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Abstract

We show how to use optimal control theory to derive optimal time-consistent Markov-perfect
government policies in nonlinear dynamic general equilibrium models, extending the result of
Cohen and Michel (1988) for models with quadratic objective functions and linear dynamics. We
replace private agents costates by flexible functions of current states in the government’s
maximization problem. The functions are verified in equilibrium to an arbitrarily close degree of
approximation. They can be found numerically by perturbation or projection methods. We use a
stochastic model of optimal public spending to illustrate the technique.

JEL classification: E61, E62, C63
Bank classification: Fiscal policy; Monetary policy framework

Résume

Les auteurs montrent comment |la théorie du contrdle optimal permet d’ élaborer des politiques
optimales temporellement cohérentes en équilibre markovien parfait a I'aide de modéles
d équilibre général dynamiques non linéaires, dans la lignée des résultats obtenus par Cohen et
Michel (1988) a partir de modées dynamiques linéaires ou la fonction-objectif est de forme
quadratique. Les multiplicateurs de Lagrange du probléme de maximisation des agents du secteur
privé sont remplacés par des fonctions flexibles des variables d’ état de la période en cours dans e
probléme de maximisation du bien-étre collectif. A I équilibre, ces fonctions se vérifient jusqu’ a
un degré quelcongue d’ approximation. Elles peuvent étre résolues numériquement a I’ aide de
méthodes de perturbation ou de projection. Les auteurs illustrent I’emploi de leur technique au
moyen d’ un modéle stochastique formalisant le niveau optimal des dépenses publiques.

Classification JEL : E61, E62, C63
Classification de la Banque : Politique budgétaire; Cadre de la politique monétaire



1 Introduction

An appealing feature of solving Ramsey (1927) problems tiveleptimal second-
best government policies in dynamic general equilibriundais is their relative
analytical tractability. It is often possible to use thecsdledprimal approachin
which private agents’ first order conditions and budget taings are combined
to derive anmplementability constraint allowing prices and policy variables to
be substituted out of the problem. The choice variablesebtitimal policy prob-
lem are the allocations themselves. Prices and policidsstigport the optimal
allocations can be derived once the allocations themseahesknown. Using the
primal approach leads to equations in which expected fuglioeations have an
influence on agents’ current behavior. Therefore, optinoéities derived in this
manner are generaltime-inconsistent The government must be able to commit
credibly to its announced policies. Otherwise, it will opélly revise them as
time goes by, in which case its announced policies will ndb&leved by private
agents.

It is often interesting to compare the optimal allocationsler credible pre-
commitment by the government to optimal allocations wheigpgrecommitment
is not possible, possibly for institutional or politicaksons. In the latter case, dy-
namic programming can be used to compute optimal Markofepestrategies for
the government. In special cases, the envelope theoremecasddl to eliminate
the government’s value function from the system of equatforlternatively,
it is possible to linearize the laws of motion of the economy aise quadratic
approximations to agents’ preferences, so that the valoetiin takes a known
form?* This approach may be less than satisfactory in the presenicepor-
tant nonlinearities. In addition, using linear-quadratpproximations may lead

1See Chari and Kehoe (1999) for a detailed discussion.

2Solutions to the Ramsey problem can be made time-consistesgtecial cases. The most
well-known case is Lucas and Stokey (1983).

3See Judd (1998, section16.9), Azzimonti-Renzo, Sarte aaceS (2003), Klein, Krusell and
Rios-Rull (2004) and Ortigueira (2004) for examples.

4See Ambler and Paquet (1996, 1997) and Ambler and Cardi&)199



to misleading welfare comparisons if the deterministiadyestate is not a Pareto
optimum?® An approximation to the government’s value function can dnenfi
by discretizing the model’s state space, but this approaffars from a curse of
dimensionality: it is computationally burdensome with méran a small number
of state variables. It would be useful to have an alternajemeral methodology
for analyzing optimal time-consistent Markovian policies

In this paper, we show how to use optimal control theory taveéetime-
consistent Markovian government policies in nonlinearaigic general equilib-
rium models, extending the insight of Cohen and Michel (198&)ey showed
that in linear-quadratic environments time-consistenicps compatible with
Markov-perfect equilibria can be found using optimal cohtheory by impos-
ing a linear relationship between predetermined statealbkes and the costate
variables from private agents’ maximization probléha/e show that by restrict-
ing private agents’ costates to be a nonlinear function ofecu predetermined
state variables, the optimal control problem of the govemnibecomes recur-
sive (in a sense to be defined below), whereas in the Ramseleprabtypi-
cally is not. The nonlinear function is verified in equilibbnh to an arbitrarily
close degree of approximation. Projection methods or gaation methods can
be used to approximate the functibriThe equilibria found using this approach
are Markov-perfect since the government’s policy funci®time invariant and
depends only on the current state of the econdnhe technique can be used
to find Markov-perfect equilibria in stochastic models. Maumevious treatments

5See Kim and Kim (2003). See Woodford (2003, chapter 6) fodit@ms under which the
linear-quadratic approach is justified.

5Their methodology was utilized to analyze optimal governhpolicies by a number of re-
searchers. See Currie and Levine (1993), Oudiz and SacBS)(28d Miller and Salmon (1985)
for examples.

’See Judd (1998), McGrattan (1999), and Aruoba, Fernndéevside and Rubio-Rairez
(2004). Projection methods can have better global pragsettian perturbation methods around a
particular equilibrium point.

8See Bernheim and Ray (1989) and Maskin and Tirole (1993)idorous treatments of the
concept of Markov-perfect equilibrium. We exclude more ptew strategies that are history-
dependent. For examples of the latter, see Benhabib antcRins{1997), Benhabib, Rustichini
and Velasco (1996), Benhabib and Velasco (1996) and ChafKehoe (1990).



of optimal time-consistent government policies have bewitdd to deterministic
models®

The paper is structured as follows. In the following sectiwe develop an
abstract model of the interaction between a representarivate agent and a gov-
ernment. In section three, we review how the time consistenablem arises by
analyzing a Ramsey problem applied to the abstract modehelfourth section,
we show how to extend Cohen and Michel's (1988) approach ttimear mod-
els. In section five, we formally demonstrate the recungigitthe government’s
problem. In the sixth section, we discuss how to calculateraerical solution to
the optimal control problem. In the seventh section, wegrea simple model
of public spending in order to illustrate the technique. Gasions are in section
eight.

2 TheModd

The economy consists of a representative housefiadepresentative competi-
tive firm, and a government. The household has an infinite planning horizon and
maximizes its utility taking as given all relative pricesdaihe government’s pol-
icy rule. The government chooses its policies to maximizeasavelfare, which

in this framework leads it to maximize the utility of the repentative household,
subject to the first order conditions of the household.

SPapers include Klein, Krusell and®s-Rull (2004) and Ortigueira (2004).

10The approach here could be extended to models of heterogemgents, but the notation
would be cumbersome. SeddR-Rull (1995) for a good introduction to heterogeneousnag
models.

IAlthough the analysis is framed in terms of optimal governtyelicy, it is clear that it could
be used to derive time-consistent feedback rules in anyrdi;mgame with a Stackelberg leader.



2.1 TheHousehold

The utility function of the household can be writtedt%as
U = E; Zﬁir (Zt44> Gevir Stvin Sevis Digis digi) (1)
=0

wherez; is a vector of exogenous state variables of dimensien, ¢, is an,x1
vector of government policy variables; is an,x1 vector of endogenous state
variables under the control of the individual househdldis an,x1 vector of en-
dogenous aggregate state variables, which are the agg@gatterparts of;, d;

is anyx1 vector of the household’s control variablés, is arn,x1 vector of the ag-
gregate counterparts df, and E; denotes mathematical expectations conditional
on information available at timé The household choos€d,;}°, in order to
maximize its utility, subject to the following set of corsnts: the law of motion

of the household’s state variables,

Ser1 = b (2, g1, Sty 81, Dy, dy) (2)
the law of motion of the aggregate state variables,
Sir1 = B (21,91, 4, Dy ) ; 3)
the feedback rule for the aggregate control variables,
Dy =D (2, 91, St); 4)
and the feedback rule for the government’s policy varigbles
gt =9 (2, 5) - (5)

The assumption that the law of motion for the household’testariables is an
explicit function fors,,; is not innocuous. If there were an implicit relationship
betweens;,; and current states and controls, the household’s first catetition

12The notation is patterned after Hansen and Prescott (1995).
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for the choice ofd, would depend on the future state of the economy. Solving
for the private sector’s control variables as an explicitdiion of current state
variables and costate variables as in (10) below would ngdphe possible. The
solution to this problem leads to a feedback rule of the form

dy = d(fzt;gt; St, St) . (6)

As equilibrium conditions, we will imposaggregate consistency conditiorighe
laws of motion forS; ands; must satisfy

b(ztagtastysthyDt) :B(zt7gt7st7Dt7)7 (7)
and the feedback rules f@?, andd, must be consistent:
d (Ztagta St, St) =D (Zugt, St) . (8)

The Lagrangian of the household’s problem can be written as

L; = FE; Zﬂi{r (Zt44s Grir Stvis Sevis Digis digi)
i=0

+Aiti

}~ (9)

The household choos€l;;, s¢1it1, M }ioo- The first order conditions with
respect to variables chosen at timean be written as follows:

Sttit1 — b (Zt+i7 Gttir Sttir Sttis Ditis dt+z’)

~or(Y) ab(-)
d; Bd, At ad, =0,
or(- ob(-
Sev1 By <)\t+ﬁ r0) — BAts1 ()> =0,
aSt+1 aSt+1

At Sl = b(Ztagt,SnSt,Dt,dt>-

When we impose the aggregate consistency constraints, shefder con-
dition with respect tal; gives a set ofy;x1 static equations. We assume that
it is possible to solve the equations explicitly fby as a function of states and
costates:

D, =D (Zt, gt, St, )\t) . (10)

5



3 A Ramsey Problem

Models like the one in the previous section are often usedttoRamsey (1927)
problems, in which the government maximizes social welfargiect to the first
order conditions of private agents. In the present contieig |eads to the follow-
ing Lagrangian for the government’s problén:

L] =6 5i{Tg (24 Geris St Strvis Deviy Diyi)
i=0

+7Tt1+i Stvit1 — b (Zt+i7 Gitis Stvis Stais Ditis Dt+i)
or () ob() 1
2
. — A
T By Dy
or () ob(-) 1
Dri | At — Bhigipr——2 11
MG +685t+i+1 Be H@Stﬂ‘ﬂ 7 ( )

where the household’s control variables and state vasadiie replaced by their
aggregate per capita counterparts. The government maesrttie representative
agent’s utility. This assumption is not necessary but itpifies the analysis.
The government maximizes the Lagrangian with respect todidrol variables
{9:+i}32,, the aggregate equivalents of the private sector’s coménohbles, and
the Lagrange multipliers.

The force of the time inconsistency argument is made cleaei€onsider the
first order conditions for the optimal choice @f, ;. We have:

oLy or9(-) . o0b(+)
—0=F —
D91 t{ﬂ D91 B4 Dgirt
02 (-)’ 0 <8b(-)’ )
+ 2 - /\/
O 0gt+10diy1 0gip1 \Odiya ik

o [ 0%r(-) 0 ( ob(-) ,)‘::+1> } } 12)

0914108141 B 0gi1 \ 051411

13As noted in the introduction, it is often possible to simplihe government’'s Lagrangian
using the primal approach. This approach is not applicabliee highly abstract model presented
here.



The term in7} gives the influence of future policy on thleirrent behavior of
households, via its effect on the forward-looking costateables);. If we allow
the government to reoptimize at time- 1, the first order conditions for the choice
of ¢;,1 become:

LY, ara(:) o 0b()
- :O: —_ i
0911 b 09i+1 1 0gra
O%r(-) 9 (35(‘)' )
+ 872 _ PV 13
ﬁﬂt“ 09110di11 0gi1 \ Odiyq i 13

Bygones are bygones. The effect of the government’s cordtdisiet + 1 on the
household’s actions at tinteno longer appears. Even in the absence of unantici-
pated shocks, the government will in general revise itswagitplans.

Since the values of the private sector’s costate variahlase not pinned down
by initial conditions, one of optimality conditions for tlgovernment’s problem
has to be

7Tf’ =0.
The private sector’s costates give the marginal value oktate variables to the
representative agent’s utility. Since the government’faxe function is just the
utility function of the representative agent, a necessarydition to maximize
welfare is that the contribution of a marginal change in ¢hesstates to welfare
be zero. The future values af’;, i > 0 are determined by the endogenous
dynamics of the economy. After timeg they will only be zero by coincidence.
However, if the government is allowed to reoptimize at tilme i, with ¢ > 0, it
will once again want to set

Tows = 0.
In so doing, its optimal strategy changes. Time inconsgstamises here because
the government’s problem is ncursivein the sense of Sargent (1987, p.19). An
agent’s problem is recursive if its control variables datétfluence states dated
t + 1 and later and influence returns datednd later. The household’s current
actions depend partly on its expectations of future govemtnactions. In the
Ramsey problem, the government’s announced or future pselinfluence private
agents’ current behavior and therefore the current retiarthe functionr-(-).

v



4 Time-Consistent Control

Cohen and Michel (1988) studied a linear model with a singlteestariable and a
guadratic objective function. They imposed a linear relahip between the pre-
determined state variable and the representative privgpta costate variable.
They showed that the relationship is verified in equilibriumposing it ties the
government’s hands. It is not allowed to choose its poliayriter to set the initial
marginal values of the costates equal to zero. If allowedtptimize, it is not
tempted to change its policy in order to bring the margindlles of the costates
back to zero.

This insight can be extended to nonlinear models as followshe present
context, we can replace the last two terms associated wath’thonstraint in the
government’s problem as

or(+) ob(+)

Let (F; ( >/ = ¢ (%,5). (14)

Note that these terms include the value in tilmie 1 of the private agent’s costate
variables. As shown below, replacing these terms with atfon®f the model’s
state variables can be used with projection methods or nbaxtion methods to
solve the model numerically, once we do the same thing fdogoas terms from
the government’s first order conditiotfs A byproduct of this is tha#,, the vec-
tor of costate variables, becomes just a function of theetiirexogenous and
endogenous state variables:

At = —9 (Zt, St)/~ (15)

This is just the nonlinear equivalent of the constraint isgmb by Cohen and
Michel (1988). It makes the government’s problem recursag shown in the
next section.

14See Judd (1998). The substitution is identical to that pseddoy Den Haan and Marcet
(1990). Their parameterized expectations solution teghis an example from the class of pro-
jection methods.



5 TheRecursivity of the Government’s Problem

We now assume that the government maximizes the utility efrépresentative
private agent, as in the Ramsey problem described abovecttbjthe additional
constraint given by (15). We can then show that the govertimmproblem be-
comes recursive. We can write it as a dynamic programmingl@no in which
the periodt return function does not depend on the future values of tiverge
ment’s controls.

We need one further assumption to demonstrate recurskiieyassume that
the set ofy, equations associated with th@ constraint, once\, is replaced by
—¢ (z,5;), can be solved out to find an explicit set of feedback rule€fowhich
in equilibrium is just equation (4). Then, we can show théofeing:

Proposition: Subject to the constraint (15), the government’s maxinongtrob-
lem is recursive.
Proof: Substituting in the constraint, we have the following exsfen for the dif-
ference between the government’s Lagrangian at tiaeed the discounted value
of its Lagrangian at time + 1, which gives the government’s one-period return
function:

L] — 5Et£f+1 =19 (21, 91, St, S, Dy, Dy)

+7Tt1 (St+1 - b<2t79t75t, St, Dy, Dt))

2 (Or() ,0b(:)
+7 ( ad, + &(2t, ) od, ) (16)

The one-period return function of the government does npedeé directly or

indirectly ong,,, since we suppose that, can be written as a function of only
current state variables aggd The government’s value function can be written as

%4 (Zt7 Si) = I%?X {Tg (2t, 9, St, Se, D (Ztugta St) . D (2, g, 5))

+BEy (Vi1 (241, Si41)) }7 (17)



g.ed.

The maximization is subject to the law of motion of the aggtegstate vari-
ablessS;, and to the first order conditions for the household’s chaoicés con-
trols d;, with the household’s Lagrange multiplieks substituted out using the
constraint given in (15). Note that the government’s probleecomes recursive
partly because one of the underlying assumptions of thisoagp is that there is a
time-invariant feedback rule fap, which depends only on the current state of the
economy. This leads to a feedback rule for the governmenpatibiie with (5)
that depends only on the current state of the economy. ltifstlas current gov-
ernment derives its optimal policy using dynamic prograngriechniques, under
the assumption that all future governments will derivertbgtimal policies in the
same way?

In the context of the Ramsey problem described earlier, we hestead

E? - BEtﬁgﬂ =79 (Zta Gt, St, Sty Dy, Dt)

+7Tt1 (St+1 — b (2, gt, St Sty Dy, Dy))
(0, 200)

ad, od,

or( ob(-) \'
o (At+ﬁEt () — BEn <)> .

05411 08141

Because of the presence of the future value of the houselad&raint\, , 1, the
government’s problem fails to be recursive.

6 Numerical Solution

Using the Lagrangian in (11) above, after substituting.Quand eliminating the
third constraint, the first order conditions for the goveemt’s problem can be

50ne interpretation of optimal time-consistent policy iattthe current government is playing
a game against the private secamd future governments, taking the feedback rules of the future
governments as given.

10



written as follows:

oLy or()  on0)
gy g ! ¢
() 9 [db(-)
2 .
+7Tt |:agtadt + agt < 8dt ¢(Zt75t) :|7 (18)
oLy or(-) OB(-)
951 _O‘Et{ Tt e~ T a5,
0r(-) o [ 0b()
+0n} T GG, Oy Bt 950, <8dt+1 ¢ (241, S+1) (19)
oL o) _,0B()
oD, oD, L oD,
(Y 8 ()
2
T\ aD,0d, T~ 9D, < ad, ¢ (2, 9) ] (20)

Several remarks are in order. First, the government’s fidéoequations con-
stitute a time-autonomous set of nonlinear difference tops'® Second, if the
system is saddle-point stable, the initial conditions & ¢fovernment’s costate
variables are those that place the system on the multi-difoeal convergent
manifold of the system. The initial conditions of the costatherefore depend
on the current state of the economy, given by the values ahd.S;. We can
suppose that

or(-) 8B( )
Et{ﬁ 25 T3S,
9?r(-) 0 ob(+) !
+6 th 5 Tyt1 8St+1 <8dt+1 ¢(Zt+1,5t+1)

= (21, St) - (21)

1810 the Ramsey problem, the optimality condition that theiaage multipliers related to pri-
vate agent's costates be equal to zero at the moment thengoget optimizes, independently
of the state of the economy, means that the resulting dyradreguation system is not time-
autonomous. Its optimal policy is not a time-invariant ftioe of the state of the economy, but
rather depends on when it optimized. This is another waytefjimeting the time inconsistency of
optimal policy in the Ramsey problem.

11



We have

T == (2, 5)". (22)
Third, if the government’s costates are functions of theentrstate of the econ-
omy, its policy variables are also implicit functions of tberrent state of the
economy. The government’s behavior is memoryless, anduicolto the dy-
namic equations that also satisfies the government’s anateragents’ optimality
conditions is a Markov-perfect equilibrium. Fourth, thevgmnment’s and private
agents’ Euler conditions will hold if equations (14) and X2te satisfied. Fifth,
for given parameterizations of thg-) and(-) functions, the dynamical sys-
tem becomes recursive and can easily be solved numerigaitgrdating forward.
Sixth, we do not have a general proof of existence or unigeen&our Markov-
perfect equilibrium. Krusell and Smith (2003) showed in mikir context that
there is an indeterminacy of Markov-perfect equilibria. wéwer, the multiple
equilibria are associated with discontinuous decisiorsullf we parameterize
the«(-) function as a continuous function of the economy’s statetsies, then
implicitly the government’s policy rules are also contimsdunctions of the econ-
omy’s state variables: Klein, Krusell andds-Rull (2004) argue that imposing a
differentiability requirement on the government’s polfeyiction is an important
“refinement tool” for reducing the number of Markov-perfequilibria. In some
applications, such as the application presented belovgf mbunicity will be
straightforward.

The use of projection or perturbation methods in conjumctvith control the-
ory allows for an arbitrarily close approximation to the exsolution to the un-
derlying problem. To illustrate how to solve the model nuicedty, we use a vari-
ation of the methodology described by Den Haan and Marc&Q)l&nd Marcet
and Lorenzoni (1999). This method falls into the class ofgmtoon methods, and
uses Monte Carlo methods to solve for the unknown parameft¢ine dunctional
equations. The model can be simulated using the followiaegsst

e Parameterize the(-) and«(-) functions using flexible functional forms
such as polynomials or orthogonalized polynomials.

12



¢ Initialize the parameter values of these functions.

e For given parameter values of thig-) and(-) functions, simulate the
model for a large number of time periods. Aside from the lafsno-
tion for S; andz;, all of the equations that need to be solved are static. The
laws of motion themselves are recursive.

e Estimate the parameters in thé) andv(-) functions by nonlinear regres-
sion, with the dependent variables being the series gestebgt numerical
simulation, in order to minimize the sum of squared foreogstrrors.

¢ Repeat the simulation and estimation steps until the chanteiparame-
ters of the expectations functions between iterationsffecgntly small.

7 Application

We apply the techniques developed in above to a simple mdagitonal public
spending. The utility function of the representative pievagent depends on both
private consumption spending and on government purchables.government
chooses public spending in order to maximize social welfes@ch is just the
expected utility of the representative private agent, Hriices this spending via a
proportional tax on total income.

The representative private agent maximizes expectetyutilhich is given by

U= S B {In(erns) + pln(gess)} 23)

=0

wherec, is private consumption ang is public spending. The private agent holds
the capital stock and rents it to firms. Its period budget traig is given by

(1 —=7) (wy + (ry — O)ky) + ky = ¢ + kyya, (24)

wherew, is the competitive real wage; is the competitive real rental rate of
capital, k; is capital held by the individual, and is the rate of taxation on total

13



income. The time endowment of the individual is normalizeddual one, so that
before-tax labor income is just given hy.
The aggregate production function is given by

Y = agk,”, (25)
wherey; is GDP. The law of motion fot; is given by
In(a;) = pln(a;_1) + &4, (26)

wheree, is a white noise shock with varianeg.

The government finances public investment via a proporti@axaon total in-
come. We rule out lump sum taxation in order to make the pgioblem one
of finding the second-best outcome, which leads to a disbindietween time-
consistent policies and time inconsistent policies. Theegament’s budget is
balanced in each period, so that

7 (we + (re — 0) ki) = gr. (27)

The individual’s first order conditions for utility maxirmation imply:

Cl = M\, (28)
At = BE A [T+ (1 = 7iq0) (re41 — 9)]) (29)
kg =1 —=7m)y + (1 =)k — c (30)

The government’s budget constraint can be used to sulestittippublic spend-
ing, so that is the only policy instrument. Under commitment, the goveent’s
maximization problem can be expressed as follows, aftestgubng out the rep-
resentative agent’s costate variable using- 1/¢;:

L= Et Z ﬁz{ 1D(Ct+l‘) + Nln(Tt—H) + M1n<yt+i - 5kt+i)
=0

+7Tt1+i ((1 - 5)k’t+z’ + Yiti — 7't+z'(yt+z' - 5k’t+z‘) = Ctti — k‘t+z‘+1)

14



+T7 4 (1 - ((1 — Tiyit1) a% +1-6(1— Tt+i+1)>> } (31)

Ct+i  Ctitl t+i+1
The first-order conditions imply:

7'('2 ; i
Titi K 7Ttl+i(yt+i — 0kyys) + il OéytJr -0 =0, >0,
T4 Ctti Kty
Tt B —7Tt1(yt—5kt) =0,
Tt
1 1 7th+1’
Ciyi: —— =My — ——>
" Ct4i " (Ct+i)2
2
Titi—1 Yi+i )
+ 1—72-054-1—(51—7'1‘):0, i >0,
(Cryi)? <( i) Ftyi ( i)
1 1 77152
Ct gt 7Tt (Ct)Q — Y,
7Ttl+z' b okipin = (1= 7)o + (1= 0(1 — 7)) Regi — copiy, 020,
1
i Cora

1 i :
—BE; < ((1 — Tttit1) QL 6(1 - Tt+z’+1))> =0, 120,
Ct+it1 Fitita

i . 2 _ _3E o ala—1) (1 = Trpip1)Yerin
i1t T = — BB | Ty 12
Ctiit1 t+i+1

Yt+itl QL —
BB | i <1 + (1 = Teqit1) (OZHJF - 5)) + p ] 7

Kivita Yerit1 — OKipiv
i >0,
wherey; anda; are defined respectively in (25) and (26).

It is straightforward to verify numerically whether thisssgm of equations is
saddlepoint stable, using a first-order approximation eftuilibrium conditions
around its deterministic steady state. If local stabiktgatisfied, which is the case
for our base-case calibration of the model and for a widegafigarameter values
used for sensitivity analysis, then a solution that coneernp the deterministic
steady state is the unique solution that satisfies the teasahty conditions for
the optimization problems by private agents and the goventm

15



7.1 Discretion

To find the time-consistent optimal policy under discret{tiee absence of an
ability to precommit), we replace the private agent’s Eelguation by

1

- = ¢(Gt, kt) =0,

Ct

where¢(a,, k;) is a function to be approximated. After using the governrsent
budget constraint to substitute ayt the Lagrangian can be written as:

L = F Zﬁl{ In(cys) + pIn(megs) + pIn(yes — 0kig)

=0
7 (1= 8) ki + Yeri — Tewi(Weri — Okigs) — Copi — Kesir)

s (1 — dlar, kt)) }
Ct+i

The first-order conditions imply:

n: B omly ok =0,
Tt
1 1 U
: —_— — _ — = 0
Ct o T (Ct)2 ,
'ﬂ'tl . kt-}—l = (1 — Tt)yt + (1 — 6(1 — Tt))kt — Gy,
1
7Tt2 p — —¢(a, k) =0,
Ct
ki 7Tt1 = ﬁEt{thH <1 + (1 = 7p41) <04Z?_1 - )) -
_l’_
¢ Qi — }
2 t+1
i = (a1, k 4+ p—>".
t“akm( t+1 t+1) /Aytﬂ — 5]%“

7.1.1 Markov-perfect equilibrium

We define equilibrium in our model with discretion as follow$he following
equations are satisfied in equilibrium:

In(a;) = pln(a;_1) + &4, (32)
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m = (ap k) (33)

Yy = atktaa (34)
1
G =—, 35
t ¢ (CLt7 kt) ( )
1
= — 36
=Ty (39)
72 =, — m(cy)?, (37)
k=0 —m)ye+ (1 —0(1 —7))k — c, (38)

and where, for a suitably-defined sample of artificial datseldan simulating this
system of equations and suitable parameterizations ef(th@nd(-) functions,
we have:

Plag, ki) = 5Et { <1> [1 +(1— Tt+1)(7°t+1 - 5)]} ) (39)

Ct4+1
¢(at, /{Zt) = ﬁE't{W151+1 (1 + (]. — Tt+1> <Oéyt+1 — 5)) —
ki

8¢ ZtJrl -4
2 t+1 4
Tit1 (9kt:1 (g1, Ber) + Miytﬂ Sk | (40)

where theE, operator refers to sample means. Equation (39) ensureshihat
representative private agent’s Euler equation is satigbean arbitrary degree
of accuracy. Equation (40) ensures that the government&r Eguation for the
optimal choice of the capital stock is satisfied to an arbjtdegree of accuracy.

For given initial conditions (values @f_; andk,) and given parameterizations
of the¢(-) andy(-) functions, the system of equations to solve for the econsmy’
equilibrium for any period is recursive. As long as th&(-) function is parame-
terized to avoid zero values, a solution exists. It can bevaehbat the solutions
for output, aggregate consumption and the tax rate are e@niqu

It is clear that private agents’ consumption (and hencengayipolicies and
the government’s taxation policy are dependent only on tieeat values of the
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technology shock;; and the capital stock;. In this sense, the equilibrium is a
Markov-perfect equilibrium.

The substitution of the private agent’s and government®iEequations us-
ing theg(-) andy(-) functions renders the dynamical equation system completel
recursive for given values of the parameters used to apmaiei the functions.
Local stability of this system for suitable approximatiarfss(-) andq(-) means
that agents’ first order conditions hold and that transvyigysaonditions are satis-
fied’

7.2 Results

The parameter values used to simulate the model are sunedamniZable 1. They
are standard values used in the real business cycle literato solve the time-
consistent and Ramsey problems, we use a version of the parérad expecta-
tions algorithm (PEA) of Den Haan and Marcet (1990) and Mizeioe Lorenzoni

(1999). In both cases, we need to find two interpolating fionst (one for each
Euler equation). We describe in detail the methodology Ier ime-consistent
problem. There are two state variablés,anda,, so that the two interpolating
functions,¢ and, should be functions of botky anda,, and verify

1
*_¢(at,kt)20 and Wg—w(ahkt):().

Cy

We derive results for both first-order and second-order nptyial approxima-
tions. The first order approximations are given by:

o(+) = exp(B1 + Bo In(Ky) + B3 In(ar));
W(-) = exp(by + O In(Ky) + 051n(ay)).

The second-order approximations are given by:

() = exp(B1+0> In(K)+55 In(ar) +54 (In(K4))*+05 (In(ar) )+ In(K;) In(ar) )

17A proof of the unicity of the Markov-perfect equilibrium fdhnis application is available on
request.
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() = exp(014-05 In(K,)+05 In(a,)+05(In( K, ) > +05 (In(a,) )*+0s In( K In(ay)).

Below, we report results for DM-tests (see Den Haan and Mal&f4) of the
adequacy of the approximations. We use nonlinear leastras|tia estimate the
parameters of the polynomials, and use a dampening coeffitiec A < 1 to
foster convergence. We iterate on:

Y1 = (1= A\)bs + M,

where@f) gives the current vector of estimates of the parametersedadpiproxima-
tions. As starting values, we use the steady-state (andetisidn rules) of the
commitment solution. The estimated parameters of the PBAtions are given
in Table 2 below.

Figure 1 displays impulse-response functions (for the-@rder PEA func-
tions) in response to a one-standard-deviation shock kmt#ogy. The horizontal
axis measures the number of quarters after the shock ancettieal axis mea-
sures the deviations in logs from the steady state. Follgwairpositive shock
to technology, output increases as does consumption. Khate initially falls,
so that the initial impact on public spending is proporti@ha lower than the
impact on private consumption spending. The gradual actation of capital
in response to the shock imparts a hump-shaped responsedhoptiate con-
sumption spending and public spending. These two varigigek just before the
capital stock reaches its maximum level, and then the dagdek, public spend-
ing, private consumption, and output all converge to theiady state levels from
above. The response of the tax rate is non-monotonic. Aftenisial drop, the
tax rate surpasses its steady-state value shortly afteraghiéal stock peaks, and
then converges to the steady state from above.

As explained before, the form of the PEA is critical. In thentext, we pro-
ceed in two steps. First, we compare deterministic simutatiusing the first-
order and second-order PEA. Second, we develop the adetpsicgs suggested
by Den Haan and Marcet (1994) in a multivariate setting. Fedureports the de-
terministic paths of variables of interest under the optifdecretionary) policy,
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assuming an initial capital stock that is below its steatdyeslevel. The dotted
lines represent the results from the second-order appegiom A visual inspec-
tion shows that the difference in polynomial orders mattery slightly in this
application.

The PEA functions are approximated in order to satisfy gqytimality condi-
tions. If the approximations are adequate, the realizaddutalues of the nonlin-
ear functions of future variables to which the conditiongdectations operator is
applied should be unpredictable given information avéd@a timet. This is the
rationale of the DM test proposed by Den Haan and Marcet (L9%4implement
the test, we regressed the realized time1 forecast errors of the PEA functions
on a constant, the capital stock, and the technology shatk,heasured at time
t. We also tried regressions in which we added four lags of #pétal stock and
four lags of the technology shock. The results were robusitespecification of
the regressions.

To reduce the probability of a type | error (rejection of thel mwhen it is true:
see explanations in Heer and Maussner, page 502), we fdflevpitocedure of
Den Haan and Marcet (1994). For a given sequence of shockiirsiveompute
the two approximate solutions and+ for a large7” (7' = 5000). Second we
use this solution and draw a new sequence of shocks sucthéhebtresponding
sample sizeT; is smaller thari’. After computing the time path of the variables
of interest, the DM statistic can be calculated for theseenlagions. Then, this
procedure is repeated very often and we can compute therpageeof the DM-
statistics that are below the lower or above the upper 2 &epecritical values of
the x?(m) distribution.

In the benchmark case and for first-degree approximatiotiseoPEA func-
tions, the DM-statistic was 8.6746, which leads us to ac¢aipt five-percent
level) the the null hypothesis that the forecast errors apeedictable based on the
time ¢ information set. The number of DM-statistics (out of 500)oae(above)
the2.5'" and97.5*" percentile of ay? distribution with 6 degrees of freedom was
close to the theoretical five percent.
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Given that the first-order PEA functions are adequate, wepeoed the deter-
ministic convergence to the steady-state under commitiaeatdiscretion. The
solid lines in Figure 3 reproduce the time paths from Figuend illustrate the
convergence to the steady state of the model under optirmatationary (time
consistent) policy. The dotted lines illustrate the cogeerce of the model under
optimal policy with commitment. The steady states are chifé under the two
types of optimal policy, and the behavior of consumptiorplmexpenditures and
the tax rate is substantially different when the governmiesttoptimizes. Overall,
taxes are higher under commitment but this leads to highleligpexpenditures,
which increases the conditional welfare of the represmsetagent.

Finally, to assess the differences between the commitnmeidiscretion solu-
tions, we calculated conditional welfare. This is measatdonet (when the gov-
ernment optimizes) for the same initial conditions (sanohnelogy level, same
level of the capital stock, which is below its determinigieady-state level under
either discretion or commitment). Table 3 gives values trditional welfare.

8 Conclusions

The methodology proposed in this paper is quite generakali$ to systems of
dynamical equations which can easily be simulated withlalvls computer tech-
nology and relatively parsimonious numerical solutionsgigrojection or per-
turbation techniques. Deriving time-consistent govemimpmlicies using these
methods is conceptually as straightforward as solving Rgmseblems. The
technique should allow researchers to do normative arsalgesmparing the lev-
els of welfare attainable with and without precommitmenttbg government.
It should also be useful for positive analysis, for exammmparing the predic-
tions of a given model for comovements between governmditypariables and
other macroeconomic aggregates with and without precomemnit. As suggested
by Judd (1998), with current advances in computer techiyakoghould become
more and more common to use numerical methods to advancendaratanding
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of economic theory.
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Table 1: Model Parameter Values

Parameter Value

QD 2T O W@

0.987
0.300
0.300
0.025
0.950
0.030

Table 2: Model Parameter Estimates

Parameter (3, Ba B3 B4 Bs Bs
o(+) 0.8877 -0.4796 -0.4699 - - -
o(+) 0.8903 -0.4827 -0.5348 0.011 -0.2480 0.0374
Parameter 6, 0 05 0, 0s O
U(+) 1.0804 -0.5472 -0.4812 - - -
U(+) 0.8988 -0.3740 -0.8939 -0.0403 -0.2375 0.1886

Table 3: Conditional Welfare

commitment
discretion, 1st-order approximation
discretion, 2nd-order approximation

-17.4792

-17.7404
-17.7280
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Figure 1: Impulse-response functions after a technologglsh
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Figure 2: First-order versus Second-order PEA
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Figure 3: First-order PEA versus Commitment
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