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Abstract 

Weak identification is likely to be prevalent in multi-equation macroeconomic models 
such as in dynamic stochastic general equilibrium setups. Identification difficulties cause 
the breakdown of standard asymptotic procedures, making inference unreliable. While 
the extensive econometric literature now includes a number of identification-robust 
methods that are valid regardless of the identification status of models, these are mostly 
limited-information-based approaches, and applications have accordingly been made on 
single-equation models such as the New Keynesian Phillips Curve. 
 
In this paper, we develop a set of identification-robust econometric tools that, regardless 
of the model’s identification status, are useful for estimating and assessing the fit of a 
system of structural equations. In particular, we propose a vector auto-regression (VAR) 
based estimation and testing procedure that relies on inverting identification-robust 
multivariate statistics. The procedure is valid in the presence of endogeneity, structural 
constraints, identification difficulties, or any combination of these, and also provides 
summary measures of fit. Furthermore, it has the additional desirable features that it is 
robust to missing instruments, errors-in-variables, the specification of the data generating 
process, and the presence of contemporaneous correlation in the disturbances. 
 
We apply our methodology, using U.S. data, to the standard New Keynesian model such 
as the one studied in Clarida, Gali, and Gertler (1999). We find that, despite the presence 
of identification difficulties, our proposed method is able to shed some light on the fit of 
the considered model and, particularly, on the nature of the NKPC. Notably our results 
show that (i) confidence intervals obtained using our system-based approach are 
generally tighter than their single-equation counterparts, and thus are more informative, 
(ii) most model coefficients are significant at conventional levels, and (iii) the NKPC is 
preponderantly forward-looking, though not purely so. 

JEL classification: C52, C53, E37 
Bank classification: Inflation and prices; Econometric and statistical methods 

Résumé 

Les modèles macroéconomiques à équations multiples, comme les modèles d’équilibre 
général dynamiques et stochastiques, tendent à donner lieu à des problèmes 
d’identification qui compromettent l’usage de techniques asymptotiques standard et la 
fiabilité de l’inférence statistique. Si l’abondant corpus de travaux économétriques 
propose aujourd’hui plusieurs méthodes robustes en matière d’identification qui gardent 
leur validité que le modèle soit bien ou mal identifié, ces méthodes supposent néanmoins 
souvent une information incomplète. Leur application s’est par conséquent trouvée 
limitée à des modèles à équation unique tels que la nouvelle courbe de Phillips 
keynésienne. 
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Les auteurs élaborent un ensemble d’outils économétriques qui permet d’estimer et 
d’évaluer la qualité de l’ajustement d’un système d’équations structurelles peu importe 
les conditions d’identification de ce dernier. Ils proposent notamment une procédure 
d’estimation et de test qui fait appel à une autorégression vectorielle et inverse le résultat 
des tests d’inférence robuste de type multivarié. Cette procédure est valide qu’il y ait 
endogénéité, contrainte structurelle ou problème d’identification, ou encore une 
combinaison quelconque de ces éléments. Elle offre par ailleurs des mesures sommaires 
de l’adéquation statistique. Elle conserve sa validité en l’absence de certains instruments, 
en présence d’erreurs sur les variables ou de corrélation contemporaine des perturbations 
et peu importe la spécification du processus générateur de données. 
 
À l’aide de données américaines, les auteurs appliquent leur méthode à une variante du 
nouveau modèle keynésien type analogue à celle analysée par Clarida, Gali et Gertler 
(1999). En dépit des problèmes d’identification, leur approche cerne mieux l’adéquation 
statistique du modèle étudié ainsi que, en particulier, la nature de la nouvelle courbe de 
Phillips keynésienne. Les résultats montrent, d’une part, que le recours à un système 
d’équations multiples permet d’obtenir des intervalles de confiance plus informatifs car 
généralement plus étroits que ceux issus de modèles à équation unique; d’autre part, que 
la majorité des coefficients sont significatifs aux niveaux habituels; enfin, que sans être 
totalement prospective, la nouvelle courbe de Phillips keynésienne l’est très fortement. 

Classification JEL : C52, C53, E37 
Classification de la Banque : Inflation et prix; Méthodes économétriques et statistiques 

 

 



1. Introduction

Optimization-based macroeconomic models, and, in particular, dynamic stochastic general

equilibrium (DSGE) setups, are popular nowadays for analyzing a multitude of macroeco-

nomic questions such as the effects of monetary policy. But as models of this sort become

increasingly complex, featuring many types of markets, various rigidities, and different non-

linearities, the decision of whether to use a limited or full information (LI or FI ) approach

for estimation becomes a central question for model developers. Indeed, there appears to be

a conflict in the conclusions of available published studies based on one or the other method;

for instance, Gaĺı, Gertler, and Lopez-Salido (2005), and Linde (2005) report opposite out-

comes with regard to the importance of the forward-looking component of the New Keynesian

Phillips Curve (NKPC) equation.

The LI/FI trade-off is an enduring econometric problem, often presented as one of weigh-

ing specification bias versus efficiency, but there are also other concerns. In particular,

advances in econometrics regarding weak-instruments and weak-identification have revealed

that the latter plague LI and FI methods equally, thus presenting a set of new challenges for

applied researchers.

The macroeconomic literature acknowledges the LI/FI trade-off to some extent, often

presenting it as one of deciding between Instrumental Variable (IV) or maximum likelihood

estimation (MLE). Furthermore, published studies in the field are also familiar with the fact

that weak instruments effects are critical to IV-based model performance. However, the

implications of weak-identification on MLE seem to be less understood, and indeed often

confused with issues related to very large estimated standard errors or poorly-approximated

test statistics cut-off points. While it may be argued that likelihood-ratio (LR) criteria

have more attractive finite sample properties than, for example, IV-based Wald-type ones,

and in particular, size correction techniques have a much better chance of success with LR

statistics (see Dufour 1997), it should be emphasized that standard MLE and full-information

maximum likelihood (FIML) inference are not immune to weak-identification problems.

The complications arise largely because nonlinearities can impose discontinuous param-

eter restrictions that cause the breakdown of standard asymptotic procedures. Given the

connection between the parameters of the underlying theoretical model and those of the es-

timated econometric model1, and given the identifying constraints imposed on the model,

1See Gaĺı, Gertler, and Lopez-Salido (2005) and Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005)

on the importance of maintaining these constraints.
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econometric versions of macroeconomic models are often highly nonlinear.2 The more rich

and complex the macroeconomic model, the more likely it is that standard regularity condi-

tions will not fully hold. In this case, even when MLE is used for the estimation, resorting to

usual t-type significance tests or Wald-type confidence intervals will lead to the same prob-

lems that plague GMM and linear or nonlinear IV;3 see the surveys of Stock, Wright, and

Yogo (2002) and Dufour (2003). As may be checked from these studies, identification diffi-

culties will not always lead to huge regular standard errors that would alert the researcher to

the problem. Instead, spuriously tight confidence intervals could occur, often concentrated

on wrong parameter values, thus leading to wrong inference.

Weak-instruments and weak-identification concerns have led to the development of so-

called identification-robust procedures, i.e. procedures that achieve significance or confidence-

level control (at least asymptotically) whether the statistical model is weakly or strongly

identified, or whether instruments are weak or strong.4 To a certain extent, and within the

context of single-equation models, such procedures are gaining credibility in macroeconomics,

although some of the findings of these studies challenge the fit of popular models including

the NKPC; see, for example, Mavroeidis (2004), Mavroeidis (2005) and Dufour, Khalaf,

and Kichian (2006). Yet, despite the considerable volume of the associated econometric

literature, identification-robust methods for multi-equation systems are still scarce (including

the literature on GMM cited above which is sufficiently general to cover systems of equations)

compared to methods that are available for single-equation models. Thus, it is not surprising

that, in applied work, studies have addressed possible weak identification relying on single-

equation approaches.

In this paper, we look at whether proponents of full information estimation are justified

in their claims, and examine how well the approach stands up to the weak-identification test.

In this regard, our contribution is twofold: one methodological, and one substansive.

First, we develop a set of identification-robust econometric tools that are useful for

estimating and assessing the fit of a system of structural equations. In particular, we

2Even within the context of a single linear simultaneous equation, where identification is achieved through

“exclusion” restrictions, the latter imply nonlinearity. This is easy to see when one derives the reduced-form

or the structural likelihood function.
3We specifically mean Wald-type confidence intervals of the form [estimate ±(asymptotic standard error) ×

(asymptotic critical point)], intervals based on the delta-method, and even ones based on various bootstraps.
4See, for example, Dufour (1997), Dufour (2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot,

Startz, and Nelson (1998), Dufour and Jasiak (2001), Kleibergen (2002), Kleibergen (2005), Stock, Wright,

and Yogo (2002), Moreira (2003), Dufour and Taamouti (2005), Dufour and Taamouti (2007), and Andrews,

Moreira, and Stock (2006).
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propose a vector auto-regression (VAR) based estimation and testing procedure that re-

lies on identification-robust multivariate statistics. The procedure is valid (in the sense of

significance-level control) in the presence of endogeneity, structural constraints, identification

difficulties, or any combination of these, and also provides summary measures of fit. Fur-

thermore, it has the additional desirable features that it is robust to missing instruments,

errors-in-variables, the presence of contemporaneous correlation in the disturbances, and the

specification of the data generating process (DGP).5 Finally, these advantages hold while

the constraints on the parameters and/or error terms implied by the underlying theoretical

model are formally taken into account.

The methodology works through the combined use of the econometric model for the struc-

ture, and an unrestricted VAR for the instrumental underlying data generating process. More

specifically, and, in the case of, for example, a DSGE framework, the five key components of

our method are: (1) an instrumental model (the VAR); (2) a structural general equilibrium

model (underlying theory); (3) an econometric multi-equation linearized model that links the

former to the latter (the estimable DSGE structure) allowing for possible measurement error

(the data), (4) multivariate statistics that summarize the information combining these three

components (the pivots), and (5) multivariate measures of model fit related to the latter

statistics (the J-type criteria).

Second, we apply these tools, using U.S. data, to assess the fit of the standard New

Keynesian model. This fundamental structure has been extensively studied in the literature

(see, for example, Clarida, Gali, and Gertler 1999), and forms the building block of many

other more complex models (see, for instance, Woodford (2003), Christiano, Eichenbaum,

and Evans (2005), Del Negro, Schorfheide, Smets, and Wouters (2007), to mention a few.)

To allow for comparisons between our newly-proposed system-based multivariate method

and univariate ones, we also consider the univariate method applied by Dufour, Khalaf, and

Kichian (2006), and the univariate linear IV method from Dufour and Taamouti (2005). Each

method integrates and assesses, to a different degree, the model’s structural restrictions.

The empirical results may be summarized as follows. Although identification problems

are present, our proposed method is able to shed some light on the fit of the considered

model and, particularly, on the nature of the NKPC. In particular, we find that (i) multi-

equation confidence intervals are generally tighter than their univariate counterparts, and

thus more informative, (ii) most model coefficients are significant at conventional levels, with

the exception two, and that (iii) the NKPC is preponderantly forward-looking, though not

5Unlike, for example, Nason and Smith (2003) or Linde (2005), we do not need to specify the full DGP.

In other words, our method of evaluation is system-based but does necessarily have to be strictly FI.
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purely so.

The paper is organized as follows. In section 2, we introduce the model we assess. Our

methodology is discussed in section 3. Data and empirical results are presented in section

4. We conclude in section 5. Finally, a technical Appendix complements the methodology

section.

2. Framework

Though our method is applicable to more complex structures, we consider here a variant of

the standard New Keynesian model. The latter, extensively studied by Clarida, Gali, and

Gertler (1999), forms the building block of numerous recent fundamental models, and for

our purposes is tractable enough to allow comparisons between our proposed multivariate

approach and available univariate ones (see later sections).

Specifically, we follow the setup in Linde (2005) that consists of a system of three equa-

tions: an NKPC equation, an aggregate demand equation and an interest rate rule:

πt = ωfEtπt+1 + (1 − ωf ) πt−1 + γyt + επ,t

yt = βfEtyt+1 +
∑4

i=1 (1 − βf ) βy,iyt−i − βr (Rt − Etπt+1) + εy,t

Rt = γπ

(
1 − ∑3

i=1 ρi

)
πt + γy

(
1 − ∑3

i=1 ρi

)
yt +

∑3
i=1 ρiRt−i + εR,t

(1)

where, for t = 1, ..., T , πt is aggregate inflation, yt is the output gap, and Rt is the nominal

interest rate, and επ,t, επ,t and εR,t are random disturbances. The parameter constraints

reflect an underlying macroeconomic model. For notational clarity, we will call the vector

θ =
(

ωf , γ, βf , βr, γπ, γy, ρ1, ρ2, ρ3

)′

the model’s “deep” parameters.

For estimation purposes, we consider the econometric model

πt = ωfπt+1 + (1 − ωf ) πt−1 + γyt + επ,t

yt = βfyt+1 +
∑4

i=1 (1 − βf ) βy,iyt−i − βr (Rt − πt+1) + εy,t

Rt = γπ

(
1 − ∑3

i=1 ρi

)
πt + γy

(
1 − ∑3

i=1 ρi

)
yt +

∑3
i=1 ρiRt−i + εR,t

(2)

where, due to the rational expectation hypothesis, the error terms now integrate expectation

error. In this respect, even though Linde (2005) assumes a diagonal covariance matrix, we

allow for possible contemporaneous error cross-correlations.

Assuming Gaussian errors, the model is readily estimable via LI or FI maximum likeli-

hood, and parameter estimates, standard errors, as well as regular LR-type test criteria (for

4



assessing the constrained model against, say, an unrestricted VAR), can all be easily derived.

However, if the confidence interval and hypothesis tests that result from such estimation

strategies are, as is typically the case, validated through the use of standard asymptotic

arguments, they can easily become unreliable when there are identification difficulties.6

It is important to understand the fundamental reason behind such failures.7 Nonlinear

constraints complicate statistical analysis in a non-trivial way because associated transforma-

tions may be discontinuous. That is, some or all of the parameters may become identifiable

only on a subset of the parameter space. In such contexts, in order to have good statis-

tical coverage, any valid method for constructing a confidence set (CS) should allow for

possibly-unbounded outcomes. Stated differently, any method that, by construction, leads

to a confidence interval with bounded limits, will necessarily have poor coverage (Dufour

1997).8 Therefore, intervals of the form {estimate ± (asymptotic standard error) × (asymp-

totic critical point)}, including the delta-method, are fundamentally wrong and cannot be

size-corrected. Furthermore, identification difficulty does not necessarily imply that asymp-

totic approximations to critical points are poor, or that asymptotic standard errors are large.

Indeed, the opposite may occur, with tight confidence intervals concentrated on wrong pa-

rameter values.

Identification-robust methods typically rely on appropriate pivots, i.e. statistics whose

null distributions are invariant to the model’s identification status. In particular, general-

ized Anderson-Rubin procedures that involve inverting proper pivotal tests are considered.9

Inverting a test yields the set of parameter values that are not rejected by this test. The

geometrics of such inversions typically allow for unbounded solutions—a pre-requisite for en-

suring reliable coverage. While a large econometric literature has documented the superiority

of such methods, multi-equation models have not been directly addressed.

Here we propose a multivariate extension of the Anderson-Rubin test, that when inverted,

will yield a CS whose significance level can be controlled (at least asymptotically) in the

presence of endogeneity and nonlinear parameter constraints, whether identification is weak

or not. Inverting this test numerically produces the set of parameter values that are not

rejected by this test, and the least-rejected parameters are the so-called Hodges-Lehmann

6Regularity conditions do not hold or hold only weakly when there are identification difficulties.
7Please refer to the econometric literature cited in the introduction for further formal discussions.
8It is shown that the method that proves the validity of confidence intervals typically excludes the pa-

rameter discontinuity regions entailed by the nonlinear functions under consideration.
9See, for example, Dufour (1997), Dufour (2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot,

Startz, and Nelson (1998), Dufour and Jasiak (2001), Dufour and Taamouti (2005), and Dufour and Taamouti

(2007).
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point estimates (see Hodges and Lehmann 1963, 1983, and Dufour, Khalaf, and Kichian

2006). The test inversion may also generate an empty CS. This can be interpreted as a

significant J-type test, providing an overall assessment of the structural model restrictions.

3. Methodology

In this section, we describe the methodology as it applies to model (2). For clarity of

presentation our discussion is mostly descriptive but nonetheless formal; complete formulae

and further references are relegated to the Appendix.

3.1 Transforming the Regression

To obtain a confidence set with level 1−α for the deep parameter θ, we invert an identification-

robust test (presented below) associated with the null hypothesis

H0 : θ = θ0 (3)

where θ0 is given by

θ0 =
(

ω0
f , γ0, β0

f , β0
r , γ0

π, γ0
y , ρ0

1, ρ0
2, ρ0

3

)′
,

and where the parameter values with the zero superscript are known values. Formally, this

implies collecting the values θ0 that are not rejected by the test (i.e., for which the test is

not significant at level α). In what follows, we first introduce the test that is inverted and

then explain how the former step is performed. Let

Zt = (Z1t, Z2t)
′ , Z1t = (πt−1, Rt−1, Rt−2, Rt−3)

′ , Z2t = (yt−1, yt−2, yt−3, yt−4)
′ .

Zt so defined consists of all predetermined variables in the system, and which we denote as

the set of “internal” instruments to reflect their model dependence. We also consider a set

of q additional “external” instruments, denoted Z̃t, that we use to correct for measurement

errors.

Now consider the transformed regression, which, in reference to the univariate economet-

ric literature on the Anderson-Rubin test, we call the Anderson-Rubin Multivariate Linear

Regression (AR-MLR):

π∗
t on {Zt and Z̃t}, (4)

y∗
t on {Zt and Z̃t},

R∗
t on {Zt and Z̃t},

6



where

π∗
t = πt − ω0

fπt+1 − (1 − ω0
f )πt−1 − γ0yt, (5)

y∗
t = yt − β0

fyt+1 + β0
r (Rt − πt+1) ,

R∗
t = Rt −

(
1 −

3∑
i=1

ρ0
i

)(
γ0

ππt + γ0
yyt

) − 3∑
i=1

ρ0
i Rt−i.

Our notation assumes that the three equations in (4) are treated as a system, allowing for

error cross-correlations. Under the null hypothesis [specifically (2)-(3)], the coefficients of

Zt and Z̃t in the first and last equations, and of Z1t and Z̃t in the middle equation of (4)

should be zero. Hence, testing for such a zero null hypothesis on these coefficients provides

a test of (3). The intuition is simple: the structural equation (2) that faces identification

difficulties is mapped, through our approach, into the standard regression (4). The latter

constitutes a regular framework where identification constraints are no longer needed because

the right-hand side regressors are not “endogenous”. Therefore, usual statistics for testing

the exclusion of regressors can be applied in a straightforward manner.

3.2 An Identification-Robust Test

The test criterion that we use is one of the most popular statistics in SURE analysis (see

Dufour and Khalaf 2003 and the references therein). Specifically, we consider the SURE-F

criterion denoted W described in equation (10) of the Appendix. We can obtain a valid

p-value for W using an F asymptotic distribution.10 W applied to (4) is asymptotically piv-

otal whether (2) is weakly or strongly identified, and its asymptotic distribution is standard,

depending on the sample size and on the number of predetermined variables and instruments

used in the test. No further nuisance parameters intervene, and in particular, the asymp-

totic null distribution does not depend on the unknown variance-covariance matrix. This

result obtains because the statistical reduced form AR-MLR (4) allows the test problem to

be conducted within the classical multivariate linear regression statistical framework. The

latter does not require any identification constraints in contrast to the original simultaneous

equation system (2) that does require them. Because W , as applied to (4), is asymptotically

pivotal irrespective of the model’s identification status—a property that is not shared by IV-

based Wald statistics and by GMM-based J-tests—, the confidence set for θ that is obtained

10The W statistics were analyzed by Dufour and Khalaf (2003). In a system with three equations, its

F-based asymptotic approximation was shown to be relatively more stable (in terms of size control) than the

χ2 counterpart. In this paper, we rely on that result.

7



by inverting this test will have a correct asymptotic level whether (2) is weakly or strongly

identified. Our approach thus provides an attractive solution to identification difficulties.

In addition, and as with single equation Anderson-Rubin type methods, our procedure

has two further “built-in” advantages. First, relatively wide confidence sets reveal weak

identification. Second, if the confidence set is empty at some chosen significance level (which

occurs when all economically-relevant values of the model’s deep parameters are rejected at

this level), then the model can soundly be rejected. This provides an identification-robust

alternative to the standard GMM-based J-test. Formally, observe that the cut-off points

for the W statistic introduced above are the same for any value θ0 under test. As may

be checked from the Appendix, the null distribution of W depends on the sample size, the

number of equations and the number of constraints, but not on θ0 per se. Taking the model

in Section 2 as an example, the approximate limiting null distribution for the W statistic is

F (m, 3(T − k)) with

m = 2(8 + q) + (4 + q)

where q as defined above is the number external instruments [if any] used and k = 8 + q is

the number of regressors per equation in (4). So if we define

W = min
θ0

W ,

referring the latter to an F (m, 3(T −k)) cut-off point (say at level α) provide an identification

robust J-test, since

min
θ0

W ≥ Fα(m, 3(T − k)) ⇔ W ≥ Fα(m, 3(T − k)), ∀θ0 (6)

where Fα (.) denotes the α-level cut-off point under consideration. In other words, (6) implies

that the F (m, 3(T − k)) distribution provides valid and identification-robust conservative

bounds on the null distributions of W .

The latter specification check can be carried out before the test inversion step to save

computation time; if the outcome is not significant [i.e. if minθ0 W < Fα(m, 3(T − k))], then

we can be sure that the associated confidence sets for θ will not be empty. Such specification

tests can clearly be very useful tools for modelers, whether they are applied on their own or

in conjunction with the test inversion problem. In view of the underlying nonlinearity, the

latter minimizations must be performed numerically. We recommend a global optimization

procedure such as Simulated Annealing because there is no reason to expect that W is a

smooth function of θ0.

8



3.3 Test Inversion Procedure

The test inversion procedure that we present in this section must also be conducted nu-

merically. We suggest and apply two such procedures: First, using a grid search over the

economically-meaningful set of values for θ, we sweep the choices for θ0; as is illustrated in

the Appendix, we do not need to consider the unknown variance-covariance matrix of distur-

bances as a nuisance parameter. For each choice considered, we compute test statistics and

their associated p-values. The parameter vectors for which the p-values are greater than the

level α thus constitute a confidence set with level 1 − α.

Alternatively, it is possible to construct projection-based confidence sets. These can be

obtained for any linear combination of θ, of the form a′θ where a is a non-zero vector, by

minimizing and maximizing (for example using simulated annealing) the function a′θ over

θ such that W < χ2
α (m). Components of θ are defined by setting a to the corresponding

selection vector (consisting of zeros and ones).11

To find point estimates within our CS, we look for the values of θ0 that lead to the largest

p-value. These values are the most compatible with the data, or, alternatively, correspond to

the “least rejected” model. Such an approach underlies the principles of the Hodges-Lehmann

estimation method; see Hodges and Lehmann (1963); Hodges and Lehmann (1983). Whereas

uniqueness (as obtained through the usual point estimation approach) is not granted, ana-

lyzing the economic information content of these least rejected models provides very useful

model diagnostics.

3.4 Other Advantages

It is important to note that our method automatically corrects for errors-in-variable (gener-

ated regressor) problems under the same maintained assumptions on the reduced form. Fur-

thermore, missing instruments will not invalidate our fundamental results. In other words,

if our test does not account for all explanatory variables that define the reduced form, the

significance level will not be affected. This also means that a full definition of the funda-

mental DGP is not required. These properties hold while the structural implications of the

underlying theoretical model are maintained.

Similarly, note that the added instruments Z̃t are not strictly necessary, since, in the

11For a description of a similar procedure in a univariate setting, see e.g. Dufour and Jasiak (2001).
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context of the regression:

π∗
t on Zt, (7)

y∗
t on Zt,

R∗
t on Zt,

we can test for the exclusion of Zt in the first and third equations, jointly with the exclu-

sion of Z1t from the second equation. The instruments Z̃t are therefore used to correct for

measurement errors.

The above inference method is system-based, yet is not strictly FI. In the same vein, the

tests that we invert have a likelihood-based justification, yet they are not strictly FIML-

based. This is formally shown in the Appendix where we also demonstrate robustness (in the

sense of significance level control) to misspecification of the DGP underlying model (2). In

particular, we show that the W statistic is compatible with a general class of reduced forms.

For instance, in the context of the model that we are considering, all we need is: (i) to assume

that inflation, output, and the interest rate variable can jointly be explained, up to possibly

contemporaneously-correlated disturbances, by their own lags (via some linear or nonlinear

VAR form), (ii) a number of predetermined variables, which may or may not come from the

theoretical model (intra-model or external instruments), and (iii) possibly a set of further

exogenous or predetermined variables which were not included in the test [i.e. exogenous or

predetermined variables that intervene in the fundamental data generating process yet were

“missed” in the sense or “not considered” by the econometrician. Most importantly, our

exposition in the Appendix implies that the latter missing instruments have no incidence on

the test’s validity.

Since the model we consider does not imply cross-equation constraints, it is possible (and

valid) to apply the univariate approach of Dufour, Khalaf, and Kichian (2006) on an equation-

by-equation basis. Invariance to contemporaneous correlation of disturbances derives from

the results of Dufour and Khalaf (2002), and, as may be checked from the Appendix, the

underlying VAR instrumental model is also valid if one focuses on the implications of each

structural equation one at a time, using a univariate statistic [as long as we work within the

regression (4)]. Of course, the derived confidence sets across equations will not be simultane-

ous (global size control is not warranted), yet each remains asymptotically level-correct. For

the same reason, one may also relax all constraints and estimate each regression equation

from the system (2) as a linear simultaneous equation, using the methodology from Dufour

and Taamouti (2005). In this fashion, it is possible to analyze how results are affected as more

restrictions are relaxed while still maintaining endogeneity and possible errors-in-variables.
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To conclude, we note that our distributional assumptions are motivated, on the one

hand by convenience and on the other, by the available literature (Bayesian or classical;

see the discussion in the rejoinder to Del Negro, Schorfheide, Smets, and Wouters (2007)).

While non-normality is not a major issue here [since asymptotic cut-offs can be used in the

context of (4)] extending our approach to account for time dependence or heteroskedasticity is

conceptually straightforward. For example, one may rely on robust Wald statistics associated

with regression (4). For that matter, any test statistic that fits the hypothesized error

distributional assumptions will be identification-robust if conveniently applied to regression

(4).12

4. Empirical Results

We conduct our applications using U.S. data for the sample extending from 1962Q1 to

2005Q3. We use the GDP deflator for the price level, Pt, and the Fed Funds rate as the

short-run interest rate. For the output gap, we consider two measures. The first is a real-

time measure of the output gap, in the sense that the gap value at time t does not use

information beyond that date. This ensures that the lags of the output gap are valid for use

as instruments. Thus, as in Dufour, Khalaf, and Kichian (2006), we proceed iteratively: to

obtain the value of the gap at time t, we detrend GDP with data ending in t. The sample

is then extended by one observation and the trend is re-estimated. The latter is used to

detrend GDP, and yields a value for the gap at time t + 1. This process is repeated until the

end of the sample. A quadratic trend is used for this purpose. The second measure is the

standard quadratically-detrended output gap as in Linde (2005), and which is included for

comparison purposes. We then take the log of both these output gap series.

Our estimations can be conducted using either intra-model instruments, or intra-model

instruments supplemented with external ones. As external instruments, we consider lags 2

and 3 of both wage and commodity price inflation.13 Finally, as in Linde (2005), all our data

is demeaned prior to estimation.

We first examine whether values in the vicinity of those reported by Linde (2005), and

which were obtained with FIML, are supported by our methods. A grid search is conducted

for coefficients covering about three standard errors around the obtained estimated values,

12Note that our methodology can conceptually also be adapted to allow for parameter time-variation and

non-stationary variables. However such extensions are beyond the scope of the present paper.
13Wage and commodity price inflation were also in the instrument sets of Gali, Gertler, and Lopez-Salido

(2001), and Gaĺı, Gertler, and Lopez-Salido (2005).
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with and without external instruments, and using the standard output gap measure.14 We

find that the joint confidence set is entirely empty, both with only intra-model instruments,

and with intra- and extra-model instruments. This indicates that this econometric model is

soundly rejected at the five per cent level.

We next conduct an unrestricted search over all of the admissible parameter space and

calculate the J-type tests that are based on minθ0 W (as described above). These are accom-

plished with each measure of the output gap (i.e., the standard or the real-time), and for

both cases of when only intra-model or intra- and extra-model instruments are considered.

Results with the standard output gap measure conform with our restricted grid search: the

minθ0 W-based J-test is significant with either instrument sets. In contrast, when the real-

time gap measure is used, the model is no longer rejected at the 5 per cent level, again for

either instrument set. The test p-values are thus 0.0850 when intra-model instruments are

used, and 0.0787 when both intra and extra-model instruments are considered.

Focusing on the model with the real-time gap, and where both internal and external

instruments are used, we now proceed with the derivations of projections for the parameters

of interest using numerical methods. After inverting our proposed multivariate test, the

results are as follows:

• The NKPC equation:

[0.6064, 0.9019] for ωf , [-0.0368, 0.0126] for γ.

• The IS equation:

[0.3415, 0.6456] for βf , [-0.0668, 0.0293] for βr.

• The Taylor rule:

[2.7445, 3.1583] for γπ, [3.1539, 3.3912] for γy,

[0.9886, 1.1357] for ρ1, [-0.5664,-0.3537] for ρ2, [0.1649, 0.3593] for ρ3.

14More specifically, the parameter ranges that we use are: [0.9, 1.2], [-0.8, -0.2], [0.2, 0.4], for ρ0
1, ρ0

2, and

ρ0
3, respectively (making sure that their sum remains inferior to one), [0.2, 0.4] for ω0

f , [0.04, 0.06] for γ0,

[0.40, 0.46] for β0
f , [0.08, 0.10] for β0

r , [0.8, 1.1] for γ0
π, and [0.5, 1.5] for γ0

y . The corresponding incremental

values for the numerical search are 0.1 for ρ0
1, ω0

f and γ0
y , 0.05 for ρ0

2 and ρ0
3, and β0

r , 0.01 for β0
f and γ0

π, and

0.005 for γ0.
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Within our confidence set, we can find the least-rejected parameter combination. Our Hodges-

Lehmann point estimates are: ω̂f = 0.7309, β̂f = 0.4891, γ̂π = 2.9252, γ̂y = 3.2756, while γ̂

and β̂r are both zero. Finally, the point estimate for sum of the interest rate autoregressive

terms equals 0.2914.

The results reveal some striking features. First, there are identification difficulties associ-

ated with our considered model. This is apparent from the fact that some parameters have

fairly wide ranges for their projections (particularly, parameters ωf and βf ). Second, the

projections are not symmetric. In other words, some parameter values within the projection

range are more compatible with the data than other points. This is not apparent from the

projections per se (though this information is readily available to the researcher) but can be

observed when we examine the point estimates with respect to the projections. For example,

the most probable point for γy is closer to the upper limit of its projection space than to the

midpoint of that range. Third, despite the identification difficulties, the econometric model

is quite informative about certain features of the economy. That is, in general terms, none of

the projections are unbounded, or reach the limits of their admissible parameter space. Most

of the model coefficients (except for two) are significant and coefficients have the expected

signs.

We would like to focus now particularly on the conclusions with regard to the NKPC

equation, as the debate on whether the curve is mostly forward- or backward-looking is far

from settled. Proponents of the FIML approach such as Linde (2005) argue (for example,

using simulation exercises), that full-information approaches are more likely to pin down true

model parameter values. However, their conclusions are drawn in studies that are absence

of any consideration for identification concerns. Similarly, proponents of limited-information

approaches argue that when one estimates the closed form of a model, carefully mapping

the structural form with the closed form, then limited-information methods produce valid

outcomes (see, Sbordonne 2005 and Gaĺı, Gertler, and Lopez-Salido 2005). However, the

conclusions of the latter are also obtained without any reference to identification difficulties.

Indeed, much of the debate seems rather to have focused on misspecification issues.

Our newly-proposed method (as well as the comparisons to existing univariate methods;

see below) allows us to shed some light on this debate. In this respect, the results of our

inference point decisively to a preponderantly forward-looking inflation equation. Though

the range is fairly wide for the ωf parameter, the weight on the forward-looking term is

at least 60 per cent, and at most 90 per cent. This also implies that the NKPC is not

purely forward-looking, as the backward-looking term is between 10 and 40 per cent. Thus,
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our results concur with the limited-information-based results of Roberts (2001) and of Gaĺı,

Gertler, and Lopez-Salido (2005), and are at variance with the FIML-based outcome of Linde

(2005) that concludes that the inflation process is pre-ponderantly backward-looking. At the

same time, however, we find that the coefficient on the output gap term in the NKPC is not

significant (our projection range includes zero, and indeed our point estimate is zero).

For comparison purposes, we also apply two existing (yet fairly recent) univariate identification-

robust methods to the NKPC. One is the method applied by Dufour, Khalaf, and Kichian

(2006), and the other is the univariate linear IV method proposed in Dufour and Taamouti

(2005). The data, instruments, and variables used remain the same as above. The only

difference with the more general set-up is that certain model restrictions are not imposed.

Accordingly, each univariate method integrates and assesses the model’s structural restric-

tions to a different degree.

First we apply the method of Dufour, Khalaf, and Kichian (2006) to the NKPC. In

this case, the restriction that the sum of the backward and forward-looking components of

inflation sum to one is retained, and the instruments for the estimation now include all of the

included predetermined variables in the multi-equation structure, as well as the considered

external instruments. The results yield the ranges [0.345, 0.995] for the ωf , and [-0.075, 0.055]

for γ parameters, respectively.15 Both projection regions are wider than those obtained using

our multivariate approach. Notably, with this method, it is no longer possible to ascertain

that the NKPC is mostly forward-looking. Interestingly, the coefficient on the gap term is

not significant, as was the case with the multiequation approach results.

Next, we drop the restriction that the sum of the inflation lead and lag sum to one, and

apply the method proposed in Dufour and Taamouti (2005). Here, the search space for the

ωf and γ parameters are between minus infinity and plus infinity. In this case, we find that

the projection region for ωf is [0.8649, 1.1908], while for γ, it is [-0.0905, 0.0539]. Once again,

it can be concluded that the curve is forward-looking preponderantly, but, according to this

method, values of ωf above one are also admissible. As for the range of the coefficient on

the output gap, it is slightly wider than with the previous two methods, and similar to the

previous results, it includes zero.

In summary, we see that the multi-equation confidence intervals are generally tighter than

their univariate counterparts, and thus more informative. These results are compatible with

efficiency gains associated with a systems-based approach. Most notably, our results support

a preponderantly forward-looking NKPC whereas the confidence set for the coefficient on the

15For numerical tractability, the upper end of the search region for ωf was 0.995.
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output gap term is found to cover zero whether we use multivariate or univariate methods.

In addition, our results point to the existence of both forward- and backward-looking com-

ponents in the IS curve, and to an insignificant coefficient on the real interest rate, which

indicate that expectation-based terms seem to be the driving variables in the three-equation

system. Finally, all parameters of the interest rate rule are significant, and there is evidence

for smoothing behaviour in interest rates.

4. Conclusion

Taken in comparison with our earlier work (Dufour, Khalaf, and Kichian 2006, our findings

indicate that LI methods, though suffering from weak-identification problems, nonetheless

provide some information on the U.S. inflation process.

These results are of course specific to the models analyzed, yet they call for caution in

interpreting available FIML results based on standard econometric techniques. The fact

remains that, though our results are model-specific, our new methodology is, in principle,

applicable beyond the specific model that was analyzed here and numerical burdens are not

more demanding then the current state-of-the-art in the literature.

DSGE modelers are often confronted, among others, with the following enduring ques-

tions: (1) Should we construct large scale econometric models to capture full structural

macro-economic models or should we instead focus on smaller models which address a few

relevant features of interest? (2) Models are approximations i.e. ”wrong” by construction, so

to what extent should specification and observational equivalence issues ultimately matter

given that macro-economic data are scarce? The literature is constantly struggling with such

questions and many of the available econometric answers have recently taken a Bayesian

perspective. Whether frequentists or Bayesians, if economists are to address such questions

via productive use of econometric methods, they must endeavor to apply and develop pro-

cedures for which error probabilities can be controlled precisely. Our paper throws some

light [we clearly do not claim we resolve such broad and fundamental questions] on the mat-

ter from a frequentist perspective: we propose a methodology which allows to focus on a

sub-model of choice, yet it is provably robust to many characteristics of the underlying full

model including full identification, missing instruments or error-in-variable problems. Pur-

suing identification-robust multivariate approaches is therefore a worthy research objective.

These will be important to the academic community and policy makers since they might

very well show that models for which doubt had been cast in the past or results that have
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led to unclear policy recommendations could in fact be better understood given an adequate

methodology.
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Appendix

Consider the multivariate regression

Y = XB + U (8)

where Y = [Y1, . . . , YT ]′ is the T × n matrix of observations on n dependant variables,

X = [X1, . . . , XT ]′ is the T × k matrix of regressors and U = [U1, . . . , UT ]′ is a T × n

matrix of disturbances. For instance, (4) can be written in this form, with

Yt = (π∗
t , y

∗
t , R

∗
t )

′ , Xt =
(
Z

′
t , Z̃

′
t

)′
, Ut = (επ,t, εy,t, εR,t)

′, t = 1, ..., T , (9)

so n = 3, k = 8 + q. Excluding Z1t and Z̃t from all equations and Z2t from the first and

third equation of (4) may be tested using the usual SURE-type F tests. In our context, the

statistic takes the following form. Let B̂ denote the OLS estimator of the coefficients of (4),

and let b̂ = vec(B̂). Furthermore, we define:

π∗ = (π∗
1, ..., π

∗
T )′ , y∗ = (y∗

1, ..., y
∗
T )′ , R∗ = (R∗

1, ..., R
∗
T )′

Y∗ =


π∗

y∗

R∗

 ,X ∗ =


X 0 0

0 X 0

0 0 X

 .

Then we consider the SURE Wald-type statistic16

W =

(
3(T − k)

m

) (
Ab̂

)′[
A

(X ∗′
(
Σ̂−1 ⊗ In

)
X ∗)−1

A′]−1(
Ab̂

)
(Y∗−X ∗b̂)′

(
Σ̂−1 ⊗ In

)
(Y∗−X ∗b̂)

(10)

where A is the m × 3k selection matrix with m = 2k + 4 + q

A =


Aπ

Ay

AR

 ,

Aπ =
[

I(k) zeros(k, 2k)
]

Ay =
[

zeros(4 + q, k) A zeros(4 + q, k)
]

AR =
[

zeros(k, 2k) I(k)

] , A =

[
I(4) 0 0

0 0 I(q)

]
.

(Theil, 1971, Chapter 6) suggests that the F (m, 3(T − k)) provides a good approximation to

the null distribution of W . Dufour and Khalaf (2003) confirm this claim in the context of a

three-equations SURE system.

The test conducted in this framework supposes that the (unrestricted) reduced form for

the system is given, up to an error term, by some function of: (i) the predetermined variables

16The statistic W corresponds to the z statistic in equation (10.11) of (Srivastava and Giles, 1987, Chapter
10) and to equation (49) in (Dufour and Khalaf, 2003, equation (49)).
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in the system, (ii) the extra instruments used in the test, and (iii) possibly a set of further

explanatory variables which were not used in the test. So by conducting the test of (3) in

the context of (2) as a test of (??) in the context of (4), as described, we obtain a p-value

that it is in fact robust to the specification of the fundamental DGPs under consideration, to

measurement errors and excluded instruments. To see this, suppose that the reduced form

takes the unrestricted VAR specification

πt = aππt−1 +
∑3

i=1 bπ,iRt−i +
∑4

i=1 cπ,iyt−i + $′
πQt + νπ,t

yt = ayπt−1 +
∑3

i=1 by,iRt−i +
∑4

i=1 cy,iyt−i + $′
yQt + νy,t

Rt = aRπt−1 +
∑3

i=1 bR,iRt−i +
∑4

i=1 cR,iyt−i + $′
RQt + νR,t

. (11)

where Qt =
(
Z̃

′
t , Q̃

′
t

)′
, and Q̃t are a set of relevant explanatory variables; these may

include further lags of the endogenous variables, and/or further predetermined or exogenous

variables. Let

ω∗
f = ωf − ω0

f , γ∗ = γ − γ0, β∗
f = βf − β0

f , β∗
r = βr − β0

r , γ∗
π = γπ − γ0

π;

γ∗
y = γy − γ0

y , ρ∗
1 = ρ1 − ρ0

1, ρ∗
2 = ρ2 − ρ0

2, ρ∗
3 = ρ3 − ρ0

1;

β∗
y,i = βy,i(1 − βf ), i = 1, ..., 4; ρ∗

i = ρi − ρ0
i , i = 1, ..., 3;

γ∗
π =

(
1 −

3∑
i=1

ρi

)
γπ −

(
1 −

3∑
i=1

ρ0
i

)
γ0

π;

γ∗
y =

(
1 −

3∑
i=1

ρi

)
γy −

(
1 −

3∑
i=1

ρ0
i

)
γ0

y .

Substituting (11) into (4) leads, for the inflation equation, to the following: where Qt =(
Z̃

′
t , Q̃

′
t

)′
, and Q̃t are a set of relevant explanatory variables; these may include further lags

of the endogenous variables, and/or further predetermined or exogenous variables. Let

ω∗
f = ωf − ω0

f , γ∗ = γ − γ0, β∗
f = βf − β0

f , β∗
r = βr − β0

r , γ∗
π = γπ − γ0

π;

γ∗
y = γy − γ0

y , ρ∗
1 = ρ1 − ρ0

1, ρ∗
2 = ρ2 − ρ0

2, ρ∗
3 = ρ3 − ρ0

1;

β∗
y,i = βy,i(1 − βf ), i = 1, ..., 4; ρ∗

i = ρi − ρ0
i , i = 1, ..., 3;

γ∗
π =

(
1 −

3∑
i=1

ρi

)
γπ −

(
1 −

3∑
i=1

ρ0
i

)
γ0

π;

γ∗
y =

(
1 −

3∑
i=1

ρi

)
γy −

(
1 −

3∑
i=1

ρ0
i

)
γ0

y .

Substituting (11) into (4) leads, for the inflation equation, to the following:
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π∗
t = πt−1

[
ω∗

f

(
a2

π + bπ,1aR + cπ,1ay − 1
)

+ γ∗ (ay)
]

+ Rt−1

[
ω∗

f (aπbπ,1 + bπ,1bR,1 + cπ,1by,1 + γ∗ (by,1))
]

+ Rt−2

[
ω∗

f (aπbπ,2 + bπ,1bR,2 + cπ,1by,2 + bπ,2) + γ∗ (by,2)
]

+ Rt−3

[
ω∗

f (aπbπ,3 + bπ,1bR,3 + cπ,1by,3 + bπ,3) + γ∗ (by,3)
]

+ yt−1

[
ω∗

f (aπcπ,1 + bπ,1cR,1 + cπ,1cy,1) + γ∗ (cy,1)
]

+ yt−2

[
ω∗

f (aπcπ,2 + bπ,1cR,2 + cπ,1cy,2 + cπ,2) + γ∗ (cy,2)
]

+ yt−3

[
ω∗

f (aπcπ,3 + bπ,1cR,3 + cπ,1cy,3 + cπ,3) + γ∗ (cy,3)
]

+ yt−4

[
ω∗

f

(
aπcπ,4 + bπ,1cR,4 + c∗π,1cy,4 + cπ,4

)
+ γ∗ (cy,4)

]
+

(
ω∗

faπ$′
π + ω∗

fbπ,1$
′
R +

(
ω∗

fcπ,1 + γ∗) $′
y

)
Z̃t + ξπ,t

where

ξπ,t = ω∗
faπνπ,t + ω∗

fbπ,1νR,t +
(
ω∗

fcπ,1 + γ∗) νπ,t

+
(
ω∗

faπ$′
π + ω∗

fbπ,1$
′
R +

(
ω∗

fcπ,1 + γ∗) $′
y

)
Q̃t

+ω∗
fνπ,t+1 + ω∗

f$
′
πQt+1 + επ,t.

The term ξπ,t includes, in addition to the errors terms, the explanatory variables that were

missing from the multivariate regression (4). Turning to the output equation, we have

y∗
t = πt−1

[
β∗

f (aπay + aycy,1 + aRby,1) + β∗
r

(
a2

π + aycπ,1 + aRbπ,1 − 1
)]

+ Rt−1

[
β∗

f (bπ,1ay + by,1cy,1 + bR,1by,1 + by,2) + β∗
r (bπ,1aπ + by,1cπ,1 + bR,1 (bπ,1 − 1) + bπ,2)

]
+ Rt−2

[
β∗

f (bπ,2ay + by,2cy,1 + bR,2by,1 + by,3) + β∗
r (bπ,2aπ + by,2cπ,1 + bR,2 (bπ,1 − 1) + bπ,3)

]
+ Rt−3

[
β∗

f (bπ,3ay + by,3cy,1 + bR,3by,1) + β∗
r (bπ,3aπ + by,3cπ,1 + bR,3 (bπ,1 − 1))

]
+ yt−1

[
β∗

f

(
cπ,1ay + c2

y,1 + cR,1by,1 + cy,2

)
+ β∗

r (cπ,1aπ + cy,1cπ,1 + cR,1 (bπ,1 − 1) + cπ,2) + β∗
y,1

]
+ yt−2

[
β∗

f (cπ,2ay + cy,2cy,1 + cR,2by,1 + cy,3) + β∗
r

(
cπ,2aπ + cy,2cπ,1 + cR,2 (bπ,1 − 1) + cπ,3 + β∗

y,2

)]
+ yt−3

[
β∗

f (cπ,3ay + cy,3cy,1 + cR,3by,1 + cy,4) + β∗
r

(
cπ,3aπ + cy,3cπ,1 + cR,3 (bπ,1 − 1) + cπ,4 + β∗

y,3

)]
+ yt−4

[
β∗

f (cπ,4ay + cy,4cy,1 + cR,4by,1) + β∗
r (cπ,4aπ + cy,4cπ,1 + cR,4 (bπ,1 − 1)) + β∗

y,4

]
+

[
β∗

f

(
ay$

′
π + cy,1$

′
y

)
+ β∗

r

(
aπ$′

π + cπ,1$
′
y

)]
Z̃t + ξy,t
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where

ξy,t =
(
β∗

f$
′
y + β∗

r$
′
π

)
Qt+1 +

[
β∗

f

(
ay$

′
π + cy,1$

′
y

)
+ β∗

r

(
aπ$′

π + cπ,1$
′
y

)]
Q̃t

+β∗
rνπ,t+1 +

(
β∗

fcy,1 + β∗
r cπ,1

)
νπ,t

+β∗
fνy,t+1 +

(
β∗

fay + β∗
raπ

)
νy,t

+
(
β∗

fby,1 + β∗
r (bπ,1−) 1

)
νR,t + εy,t.

Finally, the interest rate equation corresponds to:

R∗
t = πt−1

[
γ∗

πaπ + γ∗
yay

]
+Rt−1

[
γ∗

πbπ,1 + γ∗
yby,1 + ρ∗

1

]
+Rt−2

[
γ∗

πbπ,2 + γ∗
yby,2 + ρ∗

2

]
+Rt−3

[
γ∗

πbπ,3 + γ∗
yby,3 + ρ∗

3

]
+yt−1

[
γ∗

πcπ,1 + γ∗
ycy,1

]
+yt−2

[
γ∗

πcπ,2 + γ∗
ycy,2

]
+yt−3

[
γ∗

πcπ,3 + γ∗
ycy,3

]
+yt−4

[
γ∗

πcπ,4 + γ∗
ycy,4

]
+

[
γ∗

π$′
π + γ∗

y$
′
y

]
Z̃t + ξR,t

where

ξR,t =
[
γ∗

π$′
π + γ∗

y$
′
y

]
Q̃t + γ∗

πνπ,t + γ∗
yνy,t + εR,t.

We thus see that that under the null hypothesis

ξπ,t = επ,t, ξy,t = εy,t, ξR,t = εR,t, i = 1, ..., 4,

and the null model collapses to

π∗
t = επ,t, (12)

y∗
t =

4∑
i=1

β∗
y,iyt−i + εy,t, (13)

R∗
t = εR,t, (14)

which justifies the tests we apply. The above derivations validate our test procedure given

usual (unconstrained) reduced form assumption on the macro-economic aggregate under con-

sideration.
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