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Abstract

We show how to use optimal control theory to derive optimal time-consistent Markov-perfect

government policies in nonlinear dynamic general equilibrium models, extending the result of

Cohen and Michel (1988) for models with quadratic objective functions and linear dynamics. We

replace private agents’ costates by flexible functions of current states in the government’s

maximization problem. The functions are verified in equilibrium to an arbitrarily close degree of

approximation. They can be found numerically by perturbation or projection methods. We use a

stochastic model of optimal public spending to illustrate the technique.

JEL classification: E61, E62, C63
Bank classification: Fiscal policy; Monetary policy framework

Résumé

Les auteurs montrent comment la théorie du contrôle optimal permet d’élaborer des politiques

optimales temporellement cohérentes en équilibre markovien parfait à l’aide de modèles

d’équilibre général dynamiques non linéaires, dans la lignée des résultats obtenus par Cohen et

Michel (1988) à partir de modèles dynamiques linéaires où la fonction-objectif est de forme

quadratique. Les multiplicateurs de Lagrange du problème de maximisation des agents du secteur

privé sont remplacés par des fonctions flexibles des variables d’état de la période en cours dans le

problème de maximisation du bien-être collectif. À l’équilibre, ces fonctions se vérifient jusqu’à

un degré quelconque d’approximation. Elles peuvent être résolues numériquement à l’aide de

méthodes de perturbation ou de projection. Les auteurs illustrent l’emploi de leur technique au

moyen d’un modèle stochastique formalisant le niveau optimal des dépenses publiques.

Classification JEL : E61, E62, C63
Classification de la Banque : Politique budgétaire; Cadre de la politique monétaire



1 Introduction

An appealing feature of solving Ramsey (1927) problems to derive optimal second-

best government policies in dynamic general equilibrium models is their relative

analytical tractability. It is often possible to use the so-calledprimal approach, in

which private agents’ first order conditions and budget constraints are combined

to derive animplementability constraint,1 allowing prices and policy variables to

be substituted out of the problem. The choice variables of the optimal policy prob-

lem are the allocations themselves. Prices and policies that support the optimal

allocations can be derived once the allocations themselvesare known. Using the

primal approach leads to equations in which expected futureallocations have an

influence on agents’ current behavior. Therefore, optimal policies derived in this

manner are generallytime-inconsistent.2 The government must be able to commit

credibly to its announced policies. Otherwise, it will optimally revise them as

time goes by, in which case its announced policies will not bebelieved by private

agents.

It is often interesting to compare the optimal allocations under credible pre-

commitment by the government to optimal allocations where this precommitment

is not possible, possibly for institutional or political reasons. In the latter case, dy-

namic programming can be used to compute optimal Markov-perfect strategies for

the government. In special cases, the envelope theorem can be used to eliminate

the government’s value function from the system of equations.3 Alternatively,

it is possible to linearize the laws of motion of the economy and use quadratic

approximations to agents’ preferences, so that the value function takes a known

form.4 This approach may be less than satisfactory in the presence of impor-

tant nonlinearities. In addition, using linear-quadraticapproximations may lead

1See Chari and Kehoe (1999) for a detailed discussion.
2Solutions to the Ramsey problem can be made time-consistentin special cases. The most

well-known case is Lucas and Stokey (1983).
3See Judd (1998, section16.9), Azzimonti-Renzo, Sarte and Soares (2003), Klein, Krusell and

Rı́os-Rull (2004) and Ortigueira (2004) for examples.
4See Ambler and Paquet (1996, 1997) and Ambler and Cardia (1997)
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to misleading welfare comparisons if the deterministic steady state is not a Pareto

optimum.5 An approximation to the government’s value function can be found

by discretizing the model’s state space, but this approach suffers from a curse of

dimensionality: it is computationally burdensome with more than a small number

of state variables. It would be useful to have an alternativegeneral methodology

for analyzing optimal time-consistent Markovian policies.

In this paper, we show how to use optimal control theory to derive time-

consistent Markovian government policies in nonlinear dynamic general equilib-

rium models, extending the insight of Cohen and Michel (1988). They showed

that in linear-quadratic environments time-consistent policies compatible with

Markov-perfect equilibria can be found using optimal control theory by impos-

ing a linear relationship between predetermined state variables and the costate

variables from private agents’ maximization problems.6 We show that by restrict-

ing private agents’ costates to be a nonlinear function of current predetermined

state variables, the optimal control problem of the government becomes recur-

sive (in a sense to be defined below), whereas in the Ramsey problem it typi-

cally is not. The nonlinear function is verified in equilibrium to an arbitrarily

close degree of approximation. Projection methods or perturbation methods can

be used to approximate the function.7 The equilibria found using this approach

are Markov-perfect since the government’s policy functionis time invariant and

depends only on the current state of the economy.8 The technique can be used

to find Markov-perfect equilibria in stochastic models. Many previous treatments

5See Kim and Kim (2003). See Woodford (2003, chapter 6) for conditions under which the
linear-quadratic approach is justified.

6Their methodology was utilized to analyze optimal government policies by a number of re-
searchers. See Currie and Levine (1993), Oudiz and Sachs (1985) and Miller and Salmon (1985)
for examples.

7See Judd (1998), McGrattan (1999), and Aruoba, Fernndez-Villaverde and Rubio-Raḿırez
(2004). Projection methods can have better global properties than perturbation methods around a
particular equilibrium point.

8See Bernheim and Ray (1989) and Maskin and Tirole (1993) for rigorous treatments of the
concept of Markov-perfect equilibrium. We exclude more complex strategies that are history-
dependent. For examples of the latter, see Benhabib and Rustichini (1997), Benhabib, Rustichini
and Velasco (1996), Benhabib and Velasco (1996) and Chari and Kehoe (1990).
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of optimal time-consistent government policies have been limited to deterministic

models.9

The paper is structured as follows. In the following section, we develop an

abstract model of the interaction between a representativeprivate agent and a gov-

ernment. In section three, we review how the time consistency problem arises by

analyzing a Ramsey problem applied to the abstract model. In the fourth section,

we show how to extend Cohen and Michel’s (1988) approach to nonlinear mod-

els. In section five, we formally demonstrate the recursivity of the government’s

problem. In the sixth section, we discuss how to calculate a numerical solution to

the optimal control problem. In the seventh section, we present a simple model

of public spending in order to illustrate the technique. Conclusions are in section

eight.

2 The Model

The economy consists of a representative household,10 a representative competi-

tive firm, and a government.11 The household has an infinite planning horizon and

maximizes its utility taking as given all relative prices and the government’s pol-

icy rule. The government chooses its policies to maximize social welfare, which

in this framework leads it to maximize the utility of the representative household,

subject to the first order conditions of the household.

9Papers include Klein, Krusell and Rı́os-Rull (2004) and Ortigueira (2004).
10The approach here could be extended to models of heterogeneous agents, but the notation

would be cumbersome. See Rı́os-Rull (1995) for a good introduction to heterogeneous agent
models.

11Although the analysis is framed in terms of optimal government policy, it is clear that it could
be used to derive time-consistent feedback rules in any dynamic game with a Stackelberg leader.
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2.1 The Household

The utility function of the household can be written as12

U = Et

∞∑

i=0

βir (zt+i, gt+i, St+i, st+i, Dt+i, dt+i) , (1)

wherezt is a vector of exogenous state variables of dimensionηzx1, gt is aηgx1

vector of government policy variables,st is a ηsx1 vector of endogenous state

variables under the control of the individual household,St is aηsx1 vector of en-

dogenous aggregate state variables, which are the aggregate counterparts ofst, dt

is aηdx1 vector of the household’s control variables,Dt is aηdx1 vector of the ag-

gregate counterparts ofdt, andEt denotes mathematical expectations conditional

on information available at timet. The household chooses{dt+i}
∞

i=0 in order to

maximize its utility, subject to the following set of constraints: the law of motion

of the household’s state variables,

st+1 = b (zt, gt, St, st, Dt, dt) ; (2)

the law of motion of the aggregate state variables,

St+1 = B (zt, gt, St, Dt, ) ; (3)

the feedback rule for the aggregate control variables,

Dt = D (zt, gt, St) ; (4)

and the feedback rule for the government’s policy variables,

gt = g (zt, St) . (5)

The assumption that the law of motion for the household’s state variables is an

explicit function forst+1 is not innocuous. If there were an implicit relationship

betweenst+1 and current states and controls, the household’s first ordercondition

12The notation is patterned after Hansen and Prescott (1995).
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for the choice ofdt would depend on the future state of the economy. Solving

for the private sector’s control variables as an explicit function of current state

variables and costate variables as in (10) below would no longer be possible. The

solution to this problem leads to a feedback rule of the form

dt = d (zt, gt, St, st) . (6)

As equilibrium conditions, we will imposeaggregate consistency conditions. The

laws of motion forSt andst must satisfy

b (zt, gt, St, St, Dt, Dt) = B (zt, gt, St, Dt, ) , (7)

and the feedback rules forDt anddt must be consistent:

d (zt, gt, St, St) = D (zt, gt, St) . (8)

The Lagrangian of the household’s problem can be written as

Lt = Et

∞∑

i=0

βi

{

r (zt+i, gt+i, St+i, st+i, Dt+i, dt+i)

+λt+i

[
st+i+1 − b (zt+i, gt+i, St+i, st+i, Dt+i, dt+i)

]}

. (9)

The household chooses{dt+i, st+i+1, λt+i}
∞

i=0. The first order conditions with

respect to variables chosen at timet can be written as follows:

dt :
∂r(·)

∂dt

− λt

∂b(·)

∂dt

= 0,

st+1 : Et

(

λt + β
∂r(·)

∂st+1

− βλt+1

∂b(·)

∂st+1

)

= 0,

λt : st+1 = b (zt, gt, St, st, Dt, dt) .

When we impose the aggregate consistency constraints, the first order con-

dition with respect todt gives a set ofηdx1 static equations. We assume that

it is possible to solve the equations explicitly forDt as a function of states and

costates:

Dt = D̃ (zt, gt, St, λt) . (10)
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3 A Ramsey Problem

Models like the one in the previous section are often used to set up Ramsey (1927)

problems, in which the government maximizes social welfaresubject to the first

order conditions of private agents. In the present context,this leads to the follow-

ing Lagrangian for the government’s problem:13

Lg
t = Et

∞∑

i=0

βi

{

rg (zt+i, gt+i, St+i, St+i, Dt+i, Dt+i)

+π1
t+i

[
St+i+1 − b (zt+i, gt+i, St+i, St+i, Dt+i, Dt+i)

]

+π2
t+i

[
∂r(·)

∂dt+i

− λt+i

∂b(·)

∂dt+i

]
′

+π3
t+i

[
λt+i + β

∂r(·)

∂st+i+1

− βλt+i+1

∂b(·)

∂st+i+1

]
′

}

, (11)

where the household’s control variables and state variables are replaced by their

aggregate per capita counterparts. The government maximizes the representative

agent’s utility. This assumption is not necessary but it simplifies the analysis.

The government maximizes the Lagrangian with respect to itscontrol variables

{gt+i}
∞

i=0, the aggregate equivalents of the private sector’s controlvariables, and

the Lagrange multipliers.

The force of the time inconsistency argument is made clear ifwe consider the

first order conditions for the optimal choice ofgt+1. We have:

∂Lg
t

∂gt+1

= 0 = Et

{

β
∂rg(·)

∂gt+1

− βπ1
t+1

∂b(·)

∂gt+1

+βπ2
t+1

[
∂2r(·)′

∂gt+1∂dt+1

−
∂

∂gt+1

(
∂b(·)

∂dt+1

′

λ′t+1

) ]

+βπ3
t

[
∂2r(·)′

∂gt+1∂st+1

−
∂

∂gt+1

(
∂b(·)

∂st+1

′

λ′t+1

) ]}

(12)

13As noted in the introduction, it is often possible to simplify the government’s Lagrangian
using the primal approach. This approach is not applicable to the highly abstract model presented
here.
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The term inπ3
t gives the influence of future policy on thecurrent behavior of

households, via its effect on the forward-looking costate variablesλt. If we allow

the government to reoptimize at timet+1, the first order conditions for the choice

of gt+1 become:
∂Lg

t+1

∂gt+1

= 0 = β
∂rg(·)

∂gt+1

− βπ1
t+1

∂b(·)

∂gt+1

+βπ2
t+1

[
∂2r(·)′

∂gt+1∂dt+1

−
∂

∂gt+1

(
∂b(·)

∂dt+1

′

λ′t+1

) ]
(13)

Bygones are bygones. The effect of the government’s controlsat timet+1 on the

household’s actions at timet no longer appears. Even in the absence of unantici-

pated shocks, the government will in general revise its optimal plans.

Since the values of the private sector’s costate variablesλt are not pinned down

by initial conditions, one of optimality conditions for thegovernment’s problem

has to be

π3
t = 0.

The private sector’s costates give the marginal value of thestate variables to the

representative agent’s utility. Since the government’s welfare function is just the

utility function of the representative agent, a necessary condition to maximize

welfare is that the contribution of a marginal change in these costates to welfare

be zero. The future values ofπ3
t+i, i > 0 are determined by the endogenous

dynamics of the economy. After timet, they will only be zero by coincidence.

However, if the government is allowed to reoptimize at timet + i, with i > 0, it

will once again want to set

π3
t+i = 0.

In so doing, its optimal strategy changes. Time inconsistency arises here because

the government’s problem is notrecursivein the sense of Sargent (1987, p.19). An

agent’s problem is recursive if its control variables datedt influence states dated

t + 1 and later and influence returns datedt and later. The household’s current

actions depend partly on its expectations of future government actions. In the

Ramsey problem, the government’s announced or future policies influence private

agents’ current behavior and therefore the current return via the functionr(·).

7



4 Time-Consistent Control

Cohen and Michel (1988) studied a linear model with a single state variable and a

quadratic objective function. They imposed a linear relationship between the pre-

determined state variable and the representative private agent’s costate variable.

They showed that the relationship is verified in equilibrium. Imposing it ties the

government’s hands. It is not allowed to choose its policy inorder to set the initial

marginal values of the costates equal to zero. If allowed to reoptimize, it is not

tempted to change its policy in order to bring the marginal values of the costates

back to zero.

This insight can be extended to nonlinear models as follows.In the present

context, we can replace the last two terms associated with theπ3
t constraint in the

government’s problem as

Let βEt

(
∂r(·)

∂st+1

− λt+1

∂b(·)

∂st+1

)
′

= φ (zt, St) . (14)

Note that these terms include the value in timet+ 1 of the private agent’s costate

variables. As shown below, replacing these terms with a function of the model’s

state variables can be used with projection methods or perturbation methods to

solve the model numerically, once we do the same thing for analogous terms from

the government’s first order conditions.14 A byproduct of this is thatλt, the vec-

tor of costate variables, becomes just a function of the current exogenous and

endogenous state variables:

λt = −φ (zt, St)
′ . (15)

This is just the nonlinear equivalent of the constraint imposed by Cohen and

Michel (1988). It makes the government’s problem recursive, as shown in the

next section.
14See Judd (1998). The substitution is identical to that proposed by Den Haan and Marcet

(1990). Their parameterized expectations solution technique is an example from the class of pro-
jection methods.
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5 The Recursivity of the Government’s Problem

We now assume that the government maximizes the utility of the representative

private agent, as in the Ramsey problem described above, subject to the additional

constraint given by (15). We can then show that the government’s problem be-

comes recursive. We can write it as a dynamic programming problem in which

the period-t return function does not depend on the future values of the govern-

ment’s controls.

We need one further assumption to demonstrate recursivity.We assume that

the set ofηg equations associated with theπ2
t constraint, onceλt is replaced by

−φ (zt, St), can be solved out to find an explicit set of feedback rules forDt which

in equilibrium is just equation (4). Then, we can show the following:

Proposition: Subject to the constraint (15), the government’s maximization prob-

lem is recursive.

Proof: Substituting in the constraint, we have the following expression for the dif-

ference between the government’s Lagrangian at timet and the discounted value

of its Lagrangian at timet + 1, which gives the government’s one-period return

function:

Lg
t − βEtL

g
t+1 = rg (zt, gt, St, St, Dt, Dt)

+π1
t (St+1 − b (zt, gt, St, St, Dt, Dt))

+π2
t

(
∂r(·)

∂dt

+ φ(zt, St)
′
∂b(·)

∂dt

)

. (16)

The one-period return function of the government does not depend directly or

indirectly ongt+1, since we suppose thatDt can be written as a function of only

current state variables andgt. The government’s value function can be written as

V g
t (zt, St) = max

gt

{
rg (zt, gt, St, St, D (zt, gt, St) , D (zt, gt, St))

+βEt (V g
t+1 (zt+1, St+1))

}
, (17)

9



q.e.d.

The maximization is subject to the law of motion of the aggregate state vari-

ablesSt, and to the first order conditions for the household’s choiceof its con-

trols dt, with the household’s Lagrange multipliersλt substituted out using the

constraint given in (15). Note that the government’s problem becomes recursive

partly because one of the underlying assumptions of this approach is that there is a

time-invariant feedback rule forDt which depends only on the current state of the

economy. This leads to a feedback rule for the government compatible with (5)

that depends only on the current state of the economy. It is asif the current gov-

ernment derives its optimal policy using dynamic programming techniques, under

the assumption that all future governments will derive their optimal policies in the

same way.15

In the context of the Ramsey problem described earlier, we have instead

Lg
t − βEtL

g
t+1 = rg (zt, gt, St, St, Dt, Dt)

+π1
t (St+1 − b (zt, gt, St, St, Dt, Dt))

+π2
t

(
∂r(·)

∂dt

− λt

∂b(·)

∂dt

)
′

+π3
t

(

λt + βEt

∂r(·)

∂st+1

− βEtλt+1

∂b(·)

∂st+1

)
′

.

Because of the presence of the future value of the household’sconstraintλt+1, the

government’s problem fails to be recursive.

6 Numerical Solution

Using the Lagrangian in (11) above, after substituting outλt and eliminating the

third constraint, the first order conditions for the government’s problem can be

15One interpretation of optimal time-consistent policy is that the current government is playing
a game against the private sectorand future governments, taking the feedback rules of the future
governments as given.
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written as follows:
∂Lg

t

∂gt

= 0 =
∂rg(·)

∂gt

− π1
t

∂b(·)

∂gt

+π2
t

[
∂2r(·)′

∂gt∂dt

+
∂

∂gt

(
∂b(·)

∂dt

′

φ (zt, St)

) ]
, (18)

∂Lg
t

∂St+1

= 0 = Et

{

π1
t + β

∂r(·)

∂St+1

− βπ1
t+1

∂B(·)

∂St+1

+βπ2
t+1

∂2r(·)

∂St+1∂dt+1

− βπ2
t+1

∂

∂St+1

(
∂b(·)

∂dt+1

′

φ (zt+1, St+1)

)}

(19)

∂Lg
t

∂Dt

= 0 =
∂rg(·)

∂Dt

− π1
t

∂B(·)

∂Dt

+π2
t

[
∂2r(·)′

∂Dt∂dt

+
∂

∂Dt

(
∂b(·)

∂dt

′

φ (zt, St)

) ]
. (20)

Several remarks are in order. First, the government’s first order equations con-

stitute a time-autonomous set of nonlinear difference equations.16 Second, if the

system is saddle-point stable, the initial conditions of the government’s costate

variables are those that place the system on the multi-dimensional convergent

manifold of the system. The initial conditions of the costates therefore depend

on the current state of the economy, given by the values ofzt andSt. We can

suppose that

Et

{

β
∂r(·)

∂St+1

− βπ1
t+1

∂B(·)

∂St+1

+βπ2
t+1

∂2r(·)

∂St+1∂dt+1

− βπ2
t+1

∂

∂St+1

(
∂b(·)

∂dt+1

′

φ (zt+1, St+1)

)}
′

= ψ (zt, St) . (21)

16In the Ramsey problem, the optimality condition that the Lagrange multipliers related to pri-
vate agent’s costates be equal to zero at the moment the government optimizes, independently
of the state of the economy, means that the resulting dynamical equation system is not time-
autonomous. Its optimal policy is not a time-invariant function of the state of the economy, but
rather depends on when it optimized. This is another way of interpreting the time inconsistency of
optimal policy in the Ramsey problem.
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We have

π1
t = −ψ (zt, St)

′ . (22)

Third, if the government’s costates are functions of the current state of the econ-

omy, its policy variables are also implicit functions of thecurrent state of the

economy. The government’s behavior is memoryless, and a solution to the dy-

namic equations that also satisfies the government’s and private agents’ optimality

conditions is a Markov-perfect equilibrium. Fourth, the government’s and private

agents’ Euler conditions will hold if equations (14) and (21) are satisfied. Fifth,

for given parameterizations of theφ(·) andψ(·) functions, the dynamical sys-

tem becomes recursive and can easily be solved numerically by iterating forward.

Sixth, we do not have a general proof of existence or uniqueness of our Markov-

perfect equilibrium. Krusell and Smith (2003) showed in a similar context that

there is an indeterminacy of Markov-perfect equilibria. However, the multiple

equilibria are associated with discontinuous decision rules. If we parameterize

theψ(·) function as a continuous function of the economy’s state variables, then

implicitly the government’s policy rules are also continuous functions of the econ-

omy’s state variables: Klein, Krusell and Rı́os-Rull (2004) argue that imposing a

differentiability requirement on the government’s policyfunction is an important

“refinement tool” for reducing the number of Markov-perfectequilibria. In some

applications, such as the application presented below, proof of unicity will be

straightforward.

The use of projection or perturbation methods in conjunction with control the-

ory allows for an arbitrarily close approximation to the exact solution to the un-

derlying problem. To illustrate how to solve the model numerically, we use a vari-

ation of the methodology described by Den Haan and Marcet (1990) and Marcet

and Lorenzoni (1999). This method falls into the class of projection methods, and

uses Monte Carlo methods to solve for the unknown parameters of the functional

equations. The model can be simulated using the following steps:

• Parameterize theφ(·) andψ(·) functions using flexible functional forms

such as polynomials or orthogonalized polynomials.

12



• Initialize the parameter values of these functions.

• For given parameter values of theφ(·) andψ(·) functions, simulate the

model for a large number of time periods. Aside from the laws of mo-

tion for St andzt, all of the equations that need to be solved are static. The

laws of motion themselves are recursive.

• Estimate the parameters in theφ(·) andψ(·) functions by nonlinear regres-

sion, with the dependent variables being the series generated by numerical

simulation, in order to minimize the sum of squared forecasting errors.

• Repeat the simulation and estimation steps until the change in the parame-

ters of the expectations functions between iterations is sufficiently small.

7 Application

We apply the techniques developed in above to a simple model of optimal public

spending. The utility function of the representative private agent depends on both

private consumption spending and on government purchases.The government

chooses public spending in order to maximize social welfare, which is just the

expected utility of the representative private agent, It finances this spending via a

proportional tax on total income.

The representative private agent maximizes expected utility, which is given by

U = Et

∞∑

i=o

βi {ln(ct+i) + µ ln(gt+i)} , (23)

wherect is private consumption andgt is public spending. The private agent holds

the capital stock and rents it to firms. Its period budget constraint is given by

(1 − τt) (wt + (rt − δ)kt) + kt = ct + kt+1, (24)

wherewt is the competitive real wage,rt is the competitive real rental rate of

capital,kt is capital held by the individual, andτt is the rate of taxation on total

13



income. The time endowment of the individual is normalized to equal one, so that

before-tax labor income is just given bywt.

The aggregate production function is given by

yt = atkt
α, (25)

whereyt is GDP. The law of motion forat is given by

ln(at) = ρ ln(at−1) + εt, (26)

whereεt is a white noise shock with varianceσ2
ε .

The government finances public investment via a proportional tax on total in-

come. We rule out lump sum taxation in order to make the policyproblem one

of finding the second-best outcome, which leads to a distinction between time-

consistent policies and time inconsistent policies. The government’s budget is

balanced in each period, so that

τt (wt + (rt − δ)kt) = gt. (27)

The individual’s first order conditions for utility maximization imply:

1

ct
= λt, (28)

λt = βEt (λt+1 [1 + (1 − τt+1)(rt+1 − δ)]) , (29)

kt+1 = (1 − τt)yt + (1 − δ)kt − ct (30)

The government’s budget constraint can be used to substitute out public spend-

ing, so thatτt is the only policy instrument. Under commitment, the government’s

maximization problem can be expressed as follows, after substituting out the rep-

resentative agent’s costate variable usingλt = 1/ct:

L = Et

∞∑

i=0

βi

{

ln(ct+i) + µ ln(τt+i) + µ ln(yt+i − δkt+i)

+π1
t+i ((1 − δ)kt+i + yt+i − τt+i(yt+i − δkt+i) − ct+i − kt+i+1)

14



+π2
t+i

(
1

ct+i

−
β

ct+i+1

(

(1 − τt+i+1)α
yt+i+1

kt+i+1

+ 1 − δ(1 − τt+i+1)

))}

(31)

The first-order conditions imply:

τt+i :
µ

τt+i

− π1
t+i(yt+i − δkt+i) +

π2
t+i−1

ct+i

(

α
yt+i

kt+i

− δ

)

= 0, i > 0,

τt :
µ

τt
− π1

t (yt − δkt) = 0,

ct+i :
1

ct+i

− π1
t+i −

π2
t+i

(ct+i)2

+
π2

t+i−1

(ct+i)2

(

(1 − τt+i)α
yt+i

kt+i

+ 1 − δ(1 − τt+i)

)

= 0, i > 0,

ct :
1

ct
− π1

t −
π2

t

(ct)2
= 0,

π1
t+i : kt+i+1 = (1 − τt+i)yt+i + (1 − δ(1 − τt+i))kt+i − ct+i, i ≥ 0,

π2
t+i :

1

ct+i

−βEt

(
1

ct+i+1

(

(1 − τt+i+1)α
yt+i+1

kt+i+1

+ 1 − δ(1 − τt+i+1)

))

= 0, i ≥ 0,

kt+i+1 : π1
t+i = −βEt+i

(

π2
t+i

α(α− 1)

ct+i+1

(1 − τt+i+1)yt+i+1

k2
t+i+1

)

+βEt



π1
t+i+1

(

1 + (1 − τt+i+1)

(

α
yt+i+1

kt+i+1

− δ

))

+ µ
α yt+i+1

kt+i+1
− δ

yt+i+1 − δkt+i+1



 ,

i ≥ 0,

whereyt andat are defined respectively in (25) and (26).

It is straightforward to verify numerically whether this system of equations is

saddlepoint stable, using a first-order approximation of the equilibrium conditions

around its deterministic steady state. If local stability is satisfied, which is the case

for our base-case calibration of the model and for a wide range of parameter values

used for sensitivity analysis, then a solution that converges to the deterministic

steady state is the unique solution that satisfies the transversality conditions for

the optimization problems by private agents and the government.
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7.1 Discretion

To find the time-consistent optimal policy under discretion(the absence of an

ability to precommit), we replace the private agent’s Eulerequation by

1

ct
− φ(at, kt) = 0,

whereφ(at, kt) is a function to be approximated. After using the government’s

budget constraint to substitute outgt, the Lagrangian can be written as:

L = Et

∞∑

i=0

βi

{

ln(ct+i) + µ ln(τt+i) + µ ln(yt+i − δkt+i)

+π1
t+i ((1 − δ)kt+i + yt+i − τt+i(yt+i − δkt+i) − ct+i − kt+i+1)

+π2
t+i

(
1

ct+i

− φ(at, kt)

)}

.

The first-order conditions imply:

τt :
µ

τt
− π1

t (yt − δkt) = 0,

ct :
1

ct
− π1

t −
π2

t

(ct)2
= 0,

π1
t : kt+1 = (1 − τt)yt + (1 − δ(1 − τt))kt − ct,

π2
t :

1

ct
− φ (at, kt) = 0,

kt+1 : π1
t = βEt

{

π1
t+1

(

1 + (1 − τt+1)

(

α
yt+1

kt+1

− δ

))

−

π2
t+1

∂φ

∂kt+1

(at+1, kt+1) + µ
α yt+1

kt+1
− δ

yt+1 − δkt+1

}

.

7.1.1 Markov-perfect equilibrium

We define equilibrium in our model with discretion as follows. The following

equations are satisfied in equilibrium:

ln(at) = ρ ln(at−1) + εt, (32)
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π1
t = ψ (at, kt) , (33)

yt = atkt
α, (34)

ct =
1

φ (at, kt)
, (35)

τt =
µ

π1
t (yt − δkt)

, (36)

π2
t = ct − π1

t (ct)
2, (37)

kt+1 = (1 − τt)yt + (1 − δ(1 − τt))kt − ct, (38)

and where, for a suitably-defined sample of artificial data based on simulating this

system of equations and suitable parameterizations of theφ(·) andψ(·) functions,

we have:

φ(at, kt) = βÊt

{(
1

ct+1

)

[1 + (1 − τt+1)(rt+1 − δ)]

}

, (39)

ψ(at, kt) = βÊt

{

π1
t+1

(

1 + (1 − τt+1)

(

α
yt+1

kt+1

− δ

))

−

π2
t+1

∂φ

∂kt+1

(at+1, kt+1) + µ
α yt+1

kt+1
− δ

yt+1 − δkt+1

}

, (40)

where theÊt operator refers to sample means. Equation (39) ensures thatthe

representative private agent’s Euler equation is satisfiedto an arbitrary degree

of accuracy. Equation (40) ensures that the government’s Euler equation for the

optimal choice of the capital stock is satisfied to an arbitrary degree of accuracy.

For given initial conditions (values ofat−1 andkt) and given parameterizations

of theφ(·) andψ(·) functions, the system of equations to solve for the economy’s

equilibrium for any periodt is recursive. As long as theφ(·) function is parame-

terized to avoid zero values, a solution exists. It can be shown that the solutions

for output, aggregate consumption and the tax rate are unique.

It is clear that private agents’ consumption (and hence savings) policies and

the government’s taxation policy are dependent only on the current values of the
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technology shockat and the capital stockkt. In this sense, the equilibrium is a

Markov-perfect equilibrium.

The substitution of the private agent’s and government’s Euler equations us-

ing theφ(·) andψ(·) functions renders the dynamical equation system completely

recursive for given values of the parameters used to approximate the functions.

Local stability of this system for suitable approximationsof φ(·) andψ(·) means

that agents’ first order conditions hold and that transversality conditions are satis-

fied.17

7.2 Results

The parameter values used to simulate the model are summarized in Table 1. They

are standard values used in the real business cycle literature. To solve the time-

consistent and Ramsey problems, we use a version of the parameterized expecta-

tions algorithm (PEA) of Den Haan and Marcet (1990) and Marcet and Lorenzoni

(1999). In both cases, we need to find two interpolating functions (one for each

Euler equation). We describe in detail the methodology for the time-consistent

problem. There are two state variables,kt andat, so that the two interpolating

functions,φ andψ, should be functions of bothkt andat, and verify

1

ct
− φ (at, kt) = 0 and π1

t − ψ (at, kt) = 0.

We derive results for both first-order and second-order polynomial approxima-

tions. The first order approximations are given by:

φ(·) = exp(β1 + β2 ln(Kt) + β3 ln(at));

ψ(·) = exp(θ1 + θ2 ln(Kt) + θ3 ln(at)).

The second-order approximations are given by:

φ(·) = exp(β1+β2 ln(Kt)+β3 ln(at)+β4(ln(Kt))
2+β5(ln(at))

2+β6 ln(Kt) ln(at));

17A proof of the unicity of the Markov-perfect equilibrium forthis application is available on
request.
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ψ(·) = exp(θ1+θ2 ln(Kt)+θ3 ln(at)+θ4(ln(Kt))
2+θ5(ln(at))

2+θ6 ln(Kt) ln(at)).

Below, we report results for DM-tests (see Den Haan and Marcet, 1994) of the

adequacy of the approximations. We use nonlinear least squares to estimate the

parameters of the polynomials, and use a dampening coefficient 0 < λ ≤ 1 to

foster convergence. We iterate on:

ψs+1 = (1 − λ)ψs + λψ̂,

whereψ̂ gives the current vector of estimates of the parameters of the approxima-

tions. As starting values, we use the steady-state (and the decision rules) of the

commitment solution. The estimated parameters of the PEA functions are given

in Table 2 below.

Figure 1 displays impulse-response functions (for the first-order PEA func-

tions) in response to a one-standard-deviation shock to technology. The horizontal

axis measures the number of quarters after the shock and the vertical axis mea-

sures the deviations in logs from the steady state. Following a positive shock

to technology, output increases as does consumption. The tax rate initially falls,

so that the initial impact on public spending is proportionately lower than the

impact on private consumption spending. The gradual accumulation of capital

in response to the shock imparts a hump-shaped response of both private con-

sumption spending and public spending. These two variablespeak just before the

capital stock reaches its maximum level, and then the capital stock, public spend-

ing, private consumption, and output all converge to their steady state levels from

above. The response of the tax rate is non-monotonic. After an initial drop, the

tax rate surpasses its steady-state value shortly after thecapital stock peaks, and

then converges to the steady state from above.

As explained before, the form of the PEA is critical. In this context, we pro-

ceed in two steps. First, we compare deterministic simulations using the first-

order and second-order PEA. Second, we develop the adequacytest, as suggested

by Den Haan and Marcet (1994) in a multivariate setting. Figure 2 reports the de-

terministic paths of variables of interest under the optimal (discretionary) policy,
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assuming an initial capital stock that is below its steady-state level. The dotted

lines represent the results from the second-order approximation. A visual inspec-

tion shows that the difference in polynomial orders mattersonly slightly in this

application.

The PEA functions are approximated in order to satisfy orthogonality condi-

tions. If the approximations are adequate, the realized future values of the nonlin-

ear functions of future variables to which the conditional expectations operator is

applied should be unpredictable given information available at timet. This is the

rationale of the DM test proposed by Den Haan and Marcet (1994). To implement

the test, we regressed the realized timet+ 1 forecast errors of the PEA functions

on a constant, the capital stock, and the technology shock, both measured at time

t. We also tried regressions in which we added four lags of the capital stock and

four lags of the technology shock. The results were robust tothe specification of

the regressions.

To reduce the probability of a type I error (rejection of the null when it is true:

see explanations in Heer and Maussner, page 502), we follow the procedure of

Den Haan and Marcet (1994). For a given sequence of shocks, wefirst compute

the two approximate solutionsφ andψ for a largeT (T = 5000). Second we

use this solution and draw a new sequence of shocks such that the corresponding

sample size,T1 is smaller thanT . After computing the time path of the variables

of interest, the DM statistic can be calculated for these observations. Then, this

procedure is repeated very often and we can compute the percentage of the DM-

statistics that are below the lower or above the upper 2.5 percent critical values of

theχ2(m) distribution.

In the benchmark case and for first-degree approximations ofthe PEA func-

tions, the DM-statistic was 8.6746, which leads us to accept(at a five-percent

level) the the null hypothesis that the forecast errors are unpredictable based on the

time t information set. The number of DM-statistics (out of 500) below (above)

the2.5th and97.5th percentile of aχ2 distribution with 6 degrees of freedom was

close to the theoretical five percent.
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Given that the first-order PEA functions are adequate, we compared the deter-

ministic convergence to the steady-state under commitmentand discretion. The

solid lines in Figure 3 reproduce the time paths from Figure 2and illustrate the

convergence to the steady state of the model under optimal discretionary (time

consistent) policy. The dotted lines illustrate the convergence of the model under

optimal policy with commitment. The steady states are different under the two

types of optimal policy, and the behavior of consumption, public expenditures and

the tax rate is substantially different when the governmentfirst optimizes. Overall,

taxes are higher under commitment but this leads to higher public expenditures,

which increases the conditional welfare of the representative agent.

Finally, to assess the differences between the commitment and discretion solu-

tions, we calculated conditional welfare. This is measuredat timet (when the gov-

ernment optimizes) for the same initial conditions (same technology level, same

level of the capital stock, which is below its deterministicsteady-state level under

either discretion or commitment). Table 3 gives values for conditional welfare.

8 Conclusions

The methodology proposed in this paper is quite general. It leads to systems of

dynamical equations which can easily be simulated with available computer tech-

nology and relatively parsimonious numerical solutions using projection or per-

turbation techniques. Deriving time-consistent government policies using these

methods is conceptually as straightforward as solving Ramsey problems. The

technique should allow researchers to do normative analysis, comparing the lev-

els of welfare attainable with and without precommitment bythe government.

It should also be useful for positive analysis, for example comparing the predic-

tions of a given model for comovements between government policy variables and

other macroeconomic aggregates with and without precommitment. As suggested

by Judd (1998), with current advances in computer technology it should become

more and more common to use numerical methods to advance our understanding
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of economic theory.
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Table 1: Model Parameter Values

Parameter Value
β 0.987
α 0.300
µ 0.300
δ 0.025
ρ 0.950
σε 0.030

Table 2: Model Parameter Estimates

Parameter β1 β2 β3 β4 β5 β6

φ(·) 0.8877 -0.4796 -0.4699 - - -
φ(·) 0.8903 -0.4827 -0.5348 0.011 -0.2480 0.0374

Parameter θ1 θ2 θ3 θ4 θ5 θ6

ψ(·) 1.0804 -0.5472 -0.4812 - - -
ψ(·) 0.8988 -0.3740 -0.8939 -0.0403 -0.2375 0.1886

Table 3: Conditional Welfare

commitment -17.4792
discretion, 1st-order approximation -17.7404
discretion, 2nd-order approximation -17.7280
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Figure 1: Impulse-response functions after a technology shock

0 20 40 60
0

0.005

0.01

0.015

0.02
Consumption

0 20 40 60
0

0.01

0.02

0.03
Product

0 20 40 60
0

0.01

0.02

0.03
Capital

0 20 40 60
−0.03

−0.02

−0.01

0

0.01
Taxe

0 20 40 60
0

0.005

0.01

0.015

0.02
Public expenditures

0 20 40 60
0

0.01

0.02

0.03
Technology shock

26



Figure 2: First-order versus Second-order PEA
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Figure 3: First-order PEA versus Commitment
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