
Working Paper/Document de travail
2007-49

Examining Simple Joint Macroeconomic and 
Term-Structure Models: A Practitioner’s 
Perspective

by David Jamieson Bolder and Shudan Liu

www.bankofcanada.ca



Bank of Canada Working Paper 2007-49

October 2007

Examining Simple Joint Macroeconomic and
Term-Structure Models: A Practitioner’s

Perspective

by

David Jamieson Bolder and Shudan Liu*

Financial Markets Department
Bank of Canada

Ottawa, Ontario, Canada K1A 0G9
dbolder@bankofcanada.ca

* Shudan Liu worked on this paper during a six-month tenure as a
visiting PhD student from the Applied Mathematics Department

of the University of Western Ontario.

Bank of Canada working papers are theoretical or empirical works-in-progress on subjects in
economics and finance. The views expressed in this paper are those of the authors.

No responsibility for them should be attributed to the Bank of Canada.

ISSN 1701-9397 © 2007 Bank of Canada



ii

Acknowledgements

We would like to thank Greg Bauer, Antonio Diez de los Rios, and Stephen Murchison from the

Bank of Canada for their useful input into this paper. We would also like to thank Jeremy Rudin

from the Department of Finance Canada, Mark Reesor from the Applied Mathematics

Department of University of Western Ontario, and Jeremy Graveline from the Carlson School of

Management at the University of Minnesota. As always, all acknowledgement is without

implication. The authors are entirely responsible for any errors, omissions, or unclarities.



iii

Abstract

The primary objective of this paper is to compare a variety of joint models of the term structure of

interest rates and the macroeconomy. To this end, we consider six alternative approaches. Three of

these models follow from the work of Diebold and Li (2003) with a generalization in Bolder

(2006). The fourth model is a regression-based approach motivated entirely by empirical

considerations. The fifth model follows from the seminal work of Ang and Piazzesi (2003), who

suggest a joint macro-finance model in a discrete-time affine setting. The final model, which we

term an observed-affine model, represents an adjustment to the Ang-Piazzesi model that

essentially relaxes restrictions on the state-variable dynamics by making them observable. The

observed-affine model is similar in spirit to work by Colin-Dufresne, Goldstein, and Jones (2005)

and Cochrane and Piazzesi (2006). Using monthly Canadian data from 1973 to 2005, we compare

each of these models in terms of their out-of-sample ability to forecast the transition density of

zero-coupon rates. We also examine a simple approach aimed at permitting a subset of the

parameters in the non-affine models to vary over time. We find, similar to Bolder (2006), that the

Diebold and Li (2003) motivated approaches provide the most appealing modelling alternative

across our different comparison criteria.

JEL classification: C0, C6, E4, G1
Bank classification: Interest rates; Econometric and statistical methods; Financial markets

Résumé

Le but premier des auteurs est de comparer entre eux différents modèles qui formalisent à la fois

la dynamique de la structure des taux d’intérêt et celle de l’économie. Des six modèles qu’ils

considèrent, trois s’inspirent des recherches de Diebold et Li (2003) et d’une généralisation du

modèle de ces derniers présentée par Bolder (2006). Le quatrième modèle fait appel à l’analyse de

régression et est motivé exclusivement par des considérations empiriques. Le cinquième modèle

s’inscrit dans la lignée des travaux novateurs d’Ang et Piazzesi (2003), qui suggèrent l’emploi

d’un modèle macrofinancier de type affine formulé en temps discret. Le dernier, le modèle affine à

facteurs observables, est une variante du modèle d’Ang et Piazzesi où l’on a recours à des

variables d’état observables au lieu d’imposer des restrictions à la dynamique de ces variables. Le

modèle affine à facteurs observables emprunte à la démarche de Colin-Dufresne, Goldstein et

Jones (2005) et de Cochrane et Piazzesi (2006). À l’aide de données canadiennes mensuelles

allant de 1973 à 2005, les auteurs comparent la capacité de chacun de ces modèles à prévoir la

densité de transition des taux d’obligations coupon zéro au-delà de la période d’estimation. Ils
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analysent également une méthode simple devant permettre à un sous-ensemble des paramètres des

modèles non affines de varier dans le temps. À l’instar de Bolder (2006), ils constatent que les

modèles prenant appui sur les travaux de Diebold et Li (2003) sont les plus prometteurs eu égard

aux critères de comparaison retenus.

Classification JEL : C0, C6, E4, G1
Classification de la Banque : Taux d’intérêt; Méthodes économétriques et statistiques; Marchés
financiers



Macroeconomic and Term-Structure Dynamics

1 Introduction

In a risk-management setting, one is generally interested in understanding the dynamics of the term-structure

of interest rates under the physical probability measure. This differs from the dynamics of the term structure of

interest rates under the risk-neutral measure in a number of ways, not least of which is the need to estimate one’s

parameters to historical data rather than to calibrate them to existing market conditions. This raises a number

of practical econometric challenges and also naturally leads one to inquire about the in- and out-of-sample fit to

the data. While there is a growing literature addressing term-structure dynamics under the physical measure,

it is an unfortunate reality that the models offered by the literature generally perform poorly out-of-sample.1

Indeed, most models are hard pressed to beat the random-walk assumption, which basically amounts to assuming

that interest rates are martingales. In the words of Duffee (2002) “if a model produces poor forecasts of future

rates [...] it is unlikely that the model can shed light on the economics underlying the failure of the expectations

hypothesis.” Moreover, if the model has little to say about the expectations hypothesis, the failure of which is

the central empirical fact about the term structure of interest rates, then it is unlikely that it will be a suitable

tool for describing interest-rate dynamics.

Recent work has addressed this deficiency in a variety of ways. Duffee (2002) and Cheridito, Filipović,

and Kimmel (2005) introduce a more flexible market price of risk aimed at improving the class of affine term-

structure models. Diebold and Li (2003) introduce an empirically motivated approach, which aims to improve

the forecasting capacity of term-structure models. Ang and Piazzesi (2003) demonstrate how the incorporation

of macroeconomic factors into a term-structure model can actually improve model performance. These are

useful contributions and this paper examines all of these improvements, with a particular focus on the last two

suggestions, from a practical risk-management perspective. In other words, this work investigates how we might

use recent academic work for the joint description of Canadian term structure and macroeconomic dynamics.2

Throughout the course of this paper, we attempt to extend the current literature in a few unconventional

directions. We do this out of a desire to identify relatively simple models that can be used for practical risk-

management applications. It is, for example, absolutely essential that when we simulate from our model that

the resulting outcomes are consistent with the financial and economic environment used to estimate the data.

That is, it is critically important that our joint model be capable of describing the transition density of the term
1See, for example, Duffee (2002), Diebold and Li (2003), and Bolder (2006) among others for more detail.
2Bolder (2002, 2003) provide one possible approach for describing this joint distribution. The foundation of this methodology

is the specification of a two-state Markov chain for Canadian output. The interest-rate dynamics are described by an affine term-

structure model. The corresponding link between the macroeconomy and the term structure comes through the market price of risk,

which is assumed to be a function of the probability of recession. It should be noted, however, that this model was very much an ad

hoc construction that was built to address a specific risk-management question.
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Macroeconomic and Term-Structure Dynamics

structure of interest rates. This is generally equivalent to having a model that generates good out-of-sample

forecasts. As previously mentioned, the extant models in the finance literature demonstrate difficulty in this

respect. We feel, therefore, that practical risk-management needs provide a certain degree of practitioner license

to modify the existing models.

This paper is, in many ways, quite similar in spirit to Bolder (2006). Specifically, we compare a collection of

empirically motivated models suggested by Diebold and Li (2003). We also examine the seminal joint macroeco-

nomic term-structure affine model suggested by Ang and Piazzesi (2003). To this end, we compare a number of

models in terms of their ability to forecast the first two moments of zero-coupon rates, and excess holding-period

returns. There is, however, a major difference between this paper and Bolder (2006). In particular, we examine

an unconventional adjustment to the Ang and Piazzesi (2003) model that essentially involves making the yield-

curve state variables observable. The motivation for this adjustment is to relax the Ang and Piazzesi (2003)

assumption of independence between macroeconomic and financial factors and simultaneously increase model

flexibility without increasing the dimension of the parameter space and consequently making the optimization

problem even more difficult. This suggested model is similar in spirit to work by Colin-Dufresne, Goldstein, and

Jones (2005) and Cochrane and Piazzesi (2006).

Our adjustment essentially separates the estimation of the physical and pricing measure parameters. We term

this the observed-affine model as our change implies that the state variables are no longer latent; instead, the

yield-curve related state variables are extracted from a principal components analysis of the variance-covariance

matrix of zero-coupon yield movements. We would encourage the reader not to immediately dismiss this un-

conventional adjustment. We believe it is worth investigation for two reasons. First, as will be seen, it does

a reasonable job of generating out-of-sample estimates. As such, it appears to offer some usefulness from a

practitioner’s perspective. Second, we feel that it provides some insight into the nature of the out-of-sample

underperformance of the affine class of term-structure models. In particular, it is our view that the estimation

algorithm does not appear to place sufficient weight on the description of state-variable dynamics. This insight

may be helpful to other researchers in constructing a more complete and theoretically appealing solution to the

problem.

The paper is organized into two principal sections. Section 2 provides the motivation and description of

the six alternative models considered in this study, with most of the technical details relegated to technical

appendices. Section 3 compares these models on a number of dimensions including in-sample cross-sectional fit,

out-of-sample fit to the first two moments of zero-coupon rate dynamics, and an out-of-sample description of

excess holding-period returns. Section 4 provides concluding remarks.
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Macroeconomic and Term-Structure Dynamics

2 Models

In this section, we describe the various models that we will consider in this study. Before we actually turn to the

specific models, however, it is useful to first review the general structure of term-structure models. We provide

this high-level overview to motivate the perhaps less than conventional modifications that we propose in this

paper.

Most of the popular models of the term structure of interest rates, despite the broad literature in this area,

have essentially the same form. Abstracting from the technical details, there are, in fact, really only three key

assumptions involved in the modelling process. The first assumption is that the interest-rate system is a function

of some set of state variables. The idea is that the state of the interest-rate system can be characterized by values

of these variables, or factors, at each given point in time. These state variables may be latent (i.e., unobservable)

or observable factors such as macroeconomic variables. Work by Litterman and Schenkman (1991) demonstrates

that, generally speaking, the majority of the variance in interest-rate movements is well described by three or

four factors. This useful paper provides confidence that working with a low-dimensional state-variable system is

reasonable. Consequently, it is rare to see a term-structure model with more than three latent and/or—in the

new stream of joint macro-finance term-structure models—two or three macroeconomic state variables.

The second assumption involves the dynamics of the state-variable vector. Generally, one can think of the

state-variable vector as being any n-dimensional stochastic process. This is, however, a bit too general for

practical work. There are a variety of possible assumptions. If one works in a continuous-time setting, it is

common to use a stochastic differential equation—such as an Ornstein-Uhlenbeck or square-root process—to

describe the state variable dynamics. In a discrete-time setting, one generally uses a vector autoregressive

process—the discrete-time analogue of the Ornstein-Uhlenbeck process—to describe the evolution of the state-

variable vector. This is not to say, however, that these are the only approaches to describing state-variable

dynamics. In particular, there have been a number of papers considering discontinuous sample paths (i.e., Levy

processes or jumps with Poisson arrival) that have been important in incorporating the skewness and kurtosis

evident in interest-rate movements. We do not consider these complications in this paper.

The third, and final, assumption relates to the mapping between the state variables and the term structure of

interest rates. This can, in principle, be quite ad hoc as any function that maps the state-vector into a collection

of pure-discount bond prices (or correspondingly zero-coupon interest rates) would do the job. An arbitrary

mapping can, however, be somewhat dangerous as it can lead to an interest-rate system that permits arbitrage.

Building a system upon a model that frequently allows for arbitrage opportunities is probably a bad idea. Having

said that, if a model has other positive properties, but permits a small probability of arbitrage opportunties,

3
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then it might not be a big problem.3 One’s opinion on this matter, of course, will depend importantly on

one’s ultimate application. If one is pricing exotic structured fixed-income securities, the presence of arbitrage

opportunities in one’s model could easily prove disastrous. If, however, one is trying—as we are in most risk-

management settings—to describe interest-rate dynamics, then the permission of a small number of arbitrage

opportunities may not be so problematic.

The majority of extant models, nevertheless, ensure that the mapping excludes arbitrage opportunities. The

consequence is a number of restrictions on the nature of the state-variable dynamics and the corresponding

form of the mapping. The most common model is the so-called affine model, where pure-discount bond prices

are an exponential-affine function of the state variables. Dai and Singleton (2000) and Duffie, Filipovic, and

Schachermayer (2003) are two excellent references for this very popular class of term-structure models. Leippold

and Wu (2000) introduce the idea of an exponential-quadratic mapping between pure-discount bond prices and

the state-variable vector leading to the quadratic term-structure approach. Flesaker and Hughston (1996) and

Cairns (2004) consider a rather more complex integral expression for the price of a pure-discount bond as a

function of the state variables; this has been termed the positive-interest rate model. There are, of course, other

no-arbitrage mappings, but they find application in the pricing of contingent claims and are not particularly

relevant given the practical risk-management focus of this paper.4

Diebold and Li (2003) introduce a mapping between a set of discrete-time, continuous-value state variables

that is not motivated by no-arbitrage considerations. In this setting, zero-coupon interest rates are described as a

linear combination of the state variables where the coefficients are relatively simple exponentially weighted com-

binations of Laguerre polynomials.5 Bolder (2006) extends this idea to consider alternative mappings including

orthogonalized-exponential and Fourier-series function coefficients. By virtue of the lack of no-arbitrage restric-

tions, these models operate under substantially fewer restrictions than the previously mentioned affine, quadratic,

and positive interest-rate models. Moreover, there is a reasonable amount of empirical evidence suggesting that

these models outperform the no-arbitrage models in their ability to generate out-of-sample forecasts and predict

excess holding-period returns. These models do not, however, ensure a lack of arbitrage opportunities; exactly

how many such opportunities may present themselves is an empirical question.

The natural question, therefore, is why do these models generate superior forecasts? Diebold and Li (2003)

suggest that the reason is the relative parsimony of their model that leads to superior forecasting performance.
3The thinking here is analogous to the negative interest rates that occur with positive probability in Gaussian affine term-structure

models. Everyone can agree that negative nominal interest rates are a fairly unreasonable model output, but a small probablilty of

negative interest rates has not stopped these models from widespread application.
4One popular example is the well-known HJM-framework proposed by Heath, Jarrow, and Morton (1992), which has a wide

range of practical implementations such as the approach suggested by Brace, Gatarek, and Musiela (1997).
5The details of this construction are found in Appendix C.
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Bolder (2006) finds, however, that the relatively higher-dimensional exponential-spline and Fourier-series models

also outperform affine term-structure models. This would suggest that there is perhaps a bit more going on than

just increased parsimony. Duffee (2002) suggests that the underperformance of affine models stems from a lack of

flexibility in the mathematical form of the market price of risk. His correction appears to improve the situation,

but does not appear to entirely solve the problem. Dai, Le, and Singleton (2006) propose an even more general

approach in the discrete-time setting that may be helpful. Given the range of mathematical restrictions on the

market price of risk required to ensure the no-arbitrage condition, however, this is not a trivial exercise.

One hypothesis is that the difficulty associated with no-arbitrage models is related to the estimation procedure.

There are essentially two sets of parameters in these models: those parameters related to the pricing of pure-

discount bonds (i.e., the equivalent martingale measure, or Q, parameters) and those parameters related to the

dynamics of the state variables (i.e., the physical measure, or P, parameters). It is precisely these P parameters

that are critical for the prediction of future yield-curve outcomes. The estimation approach in these models

uses panel data; that is, it is a time series of zero coupon rates, where for each date there is a cross section

of rates across the maturity spectrum. The maximum-likelihood estimation approach proposed by Chen and

Scott (1993) should, in principle, use the cross section to determine the Q parameters and the time series to

identify the P parameters; we will refer to these as pricing and physical parameters, respectively. What appears

to happen, however, is that the cross section dominates the estimation algorithm. The parameters generally fit

the cross section quite well, but do a poor job of identifying the dynamics of the state variables. In other words,

they appear to get the mapping between the state variables and pure-discount bonds correct, but miss the state-

variable dynamics.6 In short, the Chen and Scott (1993) estimation algorithm used for affine term-structure

models is really quite ambitious insofar as it attempts to simultaneously extract the latent state variables,

determine the dynamics of these state variables, and price the collection of zero-coupon bonds. Clearly, this is

a tall order and it is not entirely surprising that it has difficulty.

To summarize, a term-structure model has three components: a collection of observable and/or unobservable

state variables, a description of the dynamics of these state variables, and a mapping between these state variables

and the term-structure of interest rates. The mapping can either be theoretically motivated and constructed

so as to avoid arbitrage opportunities or constructed solely based upon empirical considerations. Estimation of

these models occurs with panel data that simultaneously describes the time-series and cross section of the term
6It is important to note that this point is not entirely inconsistent with Duffee (2002), who argues that a more flexible market

price of risk specification is required. It is possible, for example, that a sufficiently flexible mathematical form for the market price

of risk—which is essentially the link between the physical and pricing worlds—could allow for the appropriate parametrization of

the P and Q parameters. The mathematical restrictions on the form of the market price of risk, however, make this a daunting task.

We leave this work for others.
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structure of interest rates. Moreover, we can divide parameters describing the determination of the cross section

and those describing the state-variable dynamics.

In this paper, we consider three fairly distinct approaches. Ang and Piazzesi (2003) represents the first

approach and is the seminal paper in this nascent literature. This work begins by demonstrating that the

instantaneous short-rate equation that arises in the affine-term structure literature can be extended—with the

addition of macroeconomic state variables—to a Taylor rule. This permits the expansion of affine term-structure

models to explicitly include observable macroeconomic outcomes. We address this model in Section 2.1. In

the second approach, we transform the Ang-Piazzesi model in a manner that separates the estimation of the

physical and pricing parameters and improves its out-of-sample forecast properties. This approach is termed the

observed-affine model and is discussed in Section 2.2. The third approach, forwarded by Diebold, Rudebusch, and

Aruoba (2004b), provides a natural extension of the Diebold and Li (2003) model by including macroeconomic

variables as state variables. This model, along with an extension to include the modifications described in Bolder

(2006) and finally an extremely simple, empirically motivated fifth approach, are described in Section 2.3.

2.1 An affine model

In this section, we discuss the model introduced by Ang and Piazzesi (2003). This paper is the seminal work

in attempting to find a connection between macroeconomic and financial descriptions of the term structure of

interest rates. Their approach is described in terms of our previously discussed three principal term-structure

model assumptions. The entry point of the model, and the first term-structure assumption, is essentially a

combination of the classical Taylor rule and the short rate equation used in the affine term-structure literature.

The idea is that the short-term interest rate, targeted by the monetary authority, depends linearly on a set

of observable macroeconomic state variables, represented by the vector Xo
t , and a set of unobservable latent

yield-curve state variables denoted Xu
t . The short rate, rt, has the form,

rt = δ + ∆T
1 Xo

t︸ ︷︷ ︸
Taylor rule

+∆T
2 Xu

t , (1)

= δ +
[
∆T

1 ∆T
2

]X0
t

Xu
t


 ,

= δ + ∆T Xt,

where δ, ∆1, and ∆2 have the necessary dimensions to ensure that rt is a scalar, and ∆T =
[
∆1 ∆2

]T

. In

short, Ang and Piazzesi (2003) assume that the state variables influencing the term-structure of interest rates

include unobservable financial variables (Xu
t ) and observable macroeconomic variables (Xo

t ). Ang and Piazzesi

6
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(2003) recommend two macroeconomic state variables related to output and inflation. In our implementation of

their model, we use the output gap (xt) and consumer-price inflation (πt). This implies that Xo
t =

[
xt πt

]T

.

The second key term-structure modelling assumption relates to the state-variable dynamics. Ang and Piazzesi

(2003) permit, in full generality, a VAR(p) specification for Xo
t and a VAR(1) approach for Xu

t . Essentially,

this implies that the latent state variables are Markovian, while there is some memory in the macroeconomic

variables. In our implementation of this model, we include only the contemporaneous macroeconomic state

variables (i.e., VAR(1)) given that the evidence in Ang and Piazzesi (2003), and our own experimentation with

the model, suggests that incorporating numerous lags for the economic data leads to overparametrization and

poor out-of-sample fit. The actual state-variable dynamics, therefore, have the form,
Xo

t

Xu
t


 =


C0

Cu


+


 Φ0 02×3

03×2 Φu




Xo

t−1

Xu
t−1


+


εo

t

εu
t


 , (2)

Xt = C + ΦXt−1 + εt,

where Cu ≡ 0 and,

εt =


εo

t

εu
t


 ∼ N


�0,


 Ω0 02×3

03×2 I3×3




︸ ︷︷ ︸
Ω


 . (3)

We also define Σ as the Cholesky decomposition of the variance-covariance matrix, Ω.7

Observation of equations (2) and (3) reveals that the dynamics of the latent state variables are determined

independently of the macroeconomic variables.8 In other words, the current model construction does not permit

the macroeconomic variables to improve the description of the latent, yield-curve, state variables.9 This is

problematic as we might have different expectations, for example, associated with a flat term-structure with low

inflation and high output than a flat term-structure with high inflation and low output. The influence of the

macroeconomic factors on the term structure, therefore, arises elsewhere in the model.

The no-arbitrage mapping from the state variables to the term structure of interest rates, which is the third

and final term-structure modelling assumption, has two components. The first is the specification of the market
7More specifically, Σ = chol(Ω), where Σ is a lower-triangular matrix such that ΣΣT = Ω. See Press et al. (1992, 96–98) for more

details on this decomposition.
8The orthogonality of the observable and unobservable state variables, while perhaps difficult to defend from an empirical

perspective, makes the estimation substantially easier, and perhaps ensures that it is possible, using traditional estimation techniques.

Ang and Piazzesi (2003), however, are quite clear that the imposition of independence between latent and macroeconomic variables

is a drawback of their model.
9Equation (67) in appendix A also demonstrates that the Λ matrix pre-multiplying the state variables in the market price of risk

is also block diagonal. This implies that state variables are also independent from a pricing perspective.
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price of risk. The market price of risk is the link between the physical and pricing measures. Ang and Piazzesi

(2003) suggest the following form stemming from the collection of essentially affine models proposed by Duffee

(2002),

λt = λ + ΛXt, (4)

where λ ∈ R5×1 and Λ ∈ R5×5. If one works through the mathematics, one can construct an exponential affine

mapping in the following recursive form,

Pn+1,t = exp


An − δ +

1
2
BT

n ΣΣT Bn − BT
n Σλ︸ ︷︷ ︸

An+1

+ (BT
n (Φ − ΣΛ) − ∆T )︸ ︷︷ ︸

BT
n+1

Xt


 , (5)

where A1 = −δ and B1 = −∆, and Pn+1,t describes the price of an (n + 1)-period pure-discount bond at time t.

This equation allows us to use the current value of the state variables and our model parameters to recursively

construct the term structure of interest rates. More detail on the mathematical derivation of this model, and

the approach used to estimate the model parameters, is found in Appendix A.

Equation (5) illustrates how the macroeconomic variables influence the term structure of interest rates.

Clearly, each macroeconomic variable is a factor that describes the cross section of the term structure at a

specific point in time. Clearly, the influence of the macroeconomic variables on the yield curve occurs through

this mapping. The zero-coupon yield curve, therefore, is represented as a linear combination of financial and

macroeconomic variables. While this appears reasonable, it is a bit of a concern given that Litterman and

Schenkman (1991) demonstrate that three financial factors are capable of describing approximately 95 per cent

of the variance in zero-coupon curve movements. We keep this in mind as we examine the other approaches and

compare their relative performance.

2.2 An observed-affine model

The motivation behind this model is quite straightforward. We attempt to relax the assumption of indepen-

dence between the macroeconomic and latent yield-curve state variables and thereby permit the macroeconomic

variables to provide some information on yield-curve dynamics. This is motivated, in part, by Colin-Dufresne,

Goldstein, and Jones (2005) who attempt to find an invariant transformation of the latent variables in an affine

model. It is also similar in spirit to the model suggested by Cochrane and Piazzesi (2006) in the context of

building a factor-model for the term structure of interest rates.

The idea is to use the first three principal components from an eigenvalue decomposition of zero-coupon

interest rates. This allows us to treat the yield-curve related variables, and thus all state variables, as observable.

8
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This is the first term-structure modelling assumption relating to the choice of state variables. In one respect,

this reduces the flexibilty of the model to adjust the latent state variables to tightly fit the term structure of

interest rates. The consequence should, therefore, be a less tight fit to the cross section of interest rates. In

another respect, this modification permits a substantial increase in the ease of estimation. Specifically, it permits

us to split the parameter set into physical- and pricing-measure parameters; moreover, each set of parameters

is estimated independently. We denote these measures as P and Q, respectively. This helps to ensure that the

physical parameters, associated with the P-measure, are not distorted by the estimation algorithm in an effort

to fit the zero-coupon cross section.

The first yield-curve assumption surrounds the choice of state variables. The state variable vector, therefore,

has the form,

Xt =
[
xt πt rt lt st ct

]T

, (6)

where lt, st, and ct are the level, slope, and curvature factors from the eigenvalue decomposition; we call these

Xe
t . The xt, πt, and rt are the macroeconomic variables representing the output gap, consumer-price inflation,

and the overnight rate; we will denote these as Xo
t . The instantaneous short-rate, required in an affine setting,

is thus merely a simple identity,

rt =
[
0 0 1 0 0 0

]
Xt, (7)

= IrXt,

which compares to equation (1) in the Ang-Piazzesi model.

For the second key yield-curve assumption, we provide a unrestricted VAR(2) specification for the state-

variable dynamics. The actual state-variable dynamics are described as,
Xo

t

Xe
t


 =


Co

Ce


+

2∑
k=1


F o

k F eo
k

F oe
k F e

k




Xo

t−k

Xe
t−k


+ εt, (8)

Xt = C +
2∑

k=1

FkXt−k + εt,

where Ce �= 0 and,

εt ∼ N (0, Ω) , (9)

and Σ = chol(Ω). The important point is that, in contrast to equations (2) and (3), interaction is permitted

between the yield-curve and macroeconomic state variables. This implies that the future zero-coupon term-

structure dynamics can now also vary depending on the state of the macroeconomy.
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The corresponding price of an (n + 1)-period zero-coupon bond—or rather the mapping between the state

variables and the zero-coupon curve—has a similar form to equation (5) in the previous section. Namely,

Pn+1,t = exp


An + BT

n (C − Σλ) +
1
2
BT

n ΣΣT Bn︸ ︷︷ ︸
An+1

+
(
BT

n (F − ΣΛ) − Ir

)︸ ︷︷ ︸
BT

n+1

Xt


 . (10)

where A1 = 0 and B1 = −Ir.10 Again, as with the Ang-Piazzesi model, the zero-coupon curve is a linear

combination of yield-curve and macroeconomic state variables. Thus, with this approach, the macroeconomic

variables can influence both the dynamics of the yield-curve state variables and the mapping between the state-

variable vector and pure-discount bond prices.

This model is, in many respects, a reverse-engineering exercise. We found, after an enormous amount of op-

timizational effort, that the Ang-Piazzesi model did not appear to perform very well in out-of-sample forecasting

analysis when applied to Canadian data.11 We hypothesize that the principal issue was with the parametrization

of state-variable dynamics. It appears that during the estimation algorithm, there is insufficient flexibility to

simultaneously capture both the cross section and the dynamics of the term structure of interest rates. It appears

to overweight the cross section and underweight the state-variable dynamics. By relaxing the existing restrictions

on the state-variable dynamics and separating the estimation of the physical and pricing parameters, therefore,

we hope to improve the model’s out-of-sample forecasting performance. The observed-affine form, therefore, is

really an ad hoc attempt to improve the description of these state-variable dynamics. We propose this model (i)

from a practical perspective and (ii) as a direction for future research to improve this approach.

2.3 Some empirical models

The models covered in the previous two sections both involved describing the dynamics of the term structure

of interest rates through an affine mapping of the state variables. Affine term-structure models have a number

of theoretical and practical advantages. One of the principal advantages is the explicit description of market

participants’ aggregate attitude towards risk. This concept, captured by the Radon-Nikodým derivative in

general and the market price of risk in particular, provides a clean and intuitive way for the analyst to understand

deviations from the expectations hypothesis and simultaneously ensure the absence of arbitrage. In other words,

one knows that the affine term-structure model is built upon a sound theoretical foundation.

In recent years, a new approach to describing term-structure dynamics has evolved. This methodology,

introduced by Diebold and Li (2003), also assumes that the term structure of interest rates is a function of a set

10The details of the derivation of the observed-affine model are found in Appendix B.
11See Appendix A for a description of the specific optimization algorithm used to solve for the Ang-Piazzesi parameters.
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of unobservable state variables. The key difference is that this approach does not have a theoretical foundation.

It is essentially a time-series extension of a popular curve-fitting algorithm introduced by Nelson and Siegel

(1987).

The lack of a solid theoretical foundation may appear, at first glance, to be a serious weakness. From a

risk-management practitioner’s perspective, however, the most important term-structure model criterion may be

the ability of the model to adequately describe the empirical properties of the term structure.12 To this end,

Diebold and Li (2003) demonstrate that these models perform quite well relative to affine term-structure models.

In recent work, Bolder (2006) also finds that these models compare quite favourably to the Gaussian class of

affine term-structure models—the A0(3) models in the nomenclature of Dai and Singleton (2000)—in the context

of Canadian data. There is, therefore, evidence that these models are a viable alternative, or supplement, to the

traditional affine term-structure models. With the extension of term-structure models to include macroeconomic

information, it is thus only natural that the Diebold and Li (2003) approach also be extended in this direction.

We consider the model suggested by Diebold, Rudebusch, and Aruoba (2004b). This paper has, as we

understand it, two major contributions. First, it casts the so-called extended Nelson-Siegel model in a state-

space form permitting estimation with a Kalman filter. Second, it extends the extended Nelson-Siegel model

to include macroeconomic variables.13 As this paper attempts to compare the range of models that combine

macroeconomic and term-structure factors, it is important to examine this class of models in detail.

Let us begin with a brief description of the extended Nelson-Siegel model. The idea suggested by Nelson and

Siegel (1987) is essentially a specific functional form of the instantaneous forward rate.14 They suggested,

f(t, τ) = x0 + x1e
−λ(τ−t) + x2λ(τ − t)e−λ(τ−t). (12)

Exploiting the well-known fact that the continously compounded zero-coupon rate is related to the instantaneous

forward rate as,15

z(t, τ) =
1

τ − t

∫ τ

t

f(t, u)du, (13)

12To the extent that the model is being used to price contingent claims, of course, this will not be true.
13This is not the only paper that extends these models to include macroeconomic factors, but it is perhaps the most straightforward.

Bernadell, Coche, and Nyholm (2005) also offer a competing model.
14The instantaneous forward rate is defined as,

f(t, τ) = −Pτ (t, τ)

P (t, τ)
, (11)

For more detailed discussion and derivation of the extended Nelson-Siegel model see Bolder (2006).
15One can understand this identity by recalling that the instantaneous forward rate is the marginal cost of borrowing over an

infinitely short period of time, whereas the continuously compounded zero-coupon rate represents an average (hence the integral) of

these marginal borrowing rates over a lengthier time period.
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we can solve for the zero-coupon curve through some simple integration,

z(t, τ) =
1

τ − t

∫ τ

t

(
x0 + x1e

−λ(s−t) + x2λ(s − t)e−λ(s−t)
)

ds, (14)

= x0 + x1

(
1 − e−λ(τ−t)

λ(τ − t)

)
+ x2

(
1 − e−λ(τ−t)

λ(τ − t)
− e−λ(τ−t)

)
.

The classical Nelson-Siegel approach suppresses the first argument in f(t, τ) and z(t, τ); instead, the functions

have the form, f(τ − t) and z(τ − t). The reason is that the curve, in their construction, depends only on the

tenor (i.e., term to maturity) of the relevant interest rate, τ − t. The time element, as measured by t, does not

enter into the equations as this is a static model. This is one of the main contributions of Diebold and Li (2003).

Specifically, they noted that equation (14) is a linear combination of three functions with coefficients, x0, x1, and

x2. These functions are

f0(y) = 1, (15)

f1(y) =
1 − e−λy

λy
, (16)

f2(y) =
1 − e−λy

λy
− e−λy. (17)

Diebold and Li (2003) then proceeded to propose a model whereby the coefficients—which can be shown to

resemble the level, slope, and curvature of the term structure—vary through time.16 To see how this might

work, we define our time-varying coefficients in matrix form as,

Xt =




x0,t

x1,t

x2,t


 . (18)

This suggestive notation is utilized because, in Diebold and Li (2003), the model coefficients are, in fact, the

state variables. Thus, we have identified the first term-structure modelling assumption: the form of the state

variables. We can now write equations (15) to (17) as,

F (τ − t) =




f0(τ − t)

f1(τ − t)

f2(τ − t)


 =




1
1−e−λy

λy

1−e−λy

λy − e−λy


 . (19)

16Diebold and Li (2003) assumed that λ remains constant. This is because the λ parameter is a non-linear parameter and it is well

documented as numerically unstable. While Diebold and Li (2003) suggest that λ be treated as a constant value, the representation

of this model in state-space form and estimation with the Kalman filter in Diebold, Rudebusch, and Aruoba (2004b) solves this

problem.
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The model is easily extended to include macroeconomic variables by augmenting the state-variable vector in

equation (18) as,

Xt =
[
x0,t x1,t x2,t xt πt rt

]T

, (20)

where, again, xt, πt, and rt denote the output gap, consumer-price inflation, and the overnight rate at time t

respectively. In other words, the state variables include, as in the Ang-Piazzesi and observed-affine approaches,

both financial and macroeconomic elements. The factor loadings in equation (19) are also slightly modified as,

F (τ − t) =
[
f0(τ − t) f1(τ − t) f2(τ − t) 0 0 0

]T

, (21)

to indicate that the macroeconomic variables are not mapped into the term-structure of interest rates. Instead,

the macroeconomic variables only assist in the description of the dynamics of the state variables. This is

essentially the opposite of the Ang-Piazzesi approach. Indeed, one can now write the zero-coupon rate function

at time t as the following linear function,

z(t, T ) = F (T − t)T Xt. (22)

Here we have the third term-structure assumption, which describes the nature of the mapping between the state

variables and zero-coupon rates.

We follow Diebold and Li (2003) and estimate this model in two steps. First, we use an optimization

algorithm to fit equation (14) to a sequence of daily datasets of coupon bond data. For each date, we obtain

three parameters (i.e., x0, x1, and x2). At each time point, this vector is augmented with the values of xt, πt, and

rt. In the second step, we proceed to collect all of these parameter estimates together to generates a time-series

of state variables:
{[

x0,t x1,t x2,t xt πt rt

]
, t ∈ {1, .., T}

}
. The dynamics of these state variables, which

is the second term-structure modelling assumption, are estimated with a VAR(2) specification.17

Following from Bolder (2006), we also consider two variations on the Diebold and Li (2003) approach. The

first variation follows from the so-called exponential-spline methodology proposed by Li, DeWetering, Lucas,

Brenner, and Shapiro (2001). This approach, inspired by the work of Vasicek and Fong (1981) and Shea (1985),

describes the discount function as a linear combination of exponential basis functions. Recall that the discount

function and the pure-discount bond price function are equivalent. This implies that we can write pure-discount

bond prices as,

P (t, T ) =
n∑

k=1

ξkgk(T − t), (23)

17Diebold, Rudebusch, and Aruoba (2004b) suggest a Kalman-filter approach to the estimation of model parameters. We exper-

imented with this technique and found that we obtained superior results with the two-step approach suggested in Diebold and Li

(2003).
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where {gk(T − t), t = 1, .., n} is a collection of basis functions. Li et. al. suggest,

gk(T − t) = e−kα(T−t), (24)

for k = 1, ..., n and α ∈ R.18 The parameter, α, can be interpreted as a long-term instantaneous forward rate.

As with the λ parameter in the Diebold-Li setting, it is fairly reasonable to assume that α is approximately

constant.

The second variation comes from Bolder and Gusba (2002) who suggest a Fourier-series basis of the following

form,

gk(T − t) =




1 : k = 1

sin
(

k
2 (T−t)

10

)
: mod (k, 2) = 0

cos
( k−1

2 (T−t)

10

)
: mod (k, 2) = 1

, (25)

for k = 1, ..., n. Note that the horizontal stretch factor 1
10 was arbitrarily selected to extend the wave-length of

each basis function and avoid excessive oscillation.

Equations (24) and (25) describe choices of gk(·) for estimation of the term structure of interest rates at a

given point in time; in other words, they are essentially curve-fitting techniques. While the Fourier-series basis

performs relatively well at this task, it is typically dominated by the exponential basis in equation (24). This is

due primarily to the fundamental form of the pure-discount bond price function, which essentially has a negative

exponential form.

We can now—liberally borrowing from the ideas of Diebold and Li (2003)—transform these models into a

dynamic model for interest rates, by slightly adjusting equation (23),

P (t, T ) =
n∑

k=1

ξt,kgk(T − t). (26)

Again, in a manner analogous to the Diebold-Li model, we can interpret the pure-discount bond function as a

linear combination of n basis functions where the relative weights vary through time according to the coefficients

ξt,k for k = 1, ..., n.19 This idea was first introduced, in the absence of macroeconomic factors, by Bolder (2006).

We also augment the state-variable vector and adjust the factor loadings in a fashion similar to that described

in equations (20) and (21).

Clearly, neither the exponential-spline or Fourier-series basis functions has the intuitive interpretation of the

three basis functions in the Diebold-Li methodology—{fk, k = 0, 1, 2} found in equation (97). Indeed, they
18In actuality, we use an orthogonalized version of these basis functions computed using the Gram-Schmidt orthogonalization

procedure; see Bolder and Gusba (2002) for more details.
19Bolder and Gusba (2002) found that a choice of n ≈ 9 was optimal in terms of describing the term structure at a given instant

in time.
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require a substantially higher dimension to reasonably describe the yield curve. This dimensionality may prove

problematic when we add the three additional macroeconomic state variables. Again, the work of Litterman and

Schenkman (1991) reminds us that only three state variables are required to describe zero-coupon term-structure

movements; we obviously use a substantially larger number of factors. The relative performance of these models,

however, is ultimately an empirical question that will be addressed in Section 3.

The final model, which we term the OLS approach, is something of a strawman. While it is almost trivial,

we feel that it is worth consideration by virtue of its extreme simplicity. Again, we can describe the model in

the context of our three term-structure model assumptions. First, as with the observed-affine model, we use

the first three principal components to describe the yield-curve related factors. All of the factors, therefore, are

observable. The consequence is six state variables: three related to the yield curve and three macroeconomic

variables (i.e., output, inflation, and monetary-policy rate). For the second assumption, the state-variable

dynamics are estimated with a VAR(2) process as,

Xt = C +
2∑

i=1

FiXt−i + νt, (27)

where,

νt ∼ N (0, Ω) . (28)

The final assumption relates to the mapping between zero-coupon rates and the state variables. We assume the

following linear form,

Zt = A + HXt + εt, (29)

where,

εt ∼ N (0, Ξ) . (30)

Inspectation of equations (27) to (30) reveals that we have basically written out the term-structure system

in state-space form. We do not, however, require a filtering approach to estimate the parameters as the state

variables are observable. Consequently, we can estimate equation (27) and (29) using ordinary least-squares.

The only restriction we have is that, given we have only six state variables, we can only use six zero-coupon rates

to estimate the zero-coupon term structure.20 We resort to linear interpolation for the intermediate points.
20In fact, we use three-month, two-, five-, seven-, ten-, and 15-year zero-coupon rates.
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3 Results

This paper is, ultimately, a horserace between a number of competing macro-finance models. This is perhaps

inevitable, given that the primary objective of this paper is to investigate, and hopefully identify, a macro-

finance model for use in practical risk-management analysis. When holding a horserace, therefore, it is important

that one is relatively explicit about the conditions required for good performance in the competition. In our

case, fortunately, this is relatively straightforward. First, we desire models that are fairly simple to interpret,

understand, and estimate. This is because well-designed sensitivity analysis is critical to the practical application

and usage of risk-management models. As formulating sensitivity analysis with complex models is generally

challenging, we have a preference for simple models. This condition, however, is hardly useful as a quantitative

criterion for model comparison. We mention it because, when combined with other criteria, it is an important

qualitative criterion that should not be ignored.

Second, a good macro-finance model should be able to provide reasonable out-of-sample forecasts of both the

conditional expectation and variance of both interest-rate and macroeconomic outcomes across various forecasting

horizons. One of the most common risk-management applications of term-structure modelling is stochastic

simulation.21 As stochastic simulation is essentially an out-of-sample forecasting exercise, it is essential that the

model perform well out-of-sample.22 Moreover, as pointed out by Duffee (2002) and Diebold and Li (2003), a

model that generates poor out-of-sample forecasts is probably missing some important elements of term-structure

dynamics.

Third, we require a certain degree of flexibility. In particular, as we will be estimating each model using a

rather lengthy sample period with a variety of possible macroeconomic regimes, it is useful for a model to be able

to, at least in a simple manner, handle non-time-homogeneous parameters. Indeed, as we will see shortly in the

data, the Canadian economy over the last 30 years has been marked by a number of high-inflation episodes with

attendant consequences for output and interest rates. Taking this into account will be of tremendous practical

importance from a modelling perspective.

Armed with this understanding of our desired model criteria, the remainder of this section turns its attention

to a comparison of our six term-structure models. Before the actual comparison can occur, however, we will

briefly discuss the data used in this analysis and comment on a some of the specifics of the model implementation.

The actual results can be divided into two parts. First, we examine each of these models based on a number

of out-of-sample forecasting criteria with a constant-parameter assumption. This permits a clean comparison of

the models in their simplest form. Second, we introduce a very simple approach to allow a subset of the model
21See Bolder (2003) for a detailed example of such a risk-management application.
22Bolder (2006) provides this type of analysis in the context of term-structure models without macroeconomic variables.
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parameters to vary through time. We then proceed to examine the implications of this choice for our models.

3.1 The data

Let us now turn our attention to the data used for the analysis of our six models. We have 391 monthly

datapoints from January 1973 to July 2005. The zero-coupon curves, outlined in Figure 1, are constructed using

a nine-factor exponential-spline model with an independently estimated non-linear parameter.23
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Figure 1: The Zero-Coupon Data: This figure illustrates the zero-coupon data ranging from January 1973 to July
2005. It was estimated from monthly Government of Canada treasury-bill and nominal bond prices with a nine-factor
exponential-spline model described in Bolder and Gusba (2002).

We can identify periods of quite high interest rates during the early 1980s and early 1990s. Moreover, we

observe periods of flat, inverted, and steep zero-coupon term structures over this 32-year period. Clearly, it

will be something of a challenge for any model to handle what appear to be a number of different zero-coupon

rate regimes. The macroeconomic data, as outlined in Figure 2, serve to underscore this difficulty. These

macroeconomic time series appear to be constructed from two or more different regimes. There appears, for

example, to be a high inflation regime associated with high short-term interest rates while there also appears to

be a low-inflation regime associated with low short-term interest rates. Finally, one could characterize a third
23For more detail about this model, see Bolder and Gusba (2002).
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regime describing the transition between the high- and low inflation regimes. Indeed, Demers (2003) constructs

a Markov-switching model that identified three such regimes in the relationship between Canadian inflation and

output.
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Figure 2: The Macroeconomic Data: This figure illustrates the macroeconomic data ranging from January 1973
to July 2005 including the output gap, the annual inflation rate, and the monetary-policy rate respectively. The output
gap was computed by Bank of Canada staff following the methodology described by Butler (1996).

In the following analysis, we first restrict our attention to the constant-parameter version of these models.

As most of the analysis is based on out-of-sample forecasting performance, with a rolling sample size, we felt

this was a fair approach for comparison of the models. The constant-parameter assumption, however, becomes

problematic when we actually attempt to use these models in a risk-management setting. There are, in fact,

two problems. First, we can expect the parameter estimates, over the entire sample, to do a relatively poor

job of characterizing future outcomes. This is because it will essentially represent an average across the various

inflationary regimes.24 This could be solved by restricting our parameter estimation to the most recent years that,

many would argue, represent a period of stable inflation associated with well-anchored inflationary expectations.

This is clearly an option, but it raises the second problem. We would like, in the context of our simulation model,
24It also leads to the Lucas critique as policy changes over our data interval will not be adequately represented in the model

parameters.
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to incorporate, at least, the possibility of a high-inflationary regime. While this, in the current period, is quite a

low-probability event, it is nonetheless important to consider its inclusion from a risk-management perspective.

We attempt to solve this problem by examining a fairly straightforward approach—borrowing from the work of

Demers (2003)—to incorporating time-varying parameters.

3.2 Some model implementation specifics

As previously discussed, we consider six alternative term-structure models. These include the Ang-Piazzesi, OLS,

observed-affine, Nelson-Siegel, exponential-spline, and Fourier series models. There are a number of practical

details regarding the model implementation that must be mentioned. First, the Ang-Piazzesi already includes

an explicit notion of a short-term interest rate. As a consequence, we use only the output gap and the inflation

rate as observable macroeconomic state variables in the implementation of this model. Incorporation of the

monetary-policy rate is not required and, indeed, may create problems.25 The empirically motivated Nelson-

Siegel, exponential-spline, Fourier series and OLS approaches as well as the observed-affine model include the

three macroeconomic variables outlined in Figure 2.

Table 1: In-Sample Model Fit: In this table, we provide a view of the in-sample root-mean-squared error fit, in
basis points, of each of our models to the actual zero-coupon term-structure data ranging from January 1973 to July 2005.

Nelson Exponential Fourier Ang- Observed-Tenor
Siegel Spline Series Piazzesi

OLS
affine

3 months 37.65 30.85 38.77 21.72 26.17 46.40
6 months 29.05 26.21 36.20 0.00 19.39 58.85
1 year 27.32 21.86 24.24 10.98 27.67 47.78
2 years 22.46 21.56 21.46 0.00 10.60 32.61
5 years 23.40 18.40 18.48 19.06 7.45 24.27
7.5 years 21.00 18.19 18.31 17.13 9.50 36.34
10 years 20.46 19.92 19.29 0.00 8.77 37.77
15 years 30.24 24.75 19.18 26.72 13.98 34.24

Table 1 provides a summary of the in-sample cross-sectional fit of each of the various models to the zero-

coupon data in our sample. The values presented represent the average root-mean-squared error differences

between the model zero-coupon curves and the true zero-coupon curves over the 391-month sample period. The

Ang-Piazzesi model, estimated with the maximum-likelihood approach, assumes that three zero-coupon rates

are observed without error—these are, in our implementation, the six-month, two-year and ten-year zero-coupon
25Moreover, we already have substantial difficulty in estimating the parameters associated with this model. Addition of another

state variable would add to the dimensionality and make the optimization algorithm even more cumbersome.
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rates.26 The in-sample fit of the Ang-Piazzesi model is, with the exception of the long end of the term structure,

generally superior to the in-sample fit exhibited by the four empirical models. This appears to suggest that,

even with the addition of the macroeconomic factors, the Ang-Piazzesi model does a good job of describing the

cross section of zero-coupon rates. Note that the observed-affine model demonstrates a cross-sectional in-sample

fit that is inferior, across the entire term structure, to each of the other five models. The reason is that, as

the yield-curve factors are exogeneously provided, the model does not have the flexibility to adjust the state

variables to improve the fit to the zero-coupon cross section. The model may only adjust the market price of

risk parameters to fit the zero-coupon term structure, which leads to less accurate in-sample description. This

is not a surprise, however, as this feature stems from the construction of the model.

The empirical term-structure models, with the exception of the OLS model at intermediate and long-term

tenors, appear to demonstrate inferior in-sample fit relative to the affine models. This is particularly evident

at the short end of the term structure, where the Nelson-Siegel and Fourier-series models underperform, on

average, by as much as 11 basis points. This improves somewhat at the long end of the term structure where the

exponential-spline and Fourier series models actually demonstrate a slightly better in-sample fit than the affine

term-structure models.

Figure 3 shows the in-sample fit of our six macro-finance term-stucture models from another perspective.

Here we show the root-mean-squared fit of each model to the entire zero-coupon yield curve for each individual

datapoint in our sample.27 The top graphic shows the Nelson-Siegel, exponential-spline, and Fourier-series

models, while the lower graphic illustrates the OLS, Ang-Piazzesi, and observed-affine models. The Nelson-

Siegel, exponential-spline, and Fourier-series models demonstrate substantial volatility in the in-sample fit, with

the Nelson-Siegel model appearing to have more difficulty from the late 1970s to the late 1980s. The Ang-Piazzesi

and OLS models track one another quite closely and, with the exception of the difficult period in the late 1970s

and early 1980s, demonstrate an admirable fit to the zero-coupon data. The observed-affine model has trouble

at discrete intervals across virtually the entire period. This is consistent with the results in Table 1 and supports

the notion that the observed-affine model is less flexible in its ability to fit the cross section of zero-coupon rates.

Figure 4 outlines the state variables for each of our models. This graphic provides some insight into the time-

series properties of the state variables associated with our various models. The Ang-Piazzesi and Nelson-Siegel

models each have three latent term-structure state variables, while the exponential-spline and Fourier series were

each constructed with seven state variables. It is admittedly difficult to extract much insight from the top two

graphics in Figure 4; we do observe, however, that the high-inflation period appears to be characterized by
26The full estimation procedure for the affine term-structure models is described in Appendix A.
27We report the root-mean-squared error difference between 30 points on the true and model zero-coupon curves. One can think

of this measure as essentially an average distance between the two curves across all zero-coupon tenors.
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Figure 3: The Evolution of In-Sample RMSE: This figure displays in-sample root-mean-squared error fit of each
of our six macro-finance term-structure models to the actual zero-coupon term structure of interest rates.

rather greater volatility relative to the latter periods. Clearly, the sheer dimensionality of the exponential-spline

and Fourier-series models is unconventional. The yield-curve-related state variables for the OLS and observed-

affine models are, as previously indicated, merely the first three principal components, which are found in the

bottom graphic of Figure 4. As Diebold and Li (2003) point out, the Nelson-Siegel factors and the first three

principal components of the zero-coupon term structure are highly correlated. For our data sample, this is

verified insofar as we find a contemporaneous correlation between the Nelson-Siegel factors and the first three

principal components of 0.918, 0.803, and -0.756, respectively.28

28The first three principal components are commonly, following from Litterman and Schenkman (1991), interpreted as level, slope,

and curvature. We can proxy level, slope, and curvature as the ten-year zero-coupon rate, the difference between the ten-year

and one-year zero-coupon rate, and twice the two-year zero-coupon rate less the sum of the ten-year and three-month rate. The

contemporaneous correlation between these proxies and the first three principal components is 0.989, -0.851, and -0.790, respectively.

This would suggest that we could presumably also use these simply constructed proxies in our analysis with similar results.
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Figure 4: The Model State Variables: This figure displays state variables, or factors, associated with each of
our six term-structure models. Note that the OLS and observed-affine model both make use of the first three principal
components of zero-coupon term-structure movements.

3.3 Out-of-sample comparison

We are now ready to actually compare our six term-structure models. The comparison focuses on out-of-sample

forecasting ability and occurs along the following four different dimensions:

Entire Curve Out-of-Sample Fit This measure describes the out-of-sample forecasting performance of the

entire zero-coupon curve, where we select 30 evenly spaced tenors from three months to 15 years to represent

the entire curve.

Individual Tenor Out-of-Sample Fit This is essentially the same as the previous measure, although the

out-of-sample performance is organized by individual tenor to provide an alternative perspective on the

results. A focus on the entire curve is useful, but it can hide under- or overperformance in different parts
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of the term structure.

Hit Ratio This measure denotes the proportion of zero-coupon forecasts that fall into a 95% confidence interval

around the base forecast.29 We would expect, for example, that for every 100 out-of-sample forecasts that

only approximately five forecasts should fall outside of a 95% confidence interval. If none fall outside the

confidence interval this might suggest an overestimate of the conditional variance, while if 20 forecasts

fall outside the confidence interval we might suspect an underestimate of the conditional variance. This

measure is a simple attempt to examine how well the models characterize conditional variance in addition

to the conditional expectation generally examined in the literature.

Out-of-Sample Excess Holding-Period Return Forecasts Interpreting the performance of a zero-coupon

rate forecast is not always straightforward. Is, for example, a 20 basis-point error large or small? For this

reason, we use our six models to forecast excess holding period returns. Our hope is that this alternative

perspective provides some additional insight into the absolute and relative performance of these models.

The out-of-sample forecasting begins in October 1987, which implies that the first forecasts are made using 178

months of data. After each set of forecasts, another month of data is added to the dataset, the model parameters

are re-estimated, and a new set of forecasts are constructed. This sequence of operations is repeated until the

end of the sample period. The consequence is 212 non-overlapping one-month forecasts, with 207 six-month,

201 12-month, 189 24-month, and 153 60-month overlapping forecasts respectively. Table 2 illustrates the out-

of-sample root-mean-squared and mean-absolute forecast errors for each of our six macro-finance term-structure

models at one-, six-, 12-, 24-, and 60-month forecasting horizons. Note that, in all cases, our six term-structure

models are compared against the random-walk assumption. This is a useful benchmark because of its simplicity

and also due to the fact that it is generally quite difficult to beat.30 Table 2 compares the out-of-sample of the

entire yield curve and includes a number of summary statistics regarding the forecasting performance such as

mean, median, minimum, maximum, and standard deviation.
29The mechanics of constructing these conditional zero-coupon curve confidence intervals is described in Appendix D.
30The random-walk assumption essentially postulates that zero-coupon rates are martingales. That is, the conditional expectation

of future zero-coupon rates, for all forecasting horizons, is the current zero-coupon curve.
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Table 2: Out-of-Sample Zero-Coupon Curve Forecasts: In this table, we present the root-mean squared and
mean-average error for a series of one-, six-, 12-, 24-, and 60-month zero-coupon curve forecasts for the entire term-
structure for each of our six macro-finance term-structure models. Figures in bold represent an out-performance of the
random-walk assumption.

RMSE MAEModels
Mean Median Max Min SD Mean Median Max Min SD

One-month forecast
Random walk 23.46 20.23 86.05 2.36 15.26 21.28 18.33 71.65 1.75 14.47
Nelson-Siegel 24.10 20.33 92.36 5.68 13.54 21.30 17.67 88.04 4.51 12.97
Exponential spline 22.97 19.58 94.32 3.86 14.46 20.45 17.20 87.85 2.57 13.62
Fourier-series 25.04 21.86 102.53 3.58 15.27 21.83 18.68 93.90 2.93 13.85
Ang-Piazzesi 25.65 21.83 85.58 3.94 15.57 22.92 18.81 66.47 2.89 14.72
Observed affine 30.89 29.85 80.10 9.32 13.87 26.37 25.30 71.87 6.19 12.37
OLS 23.20 20.29 88.96 3.36 13.87 20.48 17.20 76.72 2.80 13.12

Six-month forecast
Random walk 74.98 64.60 307.09 9.29 46.84 67.03 56.09 303.34 8.23 46.10
Nelson-Siegel 72.45 65.34 296.50 11.86 41.85 66.28 57.72 294.71 9.46 41.32
Exponential spline 69.19 63.18 301.74 8.00 42.62 62.37 55.35 298.83 5.86 41.62
Fourier-series 70.76 61.21 309.73 11.71 43.96 63.63 54.31 306.56 9.47 42.85
Ang-Piazzesi 80.40 71.73 262.21 5.99 48.19 74.34 62.61 259.78 4.57 48.47
Observed affine 75.84 66.33 326.05 13.56 43.54 68.63 60.12 323.72 10.86 42.81
OLS 73.03 63.65 328.66 13.66 44.99 66.68 56.92 326.24 10.78 44.25

12-month forecast
Random walk 110.96 95.61 346.24 13.39 68.16 99.57 81.70 337.50 10.00 64.75
Nelson-Siegel 111.46 101.54 310.60 10.59 62.24 101.82 93.53 308.10 8.76 60.63
Exponential spline 102.52 94.84 306.38 15.18 55.83 93.18 84.90 301.45 11.31 54.26
Fourier-series 102.77 91.39 334.74 8.09 58.27 93.34 83.23 328.14 5.81 56.80
Ang-Piazzesi 129.08 125.72 335.02 13.91 61.91 119.84 117.34 324.48 10.22 60.38
Observed affine 117.38 112.27 354.87 15.04 62.83 107.45 101.57 343.01 11.90 61.85
OLS 115.58 110.82 360.49 8.93 65.16 105.62 100.48 346.83 7.91 63.47

24-month forecast
Random walk 156.87 140.23 487.90 21.21 95.28 142.54 123.84 451.76 15.36 90.06
Nelson-Siegel 186.66 181.05 377.68 14.19 86.24 174.48 172.77 357.58 12.75 84.35
Exponential spline 163.16 156.73 403.08 12.27 89.56 151.21 145.36 381.22 9.89 87.81
Fourier-series 161.39 155.15 366.91 18.29 85.66 149.47 137.64 348.78 14.88 83.78
Ang-Piazzesi 193.72 197.64 458.93 8.94 110.78 179.74 186.17 443.36 7.89 106.84
Observed affine 193.99 193.82 406.94 37.20 85.95 182.05 184.71 386.41 32.26 84.90
OLS 193.28 191.69 416.96 17.26 87.68 181.10 181.71 393.30 14.45 85.54

60-month forecast
Random walk 223.55 206.75 521.97 65.52 98.52 207.93 189.42 492.87 57.13 96.86
Nelson-Siegel 349.48 351.35 515.68 171.61 77.72 342.98 337.86 509.84 170.03 76.03
Exponential spline 319.30 320.00 521.81 35.50 79.18 312.10 315.68 514.54 24.42 78.28
Fourier-series 310.85 303.74 525.24 45.21 74.45 303.47 292.47 518.32 40.42 72.86
Ang-Piazzesi 367.56 383.10 522.44 90.72 93.65 346.27 361.17 512.92 51.26 98.27
Observed affine 353.99 357.30 512.26 177.21 78.10 347.56 349.63 507.12 172.05 76.66
OLS 356.19 358.59 514.87 176.01 78.16 349.25 349.73 508.32 174.51 76.35
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A variety of observations can be made from Table 2. First, we note that the exponential-spline and Fourier-

series models exhibit the best performance across all forecasting horizons. In particular, we observe that the

exponential-spline model beats the random-walk assumption at one-, six-, and 12-month forecasting horizons;

this result applies equally to the root-mean-squared and mean-absolute error measures. The Fourier-series

model exhibits more difficulty at the one-month horizon—as it does not succeed in beating the random walk—

but exhibits the strongest performance across all models at the 24- and 60-month forecasting horizons. These

results for the exponential-spline and Fourier-series models are generally robust to the choice of error measure

(i.e., root-mean-squared mean-absolute error) or forecasting statistic (i.e., mean or median). The OLS model also

outperforms the random-walk hypothesis at the one- and six-month forecasting horizons, although its relative

performance deteriorates as we lengthen the forecasting horizon. We should note, however, that none of the

empirically motivated models succeed in beating the random-walk approach at these longer forecasting horizons.

Indeed, all of the models underperform the random-walk assumption by a range of approximately 90 to 145 basis

points. Moreover, the forecasting performance deteriorates as the forecasting horizon increases.

The next observation from Table 2 relates to the Ang-Piazzesi model. At the one-month forecasting horizon,

the Ang-Piazzesi model posts results that are within a few basis points of the other models. As we increase

the forecasting horizon, however, we note that the Ang-Piazzesi model is the worst performer in all cases, with

the exception of the 24-month horizon. In this case, it demonstrates slightly better results than the observed-

affine model. The Ang-Piazzesi model does not, at any forecasting horizon, succeed in beating the random-walk

assumption. Moreover, the Ang-Piazzesi model seems to demonstrate the least consistency in out-of-sample

forecasts as evidenced by generally exhibiting the largest standard deviation of both root-mean-squared and

mean-absolute forecasts.

The results for the observed-affine model are somewhat different. By relaxing the dynamics of the Ang-

Piazzesi model, we find that the forecasting performance is improved from five to 14 basis points; the only

exceptions are the one- and 24-month forecasting horizons where the observed-affine model underperforms the

Ang-Piazzesi model by about 5 and 0.5 basis points, respectively. This is quite an accomplishment considering

the relatively poor in-sample fit of the observed-affine model to the zero-coupon term structure. Nevertheless,

this is hardly an indictment of the Ang-Piazzesi model. It merely suggests that permitting interaction between

the macroeconomic and latent yield-curve state variables allows for better out-of-sample forecasting performance.

It would, in fact, be rather a surprise where this not to be the case. This improved out-of-sample forecasting

performance, we should recall, comes at the price of losing some flexibility in the ability of the model to fit the

cross section of zero-coupon rates.

Figure 5 illustrates the evolution of the root-mean-squared out-of-sample forecasting fit to the entire curve at

a 12-month forecasting horizon across the entire 16.75-year forecasting period. Each separate graphic in Figure 5
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Figure 5: The Evolution of RMSE for Each Model for a Short Forecasting Horizon: This figure dis-
plays the evolution of the entire-curve RMSE across each of our models, with the incorporation of macroeconomic factors,
for a 12-month forecasting horizon. The solid black line in each graphic represents the random-walk forecasting assump-
tion.

represents one of our six term-structure models, while the black line in each graphic represents the random-walk

forecast error. It appears that all of the models—although slightly less for the exponential-spline and Fourier-

series approaches—have difficulty with the period from late 2001 to mid-2005. Moreover, all models appear to

outperform the random-walk assumption during the early 1990s. With these two exceptions, the models tend to

track the random-walk forecast errors quite closely, which again underscores the difficulty of outperforming this

simple assumption.

Table 2 reveals quite clearly that the out-of-sample forecasting performance of all the models deteriorates

quite substantially with the forecast horizon. This is somewhat worrisome, since we would expect that the mean-

reversion characteristics in all of these models would overwhelm the random-walk hypothesis over longer time

horizons. The problem, in our opinion, relates to the changes in interest rates over our out-of-sample period.

26



Macroeconomic and Term-Structure Dynamics

1990 1995 2000

100

200

300

400

500

Time (yrs.)

R
M

S
E

 (
b
p

s.
)

Nelson−Siegel

1990 1995 2000

100

200

300

400

500

Time (yrs.)

R
M

S
E

 (
b

p
s.

)

Exponential−Spline

1990 1995 2000

100

200

300

400

500

Time (yrs.)

R
M

S
E

 (
b
p

s.
)

Fourier Series

1990 1995 2000

100

200

300

400

500

Time (yrs.)

R
M

S
E

 (
b

p
s.

)

Ang−Piazzesi

1990 1995 2000

100

200

300

400

500

Time (yrs.)

R
M

S
E

 (
b
p

s.
)

OLS

1990 1995 2000

100

200

300

400

500

Time (yrs.)

R
M

S
E

 (
b

p
s.

)

Observed−affine

Figure 6: The Evolution of RMSE for Each Model for a Long Forecasting Horizon: This figure dis-
plays the evolution of the entire-curve RMSE across each of our models, with the incorporation of macroeconomic factors,
for a 60-month forecasting horizon. The solid black line in each graphic represents the random-walk forecasting assump-
tion.

Over the period of 1990 to 2003 there was an extended period of decreases in interest rates. In the early part of

this period, there was a fairly unexpected decrease in interest rates. Our models, estimated with historical data

on a rolling basis, did not expect such decreases in interest rates and correspondingly overestimated interest rates

over a longer time horizon. The random-walk model was faster to predict interest-rate decreases to the extent

that actual interest rates declined; this is faster than what was predicted by the model using historical data

with relatively high interest-rate levels. Figure 6 supports this explanation insofar as all of the models appear

to track the random-walk, in terms of root-mean-squared forecast error, until about 1990 when they begin to

dramatically underperform the random-walk forecasts.

Figure 7 graphically illustrates the out-of-sample root-mean-squared forecast error by individual zero-coupon

tenor, ranging from one month to 15 years, for each model across 12-, 24-, and 60-month forecasting horizons.
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As before, the solid black line represents the random-walk model. At the 12-month horizon, we can see that

the exponential-spline and Fourier-series models outperform the random-walk assumption across all tenors albeit

by a greater margin at the shorter zero-coupon tenors. The Nelson-Siegel model appears to track the random-

walk quite closely across all tenors while the OLS model, more or less, evenly underperforms the random-walk

hypothesis across all tenors. The Ang-Piazzesi model, conversely, does a reasonable job at the shortest tenor,

but has difficulty at intermediate and long tenors. In short, the Ang-Piazzesi model appears to consistently post

larger errors than all of the other models across virtually all zero-coupon tenors. Interestingly, the observed-affine

model tracks the random-walk quite closely out to about the five-year tenor, then deteriorates until the 12-year

tenor, and subsequently improves to about the same level as the random-walk at the longest tenor.
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Figure 7: Zero-Coupon Forecasting Performance by Tenor: This figure displays the out-of-sample forecasting
performance of our macro-finance term-structure models by individual zero-coupon tenor from one month to 15 years.
We consider 12-, 24-, and 60-month forecasting horizons.
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At the 24-month forecasting horizon, the ordering of the models is quite similar, although they all appear

shifted to the right. That is, none of the models appear consistently capable of beating the random-walk

approach. Again, the exponential-spline and Fourier-series models show the best performance followed by the

Nelson-Siegel, OLS, and Ang-Piazzesi models, respectively. Once again, the observed-affine model demonstrates

difficulty in forecasting the intermediate zero-coupon tenors; this behaviour may be related to its relative difficulty

in describing the cross section of zero-coupon rates. While the Ang-Piazzesi model performs similarly to the

observed-affine model in aggregate, the observed-affine model outperforms the Ang-Piazzesi model at moderate

and long-term tenors. Finally, all of the models perform quite poorly at the 60-month forecasting horizon.

Again, the ordering of the models is, more or less, maintained. We do note, however, that the Ang-Piazzesi

model appears to have substantially more difficulty than the other models at the shorter tenors and that, at the

longer tenors, the Nelson-Siegel, OLS, Ang-Piazzesi, and observed-affine models are generally indistinguishable.

Again, the strongest performers are the exponential-spline and Fourier-series models.

To this point, we have focused on how well the various models perform in an out-of-sample forecasting exercise.

Such an exercise essentially provides information on how well the models describe the first moment of the state-

variable transition density; that is, models that do a good job of describing the conditional expectation of the

state-variable vector will typically do a good job in an out-of-sample forecasting exercise. In a risk-management

setting, we are also quite interested in the higher moments of the transition density. As all of these models are

Gaussian, it does not make much sense to examine skewness or kurtosis, but we are nonetheless quite interested

in understanding how well our six term-structure models describe the conditional variance of the term structure

of interest rates.

To examine the accuracy of the conditional variance forecasts, we borrow an idea that is similar in spirit to

Diebold and Mariano (1995). The idea of Diebold and Mariano (1995) is to compare the forecasting accuracy of

two competing forecasts by taking into account the conditional variance of the forecasts. Our variation on this

idea is somewhat different. We construct a 95% confidence interval for each out-of-sample zero-coupon forecast; a

detailed description of how these confidence intervals are constructed is found in Appendix D. For each forecast,

we then proceed to determine whether or not the actual outcome lies inside this confidence interval. If it does,

then we consider this a “hit.” We term the number of hits relative to the total number of forecasts as the hit

ratio. One would expect, therefore, that if we repeated this 100 times, and the conditional variance was well

specified, then we would observe approximately 95 hits or, equivalently, a hit ratio of 0.95. A hit ratio of, say,

0.60 would presumably indicate an underestimate of the zero-coupon conditional variance, while a hit ratio of

1.00 could be interpreted as a conditional-variance overestimate.

We freely admit that this is something of a primitive statistic as it will not help us distinguish between hit

ratio of, say, 0.94 and 0.96. The idea, however, is not to make a definitive statement, but to better understand
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the distinctions between the models with respect to their characterization of the conditional variance of term-

structure movements. In this respect, the hit ratio is more akin to the type of tests used in assessing different

Value-at-Risk measures. Often different portfolio variance specifications are tested on their ability to generate

historical Value-at-Risk values that are close to their supposed cut-off values (i.e., 99%).
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Figure 8: The Hit Ratio: This figure displays the hit ratio for a variety of tenors ranging from one month to 15 years
across one-, two-, and five-year forecasting horizons for our six alternative macro-finance term-structure models. Note
that the solid black line represents the 95% cut-off level for the confidence interval constructed by the hit-ratio measure.

Figure 8 illustrates the hit ratio for each of our six models at the 12-, 24-, and 60-month forecasting horizon.

The solid horizontal black line denotes the 0.95 hit ratio that we would expect to observe from an ideal model. The

results are quite interesting. At the 12-month forecasting horizon, we observe that all the models demonstrate

a hit ratio in the range from 0.90 to about 0.98 until the zero-coupon tenor attains approximately nine years.

At this point, the exponential-spline and Fourier-series models hit ratios fall almost linearly to about 0.80 at the

15-year tenor. This suggests that we can conclude that, at the 12-month forecasting horizon, these two models
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underestimate the conditional variance of zero-coupon rates at the long-end of the term structure. The remaining

models, conversely, appear to do a relatively good job of describing the conditional variance for all tenors at this

forecasting horizon.

At the 24-month forecasting horizon, the exponential-spline and Fourier-series models’ hit ratio deteriorates

from a reasonable level at the two-year tenor to approximately 0.75 at the longest zero-coupon tenor. The

deterioration, however, begins somewhat earlier at around the five-year tenor. Once again, it appears that these

two models underestimate the conditional variance of the longer part of the yield curve. The Ang-Piazzesi model

also appears to have difficulty. In particular, the hit ratio increases from 0.70 at the short end to approximately

0.90 at approximately the five-year tenor. This suggests that, at the 24-month forecasting horizon, the Ang-

Piazzesi model substantially underestimates the conditional variance of short-term tenors, but only slightly

underestimates the conditional variance of medium- to long-term zero-coupon rates. The Nelson-Siegel, OLS,

and observed-affine models follow one another closely; at very short tenors, they appear to slightly underestimate

the conditional variance, while at longer-term tenors, they would appear to overestimate the conditional variance

with a hit ratio of approximately unity.

Table 3: Excess Holding-Period Return Forecast Errors: In this table, we present the annualized root-mean
squared holding-period forecast errors for our six term-structure models with the random walk model included for compar-
ison. We focus on specific zero-coupon maturities rather than the entire zero-coupon curve. All values are in basis points.
Note that RW, NS, ES, FS, AP, OLS, and OA denote the random-walk, Nelson-Siegel, exponential-spline, Fourier-series,
Ang-Piazzesi, OLS, and observed-affine models, respectively. Bold values denote an out-performance of the random-walk
assumption.

RMSETenor
RW NS ES FS AP OLS OA

12-month forecast
2 years 1.79 1.73 1.58 1.61 1.87 1.79 1.71
5 years 5.22 5.22 4.78 4.83 6.09 5.45 5.20
7.5 years 7.43 7.42 6.80 6.93 8.96 7.73 7.90
10 years 9.62 9.58 8.78 8.94 11.62 9.95 11.35
15 years 14.22 13.41 13.29 13.18 17.59 14.57 16.62

24-month forecast
5 years 6.69 7.37 6.77 6.65 8.03 7.59 7.65
7.5 years 10.45 11.53 10.68 10.44 12.81 11.88 12.54
10 years 13.79 15.34 14.23 14.03 17.16 15.60 17.19
15 years 22.05 23.24 22.85 22.35 27.37 24.10 24.96

60-month forecast
7.5 years 10.14 13.66 12.90 12.62 14.66 13.87 15.17
10 years 18.15 24.81 23.66 22.76 24.76 25.27 28.42
15 years 36.78 49.55 47.67 45.78 45.89 49.38 56.68
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All of the models exhibit substantial difficulty with the conditional variance of the zero-coupon curve at the

60-month forecasting horizon. The exponential-spline and Fourier-series models demonstrate a hit ratio that

ranges from approximately 0.70 at the short end to about 0.30 at the long end of the term structure. Clearly,

this is evidence of a fairly dramatic underestimate of the conditional variance across the entire zero-coupon curve.

The Nelson-Siegel, OLS, and observed-affine models exhibit a hit ratio increasing from 0.60 at the shortest tenor

to roughly 0.80 at the longest zero-coupon tenor. Again, this appears to suggest a significant underestimate

of the conditional variance of the zero-coupon curve, particularly at the short end. Finally, the Ang-Piazzesi

hit ratio exhibits rather erratic behaviour. It roughly follows a logistic curve ranging from 0.25 to 1 over the

15-year range of tenors. This implies a dramatic underestimate at the short-end and an overestimate at the long

end. Moreover, it begs a comparison with the comparatively more stable observable-affine model. We suspect

that the variance-covariance matrix for the state-variable vector in the Ang-Piazzesi model is misspecified given,

by virtue of the estimation algorithm, the values in this matrix have adjusted to better fit the cross section

of zero-coupon rates. This contrasts to the observed-affine model where the state-variable variance-covariance

matrix is estimated only with the state-variable time series.

The final element of consideration is how well our different models forecast excess holding-period returns

for different zero-coupon bond tenors. The idea behind a holding-period return is quite simple. At time t, one

purchases a T -period zero-coupon bond and holds it for τ periods, where τ < T . One then sells the (T − τ)-

period bond, at time t + τ . The return on this investment is termed a holding-period return. If we subtract

the risk-free rate one could have earned from investing in a τ -period zero-coupon bond at time t, one has the

excess holding-period return. We use our six separate term-structure models to forecast a variety of excess

holding-period returns at 12-, 24-, and 60-month forecasting horizons. The results are summarized in Table 3.

The first thing to note is that the out-of-sample forecast errors increase monotonically with the zero-coupon

tenor. Second, the magnitude of the errors is quite substantial across all models. The figures in Table 3 are

in annualized percentage terms. This implies that, at the two-year forecasting horizon, the root-mean-squared-

error excess holding-period forecast error of the random-walk model is 14.2%.31 Part of the problem is that

excess holding-period returns are notoriously difficult to forecast for any financial asset. Complicating matters,

long-term pure-discount bond prices are extremely sensitive to interest-rate movements, which makes them even

more difficult to forecast.32 Nevertheless, excess holding-period returns are critical in portfolio optimization as

they partially describe the risk premia inherent in the zero-coupon term structure. For this reason, it is very

interesting to understand how well our term-structure models forecast these returns out-of-sample.
31This does not imply that there is a 14.2% difference between the two forecasts, but rather that the units of the error are

percentage points. That is, there is a root-mean-squared difference of 14.2 percentage points between the two forecasts.
32See Bolder, Johnson, and Metzler (2004) for a review of historical excess holding-period returns on Canadian zero-coupon bonds.
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Figure 9: Empirical Excess Holding-Period Return Forecasts: This figure displays the 12-month excess hold-
ing period return forecasts for two-, five-, and ten-year zero-coupon bond tenors across our sample period for each of our
empirical term-structure models including macroeconomic factors.

We can see, from Table 3, that the Nelson-Siegel, exponential-spline, and Fourier-series models outperform the

random-walk approach at almost all of the 12-month forecasting horizons and for the shorter zero-coupon tenors

for the 24-month horizon. The observed-affine model only slightly outperforms the random-walk assumption at

the shortest zero-coupon tenors for the 12-month forecasting horizon, while the Ang-Piazzesi approach never

succeeds in outperforming the random walk. At the 60-month forecasting horizon, none of the models outpeform

the random-walk assumption. Moreover, none of the models, including the random-walk approach, provide a

very convincing description of excess holding-period returns.

Another perspective on the accuracy of the excess holding-period return forecasts is provided in Figures 9 and

10. The figures provide the actual and forecast 12-month excess holding period returns for the two-, five-, and

ten-year tenors across the out-of-sample forecast period; Figure 9 describes the Nelson-Siegel, exponential-spline,
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Figure 10: Affine Excess Holding-Period Return Forecasts: This figure displays the 12-month excess holding
period return forecasts for two-, five-, and ten-year zero-coupon bond tenors across our sample period for each of the
Ang-Piazzesi and observed-affine term-structure models.

and Fourier-series models while Figure 10 describes the Ang-Piazzesi, OLS, and observed-affine models. We can

see rather clearly that, at the two-year tenor, all of the models, with the possible exception of the Ang-Piazzesi

model, appear to track the actual excess holding-period returns fairly closely. For the longer zero-coupon tenors,

however, the models are incapable of matching the dramatic variation in actual excess holding-period returns.

We can draw a number of interesting lessons from the previous analysis. It is clear that the exponential-spline

and Fourier-series models demonstrate the best performance in terms of out-of-sample zero-coupon and excess

holding-period return forecasting. This result is robust across virtually all zero-coupon tenors and forecasting

horizons. In terms of out-of-sample forecasing performance, these two models are followed by the Nelson-Siegel,

OLS, and observed-affine approaches. Finally, the Ang-Piazzesi model demonstrates the poorest, and generally

least consistent, out-of-sample forecasts. When we turn our attention to a measure of conditional variance,
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however, we find rather different results. In particular, we find that the exponential-spline and Fourier-series

models tend to underestimate the conditional variance of the zero-coupon curve at longer tenors; moreover, this

tendency deteriorates as we extend the forecasting horizon. The Nelson-Siegel, OLS, and observed-affine models

appear to provide a better characterization of the conditional variance, albeit with a tendency to both over-

and underestimate at longer zero-coupon tenors. Finally, the Ang-Piazzesi model demonstrates rather erratic

behaviour with underestimates at the short end of the zero-coupon curve and simultaneous overestimates of

conditional variance at longer tenors. At this point, therefore, we would likely conclude that the most reasonable

model is the Nelson-Siegel approach suggested by Diebold and Li (2003). It is also worth mentioning that,

despite the fact that some of the models outperform the random-walk horizon at short forecasting horizons,

we need to be cautious with respect to what can be accomplished with these models. It would be virtually

impossible, for example, to successfully use these models to generate highly accurate forecasts of future financial

and macroeconomic conditions. In the next section, we extend our analysis in a very simple manner to include

a time-varying dimension to our parametrization and see how this might change our results and conclusions.

3.4 Incorporating a time-varying perspective

An examination of our data in Figures 1 and 2 reveals quite clearly that the constant-parameter assumption

is not ideal. More specifically, the period from about 1995 to the present seems to be characterized by low

and stable inflation, while the late-1970s to mid-1980s exhibit both high inflation and high interest rates. If we

were to estimate any of our six term-structure models with the entire data sample and use the corresponding

parameter set to simulate outcomes for a given risk-management analysis, it is hard to believe that the results

would be reasonable. The results, most probably, would not be a reasonable forward-looking description of the

current low and stable inflation and interest-rate regime, but rather a weighted average of low-, intermediate-,

and high-inflationary regimes. We could, of course, estimate the model only using the data from 1995 to the

present. This would avoid the constant-parameter problem, but it would imply that we would have a rather

short period over which to characterize the long-term interaction between the term structure of interest rates

and the macroeconomy.

The alternative to restricting the size of the dataset is to attempt to permit, to some degree, the model

parameters to vary through time. One could, for example, apply a regime-switching model to the VAR dynamics

of the state variables in each of the models. This is, however, easier said than done. All of the models—

particularly the exponential-spline and Fourier-series approaches—have a large number of state variables. Given

the VAR(2) specification for the state-variable dynamics, this implies a large number of model parameters. This is

not a problem in itself, but implementing a full regime-switching structure for such a large number of parameters
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is unworkable.33 We could attempt to reduce the size of the parameter space, but the VAR dynamics for the

state-variables appears to represent a reasonable forecasting approach. We experimented, in this vein, with

lower-dimensional specifications for the state-variable dynamics and found a general decrease in out-of-sample

forecasting performance.
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Figure 11: An Exogeneous Indicator Variable: This figure displays the exogeneous indicator variable that stems
from the work of Demers (2003). The first regime denotes a high-inflation regime, the third regime describes a low-
inflation regime with anchored inflationary expectations, while the second regime is a transition regime between the high-
and low-inflationary regimes.

We consequently opted for a very simple approach. We decided to exogeneously impose the three regimes

identified in Demers (2003) as indicator variables to the state-variable dynamics. We apply the indicator variables,

33Consider, for example, a VAR(1) specification for the exponential-spline model. This model, without regime switching, has 132

parameters where the intercept is C ∈ R11×1, while the slope matrix is F ∈ R11×11. A full Markov-chain switching model, following

from Hamilton (1989), with three separate regimes would include more than 300 parameters to be determined by a non-linear

optimization algorithm.
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however, only to the intercept terms. This is something of a compromise solution, as there is compelling evidence

that entirely separate equations are required to properly characterize inflation and output dynamics under these

different regimes. In the context of our model, such a degree of complexity cannot easily be implemented.

Figure 11 illustrates the three separate regimes in conjunction with the evolution of our three primary

macroeconomic variables. The mid-1970s to the mid-1980s are a high-inflation regime, the period from 1995

to the present is a low- and stable-inflation regime, while the remaining periods represent a third, transitory

regime. Our model incorporates the indicator function values as dummy variables as applied to the intercept

vector in the VAR(2) specifications for the state-variable dynamics. To be clear, there is neither a notion of a

transition matrix in our approach, nor are the slope matrices and variance-covariance matrices permitted to vary

through time. The absence of a transition matrix is not really an issue given our application of these models. As

we intend to use our model to generate forward-looking simulations of future macroeconomic and interest-rate

outcomes, it is not clear that a historical transition matrix will provide a strong description of the probability

of a future inflationary episode. It is our view that it would be preferrable to examine how the results of a

risk-management analysis vary for different calibrated probabilities of a high-inflation regime.

What happens to our results, therefore, when we add an exogenously determined indicator variable to the

intercept term in each of the VAR models? It is not exactly fair to consider the same out-of-sample forecasting

statistics as in the previous section. This is primarily because we are providing information about the current

state of the world that would presumably be unknown at the time of the out-of-sample forecast. In other words,

the different regimes where estimated by Demers (2003) using the entire dataset and, strictly speaking, should

not be used in formulating out-of-sample forecasts constructed using only a subset of the dataset; this is often

termed a look-ahead bias. Keeping this caveat in mind, it is still interesting to see how the various models

perform. The experiment, however, is slightly different. Imagine that we provide an analyst with data up to

time t and asked her to forecasting various zero-coupon rates, the variance of these zero-coupon rates, and excess

holding-period returns for different horizons. We also tell the analyst the current and past regimes as described

in Figure 11. We can think of this as a partial information forecast. Moreover, we can interpret the results as

helping us understand the efficiency of adding this simple time-varying element into our model.34

Table 4 illustrates the results of the partial-information out-of-sample forecasts of the entire zero-coupon

curve. First, note that there are no results for the Ang-Piazzesi and observed-affine models. We had to exclude

these models as there is no straightforward way to incorporate regime-switching into the affine setting. There

is, of course, a literature that incorporates regime-switching into affine term-structure models, but it is already
34We did experiment with a variety of different breakpoints for the three inflationary regimes and found that the results were

essentially unchanged.
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Table 4: Out-of-Sample Zero-Coupon Curve Forecasts with Intercept Indicator: In this table, we
present the root-mean squared and mean-average error for a series of one-, six-, 12-, 24-, and 60-month zero-coupon
curve forecasts for four of our macro-finance term-structure models with an exogeneously specified indicator variable from
Demers (2003). Figures in bold denote an out-performance of the random-walk hypothesis.

RMSE MAEModels
Mean Median Max Min SD Mean Median Max Min SD

One-month forecast
Random walk 23.46 20.23 86.05 2.36 15.26 21.28 18.33 71.65 1.75 14.47
Nelson-Siegel 23.91 19.95 97.66 5.03 13.86 21.16 17.59 93.50 3.78 13.24
Exponential spline 22.93 18.99 95.63 3.42 14.92 20.44 16.50 89.27 2.53 14.12
Fourier-series 24.93 21.58 102.87 3.36 15.36 21.78 18.60 94.33 2.90 13.95
OLS 23.18 20.20 93.90 3.35 13.95 20.42 17.99 81.74 2.69 13.18

Six-month forecast
Random walk 74.98 64.60 307.09 9.29 46.84 67.03 56.09 303.34 8.23 46.10
Nelson-Siegel 67.81 60.35 285.47 8.46 40.01 61.53 55.06 283.66 7.12 39.42
Exponential spline 66.50 58.58 281.29 9.20 40.97 59.48 50.52 278.61 7.62 40.38
Fourier-series 67.92 56.83 294.83 6.89 42.29 60.88 49.27 291.77 5.15 41.41
OLS 68.34 58.96 317.02 5.84 41.59 61.71 53.12 314.59 4.92 40.67

12-month forecast
Random walk 110.96 95.61 346.24 13.39 68.16 99.57 81.70 337.50 10.00 64.75
Nelson-Siegel 96.17 83.20 295.62 9.97 56.34 86.25 73.92 283.49 8.25 53.78
Exponential spline 90.70 82.44 365.16 11.35 56.46 81.00 68.49 353.30 8.51 54.71
Fourier-series 91.72 76.92 315.42 13.24 58.17 82.48 69.30 307.66 11.50 56.39
OLS 96.71 80.48 350.41 14.51 60.56 86.11 73.98 336.83 11.88 57.60

24-month forecast
Random walk 156.87 140.23 487.90 21.21 95.28 142.54 123.84 451.76 15.36 90.06
Nelson-Siegel 146.38 123.40 429.73 22.22 92.05 131.90 106.25 406.33 20.00 86.81
Exponential spline 143.77 121.28 394.45 24.05 84.72 129.52 108.35 376.94 19.13 80.77
Fourier-series 138.79 117.05 391.70 26.91 85.61 124.76 100.30 368.69 23.50 81.72
OLS 148.93 127.73 452.76 20.87 93.76 133.25 107.63 429.15 17.28 87.05

60-month forecast
Random walk 223.55 206.75 521.97 65.52 98.52 207.93 189.42 492.87 57.13 96.86
Nelson-Siegel 184.64 170.23 407.46 15.68 103.45 177.07 160.31 402.00 11.67 103.88
Exponential spline 167.18 124.53 422.28 20.76 113.99 158.30 114.35 404.86 14.19 114.41
Fourier-series 181.07 156.16 389.92 15.22 98.12 170.45 150.21 386.53 12.64 99.72
OLS 182.25 158.52 405.79 25.82 104.99 174.31 146.98 401.49 16.95 105.17

a challenge to estimate the parameters of the Ang-Piazzesi model.35 Observe that with a few exceptions at the

one-month forecasting horizon, all of the models outperform the random-walk approach. Indeed, permitting the

model to allow the intercept term in the VAR(2) specification to vary over time leads to substantial improvements

35In particular, we found it quite challenging to obtain consistent results for the non-linear optimization problem stemming from

the estimate of these models. Addition of time-varying parameters makes matters even worse.
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in the out-of-sample forecasting ability of the models. This trend is particularly evident at longer forecasting

horizons. Moreover, it is consistent with our suspected reason for the underperformance of our models, relative

to the random-walk hypothesis, at longer time horizons. Specically, it would appear that the world changed

rather importantly in the early 1990s—as it became apparent that the Bank of Canada would be successful in

controlling inflation—and this led to a secular decrease in interest rates. By providing this information to our

models, they proceed to outperform the random walk.
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Figure 12: The Evolution of RMSE with Intercept Indicator: This figure displays the evolution of the entire-
curve RMSE across four macro-finance term-structure models with an exogeneously specified indicator function, for a
12-month forecasting horizon. The solid black line in each graphic represents the random-walk forecasting assumption.

Figure 12 summarizes the evolution of the root-mean-squared forecast error for each of our six macro-finance

term-structure models at the 12-month forecasting horizon. Again, the solid black line represents the random-

walk forecasts. This figure, which compares to Figure 5 computed without the intercept indicator, demonstrates

better out-of-sample forecasts of the zero-coupon curve. The improvement appears to be particularly evident in

the period from approximately 2000 to the present. Again, this demonstrates the value of partial information

and underscores the fact that the data is composed of distinct macroeconomic regimes.
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Figure 13: Hit Ratio with Indicator Variable: This figure displays the hit ratio for a variety of tenors ranging
from three months to 15 years across one-, two-, and five-year forecasting horizons for our six alternative macro-finance
term-structure models. An indicator variable is added to the intercept vector for the Nelson-Siegel, exponential-spline,
Fourier-series, and OLS models. The Ang-Piazzesi and observed-affine models, neither or which has time-varying param-
eters, are added for comparison purposes. Note that the solid black line represents the 95% cut-off level for the confidence
interval constructed by the hit-ratio measure.

While permitting the intercept vector in the state-variable dynamics to vary through time does not imply

time-varying slope and variance-covariance matrices, it does allow them to take different values. Our hope is

that allowing for a time-varying intercept vector should permit more realistic estimates of these matrices. In

principle, for example, the intercept should capture some portion of the time-varying relationship between the

variables. Not considering the time-varying aspect of the parameters could lead to distorted estimates of the

slope and variance-covariance matrices. How true this is in practice, of course, depends on the reasonableness of

imposing only a time-varying intercept vector. We are particularly interested in the variance-covariance matrix

given its importance in the conditional variance of the zero-coupon curve.36

36For the mathematical details of this relationship, see Appendix D.
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Table 5: Excess Holding-Period Return Forecast Errors with Intercept Indicator: In this table, we
present the annualized root-mean-squared holding-period forecast errors for our six term-structure models along with
the random walk model included for comparison. We focus on specific zero-coupon maturities rather than the entire
zero-coupon curve. All values are in basis points.

RMSETenor
RW NS ES FS OLS

12-month forecast
2 years 1.79 1.55 1.46 1.48 1.58
5 years 5.22 4.40 4.23 4.40 4.50
7.5 years 7.43 6.18 6.02 6.23 6.34
10 years 9.62 8.04 7.73 8.00 8.13
15 years 14.22 11.63 11.64 11.79 12.24

24-month forecast
5 years 6.69 6.23 6.01 5.99 6.31
7.5 years 10.45 9.27 9.19 8.96 9.34
10 years 13.79 11.82 11.45 11.25 11.26
15 years 22.05 17.67 17.49 17.51 16.75

60-month forecast
7.5 years 10.14 8.07 7.66 8.07 8.07
10 years 18.15 15.20 14.37 14.32 15.11
15 years 36.78 32.63 32.92 32.65 31.44

To help answer this question, Figure 13 illustrates the hit ratio for each of our six term-structure models—the

Ang-Piazzesi is included for comparison purposes—at 12-, 24-, and 60-month forecasting horizons. It generally

appears that the addition of the indicator variable to the intercept vector permits an improved characterization

of the state-variable variance-covariance matrix. The exponential-spline and Fourier-series models, for example,

continue to demonstrate a tendency to underestimate the longer-tenor zero-coupon conditional variance across

all forecasting horizons. The magnitude of the conditional-variance underestimates is, however, rather less than

without the intercept indicator variable. Moreover, the tendency to underestimate does not generally begin, at

the 12- and 24-month forecasting horizons, until approximately the ten-year zero-coupon tenor. This is clearly

an improvement. The Nelson-Siegel and OLS models demonstrate generally quite acceptable hit ratios across all

tenors and forecasting horizons, albeit with a relatively slight tendency to overestimate longer-tenor conditional

variance at the 24-month horizon and simultaneously to slightly underestimate longer-tenor conditional variance

at the 60-month horizon. Despite a few criticisms, therefore, the Nelson-Siegel and OLS models seem to produce

the most stable and reasonable characterization of the conditional variance of the zero-coupon curve.

We can now finally turn to see if the incorporation of an indicator variable in the intercept vector improves

the out-of-sample forecasting performance of the excess holding-period returns. Table 5 summarizes the results.

The Nelson-Siegel, exponential-spline, Fourier-series, and OLS models outperform the random-walk assumption
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across all zero-coupon tenors and forecasting horizons. Moreover, the differences between the various models are

quite small. What is clear, however, is that the provision of partial information about the state of the economy

leads to a dramatic improvement in the out-of-sample forecasting performance of these models. We also note

that, as compared to Figure 8, that the empirical models appear to better describe excess holding-period returns.
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Figure 14: Empirical Excess Holding-Period Return Forecasts with Indicator Variable: This figure
displays the 12-month excess holding period return forecasts for two-, five-, and ten-year zero-coupon bond tenors across
our sample period for each of our empirical term-structure models including macroeconomic factors and an exogenous
indicator variable.

What can we conclude from this discussion? First, it is hardly a surprise that permitting the intercept

vector in our state-variable dynamics to vary through time improves the out-of-sample forecasting performance

of all models. We have, after all, provided incremental information about the state of the world to the forecast

model. For this reason, the improvement was particularly evident at the longer zero-coupon tenors. We can,

however, make two principal conclusions. First, the addition of this partial information permits all four empirical

models to outperform the random-walk hypothesis across virtually all tenors and forecasting horizons. Second,
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the conditional variance estimates of the zero-coupon curve stemming Nelson-Siegel, exponential-spline, and

Fourier-series models are substantially improved. This suggests that the variance-covariance and slope matrices

describing the state-variable dynamics were distorted, and presumably still are to some extent, by the various

inflationary regimes present in the data. These two conclusions are, practically speaking, quite useful. It implies

that the three states of the world that we have borrowed from Demers (2003) are a reasonable specfication of the

various inflationary regimes over the last 30 years. Moreover, it also suggests that incorporating these regimes

can improve how the empirical models characterize the second moment of the transition density of zero-coupon

rates. We do wish to underscore that adding the time-varying intercept vector is not a suggested change to the

model, but rather a technique to permit us to reasonably estimate the model parameters.

4 Conclusion

This is really quite a simple paper. Our primary objective is to compare a variety of simple joint macro-finance

models with a particular view towards assessing their appropriateness as an input for a risk-management analysis.

To this end, we consider six alternative joint models of the macroeconomy and the term structure of interest rates.

The first model implements the seminal work of Ang and Piazzesi (2003), who implement a joint macro-finance

model in a discrete-time affine setting. The next three of these models follow from the work of Diebold and Li

(2003) and include the dynamic implementations of the Nelson-Siegel, exponential-spline, and the Fourier-series

models. The fifth model is a regression-based model motivated entirely by empirical considerations.

The sixth, and final, model follows Ang and Piazzesi (2003) and is also similar in spirit to work by Colin-

Dufresne, Goldstein, and Jones (2005) and Cochrane and Piazzesi (2006). This approach, which we term the

observed-affine model, relaxes restrictions on the state-variable dynamics of the Ang-Piazzesi model by making

them observable. Two important points should be noted about the observed-affine model. First, by forcing the

state variables to be observable, we reduce the flexibility of the model to adjust the state variables to fit the cross

section of zero-coupon interest rates. Second, we introduced this model from a practical perspective—indeed,

by reverse-engineering—in an attempt to improve the out-of-sample forecasting properties of the affine model.

In this respect, therefore, we are essentially trying to identify, from a practitioner’s perspective, how the affine

model might fruitfully be altered.

Using monthly data from 1973 to 2005, we compare each of the joint macro-finance models along four

dimensions with a strong out-of-sample focus. First, we consider out-of-sample forecasts of the entire zero-

coupon curve for forecasting horizons of one month to five years. Second, we examine the out-of-sample forecasts

of specific zero-coupon tenors across the same range of forecasting horizons. Third, we look to see how the

various models perform in terms of their ability to produce out-of-sample forecasts, again over one-month to
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five-year forecasting horizons, of excess holding-period returns. Each of these measures provides, from different

perspectives, the ability of these models to characterize the first moment of the transition density of zero-coupon

rates. The final measure, that we term the hit ratio, describes the proportion of out-of-sample forecasts that

fall within a conditional 95% confidence interval around the forecast value. This measure, while imperfect,

provides some insight into the ability of these models to capture the second moment of the transition density of

zero-coupon rates.

What, therefore, did we learn from examination of these measures? First, the exponential-spline and Fourier-

series models clearly demonstrate the best performance in terms of out-of-sample zero-coupon and excess holding-

period return forecasting. This result is robust across virtually all zero-coupon tenors and forecasting horizons.

In terms of out-of-sample forecasing performance, these two models are followed respectively by the Nelson-Siegel,

OLS, and observed-affine approaches, while the Ang-Piazzesi model produces the weakest out-of-sample forecasts.

When we turn our attention to a measure of conditional variance, however, we find rather different results. In

particular, we find that the exponential-spline and Fourier-series models tend to underestimate the conditional

variance of the zero-coupon curve at longer tenors; moreover, this tendency increases as we extend the forecasting

horizon. The Nelson-Siegel, OLS, and observed-affine models appear to provide a better characterization of the

conditional variance, albeit also with a tendency to both over- and underestimate at longer zero-coupon tenors.

Finally, the Ang-Piazzesi model demonstrates rather erratic behaviour with sizable underestimates at the short

end of the zero-coupon curve with simultaneous overestimates of conditional variance at longer tenors. Based

on these results, we conclude that the most reasonable model for capturing Canadian term-structure dynamics

is the Nelson-Siegel approach suggested by Diebold and Li (2003).

Examination of our data, however, reveals that the constant-parameter assumption is not ideal. That is, the

period from about 1995 to the present is to be characterized by low and stable inflation, while the late-1970s to

mid-1980s exhibit both high inflation and high interest rates. Unadjusted parametrization of our models—using

the entire data sample and application corresponding constant-parameter set—would likely yield unreasonable

results. Specifically, we fear that models would not provide a reasonable forward-looking description of the

current low and stable inflation and interest-rate regime, but rather a weighted average of low-, intermediate-,

and high-inflationary regimes. How do we propose to solve this problem? We opt for a very simple approach.

Specifically, we exogeneously impose the three regimes identified in Demers (2003) as indicator variables to

the state-variable dynamics. We apply these indicator variables, however, only to the intercept terms. This is

something of a compromise solution, as there is compelling evidence that entirely separate equations are required

to properly characterize inflation and output dynamics under these different regimes.

We then turn to examine the same four dimensions using these indicator variables. Note, it is not exactly

fair to consider the raw out-of-sample forecasting statistics, because the technique provides more information
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about the current state of the world than would presumably be known at the time of the out-of-sample forecast.

We can think of this as a partial-information forecast exercise (i.e., there is a look-ahead bias). Nevertheless, we

can interpret the results as helping us understand the efficiency of adding this simple time-varying element into

our model for the purposes of estimating model parameters that can be used in a forward-looking simulation

exercise.

What, therefore, did we learn? First, it is hardly a surprise that permitting the intercept vector in our

state-variable dynamics to vary through time improves the out-of-sample forecasting performance of all models.

The improvement was particularly evident at forecasting horizons. Interestingly, it appears to almost uniformly

improve all models. Second, the conditional variance estimates of the zero-coupon curve—particularly, the

exponential-spline and Fourier-series models—are all substantially improved. This suggests that the variance-

covariance and slope matrices describing the state-variable dynamics were distorted by the various regimes

present in the data. These two conclusions are, practically speaking, quite useful. It implies that the three states

of the world that we have borrowed from Demers (2003) are a reasonable specfication of the various inflationary

regimes over the last 30 years. It also suggests that incorporating these regimes can improve how the empirical

models characterize the second moment of the transity density of zero-coupon rates.

Overall, therefore, we can conclude from this analysis that if we wish to select a single model, our first

choice would be the Nelson-Siegel approach suggested by Diebold and Li (2003). We should note also that the

exponential-spline, Fourier-series, and OLS models should not be overlooked given their strong out-of-sample

forecasting performance. Moreover, with the addition of the indicator variable, their characterization of the

conditional variance of the zero-coupon term structure improves quite substantially. We can also conclude that

our experiment with the observed-affine model, while interesting, was not a resounding success. The observed-

affine model improves the out-of-sample forecasting performance of the Ang-Piazzesi model. It does not, however,

improve the out-of-sample forecasts by as much as we might have hoped. We suspect that the principal reason

is the observed-affine model’s difficulty in fitting the cross section of zero-coupon rates. This stems from the fact

that many of the model parameters are fixed before we attempt to econometrically fit the cross section. This

would be a useful direction for future research.

We still believe, however, that the Ang-Piazzesi model is, in principle, useful. Nevertheless, it requires

some additional work for its application to the Canadian setting. We suggest, therefore, two directions for

future research. First, it would be interesting to examine other alternative adjustments to the affine approach

to improve its practical usefulness. Second, we believe it would be useful to examine alternative estimation

approaches for the Ang-Piazzesi model to improve its performance.
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A Deriving the Ang-Piazzesi Model

This technical appendix works through the technical details of the construction and estimation of the Ang-Piazzesi

model. The observable macroeconomic variables in the Ang and Piazzesi (2003) setting involve the extraction of

the first principal component from a collection of inflation and output data. That is, the first observable state

variable is the first principal component from an eigenvalue decomposition of a number of inflation variables,

while the second observable state variable stems from an identical technique applied to a collection of variables

related to output. This is a clever and useful method for reducing the dimensionality of the macroeconomic

data. We will, however, restrict our attention to the output gap and the inflation rate. As such, we can define

the vector of contemporaneous macroeconomic variables Xo
t as,

X0
t =


xt

πt


 , (31)

where n = dim
(
X0

t

)
. The dynamics of X0

t are assumed to follow a VAR(p) form as,

X0
t =

p∑
k=1

ΦkXo
t−k + Ωu0

t , (32)

where Φ1, ..,Φp ∈ Rn×n.37 If we stack the observable state variables as follows,

F o
t =




Xo
t

Xo
t−1

...

Xo
t−(p−1)


 , (33)

with F 0
t ∈ R(np)×1 then we can re-write equation (32) in companion form as,

F o
t = ΦoF o

t−1 + Σoεo
t , (34)

where ε0t ∼ N (0, I). The coefficients Φo, Σo ∈ R(np)×(np) are defined as,

Φo =




Φ1 · · · Φp−1 Φp

In×n · · · 0n×n 0n×n

...
. . .

...
...

0n×n · · · In×n 0n×n


 , (35)

Σ0 =




Ω · · · 0n×n

...
. . .

...

0n×n · · · 0n×n


 , (36)

37Note that the intercept term Φ0 = 0 as the state variables are normalized to mean zero.

46



Macroeconomic and Term-Structure Dynamics

and,

ε0t =




u0
t

0
...

0


 . (37)

The unobservable state variables, Fu
t , are assumed to follow a first-order autoregression as,

Fu
t = ΦuFu

t−1 + εu
t , (38)

where, to ensure the identification of the model parameters in the associated affine model, the matrix Φu ∈ R3×3

is lower triangular.38 The dimension of Fu
t was determined by the substantial empirical evidence suggesting that

the term structure of interest rates is well explained by three latent state variables–see Litterman and Schenkman

(1991). Stacking the observable and unobservable state variables, F o
t and Fu

t , as follows

Xt =


F o

t

Fu
t


 ∈ R(np+3)×1, (39)

permits us to write the dynamics of the entire state-variable vector as,

Xt = ΦXt−1 + Σεt (40)

where,

Φ =


 Φo 0(np)×3

03×(np) Φu


 , (41)

Σ =


 Σo 0(np)×3

03×(np) I3×3


 , (42)

and,

εt =


εu

t

εo
t


 . (43)

This brings us to the derivation of the affine term-structure model, which involves using the state-variable

vector to construct a discrete-time affine term-structure model. Other descriptions of these models can be found

in Backus et al. (1998), Backus et al. (1999), and Campbell et al. (1997). The foundation of the discrete-time

38It is also necessary that the conditional variance of F u
t be an appropriately dimensioned identity matrix.
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approach comes from the first-order condition of the following utility maximization problem,

max E


 ∞∑

j=0

δjU(Ct+j | Ft


 (44)

where δ is a discount factor, U(·) is a time-separable utility function, and Ct denotes the investor’s consumption.

One of the first-order conditions from this optimal-consumption problem, which describes the investor’s optimal

mix of consumption and investment, can be manipulated into a useful identity,

U ′(Ct) = δE ( (1 + Rn,t+1)U ′(Ct+1)| Ft) , (45)

1 = E


 (1 + Rn,t+1)

δU ′(Ct+1)
U ′(Ct)︸ ︷︷ ︸
Pricing

kernel

∣∣∣∣∣∣∣∣∣∣∣∣
Ft


 ,

1 = E ( (1 + Rn,t+1)Mt+1| Ft) ,

where Rn,t+1 is the real rate of return on an arbitrary asset with n periods left to maturity of the underlying asset

from time t to t+1 and Mt+1 is termed the stochastic discount factor or the pricing kernel.39 The pricing kernel

can be interpreted as the intertemporal marginal rate of substitution—or, more simply, the investor’s preferences

regarding substitution of consumption and investment through time. The meaning of this expression, therefore,

is that the rate of return on any asset will depend on its covariance with the intertemporal marginal rate of

substitution. In a fixed-income setting, however, the cash-flows are deterministic and, as such, the covariance of

the cash-flows with the pricing kernel depends only on time.

We can now specialize the general relation in equation (45) to the fixed-income setting. The holding-period

return on a bond is given as,

1 + Rn,t+1 =
Pn−1,t+1

Pn,t
, (47)

where P represents the value of a pure discount bond and n is the number of periods left to maturity of the pure

discount bond at t. Now, substituting equation (47) into (45),

1 = E

(
Pn−1,t+1

Pn,t
Mt+1

∣∣∣∣Ft

)
, (48)

Pn,t = E (Pn−1,t+1Mt+1| Ft)

39Note that, as usual, we are defining these processes on a probability space, (Ω,F , P). Moreover, we can consider Ft to be the

natural filtration generated by Mt+1. This filtration is defined in the usual manner, as follows:

Ft
�
= σ{Ms, s = 0, .., t}. (46)
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We are left with, therefore, the current price of a zero-coupon bond as the conditional expectation of the product

of its future price and the stochastic discount factor. For a one-period bond, this has an appealing form. We

know, for example, that P0,t = 1 for all t, because the price of a dollar today is one dollar. Thus, we have that,

P1,t = E


 P0,t+1︸ ︷︷ ︸

P0,t+1=1

Mt+1

∣∣∣∣∣∣∣Ft


 , (49)

P1,t = E (Mt+1| Ft) .

Modelling pure-discount bond prices, and thus the term structure of interest rates, amounts to describing the

dynamics of the pricing kernel. Ang and Piazzesi (2003)) assume the following form for the pricing kernel,

Mt+1 = e−rt

(
ϕt+1

ϕt

)
, (50)

where the dynamics of the Radon-Nikodým derivative, ϕt+1
ϕt

, follow a log-normally distribution,

ϕt+1

ϕt
= e−

1
2 λT

t λt−λT
t εt+1 , (51)

implying that,

Mt+1 = e−rt− 1
2 λT

t λt−λT
t εt+1 , (52)

where,

εt+1 ∼ N (0, I) . (53)

The market price of risk, λt, has the essentially-affine form, suggested by Duffee (2002), as follows

λt = λ + ΛXt. (54)

The market price of risk specification describes the aggregrate market risk preferences for holding fixed-income

securities.

It is important to note that the same source of randomness, εt+1, arises in the dynamics of the Radon-

Nikodým derivative and our state-variable system. We will make use of this in the derivation of the recursion

relation used to represent the price of an arbitrary pure-discount bond, Pn,t. The idea is that the pure-discount

bond price is an exponential-affine function of the state variables. Using the pricing kernel—which embeds the
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Radon-Nikodým derivative and the market price of risk—the pure-discount bond price can be determined as,

Pn+1,t = exp
{
An+1 + BT

n+1Xt

}
, (55)

= E (Pn,t+1Mt+1| Ft) ,

= E


exp

{
An + BT

n Xt+1

}
exp

{
−rt − 1

2
λT

t λt − λT
t εt+1

}
︸ ︷︷ ︸

Equation (52)

∣∣∣∣∣∣∣∣∣
Ft


 ,

= E


(eAn+BT

n Xt+1

)
exp


−δ − ∆T Xt︸ ︷︷ ︸

Equation (1)

−1
2
λT

t λt − λT
t εt+1



∣∣∣∣∣∣∣Ft


 ,

= E

(
exp

(
An + BT

n Xt+1 − δ − ∆T Xt − 1
2
λT

t λt − λT
t εt+1

)∣∣∣∣Ft

)
,

= E

(
exp

(
An + BT

n (ΦXt + Σεt+1) − δ − ∆T Xt − 1
2
λT

t λt − λT
t εt+1

)∣∣∣∣Ft

)
,

= E

(
exp

(
An − δ + (BT

n Φ − ∆T )Xt − 1
2
λT

t λt +
(
BT

n Σ − λT
t

)
εt+1

)∣∣∣∣Ft

)
,

= exp
(

An − δ + (BT
n Φ − ∆T )Xt − 1

2
λT

t λt

)
E
(
exp

((
BT

n Σ − λT
t

)
εt+1

)∣∣Ft

)
.

We use the properties of a lognormal random variable, eεt+1 , to resolve the conditional expectation. In particular,

if X ∈ Rn×1 is normally distributed and b ∈ Rn×1, then

E(ebT X) = exp
(

bT E(X) +
bT var(X)b

2

)
, (56)

and this applies to both conditional and unconditional expectations. As εt+1 has a zero mean, the corresponding

form of equation (56) is,

E(ebT εt+1) = exp
(

bT var(εt+1)b
2

)
. (57)

This useful result implies that the expectation term in the final line of equation (55) can now be written as,

E
(
exp

((
BT

n Σ − λT
t

)
εt+1

)∣∣Ft

)
= exp


1

2
(
BT

n Σ − λT
t

)
var (εt+1 | Ft)︸ ︷︷ ︸

I∈R(np+3)×(np+3)

(
BT

n Σ − λT
t

)T


 , (58)

= exp
(

1
2
(
BT

n ΣΣT Bn − 2BT
n Σλt + λT

t λt

))
.

If we now substitute the results of equation (58) into equation (55) to solve for the recursive form of the pure-
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discount bond price,

Pn+1,t = exp
(

An − δ + (BT
n Φ − ∆T )Xt − 1

2
λT

t λt

)
E
(
exp

((
BT

n Σ − λT
t

)
εt+1

)∣∣Ft

)
, (59)

= exp
(

An − δ + (BT
n Φ − ∆T )Xt − 1

2
λT

t λt

)
exp

(
1
2
(
BT

n ΣΣT Bn − 2BT
n Σλt + λT

t λt

))
︸ ︷︷ ︸

Equation (58)

,

= exp


An − δ +

1
2
BT

n ΣΣT Bn + (BT
n Φ − ∆T )Xt − BT

n Σ


 λ + ΛXt︸ ︷︷ ︸

Equation (54)




 ,

= exp


An − δ +

1
2
BT

n ΣΣT Bn − BT
n Σλ︸ ︷︷ ︸

An+1

+ (BT
n (Φ − ΣΛ) − ∆T )︸ ︷︷ ︸

BT
n+1

Xt


 .

To complete the recursion relation, we require the values of A1 and B1. These values, in turn, rely on the

boundary condition that must come from the economics of the problem. In particular, it is clear that the value

of a zero coupon bond at maturity is unity. That is, P0,t = 1. This implies that A0 and B0 are identically zero.40

Thus, to find A1, we merely evaluate equation (60) using our boundary condition as follows,

P1,t = exp (A1 + B1Xt) , (60)

= exp
(

A0 − δ +
1
2
BT

0 ΣΣT B0 − BT
0 Σλ + (BT

0 (Φ − ΣΛ) − ∆T )Xt

)
.

= exp
(−δ − ∆T Xt

)
,

= exp
(
A1 + BT

1 Xt

)
,

implying that A1 = −δ and B1 = −∆.

We can see, therefore, that the model has a fairly large number of potential parameters. The parameter

vector has the elements,

θ = {δ, ∆, Φ, Σ, λ,Λ}. (61)

We saw in equations (41) and (42) that Φ and Σ are sparse block matrices. Given their importance, it is worth

mentioning a few points about the market price of risk.

λt = λ + ΛXt, (62)

where λ ∈ R(np+3)×1 and Λ ∈ R(np+3)×(np+3). These are rather sizable matrices and without some restrictions

would lead to enormous difficulty in solving the estimation problem. As a consequence, in Ang and Piazzesi
40More specifically, P0,t = exp(A0 + BT

0 Xt). Clearly, this can only equate to unity if A0, B0 = 0.
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(2003), λ and Λ are assumed to be sparse matrices. The basic idea is that only the contemporaneous macroe-

conomic and latent term-structure variables can influence the market price. Moreover, the market price of risk

specification for the macroeconomic factors are assumed to be independent of the market price of risk specification

for the latent term-structure factors. This implies that only 5 (i.e., p + 3) elements of λ are non-zero,

λ =
[
λ(1) λ(2) 0 · · · 0 λ(np + 1) λ(np + 2) λ(np + 3)

]T

. (63)

The Λ matrix that pre-multiplies the state-variable vector, Xt, is a sparse block matrix of the form,

Λ =




Λo
n×n 0n×(n(p−1)+3)

0n(p−1)×(np+3)

03×np Λu
3×3




T

, (64)

implying that only 13 (i.e., n2 + 32) elements of Λ are non-zero. These dimension-reducing assumptions greatly

ease the estimation of the model parameters.

How, therefore, do we estimate this model? In principle, the estimation algorithm follows from Chen and

Scott (1993), but it has a few twists. The biggest difference comes from the fact that we need to incorporate the

macroeconomic factors into the likelihood, but we need to ensure that the model can be reasonably estimated.

The assumption of the independence of the observable and unobservable term-structure factors implies that the

model can be estimated in two steps. The first step involves estimation of VAR(p) describing equation (32).41

This yields the upper left-hand block in equations (41) and (42): the matrices Φo and Σo. We then proceed to

estimate the parameters δ and ∆1 in equation (1) using OLS. This implies that only the parameters relating to the

latent state variables and the affine term-structure model remain to be estimated. This involves 27 parameters

from three sources. There remain six parameters in the lower-triangular matrix, Φu, there are three parameters

in ∆2, and a final 18 parameters in λ and Λ.

Another way to see this is that we have actually partitioned the parameter space according to the two steps

of the estimation algorithm,

θ1 = {δ, ∆1, Φo, Σo}, (65)

and,

θ2 = {∆2, Φu, λ,Λ}, (66)

41We should note that the general Ang-Piazzesi formulation permits a VAR(p) model, whereas in our application we specify on

VAR(1) dynamics. Our results, which are consistent with Ang and Piazzesi (2003), suggested that a VAR(p) could not produce

useful out-of-sample forecasts.

52



Macroeconomic and Term-Structure Dynamics

where, of course, θ = {θ1, θ2}. The parameters θ1 are estimated in the first stage, while θ2 are estimated in the

second stage with the assumption that θ̄2.

The Chen and Scott (1993) approach assumes that k zero-coupon rates are observed without error—and used

to infer the values of the latent state variables—and m zero-coupon rates are observed with error. The slight

twist is that, in this setting, it is necessary to include the macroeconomic variables in the likelihood function. The

consequence is a slightly different mathematical form. We begin with writing the system of k zero-coupon rates

observed without error. It is necessary to partition the matrix of factor loadings on the state-variable vector. To

ease the notation, let us set K = dim(Xt) = np + 3, and solve for the implied unobserved state-variable vector

as follows,


yn1,t

...

ynk,t


 =




An1

...

Ank


+




BT
n1

...

BT
nk


Xt, (67)

=




An1

...

Ank


+







BT
n1

(1) · · · BT
n1

(K − k)
...

. . .
...

BT
nk

(1) · · · BT
nk

(K − k)




︸ ︷︷ ︸
Bo

k

Bu
k︷ ︸︸ ︷


BT

n1
(K − k + 1) · · · BT

n1
(K)

...
. . .

...

BT
nk

(K − k + 1) · · · BT
nk

(K)








Xo

t

Xu
t


 ,

Y k
t = Ak + Bo

kXo
t + Bu

k Xu
t ,

X̂u
t = (Bu

k )−1 (
Y k

t − Ak − B0
kX0

t

)
.

Armed with the implied unobservable state variables, in X̂u
t , we can now construct a larger system of zero-coupon

rates. There are two points in this step. First, it is important for the estimation of the model to use more than k

zero-coupon yields. Let us assume that we will use N > k zero-coupon rates in the estimation algorithm, where

(N − k) zero-coupon rates are assumed to be observed without error. Second, we need to write the likelihood

function in terms of both the observable and unobservable state variables to ensure that the information in the

observable macroeconomic variables is used to estimate the term-structure model parameters.42 The full model,

therefore, has N zero-coupon rates that are a function of K − k observable macroeconomic state variables, k

unobservable term-structure state variables, and a vector um
t ∈ Rm×1 of observation errors. It is represented as

42Note that in the structural macro-finance model proposed by Hördahl, Tristani, and Vestin (2004) the observable macroeconomic

state variables are used, along with two zero-coupon rates, to infer the value of the unobservable state variables. The likelihood in

this setting is smaller, but the structural macroeconomic model enters indirectly through the matrix, M .
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follows,

Y N
t = AN + Bo

NXo
t + Bu

N X̂u
t + Bm

N um
t (68)

where Y N
t , AN ∈ RN×1, Bo

N ∈ RN×(K−k), Bu
N ∈ RN×k, and Bm

N ∈ RN×m with non-zero elements correspond-

ing to the zero-coupon rates in Y n
t that are observed with error. The observation errors are assumed to be

independent of the state-variable vector, Xt. Moreover, they are assumed to follow an independent, identically

distributed Gaussian distribution as,

Bm
N um

t ∼ N
(
0, Bm

N (Bm
N )T

)
. (69)

This is potentially problematic. If, for example, N = 4, k = 2, and the first and third zero-coupon rates are

assumed to be observed with error (i.e., m = 2) then B2
4 would have the form,

B2
4 =




σ1 0

0 0

0 σ3

0 0


 . (70)

The associated variance-covariance matrix of the observation errors would have the form,

B2
4 =




σ2
1 0 0 0

0 0 0 0

0 0 σ2
3 0

0 0 0 0


 , (71)

which is, of course, singular. We will need to be accordingly cautious when constructing the contribution of the

observation errors to the likelihood function; more specifically, it will be necessary to avoid direction determinant

and inverse computations of equation (71).

How do we, therefore, construct the likelihood function? The idea is that we would like to write down the

joint conditional density of the zero-coupon rates, the observable macroeconomic variables, and the observation

errors. That is, we would like to be able to maximize

T∏
t=2

f
(
Y N

t , Xo
t | Ft

)
, (72)

where Ft
�
= σ{Y N

t−1, X
o
t−1} denotes the sigma-algebra generated by Y N

t−1 and Xo
t−1. The problem is that we do

not observe this density, nor do we know its form. Indeed, we only observe Xo
t . We can, however, infer the

value of the unobservable state variables using equation (67) and k zero-coupon rates observed without error.
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Finally, there is information in the observation errors that can also assist in the estimation algorithm. We use,

as suggested by Chen and Scott (1993), the change of variables formula to map the conditional density of the

things that we know something about, (Xo
t , X̂u

t , um
t ) into the conditional density of what we need, (Xo

t , Y N
t ).

This mapping has the usual form,

f


Xo

t , X̂u
t , um

t

∣∣∣∣∣∣∣ σ{Xo
t , X̂u

t }︸ ︷︷ ︸
Gt


 = f

(
Xo

t , Y N
t | Ft

)
det |J |, (73)

f(Xo
t , Y N

t | Ft) =
1

det |J |f(Xo
t , X̂u

t , um
t | Gt),

=
1

det |J |f(Xo
t , X̂u

t | Gt)f(um
t | Gt),

=
1

det |J |f(Xo
t , X̂u

t | Gt)f(um
t ),

where the final two steps follow from the independence of the observation errors from the state vector (i.e., Xt

and um
t are independent). The Jacobian matrix, J , has the form

J =


 ∂Xo

t

∂Xo
t

∂Xo
t

∂X̂u
t

∂Xo
t

∂um
t

∂Y N
t

∂Xo
t

∂Y N
t

∂X̂u
t

∂Y N
t

∂um
t


 , (74)

=


I(K−k)×(K−k) 0(K−k)×k 0(K−k)×m

Bo
N Bu

N Bm
N


 ,

so that J ∈ R(N+K−k)×(N+K−k) is a square matrix whose determinant exists should it be non-singular.

All that remains is to derive the associated log-likelihood function,

T∏
t=2

f
(
Y N

t , Xo
t | Ft

)
=

T∏
t=2

1
det |J |f(Xo

t , X̂u
t | Gt)f(um

t ), (75)

=
T∏

t=2

(
det |J |−1 (2π)−

N
2 det

(
ΣΣT

)− 1
2 exp

(
−1

2
φT

t

(
ΣΣT

)−1
φt

)

(2π)−
m
2 det

(
Bm

N (Bm
N )T

)− 1
2

exp
(
−1

2
(um

t )T
(
Bm

N (Bm
N )T

)−1

um
t

))
,

T∑
t=2

ln f
(
Y N

t , Xo
t | Ft

)
= −(T − 1) ln det |J | − (N + m)(T − 1)

2
ln (2π) − (T − 1)

2
ln det

(
ΣΣT

)

− (T − 1)
2

ln det
(
Bm

N (Bm
N )T

)
− 1

2

T∑
t=2

(
φT

t

(
ΣΣT

)−1
φt + (um

t )T
(
Bm

N (Bm
N )T

)−1

um
t

)
,

lnL(θ̄1, θ2) = −(T − 1) ln det |J | − (N + m)(T − 1)
2

ln (2π) − (T − 1)
2

ln det
(
ΣΣT

)
− (T − 1)

2
ln


 m∑

j=1

σ2
j


− 1

2

T∑
t=2


φT

t

(
ΣΣT

)−1
φt +

m∑
j=1

(um
t (j))2

σ2
j


 ,
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where φt = Xt − ΦXt−1 and the final manipulations are required to avoid the problems with the application of

determinant and inverse operators to the Bm
N (Bm

N )T matrix as described in equation (71).

Using our dataset, we then proceed to use a non-linear optimization algorithm to determine the parameters

for each of the Ang-Piazzesi models. This is, however, a high-dimensional non-linear optimization problem.

In this setting, one can never—absent strong restrictions on the mathematical form of the objective functions,

which cannot be made in this case—be certain to have found the global minimum. The best one can do is to

perform sufficient computation to feel confident that a solution close to the global minimum is found. We employ,

therefore, a rather extensive optimization algorithm to attempt to find the global minimum similar to that used in

Bolder (2006). First, we find a starting value by evaluating 1,000 uniform randomly selected starting parameter

vectors. The actual starting value is the lowest objective value among this collection of objective function values.

We then perform six alternations between 1,000 iterations of the Nelder-Meade (i.e., function-evaluation based

method) and the sequential-quadratic programming (i.e., a gradient-based method that is a generalization of

the well-known Gauss-Newton algorithm) implemented in Matlab. In each alternation, the best value from the

previous step is used as the starting value for the subsequent step to arrive at a final optimal parameter set.

This sequence of steps is then performed 500 times. We then look at the top 50 objective function values and

select the set of parameters that provides the best fit to the data.
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B Deriving the Observed-Affine Model

This technical appendix walks through the calculations required for the construction of the observed-affine model.

We will examine two cases. The first case describes a VAR(1) process for the state-variable dynamics while the

second cases considers the VAR(2) process used in our analysis.

The first case is a relatively straightforward application of the approach used by Ang and Piazzesi (2003).

We begin with the state-variable vector,

Xt =


Xpc

t

Xo
t


 , (76)

where Xpc
t denotes the first three principal components associated with zero-coupon curve movements and Xo

t

are output (i.e., xt), inflation (i.e., πt), and the monetary policy rate (i.e., rt) respectively. In this way, all of the

state-variables are observable. The state-variable dynamics have the form,

Xt+1 = C + FXt−1 + Σεt+1, (77)

the market price of risk has the usual form,

λt = λ + ΛXt, (78)

the pricing kernel is,

Mt+1 = e−rt
ϕt+1

ϕt
, (79)

and the Radon Nikodỳm derivative is,

ϕt+1

ϕt
= e−

1
2 λT

t λt−λT
t εt+1 . (80)

If we note that the instantaneous short rate, as proxied by the monetary policy rate, is observed. It is the final

element in our state-variable vector, thus we define,

Ir =
[
0 0 0 0 0 1

]
, (81)

so that we have,

IrXt = rt. (82)

This, therefore, implies that the pricing kernel has the following straightforward form,

Mt+1 = exp



−

Equation

(82)︷︸︸︷
IrXt −1

2
λT

t λt − λT
t εt+1




. (83)
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We can now proceed to determine the form of the affine mapping between the state variables and pure-discount

bond prices. Consider the following,

Pn+1,t = eAn+1+BT
n+1Xt , (84)

= E (Pn,t+1Mt+1| Ft) ,

= E


exp

{
An + BT

n Xt+1

}
exp

{
−IrXt − 1

2
λT

t λt − λT
t εt+1

}
︸ ︷︷ ︸

Equation (83)

∣∣∣∣∣∣∣∣∣
Ft


 ,

= E


exp


An + BT

n (C + FXt + Σεt+1)︸ ︷︷ ︸
Equation (77)

−IrXt − 1
2
λT

t λt − λT
t εt+1



∣∣∣∣∣∣∣Ft


 ,

= E

(
exp

{
An + BT

n C +
(
BT

n F − Ir

)
Xt − 1

2
λT

t λt +
(
BT

n Σ − λT
t

)
εt+1

}∣∣∣∣Ft

)
,

= exp
{

An + BT
n C +

(
BT

n F − Ir

)
Xt − 1

2
λT

t λt

}
E
(
exp

{(
BT

n Σ − λT
t

)
εt+1

}∣∣Ft

)
,

= exp
{

An + BT
n C +

(
BT

n F − Ir

)
Xt − 1

2
λT

t λt

}
exp

{
1
2
BT

n ΣΣT Bn − BT
n Σλt +

1
2
λT

t λt

}
,

= exp


An + BT

n C +
(
BT

n F − Ir

)
Xt +

1
2
BT

n ΣΣT Bn − BT
n Σ (λ + ΛXt)︸ ︷︷ ︸

Equation (78)


 ,

= exp


An + BT

n (C − Σλ) +
1
2
BT

n ΣΣT Bn︸ ︷︷ ︸
An+1

+
(
BT

n (F − ΣΛ) − Ir

)︸ ︷︷ ︸
BT

n+1

Xt


 .

Given that A0 and B0 must be identically zero, it follows that the boundary conditions for starting the recursion

are A1 = 0 and B1 = −Ir.

The second case requires a small trick in order to permit a reasonable solution. In particular, use of a VAR(2)

process to describe the state-variable dynamics implies the following specification,

Xt+1 = C + F1Xt + F2Xt−1 + Σεt+1. (85)

If we attempt to solve for An+1 and Bn+1 directly, we will lose the affine form given that an Xt−1 term will

arise. We solve this problem—and this is the trick—by making the following adjustment to the market price of

risk,

λt = λ + ΛXt + Σ−1F2Xt−1. (86)

This may seem somewhat odd, but it is perfectly legitimate. Moreover, it permits us to maintain the convenient
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exponential affine pure-discount price form, while simultaneously allowing the use of a VAR(2) specification for

the state-variable dynamics.

If we proceed to follow the same process as described in equation (84) we arrive at an identical form for the

affine mapping between the state variables and pure-discount bond prices as,

Pn+1,t = eAn+1+BT
n+1Xt , (87)

= E (Pn,t+1Mt+1| Ft) ,

= E


exp

{
An + BT

n Xt+1

}
exp

{
−IrXt − 1

2
λT

t λt − λT
t εt+1

}
︸ ︷︷ ︸

Equation (83)

∣∣∣∣∣∣∣∣∣
Ft


 ,

= E


exp


An + BT

n (C + F1Xt + F2Xt−1 + Σεt+1)︸ ︷︷ ︸
Equation (85)

−IrXt − 1
2
λT

t λt − λT
t εt+1



∣∣∣∣∣∣∣Ft


 ,

= E

(
exp

{
An + BT

n C +
(
BT

n F1 − Ir

)
Xt + BT

n F2Xt−1 − 1
2
λT

t λt +
(
BT

n Σ − λT
t

)
εt+1

}∣∣∣∣Ft

)
,

= exp
{

An + BT
n C +

(
BT

n F − Ir

)
Xt + BT

n F2Xt−1 − 1
2
λT

t λt

}
E
(
exp

{(
BT

n Σ − λT
t

)
εt+1

}∣∣Ft

)
,

= exp
{

An + BT
n C +

(
BT

n F − Ir

)
Xt + BT

n F2Xt−1 − 1
2
λT

t λt

}
exp

{
1
2
BT

n ΣΣT Bn − BT
n Σλt +

1
2
λT

t λt

}
,

= exp


An + BT

n C +
(
BT

n F − Ir

)
Xt + BT

n F2Xt−1 +
1
2
BT

n ΣΣT Bn − BT
n Σ


λ + ΛXt + Σ−1F2Xt−1︸ ︷︷ ︸

Equation (86)




 ,

= exp
{

An + BT
n C +

(
BT

n F − Ir

)
Xt + BT

n F2Xt−1 +
1
2
BT

n ΣΣT Bn − BT
n Σλ − BT

n ΣΛXt − BT
n F2Xt−1

}
,

= exp


An + BT

n (C − Σλ) +
1
2
BT

n ΣΣT Bn︸ ︷︷ ︸
An+1

+
(
BT

n (F − ΣΛ) − Ir

)︸ ︷︷ ︸
BT

n+1

Xt


 .

As we have the same form as in equation (84), it follows that the boundary conditions for starting the recursion

remain A1 = 0 and B1 = −Ir.

The estimation of this model is now straightforward. It is performed in two steps. In the first step, the

physical-measure parameters (i.e., C,F1, F2, and Σ), are estimated from the observed dataset using an ordinary

least-squares regression. In the second step, the remaining pricing-measure parameters (i.e., λ and Λ), are

determined using a non-linear least-squares regression with the zero-coupon panel data and equation (87).

59



Macroeconomic and Term-Structure Dynamics

C Deriving the Nelson-Siegel Model

The intent of this section is to establish the basic logic behind the construction of the Nelson and Siegel (1987)

model. They suggested the following form for the instantaneous forward rate,

f(v) = x0 + x1e
−λv + x2λve−λv. (88)

By exploiting the fact that z(τ) = 1
τ

∫ τ

0
f(v)dv, one can solve for the zero-coupon curve through a straightforward

integration by parts,43

z(τ) =
1
τ

∫ τ

0

(
x0 + x1e

−λv + x2λve−λv
)
dv, (89)

= x0 + x1

(
1 − e−λτ

λτ

)
+ x2

(
1 − e−λτ

λτ
− e−λτ

)
.

Diebold and Li (2003) transformed this into a dynamic term-structure model by letting the coefficients x0, x1,

and x2 become state variables with the following factor loadings,

f0(y) = 1, (90)

f1(y) =
1 − e−λy

λy
, (91)

f2(y) =
1 − e−λy

λy
− e−λy, (92)

for y ∈ R.

This model has attained a fairly comfortable spot in the term-structure literature. An interesting question,

however, is what is the intuition behind these factor loadings. Hurn, Lindsay, and Pavlov (2005) provide an

extension of the Nelson-Siegel model that provides some insight into the origins of the factor loadings and,

more importantly, a hint as to how their approach might be extended. The key result comes from the following

representation theorem used in spectral analysis.

Theorem C.1 If γ(x) is continuous on (0,∞) and β1 ∈ R such that,∫ ∞

0

ex (γ(x) − β1)
2
dx < ∞, (93)

then γ(x) has a pointwise Fourier-Laguerre series representation of the following form,

γ(x) = β1 + e−λx
∞∑

k=0

ckLk(λx), (94)

where Lk(λx) is a kth degree Laguerre polynomial and β1, λ, c0, c1, ... ∈ R are coefficients to be determined.
43See Bolder (2006) for the details.
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This result essentially applies that a positive, bounded, continuous function can be described as a relatively simple

function of an infinite sum of Laguerre polynomials. Reconsidering equation (88), we see that Theorem C.1 can be

applied to the instantaneous forward-rate equation. That is, if we let x = v, then the instantaneous forward-rate

has the following representation,

f(v) = β1 + e−λv
N∑

k=0

ckLk(λv), (95)

where the sum of Laguerre polynomials is truncated to N terms. What is required is a way to represent the

Laguerre polynomial, Lk(x).44 There are a variety of ways to describe Laguerre polynomials, but probably the

most straightforward arises from the Rodrigues formula, which is a more general result.45 The specific result for

the Laguerre polynomial has the form,

Lk(x) =
ex

k!
∂k

∂xk

(
xke−x

)
. (97)

We can now easily evaluate the first few Laguerre polynomials for k = 0,

L0(x) =
1
0!

ex ∂0

∂(x)0
(
(x)0e−x

)
, (98)

= 1,

for k = 1,

L1(x) =
1
1!

ex ∂1

∂(x)1
(
(x)1e−x

)
, (99)

= ex
(
e−x − xe−x

)
,

= 1 − x,

and for k = 2

L2(x) =
1
2!

ex ∂2

∂x2

(
x2e−x

)
, (100)

=
1
2
ex ∂

∂x

(
2xe−x − x2e−x

)
,

=
1
2
ex
(
2e−x − 4xe−x + x2e−x

)
,

=
1
2
(
x2 − 4x + 2

)
.

44Laguerre polynomials arise as the solution to the following differential equation,

x
∂2

∂x2
f(x) + (1 − x)

∂

∂x
f(x) + nf(x) = 0, (96)

for n ∈ {
0, Z+

}
.

45See Abramovitz and Stegun (1965, 774-776) for more detail on Rodrigues’ formula.
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This is all that is required to derive the functional form of the Nelson and Siegel (1987) zero-coupon curve.

We take the corresponding zero-coupon curve, which follows from equation (89), and use the representation

theorem as described in equation (95) with only the first two terms (i.e., N = 1). This yields the following

expression that can be simplified as,

z(τ) =
1
τ

∫ τ

0

(
β1 + e−λv

1∑
k=0

ckLk(λv)

)
dv, (101)

= β1 +
1
τ

1∑
k=0

ck

∫ τ

0

e−λvLk(λv)dv,

= β1 +
1
λτ

1∑
k=0

ck

∫ λτ

0

e−xLk(x)dx︸ ︷︷ ︸
Change of variables

with x = λv

,

= β1 +
c0

λτ

∫ λτ

0

e−x L0(x)︸ ︷︷ ︸
=1

dx +
c1

λτ

∫ λτ

0

e−x L1(x)︸ ︷︷ ︸
=1−x

dx,

= β1 +
c0

λτ

∫ λτ

0

e−xdx +
c1

λτ

∫ λτ

0

e−x(1 − x)dx,

= β1 +
c0

λτ

(
1 − e−λτ

)
+

c1

λτ

(∫ λτ

0

e−xdx −
∫ λτ

0

xe−xdx

)
,

= β1 +
c0

λτ

(
1 − e−λτ

)
+

c1

λτ



(
1 − e−λτ

)
+

(
xe−x

∣∣λτ

0
−
∫ λτ

0

e−xdx

)
︸ ︷︷ ︸

Using integration by parts


 ,

= β1 +
c0

λτ

(
1 − e−λτ

)
+

c1

λτ

((
1 − e−λτ

)− λτe−λτ − (
1 − e−λτ

))
,

= β1 + c0

(
1 − e−λτ

λτ

)
+ c1e

−λτ .

If we now set β1 = x0, c0 = x1 + x2, and c1 = −x2, we arrive at

z(τ) = x0︸︷︷︸
β1

+


x1 + x2︸ ︷︷ ︸

c0


(

1 − e−λτ

λτ

)
−x2︸︷︷︸

c1

e−λτ , (102)

= x0 + x1

(
1 − e−λτ

λτ

)
+ x2

(
1 − e−λτ

λτ
− e−λτ

)
,

which is exactly the form suggested by Nelson and Siegel (1987) as shown in equation (89). We see, therefore,

that the Nelson-Siegel model is, in fact, a consequence of the represention result summarized in Theorem C.1.

Hurn, Lindsay, and Pavlov (2005) proceed to extend this result. In particular, they demonstrate that one can

easily create additional terms to the Nelson-Siegel model merely by changing the truncation of the infinite sum of
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Laguerre polynomials. More specifically, they set N = 2 and N = 3 to create four- and five-factor Nelson-Siegel

models respectively. To obtain the fourth and fifth terms, we can proceed with direct integration as we did in

equation (101). This could get a bit tedious. Conversely, we may—as suggested by Hurn, Lindsay, and Pavlov

(2005)—use a small trick. In particular, we manipulate Rodrigues’ formula, as shown in equation (97), to get

the following very useful result,

Lk(x) =
ex

k!
∂k

∂xk

(
xke−x

)
, (103)

e−xLk(x) = e−x

(
ex

k!
∂k

∂xk

(
xke−x

))
,∫ λτ

0

e−xLk(x)dx =
1
k!

∫ λτ

0

(
∂k

∂xk

(
xke−x

))
dx,

=
1
k!

(
∂k−1

∂xk−1

(
xke−x

))∣∣∣∣λτ

0

,

=
1
k!

∂k−1

∂xk−1

(
xke−x

)∣∣
x=λτ

.

This result permits us to compute the fourth and fifth terms quite easily. In particular, for k = 2 we have that,∫ λτ

0

e−xL2(x)dx =
1
2!

∂2−1

∂x2−1

(
x2e−x

)∣∣
x=λτ

, (104)

=
1
2

∂

∂x

(
x2e−x

)∣∣
x=λτ

,

=
1
2
(
2xe−x − x2e−x

)∣∣
x=λτ

,

=
1
2

(
2λτe−λτ − (λτ)2 e−λτ

)
,

= λτe−λτ

(
1 − λτ

2

)
,

and k = 3 has the following form,∫ λτ

0

e−xL3(x)dx =
1
3!

∂3−1

∂x3−1

(
x3e−x

)∣∣
x=λτ

, (105)

=
1
6

∂2

∂x2

(
x3e−x

)∣∣
x=λτ

,

=
1
6
(
x3e−x − 6x2e−x + 6xe−x

)∣∣
x=λτ

,

=
1
6
(
(λτ)3e−λτ − 6(λτ)2e−λτ + 6λτe−λτ

)
,

= λτe−λτ

(
(λτ)2

6
− λτ + 1

)
.
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Now that we have all the pieces, we can write down the five-factor Nelson-Siegel model as follows,

z(τ) = x0 + x1

(
1 − e−λτ

λτ

)
+ x2

(
1 − e−λτ

λτ
− e−λτ

)
+

c2

λτ

∫ λτ

0

e−xL2(x)dx︸ ︷︷ ︸
Equation (104)

+
c3

λτ

∫ λτ

0

e−xL3(x)dx︸ ︷︷ ︸
Equation (105)

, (106)

= x0 + x1

(
1 − e−λτ

λτ

)
+ x2

(
1 − e−λτ

λτ
− e−λτ

)
+

c2

λτ

(
λτe−λτ

(
1 − λτ

2

))
+

c3

λτ

(
λτe−λτ

(
(λτ)2

6
− λτ + 1

))
,

= x0 + x1

(
1 − e−λτ

λτ

)
+ x2

(
1 − e−λτ

λτ
− e−λτ

)
︸ ︷︷ ︸

Classical Nelson-Siegel model

+ x3e
−λτ

(
1 − λτ

2

)
+ x4e

−λτ

(
(λτ)2

6
− λτ + 1

)
︸ ︷︷ ︸

Additional factors from Fourier-Laguerre expansion

,

where we’ve set x3 = c2 and x4 = c3. With this specific construction, Hurn, Lindsay, and Pavlov (2005)

demonstrate how one can cleverly maintain the basic structure of the Nelson-Siegel model while simultaneously

adding more flexibility through two new state variables, x3 and x4.

64



Macroeconomic and Term-Structure Dynamics

D The Conditional Out-of-Sample Forecast Distribution

In order to construct a conditional confidence interval for our out-of-sample forecasts, which are actually the

conditional expectation of the zero-coupon forecast, one needs to begin by deriving the conditional variance of the

zero-coupon forecast. To obtain the conditional variance of the zero-coupon forecast, we must first compute the

conditional variance of the state-variable vector associated with the specific term-structure model. Fortunately,

in the collection of models examined in this paper, all of the state-variable dynamics are described by a VAR(p)

process. Consider, therefore, the following VAR(1) process,

Xt = FXt−1 + εt, (107)

where Xt ∈ Rn×1, F ∈ Rn×n, and

εt ∼ N
(
�0, Ω

)
. (108)

We can proceed to perform all of the subsequent analysis, without loss of generality, by assuming that the

intercept vector, C ≡ 0; it turns out to have no impact on the final result and merely complicates the subsequent

expressions. The one-period forward conditional expectation, therefore, has the following form,

E (Xt| Ft−1) = FXt−1, (109)

while the one-period forward conditional variance can easily be determined by recalling that Xt−1 is Ft−1-

measurable and, therefore, a constant as well as the fact that expecations involving only εt vanish. Here is the

result,

var (Xt| Ft−1) = E
(
XtX

T
t

∣∣Ft−1

)− E (Xt| Ft−1) E (Xt| Ft−1)
T

, (110)

= E
(
(FXt−1 + εt)(FXt−1 + εt)T

∣∣Ft−1

)− E (FXt−1 + εt| Ft−1) E (FXt−1 + εt| Ft−1)
T

,

= (FXt−1)(FXt−1)T + E
(
εtε

T
t

∣∣Ft−1

)− FXt−1(FXt−1)T ,

= Ω.

The consequence is that the one-period forward conditional distribution of our VAR(1) state-variables are,

Xt | Ft−1 ∼ N (FXt−1, Ω) . (111)

While this is a useful result, what we require is the n-period forward conditional variance so that we can

construct an n-period forward confidence interval. Let’s do this in steps by computing the two-period forward
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confidence interval. First, we require an expression for Xt+1 in terms of Xt−1,

Xt+1 = FXt + εt+1, (112)

= F (FXt−1 + εt) + εt+1,

= F 2Xt−1 + Fεt + εt+1.

implying that the expectation of Xt+1 conditioning on the filtration Ft−1 is described as,

E (Xt+1| Ft−1) = F 2Xt−1. (113)

We now perform the same calculation as in equation (110), by working from the definition of the conditional

variance as,

var (Xt+1| Ft−1) = E
(
Xt+1X

T
t+1

∣∣Ft−1

)− E (Xt+1| Ft−1) E (Xt+1| Ft−1)
T

, (114)

= E
(
(F 2Xt−1 + Fεt + εt+1)(F 2Xt−1 + Fεt + εt+1)T

∣∣Ft−1

)
− E

(
F 2Xt−1 + Fεt + εt+1

∣∣Ft−1

)
E
(
F 2Xt−1 + Fεt + εt+1

∣∣Ft−1

)T
,

= F 2Xt−1X
T
t−1

(
F 2
)T

+ F E
(
εtε

T
t

∣∣Ft−1

)
FT + E

(
εt+1ε

T
t+1

∣∣Ft−1

)− F 2Xt−1X
T
t−1

(
F 2
)T

,

= FΩFT + Ω,

=
1∑

j=0

F jΩ
(
F j
)T

. (115)

This implies that the two-period forward conditional distribution for a VAR(1) is described as,

Xt+1 | Ft−1 ∼ N (
F 2Xt−1, FΩFT + Ω

)
. (116)

At this point, we have two choices. One may either, depending on his or her level of patience, continue to

solve this expression for an arbitrary n or, logically work out the general n-period term. We prefer the latter

approach. Consequently, we can see from equation (114) that if we construct the three-period forward conditional

variance, that we will add an additional term of the form F 2E
(
εtε

T
t

∣∣Ft−1

) (
F 2
)T , which leads to the additional

term F 2Ω
(
F 2
)T .46 The implication, therefore, is that the general term for the n-period forward conditional

variance of a VAR(1) state-variable vector has the form,

var (Xt+n| Ft−1) =
n∑

j=0

F jΩ
(
F j
)T

. (118)

46This stems from equation (114) and the fact that,

Xt+2 = F 3Xt−1 + F 2εt + Fεt+1 + εt+2. (117)
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There is a slight catch. The state variables are, in our analysis, assumed to have VAR(2) dynamics. In

principle, however, this is not a problem as we can place our VAR(2) specification into companion form and use

the results from the VAR(1) specification. In particular, let’s start with our VAR(2) model,

Xt = F1Xt−1 + F2Xt−2 + εt, (119)

with Xt ∈ Rn×1, F1, F2 ∈ Rn×n, and where εt is distributed as in equation (108). We then proceed to define,

Yt =


 Xt

Xt−1


 , (120)

which allows us to write the companion form of Yt as,
 Xt

Xt−1


 =


F1 F2

I 0




Xt−1

Xt−2


+


εt

0


 , (121)

Yt = GYt−1 + ut,

where the variance-covariance matrix of ut has dimensionality 2n×2n and the following distributional properties,

ut ∼ N


�0,


Ω 0

0 0




︸ ︷︷ ︸
Q


 . (122)

The consequence, therefore, is that the conditional distribution of a one-period forward VAR(2) state-variable

follows from equation (111) as,

Yt | Ft−1 ∼ N (GYt−1, Q) . (123)

The conditional variance of the n-period forward VAR(2) state-variable vector is, therefore,

var (Yt+n| Ft−1) =
n∑

j=0

GjQ
(
Gj
)T

. (124)

We are interested in the n × n matrix in the top right-hand corner of the matrix, var (Yt+n| Ft−1), which is

var (Xt+n| Ft−1). This is because we are not interested in the conditional variance of Yt+n, but rather that of

Xt+n.

Now that we have expressions for the conditional variance of Xt+n, we may now proceed to consider the

conditional variance of the n-period forward zero-coupon rate forecast. For the discrete-time affine term-structure
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models used in this paper, the n-period forward zero-coupon rate forecasts, with a tenor of τ periods, has the

form,

E
(
Zτ

t+n

∣∣Ft−1

)
= E

(
Aτ + BT

τ Xt+n

∣∣Ft−1

)
, (125)

= Aτ + BT
τ E (Xt+n| Ft−1) .

while the conditional variance is described as,

var
(
Zτ

t+n

∣∣Ft−1

)
= var

(
Aτ + BT

τ Xt+n

∣∣Ft−1

)
, (126)

= var
(
BT

τ Xt+n

∣∣Ft−1

)
,

= BT
τ var (Xt+n| Ft−1)︸ ︷︷ ︸

See equations

(118) and (124)

Bτ .

The implication is that a 95% confidence interval for the n-period forward, τ -tenor zero-coupon forecast from a

discrete-time affine term-structure model is,

Aτ + BT
τ E (Xt+n| Ft−1)︸ ︷︷ ︸

Equation (125)

±Φ−1
(
1 − α

2

)√√√√BT
τ var (Xt+n| Ft−1) Bτ︸ ︷︷ ︸

Equation (126)

, (127)

where Φ−1(·) is the inverse of the normal cumulative distribution function and α for our purposes is equal to

0.05.

For the Nelson-Siegel model, which represents zero-coupon rates as a linear combination of Laguerre polyno-

mials, the n-period forecast of a τ -period zero-coupon rate,

E
(
Zτ

t+n

∣∣Ft−1

)
= E

(
F (τ)T Xt+n

∣∣Ft−1

)
, (128)

= F (τ)T E (Xt+n| Ft−1) ,

where F (τ) denotes the factor-loading vector. As a consequence, the conditional variance of this forecast is,

var
(
Zτ

t+n

∣∣Ft−1

)
= var

(
F (τ)T Xt+n

∣∣Ft−1

)
, (129)

= F (τ)T var (Xt+n| Ft−1)︸ ︷︷ ︸
See equations

(118) and (124)

F (τ).

This implies that a 95% confidence interval for the n-period forward, τ -tenor zero-coupon forecast from Nelson-

Siegel term-structure model is,

F (τ)T E (Xt+n| Ft−1)︸ ︷︷ ︸
Equation (128)

±Φ−1
(
1 − α

2

)√√√√F (τ)T var (Xt+n| Ft−1) F (τ)︸ ︷︷ ︸
Equation (129)

. (130)
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Finally, we turn our attention to the exponential-spline and Fourier-series models, which are linear combina-

tions of basis functions operating on the discount function. The forecast and forecast variance will, consequently,

have a slightly different form. Indeed, we merely operate in pure-discount bond price space and perform the nec-

essary transformation at the end of the process.47 In particular, the n-period forecast of a τ -period pure-discount

bond price is,

E
(
P τ

t+n

∣∣Ft−1

)
= E

(
G(τ)T Xt+n

∣∣Ft−1

)
, (132)

= G(τ)T E (Xt+n| Ft−1) .

The associated conditional variance of the n-period forward τ -period pure-discount bond price, therefore, is

var
(
P τ

t+n

∣∣Ft−1

)
= var

(
G(τ)T Xt+n

∣∣Ft−1

)
, (133)

= G(τ)T var (Xt+n| Ft−1)︸ ︷︷ ︸
See equations

(118) and (124)

G(τ).

The 95% confidence interval for the n-period forward, τ -tenor zero-coupon bond price is accordingly a slight

variation on equation (130) involving the transformation in equation (131) as follows,

−1
τ

ln


G(τ)T E (Xt+n| Ft−1)︸ ︷︷ ︸

Equation (132)

±Φ−1
(
1 − α

2

)√√√√G(τ)T var (Xt+n| Ft−1) G(τ)︸ ︷︷ ︸
Equation (133)


 . (134)

47Recall that the aforementioned transformation is,

zτ
t+n = − ln P τ

t+n

τ
. (131)
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