cost to the central bank diminishes as the level of inflation
target is set higher.

Observation 5b In the model considered in this paper, in the presence of the zero lower bound constraint,
the long-run stabilization cost to the central bank increases as the lag weight of the
monetary policy lag gets larger.

Observation 5c In the model considered in this paper, in the absence of the zero lower bound constraint,
the long-run stabilization cost is invariant regardless of the level of the inflation target
or the lag weight of the monetary policy lag.

5 Discussion: Policy Implications and Caveats

5.1 Policy Implications

So what are the policy implications from this analysis? In the short run, as we analyzed
in Section 3, the monetary policy conduct should be more reactive (or aggressive) and pre-
emptive for the central bank confronted with a monetary policy lag. By conducting monetary
policy aggressively and pre-emptively, the central bank can curtail the risk of falling into the

liquidity trap and this is even more so when the monetary policy lag is longer. In the long
run, as we analyzed in Section 4, an obvious policy implication is that the central bank (or
government) should set a higher inflation target in the presence of a monetary policy lag. Or
putting it differently, for an economy confronted with a longer monetary policy lag, a central
bank, other things being equal, should set a higher inflation target so that they have enough
‘buffer’ to protect themselves from the liquidity trap.
The literature on the optimal level of the inflation target has emphasized the factors such

as downward nominal wage rigidity, the measurement bias of inflation, and the risk of the
liquidity trap in justifying a positive inflation target. However, as far as the author of this
paper is concerned, there has been no study that linked the length of monetary policy lag

to the level of the inflation target. As we have seen in this paper, when considering the
level of the inflation target, one should take into account the factor of monetary policy lag
quite seriously — i.e., the longer the lag, the higher should be the target. Setting the level of
inflation target without taking heed of the monetary policy lag may lead to the setting of a
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suboptimal target with strong negative consequences for the economy. Based on the results
in this paper, we suggest that literature and policy discussion surrounding the optimal level
of the inflation targeting take into account the monetary policy lag.

5.2 Caveats

Having stated the policy implications, some caveats are in order. Firstly, the above policy
implications are conditional upon the existence of the zero lower bound on nominal interest
rates. If, in reality, the zero lower bound does not exist, then there is no need to conduct
pre-emptive21 monetary policy and there is no need to set a high inflation target — i.e., no
need for ‘buffer’. However, since the zero lower bound on nominal interest rates seems
realistic,22 our premise on the existence of the zero lower bound and our policy implications
appear to be cogent in this regard.
Secondly, the analysis in this paper has been based on the assumption that the economy

is backward-looking.23 Contrary to the backward-looking assumption, if the actual economy

is indeed forward-looking as in Woodford (2003), perhaps the policy implications discussed
above should be somewhat weakened. In other words, in the forward-looking economy,
optimal monetary policy need not be as reactive or pre-emptive as in the backward-looking
case. Further, the level of the inflation target need not be as high as in the backward-
looking case. The reason is as follow. As shown by Eggertsson and Woodford (2003),
Jung et al. (2005), and Adam and Billi (2006), under forward-looking economy, the central
bank possesses the additional monetary policy channel — i.e., the expectation channel — on
top of the usual nominal interest rate channel (which is the only monetary policy channel
in backward-looking economy). Thus, even if the central bank is trapped by the zero lower
bound, they can still exploit the expectation channel to lower the real interest rate24 and

stimulate the economy. As a result, since the zero lower bound is no longer a serious
threat to the central bank under forward-looking economy, there is no need for excessively
reactive or pre-emptive monetary policy as in the backward-looking case. Consequently, the
level of inflation target need not be high because there is no need for an excessive ‘buffer’
as in the backward-looking case. Thus, when considering the level of the inflation target
in reality, it is important to first examine whether the actual economy is well captured by
the forward-looking model or the backward-looking model (or hybrid model). The policy

21However, the monetary policy conduct should be more aggressive as the monetary policy lag gets longer.
This policy implication remains intact even if there is no zero lower bound as we have seen in Section 3.1.
22Again, reacall the Japanese experience in late 1990’s and early 2000’s.
23This can be seen from backward-looking Phillips curve (2), where one period ahead inflation depends

upon current inflation and output gap, and backward-looking IS equation (4), where one period ahead output
gap depends upon current output gap. In contrast, under the New Keynesian framework as in Woodford
(2003), current inflation and output gap depend upon expected future inflation and output gap. Thus, the
New Keynesian framework is based on the assumption of forward-looking economy.
24For instance, the central bank can commit to deliver higher inflation rate in the future as in Eggerstson

and Woodford (2003). Assuming that this commitment is perfectly credible, the expected inflation will be
higher and, thus, the real interest rate will be lower.

21



implications derived in this paper are conditional upon the assumption that the economy is
backward-looking and should be perceived with this caveat.

6 Conclusion

Since Friedman’s (1961) seminal work, researchers as well as practitioners in the monetary
policy field have been aware of the monetary policy lag. Indeed, almost all researchers and
practitioners seem to agree with Friedman’s (1961, p.447) phrase, “monetary actions affects

economic conditions only after a lag.” Although there have been several empirical attempts
to estimate the length of the monetary policy lag (Friedman (1972) and Batini and Nelson
(2001) among others), there have been few attempts to characterize the optimal monetary
policy rule or the optimal level of the inflation target taking into account the monetary policy
lag.
One of the complications pertaining to the monetary policy lag is that the existence of the

lag in a model will increase the number of the state variables proportionately to the order
of the lag. Indeed, when the number of the state variables for the central bank exceeds
a certain level, the optimal monetary policy reaction function does not have a closed-form
expression even under the linear-quadratic model environment. This complication entails

a numerical method in characterizing the optimal monetary policy when there is a lagged
effect of monetary policy.
In this paper, adopting Svensson’s (1997) inflation targeting framework, we numerically

characterized the optimal monetary policy reaction function in the presence of a monetary
policy lag. Further, we characterized the buffer role of an inflation target in the presence
of a monetary policy lag as well. The key findings in this paper are as follows. First, in
the presence of a monetary policy lag, it is optimal for the central bank to conduct more
aggressive monetary policy compared to the case without the monetary policy lag. Second,
in the presence of a monetary policy lag and the zero lower bound, it is optimal for the

central bank to conduct monetary policy more pre-emptively compared to the case without
the monetary policy lag. Third, in the presence of a monetary policy lag and the zero lower
bound, the long-run stabilization cost to the central bank is higher compared to the case
without the monetary policy lag. The third finding suggests that the central bank should
set a higher (lower) inflation target when faced with longer (shorter) monetary policy lags.
This finding casts new light on the discussion of the optimal level of inflation target, which, so
far, has overlooked the effects stemming from the monetary policy lag. Based on the results
in this paper, we suggest that future discussions take into account the monetary policy lag.
There are two remarks to make before we conclude this paper. First, as pointed out

by Sack and Wieland (2000), actual conduct of monetary policy reveals a tendency towards

interest rate smoothing over time. In this paper, the monetary policy lag was not compatible
with the interest rate smoothing feature. On the contrary, the existence of monetary policy
lag rendered the central bank to take an opposite monetary policy stance vis-à-vis the past
policy stance. This result is in conflict with the empirical findings of interest rate smoothing
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and can be considered as a drawback of the model in this paper. However, what we can draw
from this result is that the interest smoothing behavior of central banks is not a result of the
monetary policy lag. Second, the model adopted in this paper is a ‘backward-looking’ model.
Although a backward-looking model is useful, especially in capturing the inflation persistence
property of an economy, it is vulnerable to the Lucas (1976) critique. To characterize the
monetary policy rule in a fashion immune to the Lucas critique, it is important to model
the monetary policy lag in the context of forward-looking economy à la Woodford (2003).

Perhaps the main results of this paper will be weakened quantitatively in the context of
forward-looking economy, but, at the same time, the author of this paper conjectures that
the qualitative implications will remain intact. Nevertheless, this is a mere conjecture at
this point and calls for a thorough investigation which will be left for a future research.
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A Appendix: Derivation of the Optimal Monetary Pol-
icy Function under LQ Stochastic Control Problem

In this appendix, we derive analytical expressions for the value function and the optimal
monetary policy reaction function in the absence of the zero lower bound constraint. For
convenience, let us restate the Bellman equation (9) here.

V LQ(st) = min
it

©
(st − s∗)0R(st − s∗) + βEtV

LQ(st+1)
ª

(A.1)

s.t. st+1 = Γ+Ast +Bit +Σet+1

Now, since this problem is a standard linear-quadratic control problem, we conjecture that
the value function has quadratic form as follows,

V LQ(st) = P0 +P1st + s0tP2st. (A.2)

Substituting eq. (A.2) to eq. (A.1), the Bellman equation becomes,

P0 +P1st + s0tP2st

= min
it


(st − s∗)0R(st − s∗)

+βEt

"
P0 +P1(Γ+Ast +Bit +Σet+1)

+(Γ+Ast +Bit +Σet+1)
0P2(Γ+Ast +Bit +Σet+1)

0

#  .(A.3)

Taking FOC of the RHS of eq. (A.3) with respect to it, the optimal monetary policy reaction
function can be expressed as,

iLQt = −(B0P2B)−1(1
2
B0P01 −B0P2Γ)| {z }
≡E

− (B0P2B)−1B0P2A| {z }
≡F

st. (A.4)

Substituting eq. (A.4) back to eq. (A.3), it becomes

P0 +P1st + s0tP2st = s∗0Rs∗ + βP0 + βP1(Γ−BE)0P2(Γ−BE) + βtr(P2ΣΩΣ
0)

−2s∗0Rst + βP1(A−BF)st + 2β(Γ−BE)0P2(A−BF)st
+s0tRst + βs0t(A−BF)0P2(A−BF)st. (A.5)

Matching the coefficients on both sides of eq. (A.5), P0, P1, and P2 can be solved, respec-
tively, as follows:

P0 =
1

1− β
s∗0Rs∗ − β

4(1− β)
P1B(B

0P2B)−1B0P 01 +
β

1− β
P1
£
I−B(B0P2B)−1B0P2

¤
Γ

+
β

1− β
Γ0
£
P2 + 3P2B(B

0P2B)−1B0P2
¤
Γ+

β

1− β
tr(P2ΣΩΣ

0), (A.6)

P1 = 2
£
βΓ0(P2 −P2B(B0P2B)−1B0P2)A− s∗0R

¤
× £I− βA+ βB(B0P2B)−1B0P2A

¤−1
, and (A.7)

P2 = R+ βA0P2A− βA0P2B(B0P2B)−1B0P2A. (A.8)
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Notice that when Γ is equal to zero, in other words when the neutral real interest rate,
rr∗, is equal to zero (which is the case in Svensson (1997)), the above expression for P0 and
P1 will simplify to

P0 =
1

1− β
s∗0Rs∗ − β

4(1− β)
P1B(B

0P2B)−1B0P 01 +
β

1− β
tr(P2ΣΩΣ

0) and

P1 = −2s∗0R £I− βA+ βB(B0P2B)−1B0P2A
¤−1

.

Consequently, the optimal monetary policy reaction function will simplify to

iLQt = −1
2
(B0P2B)−1B0P01 − (B0P2B)−1B0P2Ast.

Further, notice that when s∗ is equal to zero in addition to Γ = 0, in other words when the
inflation target, π∗, is equal to zero, the expression for P0 and P1 will further simplify to

P0 =
β

1− β
tr(P2ΣΩΣ

0) and

P1 = 0.

The constant term of the value function will be trivially equal to the discounted present
value of the variance of IS and AS shocks and the coefficient for the linear term will vanish.
Consequently, the optimal monetary policy reaction function will be simplified as

iLQt = −(B0P2B)−1B0P2Ast.

It should be noted that the expression for P2 is independent from Γ or s∗.

B Appendix: Description of Collocation Method

In this appendix, we explain the numerical algorithm in approximating the value function
and optimal policy reaction function in described in problem (14). Specifically, we employ
the numerical method known as the collocation method in solving the functional fixed-point
problem posed by the Bellman equation. For complete and detailed explanation regarding

the collocation method, see Judd (1998, Ch.11 and 12) and Miranda and Fackler (2002, Ch.8
and 9). The treatment in this appendix follows that of Miranda and Fackler (2002).
For convenience, let us restate the Bellman equation (14) suppressing the time subscripts

as follows,
V (π, y, rrlag) = min

x≥0
{f(y, π) + βEV (g(y, π, rrlag, x, ν, ε)}, (A.9)

where f(y, π) stands for the period-by-period loss function and g(y, π, rrlag, x, ν, ε) stands
for the state transition function. Note that the nominal interest rate, denoted by x in this

appendix, is constrained by the zero lower bound. The state transition function is linear in
the state variables and the coefficient matrix is time-invariant, i.e.,

g(y, π, rrlag, x, υ, ε) = Γ+A

 y

π

rrlag

+Bx+Σet+1.
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Given the above specification of the Bellman equation and the state transition function,
our goal is to interpolate the value function V (y, π, rrlag) in the interval of −3 ≤ y ≤ 3,
−1 ≤ π ≤ 5, and −3 ≤ rrlag ≤ 3.
The collocation method proceeds in the following steps. First, we discretize the state

space by the set of interpolation nodes such that Node = {(yny , πnπ , rrlagnlag)| ny =

1, 2, · · · , Ny, nπ = 1, 2, · · · ,Nπ, and nlag = 1, 2, · · · , Nlag}. Thus, we discretize the state
space into the total of Ny ×Nπ ×Nlag interpolation nodes. Then we interpolate the value

function V (·) using a cubic spline function over these interpolation nodes as follows

V (yny , πnπ , rrlagnlag) =

NyX
i=1

NπX
j=1

NlagX
k=1

cijkγ
y
i (yny )γ

π
j (πnπ)γ

lag
k (rrlagnlag) (A.10)

where the basis functions γπi (πnπ), γ
y
j (yny ), and γ

lag
k (rrlagnlag) take the form of cubic spline

functions.
Interpolation equations (A.10) could be expressed compactly using the tensor product

notation as follows,
v = [Ξy⊗Ξπ⊗Ξlag] · c, (A.11)

where v stands for NyNπNlag × 1 vector of the values of V (yny , πnπ , rrlagnlag) for each
interpolation node, Ξy stands for Ny ×Ny matrix of the basis functions γ

y
i (yny), Ξπ stands

for Nπ×Nπ matrix of the basis functions γπj (πnπ), Ξlag stands for Nlag×Nlag matrix of the
basis functions γlagk (rrlagnlag), and c stands for NyNπNlag×1 vector of the basis coefficients
cijk.
Next, we turn to the right-hand side of the Bellman equation (A.9). In approximat-

ing the expected value function, i.e., E[V (g(y, π, rrlag, x, ν, ε)], we assume the distribution
of the error terms (ν, ε) to be i.i.d. multivariate normal. We adopt Gaussian-Hermite
quadrature method in discretizing the random space with the set of quadrature nodes such
that QNode = {(νhν , εhε)|hν = 1, 2, · · · ,Mν and hε = 1, 2, · · · ,Mε} with corresponding
quadrature weights ωhνhε . Thus, we discretize the random space into a total of Mν ×Mε

quadrature nodes. Then by substituting the interpolation equation (A.10) for the value func-
tion V (g(y, π, rrlag, x, ν, ε), the right-hand side of the Bellman equation can be approximated
as

RHSnynπnlag(c) (A.12)

= min
x≥0

f(yny , πnπ) + β

MνX
hν=1

MεX
hε=1

NyX
i=1

NπX
j=1

NlagX
k=1

ωhνhεcijkγijk


for each (yny , πnπ , rrlagnlag) ∈ Node where γijk stands for the cross products of the ba-

sis function. The minimization of the above problem with respect to x can be attained
using a standard Quasi-Newton optimization method. It should be noted that when imple-
menting this minimization problem, one should pay attention to the corner solution of the
minimization problem due to the zero lower bound constraint on the control variable x.
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Finally, by equating eq. (A.10) and eq. (A.12) for each interpolation node, we obtain the
following approximation of the Bellman equation (A.9);

NyX
i=1

NπX
j=1

NlagX
k=1

cijkγ
y
i (yny)γ

π
j (πnπ)γ

lag
k (rrlagnlag) (A.13)

= RHSnynπnlag(c) for each (yny , πnπ , rrlagnlag) ∈ Node. (16)

Using the tensor product notation, the above equation can be compactly expressed as

[Ξy⊗Ξπ⊗Ξlag]c = RHS(c), (A.14)

where RHS(c) stands for NyNπNlag × 1 vector of the values of RHSnynπnlag(c). The
nonlinear equation system can be solved by an appropriate iterative nonlinear root-finding
algorithm.

Once we solve for the nonlinear equation system for vector c, the interpolation of the value
function V (y, π, rrlag) is now attained. As a by-product of interpolating the value function,
the approximation of the optimal policy function x∗(y, π, rrlag) will also be attained at the
same time.

27



References

[1] Adam, K., Billi, R.M., 2006. Optimal monetary policy under commitment with a zero
bound on nominal interest rates. Journal of Money, Credit, and Banking, 38, 1877-1906.

[2] Akerlof, G.A., Dickens, W.T., Perry, G.L., 1996. The macroeconomics of low inflation.
Brookings Papers on Economic Activity, 1, 1-76.

[3] Amato, J.D., Laubach, T., 2004. Implications of habit formation for optimal monetary

policy. Journal of Monetary Economics, 51, 305-325.

[4] Ball, L., 1999. Efficient rules for monetary policy. International Finance, 2, 63-83.

[5] Bank of England, 1999. The transmission mechanism of monetary policy. Report by the

Monetary Policy Committee, Bank of England.

[6] Batini, N., Nelson, E., 2001. The lag from monetary policy actions to inflation: Friedman

revisited. International Finance, 4:3, 381-400.

[7] Bernanke, B.S., 2002. Deflation: Making sure “it” doesn’t happen here. Remarks by

Governor Ben S. Bernanke before the National Economists Club, Washington, D.C.,
Board of Governors of the Federal Reserve System.

[8] Bernanke, B.S., 2004. Monetary policy modeling: Where are we and where should we
be going? Remarks by Governor Ben S. Bernanke at the Federal Reserve Board Models
and Monetary Policy Conference, Washington, D.C., Board of Governors of the Federal
Reserve System.

[9] Bernanke, B.S., Mishkin, F.S., 1997. Inflation targeting: A new framework for monetary
policy? Journal of Economic Perspectives, 11, 97-116.

[10] Bertsekas, D.P., 2005. Dynamic programming and optimal control, volume I, third edi-
tion. Athena Scientific, Nashua, NH.

[11] Blinder, A., 2000. Monetary policy at the zero lower bound: balancing the risks. Journal
of Money, Credit and Banking, 32, 1093-1099.

[12] Boskin, M.J., Dulberger, E.R., Gordon, R.J., Griliches, Z., Jorgenson, D., 1996. Toward
a more accurate measure of the cost of living: The final report to the Senate Finance
Committee from the Advisory Commission to study the Consumer Price Index, Wash-
ington, D.C.

[13] Cagan, P., Gandolfi, A., 1969. The lag in monetary policy as implied by the time pattern
of monetary effects on interest rates. American Economic Review, 59, 277-284.

[14] Chmielewski, D., Manousiouthakis, V., 1996. On constrained infinite-time linear
quadratic optimal control. Systems and Control Letters, 29, 121-129.

28



[15] Coenen, G., Wieland, V., 2003. The zero-interest-rate bound and the role of the exchange
rate of monetary policy in Japan. Journal of Monetary Economics, 50, 1071-1101.

[16] Coenen, G., Orphanides, A., Wieland, V., 2004. Price stability and monetary policy
effectiveness when nominal interest rates are bounded at zero. Advances in Macroeco-
nomics, 4(1), Article 1.

[17] Crawford, A., Harrison, A., 1998. Testing for downward rigidity in nominal wages. In
Price Stability, Inflation Targets, and Monetary Policy: Proceedings of a conference held
at the Bank of Canada May 1997, 179-225, Ottawa, Bank of Canada.

[18] Duguay, P., 1994. Empirical evidence on the strength of the monetary transmission
mechanism in Canada - An aggregate approach. Journal of Monetary Economics, 33,
39-61.

[19] Egertsson, G., Woodford, M., 2003. The zero bound on interest rates and optimal mon-
etary policy. Brooking Papers on Economic Activity, 1, 139-211.

[20] Friedman, M., 1961. The lag effect of monetary policy. Journal of Political Economy, 69,
447-466.

[21] Friedman, M., 1972. Have monetary policy failed? American Economic Review, 62,

11-18.

[22] Fuchi, H., Oda, N., Ugai, H., 2007. The costs and benefits of inflation: Evaluation for

Japan’s economy. Forthcoming in Journal of the Japanese and International Economies.

[23] Fuhrer, J., Madigan, B., 1997. Monetary policy when interest rates are bounded at zero.

Review of Economics and Statistics, 79, 573-585.

[24] Hafer, R.W., Haslag, J.H., Jones, G., 2007. On money and output: Is money redundant?
Journal of Monetary Economics, 54, 945-954.

[25] Hunt, B., Laxton, D., 2003. The zero-interest rate floor and its implications for monetary
policy in Japan, in: Callen, T., Ostry, J.D., (Eds.), Japan’s Lost Decade: Policies for
Economic Revival, International Monetary Funds, Washington, D.C., pp. 179-205.

[26] Judd, K.L., 1998. Numerical Methods in Economics. MIT Press, Cambridge.

[27] Jung, T., Teranishi, Y., Watanabe, T., 2005. Optimal monetary policy at the zero-
interest-rate bound. Journal of Money, Credit, and Banking, 37, 813-836.

[28] Kato, R., Nishiyama, S.I., 2005. Optimal monetary policy when interest rates are
bounded at zero. Journal of Economic Dynamics and Control, 29, 97-133.

[29] Kimura, T., Ueda, K., 2001. Downward nominal wage rigidity in Japan. Journal of the
Japanese and International Economics, 15, 50-67.

29



[30] Konieczny, J.D., 1994. The optimal rate of inflation: Competing theories and their
relevance to Canada. In Economic Behaviour and Policy Choice under Price Stability:
Proceedings of a conference held at the Bank of Canada October 1993, 1-40, Ottawa,
Bank of Canada.

[31] Kuroda, S., Yamamoto, I., 2003a. Are Japanese nominal wages downwardly rigid? (Part
I): Examinations of nominal wage change distributions. Monetary and Economic Studies,
21(2), 1-29.

[32] Kuroda, S., Yamamoto, I., 2003b. Are Japanese nominal wage downwardly rigid? (Part
II): Examinations using a friction model. Monetary and Economic Studies, 21(2), 31-68.

[33] Lavoie, C., Pioro, H., 2007. The zero bound on nominal interest rates: Implications for
the optimal monetary policy in Canada. Bank of Canada Discussion Paper 2007-1.

[34] Lebow, D.E., Saks, R.E., Wilson, B.A., 2003. Downward nominal wage rigidity: Evi-
dence from the employment cost index. Advances in Macroeconomics, volume 3, issue
1, article 2.

[35] Ljungqvist, L., Sargent, T.J., 2004. Recursive macroeconomic theory, second edition.
MIT Press, Cambridge.

[36] Lucas, R.E., Jr., 1976. Econometric policy evaluation: A critique. Carnegie-Rochester
Conference Series on Public Policy, 1, 19-46.

[37] Miranda, M.J., Fackler, P.L., 2002. Applied Computational Economics and Finance.
MIT Press, Cambridge.

[38] Mishkin, F.S., 2007. Monetary Policy Strategy. MIT Press, Cambridge.

[39] Murchison, S., Rennison, A., 2006. ToTEM: The Bank of Canada’s new quarterly pro-
jection model. Bank of Canada Technical Report No. 97.

[40] Nishiyama, S.I., 2003. Inflation target as a buffer against liquidity trap. Institute for
Monetary and Economic Studies Discussion Paper Series 2003-E-8, Bank of Japan.

[41] Orphanides, A., Wieland, V., 1998. Price stability and monetary policy effectiveness
when nominal interest rates are bounded at zero. Finance and Economics Discussion
Series 1998-35, Board of Governors of the Federal Reserve System.

[42] Orphanides, A., Wieland, V., 2000. Efficient monetary policy design near price stability.

Journal of the Japanese and International Economies, 14, 327-365.

[43] Reifschneider, D., Williams, J., 2000. Three lessons for monetary policy in a low-inflation
era. Journal of Money, Credit and Banking, 32, 936-966.

[44] Sack, B., Wieland, V., 2000. Interest-rate smoothing and optimal monetary policy: A
review of recent empirical evidence. Journal of Economics and Business, 52, 205-228.

30



[45] Shiratsuka, S., 2001. Is there a desirable rate of inflation? A theoretical and empirical
survey. Monetary and Economic Studies, 19(2), 49-84.

[46] Smith, J.C., 2000. Nominal wage rigidity in the United Kingdom. The Economic Journal,
110, C176-C195.

[47] Stokey, N., Lucas, R.E., with Prescott, E.C., 1989. Recursive Methods in Economic
Dynamics. Harvard University Press, Cambridge.

[48] Summers, L., 1991. Price stability: how should long-term monetary policy be deter-
mined. Journal of Money, Credit and Banking, 23, 625-631.

[49] Svensson, L.E.O., 1997. Inflation forecast targeting: implementing and monitoring in-
flation targets. European Economic Review, 41, 1111-1146.

[50] Svensson, L.E.O., 1999. Inflation targeting as a monetary policy rule. Journal of Mone-
tary Economics, 43, 607-654.

[51] Tanner, J.E., 1979. Are the lags in the effects of monetary policy variable? Journal of
Monetary Economics, 5, 105-121.

[52] Taylor, J.B., 1993. Discretion versus policy rules in practice. Carnegie-Rochester Con-
ference Series on Public Policy, 39, 195-214.

[53] Teranishi, Y., 2003. Zero bound on nominal interest rates and ex ante positive inflation:
A cost analysis. Bank of Japan Working Paper Series No.03-E-08.

[54] Woodford, M., 1999. Optimal monetary policy inertia. NBER Working Paper 7216.

[55] Woodford, M., 2003. Interest and prices - Foundations of a theory of monetary policy.
Princeton University Press, Princeton.

31



Figure 1: Optimal Monetary Policy Reaction Function
Case: No Bound, No Lag



Figure 2: Optimal Monetary Policy Reaction Function
Case: No Bound, Lag weight = 0.7, various rrlag’s

rrlag = 3% (tight)

rrlag = -3% (loose)

rrlag = 0% (neutral)



Figure 3: Optimal Monetary Policy Reaction Function
Case: Zero-bound, Lag weight = 0.7, various rrlag’s

rrlag = 3% (tight)

rrlag = -3% (loose)

rrlag = 0% (neutral)



Figure 4: Pre-emption Motive in Monetary Policy
Case: Lag weight = 0.7, various rrlag’s

rrlag = -3% (loose)

rrlag = 0% (neutral)

rrlag = 3% (tight)



Figure 5: Sensitivity Analysis of Pre-emption Motive and Lag Weights
Case: rrlag = 0% (neutral), various lag weights

Lag weight = 0 Lag weight = 0.25 Lag weight = 0.5



Figure 6: Sensitivity Analysis of Long-run Stabilization Cost with respect to Lag Weights

Central bank's loss function evaluated at various inflation targets
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