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Abstract

Modelling term-structure dynamics is an important component in measuring and managing the

exposure of portfolios to adverse movements in interest rates. Model selection from the enormous

term-structure literature is far from obvious and, to make matters worse, a number of recent

papers have called into question the ability of some of the more popular models to adequately

describe interest rate dynamics. The author, in attempting to find a relatively simple term-

structure model that does a reasonable job of describing interest rate dynamics for risk-

management purposes, examines two sets of models. The first set involves variations of the

Gaussian affine term-structure model by modestly building on the recent work of Dai and

Singleton (2000) and Duffee (2002). The second set includes and extends Diebold and Li (2003).

After working through the mathematical derivation and estimation of these models, the author

compares and contrasts their performance on a number of in- and out-of-sample forecasting

metrics, their ability to capture deviations from the expectations hypothesis, and their predictions

in a simple portfolio-optimization setting. He finds that the extended Nelson-Siegel model and an

associated generalization, what he terms the “exponential-spline model,” provide the most

appealing modelling alternatives when considering the various model criteria.

JEL classification: C0, C6, E4, G1
Bank classification: Interest rates; Econometric and statistical methods; Financial markets

Résumé

La modélisation de la dynamique de la structure des taux d’intérêt est un élément important de la

mesure et de la gestion de l’exposition d’un portefeuille aux mouvements défavorables des taux

d’intérêt. Il est toutefois difficile de choisir un modèle parmi ceux recensés dans la vaste

littérature consacrée au sujet, tout particulièrement depuis la parution de récents articles qui

remettent en question la capacité de certains des modèles les plus utilisés à décrire la dynamique

des taux. L’auteur cherche à mettre au point un modèle simple qui parvienne relativement bien à

rendre compte de cette dynamique aux fins de la gestion des risques. Pour ce faire, il examine

deux catégories de modèles. Le premier modèle étudié consiste en une variante du modèle

gaussien affine décrit par Dai et Singleton (2000) et Duffee (2002). Les modèles de la seconde

catégorie s’inspirent, en les prolongeant, des travaux de Diebold et Li (2003). Après avoir

présenté la dérivation mathématique de ces modèles et les avoir estimés, l’auteur compare, sur la

base de différents critères, leur capacité à prévoir l’évolution des taux durant la période

d’estimation et au-delà de celle-ci, leur capacité à rendre compte des écarts par rapport à



vi

l’hypothèse relative aux attentes, de même que leur pouvoir de prédiction dans un cadre simple

d’optimisation des portefeuilles. Il constate que le modèle étendu de Nelson-Siegel et une variante

généralisée de celui-ci, qu’il appelle « modèle spline exponentiel », constituent les modèles les

plus prometteurs eu égard aux divers critères de sélection retenus.

Classification JEL : C0, C6, E4, G1
Classification de la Banque : Taux d’intérêt; Méthodes économétriques et statistiques; Marchés
financiers



Modelling Term-Structure Dynamics

1 Introduction

Finance practitioners often use models of the term structure of interest rates to assist in addressing everyday

problems. The type of model that they will employ depends, not surprisingly, on the specific problem at hand.

One can, broadly speaking, decompose into two separate categories the problems related to interest rates that

practitioners face: pricing and risk-management problems. A pricing problem involves the determination—

conditioning on the set of current market data—of the value of some interest rate contingent claim. In this

setting, through the fundamental theorem of finance, one works entirely with the dynamics of interest rates

under an equivalent martingale measure, Q.1 This permits the pricing of interest rate derivative contracts

without explicitly considering investors’ risk preferences. Moreover, one can generally determine the model

parameters by calibrating the model to a set of financial contracts at the current time.2 Interest rate risk-

management problems, however, involve measuring the exposure of one’s portfolio to adverse movements in the

term structure of interest rates. In this case, it is essential to model the dynamics of the term structure through

time under the physical, or real-world, probability measure, denoted P. This implies that one must explicitly

consider investors’ risk attitudes. The implication is that one needs to use a historical data set to estimate model

parameters.

There is a catch. The financial literature related to describing dynamics of the term structure of interest rates

under both P and Q is enormous. Many models, for example, can be used in either a pricing or risk-management

setting. Not only is the number of alternative models bewildering, but their mathematical complexity and

variety can be overwhelming. Even worse, the estimation algorithms used to determine the model parameters

are also often quite involved. Finally, there is an enormous secondary literature dedicated, it appears, to entirely

debunking the existing set of models. After a review of the literature, one could reasonably come to the conclusion

that there does not exist a model that can adequately describe the dynamics of the term structure of interest

rates. Yet, for a finance practitioner, there are many problems whose solution depends exactly on these interest

rate dynamics. For the management of the Government of Canada’s foreign and domestic debt portfolios, for

example, an understanding of term-structure dynamics is essential for the selection of appropriate financing and

investment strategies.

Thus, a practitioner is faced with a difficult situation. On the one hand, the finance literature provides

simultaneously excessive and limited guidance on the best way to describe term-structure dynamics. Yet, on the

other hand, a reliable, dynamic term-structure model is essential for solving the problems faced by practitioners

on a daily basis. The practitioner’s question is not, therefore, what is theoretically the most appealing model.
1The fundamental theorem of finance (briefly) states that an equivalent martingale measure, Q, exists if and only if there is an

absence of arbitrage; market completeness gives us a unique Q. This is useful, because all contingent claims can be represented as

the discounted expectation taken with respect to Q.
2See Brigo and Mercurio (2001) for a detailed discussion of model calibration.
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Modelling Term-Structure Dynamics

Instead, the question becomes “which of the existing models does the best job of describing the dynamics of

the term structure of interest rates?” The next question is “under which probability measure?” We simplify

things somewhat in this paper by focusing only on the risk-management problem, and thus restrict our attention

to the physical measure. This still remains something of a daunting task, considering the wide range of risk-

management models and the additional complication of measuring investors’ risk attitudes. The objective of

this paper, therefore, is to try to find a relatively simple term-structure model that does a reasonable job of

describing interest rate dynamics under the physical measure. If one plans to compare a number of different

models, however, it is necessary to predefine a set of criteria to help distinguish the best model or models. We

hope to achieve this in a number of steps by:

• considering the intuition and details of the derivation of a number of different term-structure models;

• estimating the model parameters for each of these approaches using a common dataset;

• considering the ability of these models to forecast, both in- and out-of-sample, zero-coupon rates over

different horizons;

• considering the ability of these models to forecast the out-of-sample excess holding-period returns over

different horizons;

• using simulation and two well-known econometric tests to determine how well the alternative models capture

deviations from the expectations hypothesis, and;

• performing a simplified portfolio-optimization exercise.

A fundamental criterion for model comparison, therefore, is a model’s forecasting ability. Why? The central

empirical fact about the term structure of interest rates is that the (pure) expectations hypothesis does not

hold. There are many ways to express the expectations hypothesis, but in its simplest form it postulates that

expected holding-period returns on bonds of different maturities should be equal. It is a well-established fact in

the finance literature, however, that the existence of time-varying risk premia implies that holding-period returns

for bonds across different maturities are not equal. Consequently, in recent years, there has been a move to use

model forecasts to examine the ability of a term-structure model to describe the deviations from the expectations

hypothesis. Duffee (2002), in particular, states that “if a model produces poor forecasts of future yields, and thus

poor forecasts of future bond prices, it is unlikely that the model can shed light on the economics underlying the

failure of the expectations hypothesis.” In addition to the forecasting exercise, we also use simulation to compute

and compare two direct measures of the expectations hypothesis, including the time-honoured LPY-regression

test and a relatively new technique proposed by Backus et al. (2001). Finally, we compare how the various

term-structure models perform in the context of a simplified portfolio-optimization exercise; this seems quite

2



Modelling Term-Structure Dynamics

reasonable, since the principal practical application of these models, from the Bank of Canada’s perspective, is

found in strategic portfolio decisions.

To accomplish the objectives of this paper, we focus on two different classes of term-structure model. In the

first class, we examine some variations on the Gaussian affine term-structure model by modestly building on

the recent work of Dai and Singleton (2000), Duffee (2002), and Cheridito, Filipović, and Kimmel (2005). The

second class of models, introduced into the literature by Diebold and Li (2003), works directly with interest rates

under the physical measure. This is by no means an exhaustive examination of the models in this literature. We

have, however, selected a subgroup of models that we believe have the potential to combine relative parsimony

of implementation and the ability to describe deviations from the expectations hypothesis.

This paper is a piece of practitioner literature. Our target audience is other financial practitioners—with

particular emphasis on central bankers and finance ministry staff—struggling through the enormous literature

in an attempt to find a workable model to solve their underlying business problems. For this reason, this paper

does not look much like a typical academic paper. For one, there is relatively little in this paper that is new.

Second, the exposition is highly detailed and, by necessity, rather lengthy. Our objective is to provide a thorough

derivation of each of the models, in the hope is that this will provide additional understanding and flexibility in

model implementation and estimation.

The remainder of this paper includes four sections. Section 2 outlines the logic, intuition, and mathematical

derivation of the term-structure models considered in this paper. Section 3 provides a detailed description of

the estimation algorithms used to determine the model parameters. The results are described in section 4;

this includes a review of the different criteria used to distinguish between the models. Section 5 provides some

conclusions.

2 The Models

In this work, we will consider two alternative classes of models to describe the dynamics of the term structure

of interest rates. The first class of models, which we will refer to as the theoretical class, is the collection of

affine term-structure models. Affine term-structure models have been, and continue to be, the workhorse model

in the finance literature. The advantage of these models is their analytical tractability as well as their appealing

theoretical foundation. In recent years, however, there has been growing evidence that affine term-structure

models have difficulty capturing deviations from the expectations hypothesis. Duffee (2002) and Cheridito,

Filipović, and Kimmel (2005) provide some specific advice to help permit greater model flexibility. Questions

about these models, however, remain. For this reason, we also consider a class of models recently introduced

into the literature by Diebold and Li (2003). This collection of models, which we will refer to as the empirical

3
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class, are essentially a time-series description of the term structure of interest rates.3 The disadvantage of this

approach is the lack of a theoretical model foundation. This appears to be offset by better model forecasting

performance.

There is one slight complication. The class of affine models is extensive, while the class of empirical models is

rather small. We solve the first issue by restricting the set of affine models and deal with the second problem by

introducing a number of alternative empirical models. In particular, we restrict our attention to the three-factor

Gaussian model; this is the so-called A0(3) model in the vernacular of Dai and Singleton (2000). There are two

reasons for this choice. First, the A0(3) model is in many respects the simplest of affine term-structure models.

Second, there is some evidence that this simplicity, when combined with a sufficiently flexible specification of

the market price of risk, leads to superior yield forecasts relative to other, more complex, affine term-structure

models. We use the form of the market price of risk suggested by Leippold and Wu (2000) and Duffee (2002)

with different restrictions on the form of the matrix pre-multiplying the state variables.

The empirical model suggested by Diebold and Li (2003) basically writes the term structure at a given

point in time as a linear combination of a set of underlying factors. We generalize this idea somewhat and

introduce—following from previous work in Bolder and Gusba (2002)—two alternative empirical models. The

logic behind these models is predicated entirely on the logic proposed by Diebold and Li (2003), albeit with a

different mathematical form. We do this, again, for two reasons. First, it seems natural to generalize the basic

model and to examine the relative performance of the special case suggested by Diebold and Li (2003). Second,

the Nelson-Siegel model, as a description of the term structure of zero-coupon rates at a given point in time,

performs rather poorly—in terms of goodness of fit—relative to other alternatives. We wondered if a model

that performs better in fitting bond prices at a given point in time would also do a better job of describing

term-structure dynamics as well as deviations from the expectations hypothesis.

In the following sections, we perform a detailed derivation of each of the models examined in this paper. At

first glance, these details may appear somewhat superfluous. We would argue, however, that from a practitioner’s

perspective, the derivation of the model is of paramount importance, because it permits a greater degree of

flexibility in the model’s implementation. Because of tight space limitations, academics often present their

models in highly succinct, even terse, form. Many details are spread across different publications or skipped

entirely. We operate under no such constraints and thus seek to provide a comprehensive view of the models.

Model derivation also adds a higher degree of comfort with the model and helps build intuition about it and its

parameters. This paper’s comprehensiveness will also help us later with the estimation of the parameter set.
3There is, for example, no notion of risk premia in this model. The model works directly with interest rates under the physical

measure (P) and, as such, does not permit us to move into the risk-neutral setting.

4
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2.1 A theoretical model

The theoretical affine term-structure model derived in this section is constructed from first principles. In partic-

ular, the model uses the fundamental theorem of finance to construct a description of the dynamics of the term

structure of interest rates. In the following pages, we will work through the derivation of the affine term-structure

model using what is termed the pricing-kernel approach.4 The general idea is that pure-discount bond prices are

a function of some (generally unobservable) set of state variables. Before we can start, we need to add a bit of

structure, introduce some notation, and provide some technical conditions. We begin with a probability space,

(Ω,F ,P), a complete and right-continuous filtration, {Ft, t ∈ [0, T ]}, where T represents some strictly positive

future point in time. We further introduce W ∈ Rn as an n-dimensional Wiener process defined on (Ω,F ,P),

where {Ft, t ∈ [0, T ]} has the usual P-augmentation of the natural filtration of the Wiener processes.

In our derivation, we will have to specify the usual suspects, including the instantaneous short rate, the

market price of risk, and the dynamics of our state variables. Let us begin with our state variables. Let Xt ∈ R

be a Markov process taking values in an open set D ⊂ Rn with dynamics described by the underlying stochastic

differential equation,

dXt = µ(Xt)dt+ σ(Xt)dWt, (1)

where µ(Xt) ∈ Rn×1 and σ(Xt) ∈ Rn×n are deterministic functions of the state variables. As you can see,

this is a fairly general specification for the dynamics of the state variable. It will turn out in practice to be a

multidimensional Ornstein-Uhlenbeck process.

The pricing kernel approach is conceptually quite straightforward. The idea is to develop two alternative

approaches to determining the price of a pure-discount bond of arbitrary tenor. One representation comes from

the mathematical-finance approach of writing the price of a contingent claim as an expectation taken with respect

to an equivalent martingale measure. The alternative representation comes from the economic idea of a pricing

kernel. Essentially, the pricing kernel relates future cash flows, say {Ct, t ∈ [t, T ]}, to today’s price. It has

a number of different names, including the state-price density and stochastic discount factor. We denote the

pricing kernel as {ξt, t ∈ [0,∞}, and the price of a security, ψ(t), paying cash flows {Ct, t ∈ [t, T ]} can be written

as

ψ(t) = EP

[∫ T

t

ξsCs

ξt
ds

∣∣∣∣∣Ft

]
. (2)

There are a variety of results that discuss the relationship between the absence of arbitrage and the existence of

the pricing kernel. In short, modulo a number of technical conditions, one can show that the absence of arbitrage

implies the existence of a pricing kernel.
4For a much more detailed discussion of affine term-structure models, see Bolder (2001) and the many excellent academic references

contained in that document.

5



Modelling Term-Structure Dynamics

The result in equation (2), while interesting, is not yet useful in its current form for modelling interest rates.

We are in the business of modelling the term structure of interest rates and, as such, are not interested in an

arbitrary security, ψ(t). Instead, we are interested in the pure-discount bond price function, which we denote as

P (t, T ) ≡ P (Xt, T − t) ≡ P (Xt, τ), (3)

to denote its dependence on the state variables, Xt, and the tenor of the security, T−t. For notation convenience,

we are generally going to let τ = T − t. This will help keep some lengthy expressions later in the text from

becoming completely unwieldy. If we can describe, for a given point in time, the collection of pure-discount bond

prices, then we can characterize the entire term structure of interest rates at that point in time. Recall that the

zero-coupon rate function is given as

z(Xt, τ) = − lnP (Xt, τ)
τ

. (4)

The pure-discount bond has a unit cash flow occurring at time T . This implies that the cash flow is merely

CT = 1 for some T ∈ [0, T ]. More specifically,

P (Xt, 0) = P (Xt, T − T ) = 1. (5)

Thus, if we cast our pure-discount bond price into equation (2), we have

P (Xt, τ) = EP


∫ T

t

ξT

Equation (5)︷ ︸︸ ︷
P (Xt, 0)
ξt

ds

∣∣∣∣∣∣∣∣∣Ft

 , (6)

= EP
[
ξT
ξt

∣∣∣∣Ft

]
.

Equation (6) is quite a useful result, particularly considering that we can also state, from the fundamental

theorem of finance, that the price of any contingent claim is its discounted expectation taken with respect to the

equivalent martingale measure, Q. Since the pure-discount bond price is a contingent claim on the interest rate,

we can write

P (Xt, τ) = EQ

e− ∫ T
t

r(Xs)ds

Equation (5)︷ ︸︸ ︷
P (Xt, 0)

∣∣∣∣∣∣∣Ft

 , (7)

= EQ
[
e−

∫ T
t

r(Xs)ds
∣∣∣Ft

]
,

6
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where r(Xt) is the instantaneous short rate. Using L’Hopital’s rule, we define it as

r(Xt) = lim
T↓t

z(Xt, T − t), (8)

= lim
T↓t

− lnP (Xt, τ)
τ

,

= lim
T↓t

−
∂ ln P (Xt,τ)

∂T
∂τ
∂T

,

= −∂ lnP (Xt, τ)
∂T

,

where this final derivative is the right-hand derivative evaluated at τ = 0. The function P (Xt, τ) is assumed to

be sufficiently differentiable and continuous for this limit to exist. At this point, observation of equations (6) and

(7) describing P (Xt, τ) reveals that the expectations are taken with respect to different probability measures.

We can, using the Cameron-Girsanov theorem, rewrite equation (7) as

P (Xt, τ) = EP
[
dQ
dP

e−
∫ T

t
r(Xs)ds

∣∣∣∣Ft

]
, (9)

where dQ
dP is the Radon-Nikodým derivative. It is an exponential martingale of the following form:

dQ
dP

= exp

(
−
∫ T

t

γ(Xs)T dWs −
1
2

〈
−
∫ T

t

γ(Xs)T dWs,−
∫ T

t

γ(Xs)T dWs

〉)
, (10)

= exp

(
−
∫ T

t

γ(Xs)T dWs −
1
2

∫ T

t

∣∣γ(Xs)T γ(Xs)
∣∣ ds) ,

where 〈Xt, Xt〉 denotes the quadratic-variation process of Xt and the Ft-adapted process, γ(Xt), represents the

market price of risk. Note that under the physical measure, P, risk-averse market participants require some

compensation for the risk associated with holding fixed-income instruments.

Now, we have two expressions for P (Xt, τ)—in equations (6) and (9)—written as expectations taken with

respect to the same measure. Moreover, as of time t, these two expressions must be equal for all t. This is a

consequence of the absence of arbitrage. This, however, can only be true if the integrands are equal:

ξT
ξt

=
dQ
dP

e−
∫ T

t
r(Xs)ds. (11)

If we shift the time interval from [t, T ] to [0, t] and observe that the value of the pricing kernel at time 0 is ξ0 = 1,

we have the following relationship:

ξt =
dQ
dP

e−
∫ t
0 r(Xs)ds. (12)

This expression represents the equilibrium relationship between the pricing kernel and the instantaneous short

rate. It is exactly this relationship that we will exploit to solve for the bond pricing function, P (Xt, τ).

7



Modelling Term-Structure Dynamics

We want to understand the infinitesimal dynamics of both ξt and P (Xt, τ). This will require a bit of clever

manipulation and a few applications of Itô’s theorem. First, by plugging equation (10) into our pricing-kernel

equation (12) and simplifying, we arrive at

ξt =
dQ
dP

e−
∫ t
0 r(Xs)ds, (13)

= exp
(
−
∫ t

0

γ(Xs)T dWs −
1
2

∫ t

0

∣∣γ(Xs)T γ(Xs)
∣∣ ds)︸ ︷︷ ︸

Equation 10

exp
(
−
∫ t

0

r(Xs)ds
)
,

= exp
(
−
∫ t

0

r(Xs)ds−
∫ t

0

γ(Xs)T dWs −
1
2

∫ t

0

∣∣γ(Xs)T γ(Xs)
∣∣ ds) .

To find dξt, it is necessary to apply Itô’s theorem. To use this result, let us first make a simple change of variables,

ξt = exp(Yt), (14)

where,

Yt = −
∫ t

0

r(Xs)ds−
∫ t

0

γ(Xs)T dWs −
1
2

∫ t

0

∣∣γ(Xs)T γ(Xs)
∣∣ ds. (15)

If we represent equation (15) in differential notation, we have

dYt =
(
−r(Xt)−

1
2
γ(Xt)T γ(Xt)

)
dt− γ(Xt)T dWt, (16)

= a(Xt)dt+ b(Xt)dWt.

Since ξt = exp(Yt), we apply Itô’s Lemma to the function F (x, t) = exp(x). This implies that ∂F (x,t)
∂t vanishes.

By Itô, therefore, we have

dξt =
∂F

∂t
dt+

∂F

∂x
dY (t) +

1
2
∂2F

∂x2
d〈Y 〉t, (17)

=
∂F

∂t
dt+

∂F

∂x
(a(Xt)dt+ b(Xt)dWt) +

1
2
∂2F

∂x2
b(Xt)2dt,

=

∂F∂x · a(Xt) +
∂F

∂t︸︷︷︸
=0

+
1
2
∂2F

∂x2
· b(Xt)2

 dt+
∂F

∂x
· b(Xt) dWt,

=
(
eYta(Xt) +

eYt

2
· b(Xt)2

)
dt+ eYt · b(Xt) dWt,

= exp(Yt)
[(
−r(Xt)−

1
2
γ(Xt)T γ(Xt) +

1
2
γ(Xt)T γ(Xt)

)
dt− γ(Xt)T dWt

]
,

= ξt
[
−r(Xt)dt− γ(Xt)T dWt

]
.

8
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Therefore, it follows from this development that

dξt
ξt

= −r(Xt)dt− γ(Xt)dWt, (18)

= a1(Xt)dt+ b1(Xt)dWt,

where a1(Xt) = −r(Xt) and b1(Xt) = −γ(Xt). This expression will turn out to be quite useful.

We will leave P (Xt, τ) in its general form for the moment and make an observation. Recall that, from

equation (6),

P (Xt, T − t) = EP
[
ξT
ξt

∣∣∣∣Ft

]
.

This expression, given the Ft-measurability of ξt and the definition of a pure-discount bond, can be written as

P (Xt, T − t)ξt = EP

ξT P (Xt, T − T )︸ ︷︷ ︸
=1

∣∣∣∣∣∣Ft

 . (19)

From the martingale property (i.e., E(XT |Ft) = Xt), we can see that P (Xt, T − t)ξt is a martingale. Thus, it

follows that

E [d (P (Xt, T − t)ξt)] = 0, (20)

E
[
d (P (Xt, T − t)ξt)
P (Xt, T − t)ξt

]
= 0.

What can we do now? The game plan is to expand equation (20) and to remark, from the fact that P (Xt, T−t)ξt
is a martingale, that the drift term must be equal to zero. By setting this drift term equal to zero, we eliminate

the Brownian motion terms and arrive at a partial differential equation. An assumption is then made regarding

the form of P (Xt, τ), which ensures the existence of the partial differential equation. Finally, we observe that

the partial differential equation can, fortunately, be reduced to a system of ordinary differential equations that

can be solved numerically with a finite-difference algorithm.

We can expand equation (20) with a stochastic version of the product rule. In particular, it is true that, for

two continuous semi-martingales, Xt and Yt,

d(XtYt) = XtdYt + YtdXt + d〈X,Y 〉t,

where 〈X,Y 〉t denotes the co-quadratic variation process of Xt and Yt. Applying this result to equation (20)

yields

E
[
d (P (Xt, τ)ξt)
P (Xt, τ)ξt

]
=

1
P (Xt, τ)ξt

E [P (Xt, τ)dξt + ξtdP (Xt, τ) + d〈P (Xt, τ), dξt〉] , (21)

= E
[
dξt
ξt

+
dP (Xt, τ)
P (Xt, τ)

+
d〈P (Xt, τ), dξt〉
P (Xt, τ)ξt

]
.

9
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We have an expression for dξt

ξt
. To evaluate equation (21), therefore, we need to understand the infinitesimal

dynamics of P (Xt, τ). This follows from another application of Itô’s theorem. In particular,

dP (Xt, τ) =
∂P (Xt, τ)

∂t
dt+

∂P (Xt, τ)
∂XT

t

dXt +
n∑

i=1

n∑
j=1

∂2P (Xt, τ)
∂XitXjt

d〈Xi, Xj〉t, (22)

=
∂P (Xt, τ)

∂t
dt+

∂P (Xt, τ)
∂XT

t

(µ(Xt)dt+ σ(Xt)dWt) +
n∑

i=1

n∑
j=1

∂2P (Xt, τ)
∂XitXjt

σ(Xit)σ(Xjt)dt,

=

∂P (Xt, τ)
∂t

+
P (Xt, τ)
∂XT

t

µ(Xt) +
n∑

i=1

n∑
j=1

∂2P (Xt, τ)
∂XitXjt

σ(Xit)σ(Xjt)


︸ ︷︷ ︸

a2(Xt)

dt+
∂P (Xt, τ)
∂XT

t

σ(Xt)︸ ︷︷ ︸
b2(Xt)

dWt,

= a2(Xt)dt+ b2(Xt)dWt.

We now have all of the ingredients to evaluate equation (21). The evaluation proceeds as follows:

0 = E
[
dξt
ξt

+
dP (Xt, τ)
P (Xt, τ)

+
d〈P (Xt, τ), dξt〉
P (Xt, τ)ξt

]
, (23)

= E
[
P (Xt, τ)

dξt
ξt

+ dP (Xt, τ) +
d〈P (Xt, τ), dξt〉

ξt

]
,

= E

P (Xt, τ)

a1(Xt)dt+ b1(Xt)dWt︸ ︷︷ ︸
Equation (18)

+ a2(Xt)dt+ b2(Xt)dWt︸ ︷︷ ︸
Equation (22)

+
b1(Xt)ξtb2(Xt)dt

ξt

 ,

= E

(P (Xt, τ)a1(Xt) + a2(Xt) + b1(Xt)b2(Xt))︸ ︷︷ ︸
a3(Xt)

dt+ (P (Xt, τ)b1(Xt) + b2(Xt))︸ ︷︷ ︸
b3(Xt)

dWt

 ,
= E [a3(Xt)dt+ b3(Xt)dWt] .

This work brings us, not surprisingly, to a stochastic process with a drift coefficient of a3(Xt) and a diffusion

coefficient of b3(Xt). Recall that we derived this equation from the fact that P (Xt, τ)ξt is a martingale. As such,

it must be that the drift of this process, a3(Xt), is identically zero. Let us work backwards to determine the

implications of this conclusion:

0 = a3(Xt), (24)

0 = P (Xt, τ)a1(Xt) + a2(Xt) + b1(Xt)b2(Xt),

P (Xt, τ)r(Xt) =
∂P (Xt, τ)

∂t
+
P (Xt, τ)
∂XT

t

µ(Xt) +
n∑

i=1

n∑
j=1

∂2P (Xt, τ)
∂XitXjt

σ(Xit)σ(Xjt)−
∂P (Xt, τ)
∂XT

t

γ(Xt)Tσ(Xt),

P (Xt, τ)r(Xt) =
∂P (Xt, τ)

∂t
+
P (Xt, τ)
∂XT

t

(µ(Xt)− γ(Xt)Tσ(Xt)) +
1
2

n∑
i=1

n∑
j=1

∂2P (Xt, τ)
∂XitXjt

σ(Xit)σ(Xjt).

10
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Here we have a useful result. Equation (24) is a partial differential equation in P (Xt, τ). To actually make any

progress in solving this equation, we need to make a few modelling choices. In particular, it is necessary to:

• postulate a form for the pure-discount bond price function, P (Xt, τ);

• derive an expression for the instantaneous short rate, r(Xt);

• provide a form for the market price of risk function, γ(Xt); and,

• make a choice regarding the form of the coefficients, µ(Xt) and σ(Xt), in the stochastic differential equation.

Once we have made these choices, we can proceed to solve equation (24) and thereby arrive at an explicit

expression for the pure-discount bond price. This will then be our characterization of the term-structure of

interest rates.

Based on our list of required ingredients, the first step is to postulate a form for P (Xt, τ) that permits a

solution of equation (24). As might be expected, P (Xt, τ) is assumed to have an exponential-linear form, as

follows:

P (Xt, τ) = e−cτ−bT
τ Xt , (25)

where cτ ∈ R and bτ ∈ Rn×1 are deterministic functions of τ . Translating equation (25) into words, we have

that the pure-discount bond price is an exponentially affine function in the state variables, Xt.5 Given the form

for P (Xt, τ), we proceed to compute the requisite derivatives in the partial differential equation in (24) with the

hope it will lead to some simplification. We have, therefore, that

∂P (Xt, τ)
∂t

=

(
∂cτ
∂t

+
∂bτ
∂t

T

Xt

)
P (Xt, τ), (27)

∂P (Xt, τ)
∂Xt

= −bTτ P (Xt, τ), (28)

and,

∂2P (Xt, τ)
∂Xt∂XT

t

= bτ b
T
τ P (Xt, τ). (29)

5This can be extended. Leippold and Wu (2000, 2001, 2003) describe a class of quadratic term structure models of the form,

P (Xt, τ) = e−cτ−bT
τ Xt−XT

t Aτ Xt , (26)

where cτ ∈ R, bτ ∈ Rn×1, and Aτ ∈ Rn×n are deterministic functions of τ . This model nests the affine class of models (i.e., an

affine model arises when Aτ ≡ 0 for all τ). That is, the pure-discount bond price becomes an exponentially quadratic function in

the state variables, Xt.

11
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If we plug equations (27)—(29) into the partial differential equation in (24), we get some simplification:

P (Xt, τ)r(Xt) =

(
∂cτ
∂t

+
∂bτ
∂t

T

Xt

)
P (Xt, τ)︸ ︷︷ ︸

Equation (27)

+−bTτ P (Xt, τ)︸ ︷︷ ︸
Equation (28)

(µ(Xt)− σ(Xt)γ(Xt)) (30)

+ tr

bτ bTτ P (Xt, τ)︸ ︷︷ ︸
Equation (29)

σ(Xt)σ(Xt)T

 ,
r(Xt) =

∂cτ
∂t

+
∂bτ
∂t

T

Xt − bTτ (µ(Xt)− σ(Xt)γ(Xt)) +
1
2
tr
[
bτ b

T
τ σ(Xt)σ(Xt)T

]
,

where we see that the double summation in equation (24) is replaced with a trace operator, tr(·). Observe that

we have eliminated a P (Xt, τ) term from each element of our partial differential equation.

To make any more progress, it is necessary to address the second item on our list of ingredients; that is, we

need to derive an expression for the instantaneous short rate, r(Xt). The instantaneous short rate is, as we saw

in equation (8), merely the limit of a continuously compounded zero-coupon interest rate as the tenor, τ = T − t,
tends to zero. Having specified the form of P (Xt, τ), we can proceed to evaluate this limit:

r(Xt) = lim
T↓t

−∂ lnP (Xt, T − t)
∂T

, (31)

= lim
T↓t

− ∂

∂T

(
ln
(
e−c(T−t)−b(T−t)T Xt

))
,

= lim
T↓t

∂c(T − t)
∂T

+
∂b(T − t)

∂T

T

Xt,

= cr + bTr Xt,

where cr ∈ R and br ∈ Rn×1 exist through the assumed continuity and differentiability of these functions. In

the context of these models, however, we can think of the values of cr and br as parameters that have to be

determined from our estimation algorithm.6 Ang and Piazzesi (2003) provide a useful motivation of equation

(31) by comparing it with the Taylor rule. Essentially, equation (31) states that the short rate, targeted by

most monetary authorities, is a linear function of a set of unobservable state variables. The Taylor rule, of

course, describes the short-rate dynamics as a linear function of macroeconomic variables such as the output gap

and inflation. Ang and Piazzesi (2003) consider both macreconomic and unobservable state variables in their

approach.

Our penultimate ingredient involves the specification of the market price of risk, γ(Xt). Leippold and Wu

(2000) suggest the following choice, which we will adopt:

γ(Xt) = bγ +AγXt, (32)

6We will see that the system of ordinary differential equations that arises from collecting the terms in equation (30) cannot be

solved if we leave cr and br in explicit derivative form.
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where bγ ∈ Rn×1 and Aγ ∈ Rn×n. The idea is that the market price of risk is an affine function of the state

variable, Xt. The advantage of this choice is that it permits the market price of risk, and thus risk premia, to

vary through time. Duffee (2002) introduces a clever technique to allow more flexibility for the market price of

risk; these are termed essentially affine models. The basic intuition is that it has been generally assumed that

the market price of risk process is a fixed multiple to the instantaneous variance of the state-variable vector.

This is reasonable insofar as risk and risk premia go to zero together, but the positivity of variance implies

that risk premia can never change sign over time. The primary contribution of Duffee (2002), therefore, is to

provide a general approach to relax this restriction on the market price of risk. Cheridito, Filipović, and Kimmel

(2005) simplify the mathematical implementation of the approach suggested by Duffee (2002). In the context of

the A0(3), however, the approach is relatively simple, given that the state variables follow Ornstein-Uhlenbeck

processes. By providing an affine form of the market price of risk, as described in equation (32), the necessary

flexibility is provided. Life becomes somewhat more complicated when one introduces square-root processes for

the state variables.

Our final ingredient requires us to make specific choices for the general state-variable coefficients, µ(Xt) and

σ(Xt). Let us, therefore, define the instantaneous drift and volatility for Xt as

µ(Xt) = κ(θ −Xt), (33)

with κ ∈ Rn×n and θ ∈ Rn×1:

σ(Xt) = ΣS(Xt) ∈ Rn×n, (34)

where Σ ∈ Rn×n is the Cholesky decomposition of the instantaneous correlation matrix, and S(Xt) ∈ Rn×n is a

diagonal matrix where

[S(Xt)]ii = αi + βT
i Xt, (35)

for i = 1, ..., n. Often, the collection of β vectors is denoted B = {β1, ..., βn}. Dai and Singleton (2000) perform a

thorough econometric specification analysis of the class of affine models that permits us to add some restrictions

to the form of µ(Xt) and σ(Xt). In particular, they introduce a classification scheme for different affine models.

A given affine model is a member of the class Am(n), where n denotes the number of state variables and m

represents the number of state variables that influence the conditional variance. In other words, m is the number

of state variables whose dynamics follow a square-root process. We will be considering models of the form A0(3),

which implies that the three state variables each follow an Ornstein-Uhlenbeck process. Dai and Singleton

(2000) further demonstrate that, to econometrically identify these models, κθ = 0, B = 0, {αi = 0, i = 1, ..., n},
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Σ = I ∈ Rn×n, and κ must be lower diagonal with positive eigenvalues.7 This implies that

µ(Xt) = −κXt, (36)

and

σ(Xt) = I ∈ Rn×n. (37)

The final step before attempting to solve equation (30) is to recall a few properties of the trace operator. In

particular, for the constant α ∈ R and two matrices A and B, and where the products AB and BA make sense,

it is true that

tr(αA) = α · tr(A),

tr(A) = tr(AT ),

tr(α) = α,

tr(AB) = tr(BA).

Now, plugging equations (31) to (34) into our partial differential equation in (30), we have

r(Xt) =
∂cτ
∂t

+
∂bτ
∂t

T

Xt − bTτ (µ(Xt)− σ(Xt)︸ ︷︷ ︸
I∈Rn×n

γ(Xt)) +
1
2
tr

bτ bTτ σ(Xt)σ(Xt)T︸ ︷︷ ︸
I∈Rn×n

 , (38)

− (cr + bTr Xt)︸ ︷︷ ︸
Equation (31)

+
∂cτ
∂t

+
∂bτ
∂t

T

Xt − bTτ (−κXt − (bγ +AγXt)︸ ︷︷ ︸
Equation (32)

) +
1
2
tr
(
bτ b

T
τ

)
= 0.

Inspection of equation (38) reveals that we will have two types of terms: constant terms and linear terms in Xt.

If we collect these two sets of coefficents, they must be identically zero for all τ for equation (38) to hold. We

will find that these two coefficients are, in fact, ordinary differential equations. The first step in getting to this

system of ordinary differential equations is to expand each of the expressions in equation (38) and start collecting

terms, as follows:

−cr − bTr Xt +
∂cτ
∂t

+
∂bτ
∂t

T

Xt + bTτ κXt + bTτ (bγ +AγXt) +
1
2
tr
(
bτ b

T
τ

)
= 0. (39)∂cτ∂t − cr + bTτ bγ

1
2
tr
(
bTτ bτ

)
︸ ︷︷ ︸

Constant terms

+

∂bτ∂t T

− bTr + bTτ κ+ bTτ Aγ︸ ︷︷ ︸
Linear (i.e., Xt) terms

Xt = 0.

7This final condition ensures that the time evolution of the state variable vector is stable. Positive eigenvalues for a lower diagonal

matrix imply that all of the diagonal elements—or the mean-reversion coefficient of the individual elements of the state-variable

vector—are positive.
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We can also simplify the expression inside the trace operator, by using the previously cited trace properties.

Specifically, careful inspection of equation (39) reveals that we have rotated the order of the multiplication of

the terms inside the trace operator (i.e., tr(AB) = tr(BA)) such that the dot product collapses to a scalar. In

other words, bTτ bτ ∈ R is a singleton and thus we can eliminate the trace operator:(
∂cτ
∂t

− cr + bTτ bγ +
bTτ bτ

2

)
+

(
∂bτ
∂t

T

− bTr + bTτ κ+ bTτ Aγ

)
Xt = 0. (40)

Elimination of the trace operator permits us to write a system of ordinary differential equations. Moreover, if

we solve the following system of ordinary differential equations, we will have the deterministic functions cτ and

bτ , bond tenor (i.e., τ) that—along with the current value of the state variables, Xt—describe the price of a

pure-discount bond at a given point in time. The first differential equation, for the scalar-valued function cτ , is

0 =
∂cτ
∂t

− cr + bTτ bγ +
bTτ bτ

2
, (41)

∂cτ
∂t

= cr − bTτ bγ −
bTτ bτ

2
.

The second group of ordinary differential equations, for the vector-valued function bτ , is

0 =

(
∂bτ
∂t

T

− bTr + bTτ κ+ bTτ Aγ

)T

, (42)

∂bτ
∂t

= br − κT bτ −AT
γ bτ .

We numerically solve the system of ordinary differential equations in (41) and (42) using a fourth-order Runge-

Kutta method.8 The initial conditions are c(0) = 0 and b(0) = 0.

There are, in the base version of this model, 22 parameters to be estimated. The instantaneous short-rate

parameters, cr and br, generate four parameters. The mean-reversion matrix, κ, with its lower-diagonal form,

leads to six parameters. Finally, there are 12 market-price-of-risk parameters: three from bγ and nine from Aγ .

Since this large number of model parameters must be estimated in a non-linear optimization setting, we naturally

become concerned about the curse of dimensionality. We therefore decide to consider how we might be able to

reduce the number of parameters. Our focus is on the matrix Aγ ∈ Rn×n. In addition to the fully unrestricted

form of Aγ (nine parameters), we also consider a symmetric version of Aγ (six parameters) and a diagonal version

of Aγ (three parameters). This implies that we will consider three different implementations of the A0(3) model

with varying restrictions on the Aγ matrix that pre-multiplies the state-variable vector (i.e., Xt) in the market

price of risk introduced in equation (32). We note that this is not a terribly deep extension of the model, but it

is introduced with a view towards providing some relief of the curse of dimensionality by reducing the number

of parameters. As we will see in later sections, the non-linear optimization problem that arises in the estimation
8See Press et al. (1992, 710–712) for a detailed description of the Runge-Kutta technique.
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of model parameters is computationally very difficult to solve. As such, any potential simplification is, in our

view, worth exploring.

2.2 An empirical model

In the previous section, we considered a model for the dynamics of the term structure of interest rates that was

constructed from first principles. That is, the point of departure was the fundamental expression for pricing

contingent claims. Another strand of literature, however, has evolved in recent years from the following authors:

Diebold and Li (2003); Diebold, Ji, and Li (2004); Diebold, Rudebusch, and Aruoba (2004); Diebold, Piazzesi,

and Rudebusch (2005); and Bernadell, Coche, and Nyholm (2005). This work essentially marries the term-

structure estimation problem—that is, the extraction of zero-coupon and forward interest rates from a collection

of coupon-bond prices—with the description of the dynamics of the term structure of interest rates. In doing so,

one essentially constructs a time-series model for the evolution of the interest rates. In other words, this is an

empirical approach. For this reason, in this paper, we will refer to this approach as an empirical model. We will

present three possible model choices. The first follows from the work of Diebold and Li (2003), while we develop

the other two approaches in an effort to demonstrate the generality of the empirical approach.

2.2.1 Diebold and Li’s extension of the Nelson-Siegel model

Diebold and Li (2003) use the work of Nelson and Siegel (1987) as the foundation for their description of term-

structure dynamics. The work of Nelson and Siegel (1987)—as well as subsequent work by Svensson (1994) and

Svensson and Söderlind (1997)—focuses entirely on the problem of extracting zero-coupon and forward interest

rates from a collection of coupon-bond prices.9 The initial idea behind these models is to create a parsimonious

description of the term structure of interest rates by providing a continuous functional form of forward interest

rates. To accomplish this, however, it is necessary to develop a notion of the forward rate that is mathematically

continuous. As such, the departure point for these models is the definition of an instantaneous forward rate,

defined as

f(t, τ) = lim
T↓τ

f(t, τ, T ). (43)

That is, the instantaneous forward rate is the limit as the tenor of the underlying zero-coupon contract tends

(from above) towards the maturity of the forward contract. In practice, we can think of this as the forward

overnight interest rate τ periods forward. We can, in fact, evaluate this limit by recalling the definition of the

continuously compounded forward interest rate,

f(t, τ, T ) =
1

T − τ
ln
(
P (t, τ)
P (t, T )

)
, (44)

9These models are considered in the Canadian context in Bolder and Streliski (1999) and in Bolder and Gusba (2002).
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and an application of L’Hopital’s rule. Note that this requires the necessary assumptions regarding the differen-

tiability and continuity of P , which we assume to hold. The form of the instantaneous forward rate, therefore,

is derived as

f(t, τ) = lim
T↓τ

1
T − τ

ln
(
P (t, τ)
P (t, T )

)
︸ ︷︷ ︸

Equation (44)

, (45)

= lim
T↓τ

lnP (t, τ)− lnP (t, T )
T − τ

,

= lim
T↓τ

∂
∂T (lnP (t, τ)− lnP (t, T ))

∂
∂T (T − τ)

,

= lim
T↓τ

P ′(t,T )
P (t,T )

1
,

= lim
T↓τ

PT (t, T )
P (t, T )

,

= −Pτ (t, τ)
P (t, τ)

,

where Px(t, x) indicates partial differentiation with respect to the second argument, x. Observe that f(t, τ)

represents, at time t, an entire curve, in τ , that characterizes the instantaneous forward term structure of

interest rates. We can derive the instantaneous interest zero-coupon curve by a simple manipulation of equation

(45) as follows:

−Pτ (t, τ)
P (t, τ)

= f(t, τ), (46)

− ∂

∂τ
(lnP (t, τ)) = f(t, τ),

− ∂

∂τ

(
ln e−z(t,τ)(τ−t)

)
= f(t, τ),∫ τ

t

∂

∂u
(z(t, u)(u− t)) du =

∫ τ

t

f(t, u)du,

z(t, τ)(τ − t)− z(t, t)(t− t) =
∫ τ

t

f(t, u)du,

z(t, τ) =
1

τ − t

∫ τ

t

f(t, u)du.

This expression permits the specification of both instantaneous forward and zero-coupon curves and a method

for moving between them. Note from equations (45) and (46) that the forward rate is represented as a partial

derivative of pure-discount bond prices, and that the zero-coupon rate is the sum (i.e., integral) of forward rates.

Economically, therefore, we can interpret the zero-coupon curve as an average interest rate, while the forward

rate is essentially the marginal interest rate concept.

The idea suggested by Nelson and Siegel (1987) is both simple and powerful. Since equation (45) is essentially

a function of instantaneous forward rates in τ , they suggest a specific functional form. In particular, they suggest
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the following:

f(t, τ) = x0 + x1e
−λ(τ−t) + x2λ(τ − t)e−λ(τ−t), (47)

with the parameters xi ∈ R, i = 0, 1, 2 and λ ∈ R. One can, using equation (46) and a bit of basic calculus,

derive the corresponding zero-coupon curve:

z(t, τ) =
1

τ − t

∫ τ

t

(
x0 + x1e

−λ(s−t) + x2λ(s− t)e−λ(s−t)
)
ds, (48)

=
1

τ − t

(
x0(τ − t) + x1

[
−e

−λ(s−t)

λ

]τ

t

+ x2λ

∫ τ

t

(s− t)e−λ(s−t)ds

)
,

= x0 + x1

(
1− e−λ(τ−t)

λ(τ − t)

)
+

x2λ

τ − t


[
− (s− t)e−λ(s−t)

λ

]τ

t

+
∫ τ

t

e−λ(s−t)ds︸ ︷︷ ︸
Using integration by parts

 ,

= x0 + x1

(
1− e−λ(τ−t)

λ(τ − t)

)
+

x2λ

τ − t

(
− (τ − t)e−λ(τ−t)

λ
+
[
−e

−λ(s−t)

λ2

]T

t

)
,

= x0 + x1

(
1− e−λ(τ−t)

λ(τ − t)

)
+ x2

(
−e−λ(τ−t) +

λ

τ − t

(
1− e−λ(τ−t)

λ2

))
,

= x0 + x1

(
1− e−λ(τ−t)

λ(τ − t)

)
+ x2

(
1− e−λ(τ−t)

λ(τ − t)
− e−λ(τ−t)

)
.

The classical Nelson-Siegel approach suppresses the first argument in f(t, τ) and z(t, τ); instead, the functions

have the form f(τ − t) and z(τ − t), because the curve, in their construction, depends only on the tenor (i.e.,

term to maturity) of the relevant interest rate, τ − t. The time element, as measured by t, does not enter into

the equations since this is a static model. This is where Diebold and Li (2003) enter into the picture. In their

work, they make two insightful observations. First, they note that equation (48) is a linear combination of three

functions with coefficients, x0, x1, and x2. These functions are:

f0(y) = 1, (49)

f1(y) =
1− e−λy

λy
, (50)

f2(y) =
1− e−λy

λy
− e−λy. (51)

Figure 1 plots these three functions for a value of y ∈ [0, 30] and a fixed value of λ = 0.12. Inspection

of Figure 1 reveals that f0 impacts all tenors equally, that f1 has an unequal impact on the short and long

ends of the curve, and that f2 has a disproportionate impact on the middle part of the curve. Indeed, one

can think of these functions as factor loadings that influence the term structure through the coefficient values,

xi, i = 0, 1, 2. Changes in x0 will create parallel shifts up or down. A positive shock or change to x2 will lead to a
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steepening of the zero-coupon curve, while a negative value will elicit a flattening, assuming that the initial curve

is upward sloping. Different values of x2 will change the overall curvature of the zero-coupon term structure;

positive values increase curvature, while negative values decrease curvature. In summary—and this is perhaps

the principal observation made by Diebold and Li (2003)—the functions f0, f1, and f2 can be interpreted as the

level, slope, and curvature of the term structure.

This was a very useful insight, because since the work of Litterman and Schenkman (1991), fixed-income

practitioners and academics have used these three principal factors to characterize the dynamics of the term

structure of interest rates. In other words, movements in the complex system of interest rates can be broken

into changes in the level, slope, and curvature of the yield curve. Nelson and Siegel’s model, therefore, could be

represented as a linear combination of these three fundamental yield-curve factors.

Figure 1: Nelson-Siegel Functions: As demonstrated in equations (48—51), the zero-coupon function can be de-
scribed as a linear combination of three functions, {fi(·), i = 0, 1, 2}. These three functions are graphed below for a fixed
value of λ = 0.12. Observe that f0 impacts all tenors equally, that f1 has an unequal impact on the short and long ends
of the curve, and that f2 has a disproportionate impact on the middle part of the curve.
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Diebold and Li (2003) then take further step. They propose a model whereby the coefficients—or rather the

weights on the level, slope, and curvature of the term structure—vary through time. To see how this might work,
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let us define a few variables. We define our time-varying coefficients in matrix form as

Xt =


x0,t

x1,t

x2,t

 . (52)

We purposely use this suggestive notation to represent the Nelson-Siegel model coefficients, because, in the

Diebold and Li (2003) approach, the model coefficients are essentially state variables. We can also write equations

(49) to (51) as

F (τ − t) =


f0(τ − t)

f1(τ − t)

f2(τ − t)

 =


1

1−e−λy

λy

1−e−λy

λy − e−λy

 . (53)

The attentive reader will have noted that we have assumed that λ remains constant. Strictly speaking, however,

this is not true. Since the λ parameter is a non-linear parameter and it is well documented as numerically

unstable, Diebold and Li (2003) suggest that it be treated as a constant value.10 If one is willing to accept this

assumption, then we can write the pure-discount bond price function at time t as the following linear function,

P (t, T ) = eF (T−t)T Xt , (54)

which is really quite similar in spirit to the formulations presented in the previous section used to decribe the

A0(3) model.11 In this case, F (T−t) is a deterministic vector-valued function of the term to maturity of the pure-

discount bond. Xt is a vector-valued stochastic process describing the evolution of the Nelson-Siegel coefficients.

Implementing the Diebold and Li (2003) model is, therefore, merely a process of specifying and estimating the

dynamics of {Xt, t ≥ 0}. There are a variety of alternatives. We have, for the sake of consistency with previous

models, made the following choice:

dXt = κ(θ −Xt)dt+ CT ΣdWt, (55)

where κ,C,Σ ∈ R3×3 and Xt, θ, dWt ∈ R3×1 where Σ is diagonal, C is the Cholesky decomposition of the

instantaneous correlation matrix, and {Wt, t ≥ 0} is a standard Brownian motion on (Ω,F ,P). Observe that

this model describes the dynamics of the term structure under the physical measure; indeed, there is no notion

of an equivalent martingale measure or risk premia in this approach.
10See Cairns (1998), Bolder and Streliski (1999), and Cairns (2001) for a description of this phenomona in British, Canadian, and

German fixed-income markets, respectively.
11Diebold, Rudebusch, and Aruoba (2004) relax this assumption by casting the problem in state-space form and using a Kalman

filter for parameter estimation. In this paper, however, we use the traditional two-step procedure suggested by Diebold and Li

(2003).

20



Modelling Term-Structure Dynamics

A straightforward Euler discretization of equation (55) yields

Xt −Xt−1 = κ(θ −Xt−1) + εt, (56)

Xt = κθ + (1− κ)Xt−1 + εt,

Xt = α+ βXt−1 + εt,

where,

εt ∼ N

0,ΣCTCΣ︸ ︷︷ ︸
=Ω

 . (57)

We can see, from a practical perspective, that we are proposing a vector-autoregressive model for the evolution

of the factor coefficients.

2.2.2 Other possible models

As noted in the previous section, Diebold and Li (2003) take a model that describes the term structure of interest

rates at an instant in time and transform it into a model of the movement of the term structure over time. This

raises an interesting question: are there other models for which this transformation is possible? Bolder and

Gusba (2002) review eight different term-structure estimation models and consider their relative performance at

fitting the term structure. This collection of models, in fact, includes the extended Nelson-Siegel model proposed

by Svensson (1994). Indeed, the relatively poor performance of the Svensson model in fitting bond prices is one

of the reasons for considering alternative formulations. At first glance, however, there does not appear to be

much hope. Many of these models are not appropriate for characterization of interest rate dynamics. This is

particularly true for cubic-spline models that often involve an enormous number of parameters.

Two of these models appear to have some potential. The first example, proposed by Li et al. (2001), follows

from the so-called exponential-spline methodology. This approach, inspired by the work of Vasicek and Fong

(1981) and Shea (1985), describes the discount function as a linear combination of exponential basis functions.

Recall that the discount function and the pure-discount bond price function are equivalent. This implies that

we can write pure-discount bond prices as

P (t, T ) =
n∑

k=1

ξkgk(T − t), (58)

where {gk(T − t), t = 1, .., n} is a collection of basis functions. Li et al. (2001) suggest

gk(T − t) = e−kα(T−t), (59)

for k = 1, ..., n and α ∈ R.12 The parameter, α, can be interpreted as a long-term instantaneous forward rate.
12In actuality, we use an orthogonalized version of these basis functions computed using the Gram-Schmidt orthogonalization

procedure; see Bolder and Gusba (2002) for more details.
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As with the λ parameter in the Diebold-Li setting, it is fairly reasonable to assume that α is approximately

constant.

The second example comes from Bolder and Gusba (2002), who suggest a Fourier-series basis of the following

form:

gk(T − t) =


1 : k = 1

sin
(

k
2 (T−t)

10

)
: mod (k, 2) = 0

cos
( k−1

2 (T−t)

10

)
: mod (k, 2) = 1

. (60)

for k = 1, ..., n. Note that the horizontal stretch factor 1
10 is arbitrarily selected to extend the wavelength of

each basis function and avoid excessive oscillation. In their current form, described in equations (59) and (60),

both of these choices for gk(·) are used to estimate the term structure of interest rates at a given point in time;

in other words, they are essentially curve-fitting techniques. While the Fourier-series basis performs relatively

well at this task, it is typically dominated by the exponential basis in equation (59). This is due primarily to the

fundamental form of the pure-discount bond price function, which essentially has a negative exponential form.

We can—borrowing liberally from the ideas of Diebold and Li (2003)—transform these models into a dynamic

model for interest rates, by slightly adjusting equation (58):

P (t, T ) =
n∑

k=1

ξt,kgk(T − t). (61)

Again, in a manner analogous to the Diebold-Li model, we can interpret the pure-discount bond function as a

linear combination of n basis functions, where the relative weights vary through time according to the coefficients

ξt,k for k = 1, ..., n.13 We will examine both the exponential and Fourier-series basis functions described in

equations (59) and (60).

Clearly, neither set of basis functions has the intuitive interpretation of the three basis functions in the

Diebold-Li methodology—{fk, k = 0, 1, 2} found in equation (53). Nevertheless, to the extent that we are

interested in how well a model captures the term-structure dynamics over time, the relative superiority of a

given model is ultimately an empirical question.

Let us introduce some notation to cast our model into the same form as the Diebold-Li approach. Set

ξt =


ξ1,t

ξ2,t

...

ξn,t

 , (62)

13Bolder and Gusba (2002) find that a choice of n ≈ 9 is optimal in terms of describing the term structure at a given instant of

time.
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Figure 2: Suggested Empirical Models: For n = 5, the underlying figure outlines the exponential-spline and
Fourier-series basis functions described (i.e., gn(α, T − t) for n=1,...,5) in equations (59) and (60). This figure also
includes the partial derivatives of each basis function with respect to the zero-coupon curve (see equation (66)).
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and let,

G(T − t) =


g1(α, T − t)

g2(α, T − t)
...

gn(α, T − t)

 . (63)

This implies that we can write the pure-discount function as

P (t, T ) = G(T − t)T ξt, (64)
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and the associated zero-coupon rate function is

z(t, T ) = −
ln
(
G(T − t)T ξt

)
T − t

. (65)

We will describe the dynamics of ξt in a manner exactly analogous to that used for the Diebold-Li model outlined

in equations (55) to (57).

Moreover, we can describe the sensitivity of the zero-coupon curve to the model coefficients (or state variables),

xt, by the following partial derivatives:

∂

∂ξk
z(t, T ) =

∂

∂ξk

(
−

ln
(
G(T − t)T ξt

)
T − t

)
, (66)

= − gk(α, T − t)
G(T − t)T ξt︸ ︷︷ ︸
Equation (64)

(T − t)
,

= − gk(α, T − t)
G(T − t)T ξt(T − t)

.

This computation is not necessary in the Diebold-Li approach, because the basis functions are also the partial

derivatives.

The upper quadrants of Figure 2 illustrate the collection of Fourier-series and exponential-spline basis func-

tions for n = 5. It is interesting to note how these basis functions cover the interval from [0, 30] relative to the

Diebold-Li basis functions in Figure 1. The partial derivatives, for the Fourier-series and exponential-spline basis,

and again for n = 5, are also outlined in the lower quadrants of Figure 2. It is easy to see how linear combinations

of the parameters could permit a wide range of term-structure outcomes; this appears to be particularly the case

in the Fourier-series model. This incremental flexibility may or may not translate into a better description of

term-structure dynamics. It should nonetheless be noted that this additional flexibility comes at the cost of

less-intuitive basis functions.

The key point in this section, however, is that the Diebold-Li model involves a specific choice of basis functions

for the description of the term structure. This could well turn out to be an optimal basis, but it can, of course,

be generalized to consider different options. Indeed, the lack of theory behind this approach implies that no

restrictions exist, and that the superiority of a given model rests solely upon empirical considerations.

3 Model Estimation

The various dynamic term-structure models discussed in section 2 require estimation. Indeed, the most critical

aspect of implementing any of these models is finding a set of model parameters that ensures the model is con-

sistent with observed interest rate outcomes. The importance of parameter estimation can hardly be overstated.

From a practical perspective, it is observationally equivalent to say that a model does not fit the data, or to say
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that a model cannot be reliably estimated. In both scenarios, the result is identical: the model cannot adequately

describe term-structure dynamics. As such, parameter estimation requires as much, if not more, attention as the

mathematical specifics of the model.

In this section, therefore, we review in detail the important techniques used to estimate the model parameters.

Not surprisingly, the algorithm employed for the theoretical models is rather more involved than for the empirical

models. The primary reason is that, for the empirical models, the state variables can be estimated independently

of the factor loadings. This permits a relatively straightforward two-step estimation algorithm. In the theoretical

A0(3) model, it is necessary to jointly estimate the state variables and the factor loadings at the same time. As

we will see in the subsequent development, this adds rather substantially to the complexity of the estimation

algorithm.

3.1 The theoretical model

Three primary techniques are used for the estimation of multifactor affine term-structure models: maximum

likelihood, the Kalman filter, and a number of variations on the simulated method of moments.14 In this dis-

cussion, we will focus on maximum-likelihood estimation. This approach exploits two facts about the previously

described theoretical model. First, the equation describing continuously compounded zero-coupon interest rates

has a linear form. This implies that, given n zero-coupon rates, one can invert this equation to solve for the

unobservable state variables embedded in an n-factor exponential-affine term-structure model. Second, the form

of the stochastic differential equations that govern the dynamics of these models can be solved to determine the

transition densities of the unobservable state variables. Knowledge of these transition densities, coupled with the

ability to extract values of the state variables from zero-coupon rates, permits us to use the change-of-variables

formula to determine the conditional joint density of the state variables. It is then straightforward to compute

the log-likelihood function from this conditional joint density.

Let Y (t, τ1) denote the yield of a zero-coupon bond with a maturity of τ1, as at time t. Given that we are

working with a three-factor model, we must select three separate zero-coupon yields. Using these yields, we can

construct the following linear system using the affine pure-discount bond price function provided in equation
14The Kalman filter is conceptually very similar to the maximum-likelihood approach. The key difference is that a more complicated

approach is used to extract the unobserved state variables from the set of observed bond prices. The most popular implementation

of the simulated method of moments is termed the efficient method of moments (EMM). EMM involves the parameterization of an

auxiliary function—which is selected by the analyst—that describes the model dynamics. One then simulates population moment

conditions from this auxiliary function.
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(25):

Y (t, τ1) = − 1
τ1 − t

ln e−cθ(τ1−t)−Bθ(τ1−t)T X(t), (67)

Y (t, τ2) = − 1
τ2 − t

ln e−cθ(τ2−t)−Bθ(τ2−t)T X(t),

Y (t, τ3) = − 1
τ3 − t

ln e−cθ(τ3−t)−Bθ(τ3−t)T X(t).

The θ subscript in each of the factor loadings (i.e., c and B) denotes the dependence on the parameter vector.

Note that, as previously suggested, the linear form of this system makes it trivial to solve for the latent state

variables. The solution is given as
X1(t)

X2(t)

X3(t)

 =


Bθ(τ1−t)T

τ1−t
Bθ(τ2−t)T

τ2−t
Bθ(τ3−t)T

τ3−t


−1 

Y (t, τ1)− cθ(τ1−t)
τ1−t

Y (t, τ2)− cθ(τ2−t)
τ2−t

Y (t, τ3)− cθ(τ3−t)
τ3−t

 (68)

xt = H−1yt,

where we let the vector xt denote the vector of state variables associated with the market zero-coupon yields,

conditional on a choice of parameter vector θ ∈ Θ.

At this point, it is useful to briefly review the change-of-variables technique. The basic theorem is often used

in mathematical statistics, but it finds its origins as an integration technique. Imagine that we want to solve the

following integral: ∫ ∫
Ω

f(x, y)dxdy. (69)

Unfortunately, however, it may turn out that finding the antiderivative of f(x, y) might prove difficult. If there

exists a transformation between the variables x and y to variables u and v of the form,

x = x(u, v), (70)

y = y(u, v),

the change-of-variables theorem then holds that,∫ ∫
Ω

f(x, y)dxdy =
∫ ∫

Ω̂

f(x(u, v), y(u, v)) det ((J(u, v)) du dv, (71)

where det (J(u, v)) is the determinant of the Jacobian matrix, defined as

J(u, v) =

∂x(u,v)
∂u

∂x(u,v)
∂v

∂y(u,v)
∂u

∂y(u,v)
∂v

 . (72)

The statistical corollary follows almost directly from this deterministic example. Suppose that X and Y are

vector-valued random variables. In particular, we have a situation where the density of X is known and fX(x)
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is known, while fY (y) is not known. Moreover, assume that g(X) = Y is a one-to-one (i.e., inverse is unique)

once continuously differentiable function. The density of the vector-valued random variable, Y , is given as

fg(X)(y) = fg−1(g(X))(g−1(y)) det
(
J(g−1(y)

)
, (73)

fY (y) = fX(x) det (J(x)) .

This extremely useful result is exactly what is required to write out the joint conditional density of the

unobserved state variables. In our setting, Xt and Yt are our random vectors as defined in equation (68). Again,

in our situation the joint transition density of the state variables, fXt
(xt | xs), is known for s < t.15 The joint

density of the zero-coupon yields fYt
(yt | ys) is not. Using the theorem described in equation (73), we have that

fYt|Ys
(yt | ys) = fXt|Xs

(xt | xs) det(J(xt)). (74)

In order to write out the maximum-likelihood function, we need to know the analytical form of each of the

transition densities, as well as the Jacobian matrix. Let us begin with the Jacobian,

det(J(xt)) = det
(
∂xt

∂yt

)
, (75)

= det
(
∂H−1yt

∂yt

)
,

= det
(
H−1

)
,

= det (H)−1
,

= det




Bθ(τ1−t)T

(τ1−t)
Bθ(τ2−t)T

(τ2−t)
Bθ(τ3−t)T

(τ3−t)



−1

.

Next, we need to solve each of the stochastic differential equations to determine the form of the transition

density, f(Xt | Xs). Recall the stochastic dynamics of the instantaneous short rate,

dXt = −κXtdt+ dWt, (76)

where κ is a lower-diagonal matrix with distinct and positive eigenvalues (i.e., diagonizable) and {Wt, t ≥ 0} is an

n-dimensional Brownian motion on (Ω,F ,Q) with the usual Q-augmentation of its natural filtration {Ft, t ≥ 0}.
Next, we let Yt denote the instantaneous drift of our state variable,

Yt = κXt. (77)

We then apply Itô’s rule to the function eκtYt. Note that eκt, as κ ∈ Rn×n, represents the matrix exponential.

To solve for the transition density of Xt, we will need to exploit a few properties of the matrix exponential.
15We will derive this density later in the text.
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Recall that the matrix exponential is defined as a power series of the form for a square matrix, A ∈ Rn×n:

eA =
∞∑

i=0

Ai

i!
= In +A+

A2

2
+
A3

3
+ ... (78)

There is, of course, also a matrix logarithm defined as follows for a square invertible matrix A ∈ Rn×n:

ln(A) =
∞∑

i=1

(In −A)i

i
= In +

(In −A)2

2
+
A2

2
+

(In −A)3

3
+ ... (79)

The matrix logarithm is not, in general, unique. For a matrix, such as κ with positive and distinct eiqenvalues,

however, it is unique. Finally, there is an additional useful result regarding the matrix exponential that we need

to consider: if two square matrices, A and C, commute (i.e., AC = CA), then it is true that

eA+C = eAeC , (80)

= eCeA.

Armed with these results, we can proceed, as promised, to apply Itô’s rule to the function eκtYt:

d
(
eκtYt

)
=
∫ t

0

∂eκuYt

∂u
du+

∫ t

0

∂eκuYt

∂X(u)
dXu +

∫ t

0

∂2eκuYt

∂X(u)2︸ ︷︷ ︸
=0

d〈X〉u, (81)

d
(
eκtYt

)
=
∫ t

0

κeκuYudu−
∫ t

0

κeκudXu,

=
∫ t

0

κeκuYudu−
∫ t

0

κeκu (Yu + dWu) ,

=
∫ t

0

κeκuYudu−
∫ t

0

κeκuYudu−
∫ t

0

κeκudW (u),

= −
∫ t

0

κeκudW (u).

We can then work with the right-hand side of equation (81) to solve for Xt, with liberal use of the commutative
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property of the matrix exponential:

eκtYt − eκ0︸︷︷︸
=I

Y0 = −
∫ t

0

κeκudW (u), (82)

−eκtκXt + κX0 = −
∫ t

0

κeκudW (u),

eκtκXt = κX0 +
∫ t

0

κeκudW (u),

Xt = κ−1e−κtκX0 +
∫ t

0

κ−1e−κtκeκudW (u),

= eln(κ−1)e−κteln(κ)X0 +
∫ t

0

eln(κ−1)e−κteln(κ)eκudW (u),

= eln(κ−1)−κt+ln(κ)X0 +
∫ t

0

eln(κ−1)−κt+ln(κ)+κudW (u),

= κ−1κe−κtX0 +
∫ t

0

κ−1κe−κ(t−u)dW (u),

= e−κtX0 +
∫ t

0

e−κ(t−u)dW (u).

Thus, we see that Xt is a multivariate Gaussian random variable with the following transition density:

f (Xt | Xs) ∼ N

(
e−κ(t−s)Xs,

(∫ t

s

e−κ(t−u)dW (u)
)2
)
. (83)

An application of Itô isometry and knowledge of the quadratic variation of the Brownian motion reveals that(∫ t

s

e−κ(t−u)dW (u)
)2

=
∫ t

s

(
e−κ(t−u)

)(
e−κ(t−u)

)T

du. (84)

It is fairly difficult to solve this integral analytically, if it is even possible at all, but fortunately it is fast and

simple to evaluate numerically. Let us therefore denote the conditional variance as

Vs,t =
∫ t

s

(
e−κ(t−u)

)(
e−κ(t−u)

)T

du. (85)

Observe, however, that for a fixed time interval (t − s), the conditional variance is constant. We can therefore

write V ≡ Vs,t. As such, the transition density of the state variables is given as

f (Xt | Xs) ∼ N
(
e−κ(t−s)Xs, V

)
. (86)

We now have all the necessary ingredients for a description of the estimation algorithm, which originated

with Chen and Scott (1993). Ultimately, for a given data set {y0, ..., yT }, where each yt ∈ Rn represents a vector

29



Modelling Term-Structure Dynamics

of zero-coupon interest rates at time t, we want to maximize the following:

fY1,...,YT
(y1, ..., yT ) =

T∏
t=1

fYt|Yt−1(yt | yt−1), (87)

=
T∏

t=1

fXt|Xt−1(xt | xt−1) det(J(xt)),

=
T∏

t=1

(
1√
2π

det (V )−
1
2 e−

1
2 (e−κ∆tXt−1)T

V −1(e−κ∆tXt−1)
)

1
det(H−1)

,

where, as demonstrated in equation (68), Xt−1 = H−1Yt−1. This, of course, is equivalent to maximizing the

log-likelihood function,

max
κ,cr,br,bγ ,Aγ

−T
2

ln(2π)− T ln
(
det
(
H−1

))
− T

2
ln (det (V ))− 1

2

T∑
t=1

(
e−κ∆tXt−1

)T
V −1

(
e−κ∆tXt−1

)
. (88)

If we have a three-factor term-structure model, as with the A0(3) models considered in this paper, the log-

likelihood function in equation (88) permits us to price only three bonds without error. We would like, however,

to use more than three zero-coupon bond prices in the estimation algorithm. These additional bonds will be

assumed to be observed with error. Assume, for example, that we want to use n zero-coupon rates in our

estimation algorithm. Further assume that we price m zero-coupon rates exactly; this implies that we will price

n−m zero-coupon rates with error. This changes our log-likelihood function. The idea is to once again use the

change-of-variables trick to develop an extended log-likelihood function. The idea is to write out the zero-coupon

bonds priced with error as
Y (t, τm+1)

...

Y (t, τn)

 =


cθ(τm+1−t)

τm+1−t

...
cθ(τn−t)

τn−t

+


Bθ(τm+1−t)T

τm+1−t

...
Bθ(τn−t)T

τn−t



X1(t)

X2(t)

X3(t)

+


Dθ(τm+1−t)T

τm+1−t

...
Dθ(τn−t)T

τn−t



ξ(t, τm+1)

...

ξ(t, τn)

 , (89)

yt = c+Bxt +Dξt,

where c, yt, et ∈ R(n−m)×1, B ∈ R(n−m)×m, and D ∈ R(n−m)×(n−m). If we solve for ξt, we have

ξt = D−1 (yt − c−Bxt) . (90)

Note, as before, that xt ∈ Rm×1 is known, since we use the values determined from the m zero-coupon rates

assumed to be observed without error in equation (68). We therefore want to use the same change-of-variables

idea as previously; this implies working with the joint conditional density of ξt and Xt. We assume, however,

that Xt and ξt are independent, so that the joint conditional density is the product of the marginal conditional

densities, as follows:

fYt|Ys
(yt | ys) = fXt|Xs

(xt | xs) det J(xt)︸ ︷︷ ︸
Observations without error

fΞt|Ξs
(ξt | ξs) detJ(ξt)︸ ︷︷ ︸

Observations with error

, (91)
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where,

det J(ξt) = det
(
∂ξt
∂yt

)
, (92)

= detD−1,

=
1

detD
.

In this analysis, we treat D with full generality. Having said that, for practical purposes, we merely assume that

D is an (n−m)× (n−m) identity matrix. Let us next focus on developing the contribution of the second term

on the right-hand side of equation (91), because, when we apply logarithms to our log-likelihood function, it will

have an additive form. It is reasonable to assume that the zero-coupon pricing errors are multivariate normal

distributed as

ξt ∼ N
(
~0,Ω

)
, (93)

so that we have the following conditional density:

fΞt|Ξt−1(ξt | ξt−1) · det |J(ξt)| = (2π)−
(n−m)

2 · |det Ω|−
1
2 · e− 1

2 ξT
t Ω−1ξt · |detD|−1

. (94)

A consistent estimator for Ω is

Ω̂ =
T∑

t=1

ξtξ
T
t . (95)

Let us next build the contribution of the zero-coupon rates observed with error to our log-likelihood function:

T∑
t=1

ln
(
fΞt|Ξt−1(ξt | ξt−1) · det |J(ξt)|

)
=

T∑
t=1

ln
(
(2π)−

(n−m)
2 · |det Ω|−

1
2 · e− 1

2 ξT
t Ω−1ξt · |detD|−1

)
, (96)

= T

(
−(n−m)

2
ln 2π − 1

2
ln
(
|det Ω̂|

)
− ln (|detD|)

)
− 1

2

T∑
t=1

ξT
t Ω̂−1ξt,

= −T
2

(
(n−m) ln 2π + ln

(
|det Ω̂|

)
+ 2 ln (|detD|)

)
− 1

2

T∑
t=1

tr
(
Ω̂−1ξtξ

T
t

)
,

= −T
2

(
(n−m) ln 2π + ln

(
|det Ω̂|

)
+ 2 ln (|detD|)

)
− 1

2
tr

Ω̂−1
T∑

t=1

ξtξ
T
t︸ ︷︷ ︸

Ω̂

 ,

= −T
2

(
(n−m) ln 2π + ln

(
|det Ω̂|

)
+ 2 ln (|detD|)

)
− 1

2
tr (In×m) ,

= −T
2

(
(n−m) ln 2π + ln

(
|det Ω̂|

)
+ 2 ln (|detD|)

)
− (n−m)

2
.
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3.2 The empirical model

The approach used to estimate all of the empirical models is essentially identical. As previously mentioned, we

employ a two-step estimation algorithm. This is possible because the factor loadings are constructed indepen-

dently of the model parameters.16 In the first step, we use an optimization algorithm to extract on a day-by-day

basis the state variables. Recall that, in this class of models, the state variables are the parameters of a term-

structure model used to extract zero-coupon rates from coupon-bond prices. This process basically amounts to

constructing a time series of state variables. The second step, which describes the term-structure model dynam-

ics through time, involves fitting a time-series model to the state variables. We opt for a vector-autoregressive

specification of the state-variable dynamics.

3.2.1 Extracting the state variables

The first step involves pricing coupon bonds. To price a coupon bond, of course, one merely needs to sum the

product of the individual cash flows with their associated discount factors. The pure discount bond price is, in

fact, the discount factor. Let us begin with a review of the pure-discount bond price function for each of the

three empirical models under consideration. In each case, we write the pure-discount bond price as a function of

some set of basis functions. In the Diebold and Li (2003) approach, we have that

Px(t, τ) = eF (τ−t)T x, (97)

with F (τ − t) defined in equation (53). Our extension of the exponential-spline approach suggested by Li et al.

(2001) and the Fourier-series model has the form

Px(t, τ) = G(τ − t)Tx. (98)

The collection of basis functions (i.e., G(·)) for the exponential-spline model is given as

G(τ − t) =


e−α(τ−t)

e−2α(τ−t)

...

e−kα(τ−t)

 , (99)

16This is not entirely true since, in each model, there is a non-linear parameter that arises in the factor loadings. Diebold and Li

(2003) suggest that this non-linear parameter can be fixed, and we also adopt this approach.
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for k basis functions and fixed α ∈ R, while the basis functions for the Fourier-series model are given as

G(τ − t) =



1

sin
(

(τ−t)
γ

)
cos
(

(τ−t)
γ

)
...

cos
(

(k−1)−1
2 (τ−t)

γ

)
sin
(

k
2 (τ−t)

γ

)


, (100)

again for k basis functions and a fixed wavelength stretch factor, γ ∈ R.17

For the collection of dates {t0, ..., tT }, we have a set of coupon bond prices, coupon rates, and maturity dates.

Moreover, at each time point, we have Ntq
coupon-bond observations. Let us introduce the following notation

that is also used in Bolder and Gusba (2002):

Bi(tq)
4
= price of the ith coupon bond at time tq, (101)

cij
4
= the jth payment of the ith bond,

τij
4
= the time when the jth payment of the ith bond occurs,

m(i, tq)
4
= the remaining number of payments for the ith bond at time tq.

We can approximate, using the pure-discount bond price functions in equations (97) and (98)—or we can equiv-

alently call this the discount function—the price of each of these coupon bonds. For an arbitrary set of state

variables, x ∈ Rk, we have that the estimated price is given:

B̂i(tq, x) =
m(i,tq)∑

j=1

cijPx (tq, τij) , (102)

for z = 0, .., T and i = 1, .., NT . In other words, the estimated price of the ith bond at time tq is the sum of

its discounted cash flows. This is hardly a surprising result. What we would like to do, however, is to find the

x that provides the best possible price for each of the individual bonds observed at time t. This requires some

optimization. Let

B̂(tq, x) =
[
B̂1(tq, x) · · · B̂m(i,tq)(tq, x)

]T
(103)

denote the vector of estimated coupon-bond prices at time tq for an arbitrary set of state variables, x. The actual

observed coupon-bond prices at time tq are represented as

B(tq) =
[
B1(tq) · · · Bm(i,tq)(tq)

]T
. (104)

17Note, in this case, that k must be an even number, to ensure an equal number of sine and cosine members in the basis.
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We then perform a sequence of T + 1 optimizations of the form

min
x

(
B(tq)− B̂(tq, x)

)T

Wtq

(
B(tq)− B̂(tq, x)

)
, (105)

for q ∈ {0, ..., T} and with the diagonal weighting matrix Wtq .
18 The sequence of optima representing the solution

to the T + 1 optimization problems in equation (105),

{x∗t0 , ..., x
∗
tT
}, (107)

represent the time-series of state variables for our dynamic term-structure model. This completes the first step

of the estimation algorithm for the empirical models.

3.2.2 Describing the state-variable dynamics

The second step in the empirical-model estimation algorithm involves applying a statistical time-series model to

the results derived in the previous section. Figure 3 describes the evolution of each of the parameter estimates

from the application of the optimization algorithm described in equation (105) to monthly data from January 1990

to August 2005 (187 months). Inspection of the second quadrant of Figure 3 suggests that there is relatively

little interaction between the state variables in the Nelson-Siegel model. Indeed, the contemporaneous cross-

correlation between x0 and x1 is approximately 0.08; it is -0.12 between x1 and x2, and it is about -0.38 for x1

and x3. Also note that the Nelson-Siegel state variables are highly correlated, with the principal components

extracted from the variance-covariance matrix of zero-coupon yield differences over the same period.19 This is

very similar to the results found in Diebold and Li (2003) for American data.

Decomposing the relationship between the state variables and the principal components is rather more difficult

in the exponential-spline and Fourier-series models. The contemporaneous correlation between the sum of the

first and second Fourier-series state variables and the first principal component—computed on the pure-discount

bond prices—is 0.97. This seems encouraging. The contemporaneous correlation between the fourth and fifth

Fourier-series state variables and the first principal component, however, is 0.81. Similarly, the contemporaneous

correlation between the second principal component and the first and fifth Fourier-series state variables or the

third state variable is approximately 0.90. Indeed, the first plus the fifth Fourier-series state variable less the
18The weighting matrix is required to correct for the fact that we are working in price space, rather than yield space. If we do

not weight the price errors, we will actually overfit the long end of the curve at the expense of the short end. The weighting matrix,

therefore, is a diagonal matrix with the entries [
Wtq

]
ii

=
1

d(i, tq)
, (106)

where d(i, tq) denotes the modified duration of the i coupon bond at time tq .
19The contemporaneous correlation with the first principal component and the Nelson-Siegel level factor is 0.95. It is -0.94 for the

second principal component and the Nelson-Siegel slope factor, and 0.82 for the third principal component and the Nelson-Siegel

curvature factor.
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Figure 3: The State Variables: This figure shows the actual principal components for the 187 months of data
beginning in January 1990 and ending in August 2005. It also shows the evolution of the state variables (i.e., parameter
estimates) for the Nelson-Siegel, Fourier-series, and exponential-spline models.
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third state variable yields a contemporaneous correlation of slightly more than 0.90. The situation is, if possible,

even more complicated in the exponential-spline model. Clearly, this is a highly integrated system and there

does not exist—as is the case with the Nelson-Siegel model—a simple mapping between the state variables and

the principal components.20

How then do we model the dynamics of these state variables? The actual approach is really quite straight-

forward. For simplicity, we consider two related, indeed nested, statistical models for the dynamics of {xtq , q =

0, ..., T}. The first is to treat each individual state variable, {xi,tq , q = 0, ..., T} for i = 1, .., k, as an independent

AR(1) process. This yields the following well-known model:

xi,tq = αi + φixi,tq−1 + εi,tq , (108)

20In many ways, this is the principal advantage of the Diebold and Li (2003) approach predicated on the Nelson-Siegel model.
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for i = 1, .., k and q = 1, ..., T .

The second approach is to model the evolution of the state variables as a correlated system. To do this, we

merely employ a VAR(1) model of the following form:

xtq
= α+ Φxtq−1 + εtq

, (109)

for q = 1, ..., T , α ∈ Rk×1, and Φ ∈ Rk×k.

We expect that the VAR(1) model will be rather more useful for the exponential-spline and Fourier-series

models, because there are five state variables in each setting and we observe rather large contemporaneous

cross-correlations between the various state variables. Examination of the lower quadrants of Figure 3 should

underscore this reasoning. Modelling the state variables as independent AR(1) processes, therefore, would ignore

the interactions between the state variables. This would consequently reduce the ability of the model to describe

the time-series dynamics of the term structure of interest rates. Consequently, we use the VAR(1) model to

compute state variables dynamics.

Using our dataset, we proceed to use the estimation techniques, described in section 3, to determine the

parameters for each of the models. For the empirical models, this is quite straightforward. The A0(3) models,

however, require us to solve a high-dimensional non-linear optimization problem. In this setting, one can never—

absent strong restrictions on the mathematical form of the objective functions—be certain of having found the

global minimum. The best one can do is to perform sufficient computation to feel confident that a solution

close to the global minimum is found. We employ, therefore, a rather extensive optimization algorithm to

attempt to find the global minimum. First, we find a starting value by evaluating 500 randomly selected starting

values. The actual starting value is the lowest objective value among this collection of objective function values.

We then perform six alternations between 1,000 iterations of the Nelder-Meade (i.e., function-evaluation based

method) and the sequential-quadratic programming (i.e., gradient-based method) implemented in Matlab. In

each alternation, the best value from the previous step is used as the starting value for the subsequent step, to

arrive at a final optimal parameter set. This sequence of steps is performed 500 times. We then look at the top

50 objective function values and select the set of parameters that provides the best fit to the data.

4 The Results

The primary objective of this paper is to examine the performance of the six different dynamic term-structure

models, described in section 2, with respect to four different sets of criteria. The four criteria are: (i) in-sample

zero-coupon rate forecasting ability; (ii) out-of-sample zero-coupon rate and expected excess holding-period

return forecasting ability; (iii) the capacity of the simulated model to capture deviations from the expectations

hypothesis; and, (iv) model performance in a simplified portfolio-optimization exercise. Having examined the

mathematical details of the derivation and estimation of these models in sections 2 and 3, we can now address
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this important question. This section has five parts, corresponding to our different evaluation criteria. First,

we briefly describe the approach used to constructing the necessary zero-coupon rate data. Second, we examine

the in- and out-of-sample zero-coupon rate forecasting performance of the various models. Third, we look at

how well the models produce out-of-sample forecasts of excess holding-period returns. Fourth, we investigate two

specific econometric tests of the expectations hypothesis, and look at how our six models capture deviations from

the expectations hypothesis. Finally, we perform a simplified portfolio-optimization exercise using the various

term-structure models to forecast the mean and variance of the excess holding-period returns on a portfolio of

pure-discount bonds.

4.1 The data

To estimate a model’s parameters, of course, one requires data. Estimating a model of zero-coupon term-

structure dynamics is complicated somewhat by the fact that we do not—for maturities beyond one year, at

least—observe zero-coupon rates. Fortunately, substantial work has been done in this area for the Canadian

government bond market. Bolder and Gusba (2002) and Bolder, Johnson, and Metzler (2004) examine a number

of alternative zero-coupon curve estimation algorithms and proceed to construct a database of zero-coupon rates

for the Canadian government bond market. We will make extensive use of this database.

The choice of a dataset raises an interesting question. The three empirical models that we consider stem from

models used to extract these zero-coupon interest rates from bond prices: the Nelson-Siegel, the exponential-

spline, and the Fourier-series models. Is it possible that, by choosing a specific model to extract zero-coupon

rates, we will be giving an advantage to that model when performing the model comparison? In particular,

we have selected an exponential-spline model as the representation of the true zero-coupon data. Does this

provide a benefit to the exponential spline model? We think that, in principle, the answer to this question

is yes.21 Nevertheless, we have taken a number of measures to solve this potential problem. In the empirical

exponential-spline model, we use a linear combination of seven orthogonal exponential basis functions with a

fixed value of the parameter, α. The data used as the true representation of the zero-coupon term structure at

each point in time are estimated using a linear combination of nine orthogonal exponential basis functions where

the parameter α is determined on each date through a separate non-linear optimization routine.22 The empirical

model based on the use of the exponential-spline model is, therefore, a stylized version of the actual model to

extract zero-coupon rates.

Figure 4 provides a summary of the 187 monthly zero-coupon curves beginning in January 1990 and running

to August 2005; this is a period of slightly more than 15 1
2 years. Observe that the curve takes a number of shapes

including flat, inverted, and quite steep forms. The solid black line represents the average curve of the period.
21Dai, Singleton, and Yang (2004) address this issue in their discussion of Cochrane and Piazzesi (2005).
22This model provides a very tight fit to observed zero-coupon bond prices. Bolder and Gusba (2002) find that this model has an

average root-mean-squared error fit to a collection of Government of Canada bond prices of approximately four basis points.
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The upward-sloping curve over the period corresponds to the general observation that long-term interest rates

typically dominate short-term rates in Canada. The dotted lines bracketing the average yield curve indicate

the standard deviation of the curves; we can observe that the short end of the zero-coupon curve appears to

be slightly more volatile than the long end. This is also consistent with previous work on the Canadian term

structure of interest rates.

Figure 4: Another view of historical Canadian zero-coupon curves: This figure outlines 187 monthly zero-
coupon curves beginning in January 1990 until August 2005.
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Tables 1 and 2 illustrate the traditional measure of model fit for each of the six different dynamic term-

structure models considered in this paper. Table 1 provides summary statistics that attempt to describe how

well the model fits the entire curve. Note that no forecasting is involved in these computations; indeed, one

can think of these as the fitted versus actual values of an ordinary least-squares regression. Observe that the

root-mean-squared errors (RMSE) are quite similar across all models. The exponential-spline model appears

to have the closest fit, while the symmetric A0(3) demonstrates the worst fit. The other models appear, from

the perspective of the entire curve, to be quite similar. Table 2 drills down somewhat and considers the fit at

different specific zero-coupon tenors. Here we note that, while the A0(3) models generally appear to fit better

at the short end of the curve, the empirical models seem to do better at the longer zero-coupon tenors.

We have, however, argued that the ability of a model to fit the data is not a good measure of the capacity

of a model to capture interest rate dynamics. Recent work by Duffee (2002) and Diebold and Li (2003) suggests

that one needs to consider a model’s ability to forecast future zero-coupon rates. In the subsequent sections, we
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Table 1: Goodness of Fit: In this table, we present the traditional in-sample goodness of fit of our empirical and
theoretical models estimated with the 187 months of zero-coupon data. We present the overall fit of these models to the
curve in terms of root-mean-squared and mean-absolute error. All values are in basis points.

RMSE MAEModels
Mean Median Max Min STD Mean Median Max Min STD

Empirical Models
Nelson-Siegel 9.27 8.35 27.45 1.98 4.50 7.41 6.49 23.79 1.52 3.98
Exponential spline 6.00 5.47 14.76 0.08 3.80 4.00 3.67 10.42 0.06 2.60
Fourier-series 8.45 7.53 27.40 0.51 5.46 4.58 3.85 11.78 0.34 2.76

Theoretical Models
Diagonal Aγ 8.70 6.86 32.02 0.58 5.69 6.18 4.53 26.63 0.33 4.49
Symmetric Aγ 11.20 9.98 35.01 0.85 7.23 8.52 6.70 29.35 0.61 6.12
Unrestricted Aγ 9.30 7.79 31.67 0.96 5.80 6.72 5.25 25.83 0.80 4.49

will examine the forecasting ability of each of our models.

4.2 Forecasting zero-coupon rates

The mechanics of the forecasting exercise are straightforward. We provide a description of the out-of-sample

approach, since the in-sample estimation is merely a special case of the more general out-of-sample forecasting

technique. As previously discussed, we have 187 months of Canadian government zero-coupon interest rate data.

Given this dataset, we start from the qth month and try to forecast the zero-coupon term structure in n periods

from this point of time. A good way to think about this approach is to imagine that we are an analyst who is

trying to use a model, at time tq, to predict interest rates in n periods. In both the empirical and theoretical

models this involves conditioning on the information available up until time tq (i.e., the filtration Ftq
) and

projecting the tq+n values of the state variables using their conditional expectation. This implies that, for each

of the models, we estimate the parameters using the data up until time tq to estimate the model and forecast

the state variables.23

Using these forecasted state variables, we proceed to construct the projected zero-coupon curve associated

with these forecasted state variables. For the theoretical models, we compute the expected value of the state

variables using the conditional expectation implied by the model as

E
(
Xtq+n | Ftq

)
= e−κ(tq+n−tq)Xtq . (110)

23For the empirical models, this is straightforward. The theoretical A0(3) models, however, are much more computationally

demanding and require substantial expense for the estimation of model parameters.
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Table 2: Goodness of Fit by Specific Tenor: In this table, we again present the goodness of fit of the empirical
and theoretical models. The difference here is that we present the root-mean-squared and mean-absolute errors for specific
zero-coupon maturities, rather than the entire zero-coupon curve, as presented in Table 1. All values are in basis points.

RMSE MAE
Nelson- Exponential Fourier Nelson- Exponential FourierTenor
Siegel spline series Siegel spline series

3 months 18.00 16.43 17.58 14.24 9.76 12.04
6 months 9.13 11.85 23.32 6.48 8.71 16.57
1 year 10.59 2.57 13.53 8.71 1.75 10.16
2 years 9.87 3.44 4.93 7.71 2.78 3.36
5 years 9.43 2.08 3.63 6.77 1.68 2.65
7.5 years 9.27 3.94 4.31 7.70 3.14 3.29
10 years 7.13 3.25 3.33 5.66 2.30 2.59
15 years 10.59 8.67 5.44 8.53 6.58 4.02

Diagonal Symmetric Unrestricted Diagonal Symmetric Unrestricted
3 months 12.21 13.07 13.50 9.09 10.09 10.49
6 months 0.00 0.00 0.00 0.00 0.00 0.00
1 year 6.07 6.85 7.35 4.31 5.14 5.63
2 years 0.00 0.00 0.00 0.00 0.00 0.00
5 years 14.86 17.34 16.30 10.41 12.45 11.57
7.5 years 11.67 14.91 11.92 8.00 10.98 8.57
10 years 0.00 0.00 0.00 0.00 0.00 0.00
15 years 10.32 18.67 10.79 8.30 14.77 8.59

Thus, the expected zero-coupon curve at time tq+n, determined using equation (25), is

E
(
z(tq+n, T ) | Ftq

)
= exp

−c(T − tq+n)− b(T − tq+n)T E
(
Xtq+n

| Ftq

)︸ ︷︷ ︸
Equation (110)

 . (111)

For the empirical models, the approach is similar. We forecast the tq+n value of the VAR(1) form of the state

variables using the following relation:

E
(
xtq+n

| Ftq

)
=

n−1∑
i=1

Φiα+ Φnxtq
. (112)

For an AR(1) model, there is a separate Φk ∈ R for each of the state variables where k denotes the dimension of

the state-variable vector. In a VAR(1) setting, however, the state variables are modelled as a system; thus, we

have that Φ ∈ Rk×k. The expected empirical zero-coupon curve at time tq+n is

E
(
z(tq+n, T ) | Ftq

)
= F (T − tq+n)T E

(
xtq+n

| Ftq

)︸ ︷︷ ︸
Equation (112)

, (113)
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for the Nelson-Siegel approach suggested by Diebold and Li (2003). It is given as

E
(
z(tq+n, T ) | Ftq

)
= −

ln

F (T − tq+n)T

Equation (112)︷ ︸︸ ︷
E
(
xtq+n | Ftq

)
T − tq+n

, (114)

for the exponential-spline and Fourier-series models.

Once the forecast is made, we can take a peek into the future and observe the actual zero-coupon curves at

time tq+n, and thereby measure the efficiency of the forecast. Having observed the actual value, we need some

measure of distance, call it δ(·), between the forecasted and observed values. Essentially, we are looking for a

metric of the form

δ
(
E
(
z(tq+n, T ) | Ftq

)
− z(tq+n, T )

)
. (115)

It is customary in the literature to use variations of the `1 and `2 norm to measure distance. The first measure,

termed the mean-absolute error, is defined as

MAE =
M∑

q=1

∣∣E (z(tq+n, T ) | Ftq

)
− z(tq+n, T )

∣∣T I
M

, (116)

=

∥∥E (z(tq+n, T ) | Ftq

)
− z(tq+n, T )

∥∥
1

M
,

where I is a vector of ones, M is the number of zero-coupon bonds observed at time qt+n, and ‖x‖1 denotes the

`1 norm. The second measure of distance, called the root-mean-squared error, is defined similarly

RMSE =
M∑

q=1

√(
E
(
z(tq+n, T ) | Ftq

)
− z(tq+n, T )

)T (E (z(tq+n, T ) | Ftq

)
− z(tq+n, T )

)
M

, (117)

=

∥∥E (z(tq+n, T ) | Ftq

)
− z(tq+n, T )

∥∥
2√

M
,

where ‖x‖2 denotes the `2 norm.

This process is repeated at time tq+1. To summarize the various steps for an arbitrary time tq:

• each model is estimated using the data up until time tq;

• the model parameters and equations (110) and (112) are used to forecast the state variables at time tq+n;

• the forecasted state variables are used to forecast the zero-coupon term structure at time tq+n using

equations (111), (113), and (114);

• we then observe the actual zero-coupon term structure at time tq+n, and proceed to compute the mean-

absolute and root-mean-squared errors as described in equations (116) and (117).
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The difference with in-sample forecasting is that the parameters are estimated only once using the entire

sample period. This contrasts with the rolling parameter estimates performed in the out-of-sample forecasting

exercise. As such, the filtration used to formulate the conditional expectations is FtT
. In-sample forecasting,

therefore, is not really a natural experiment, because an analyst cannot actually condition on future information

in constructing forecasts.24 In-sample forecasting should thus be considered as a test of how well the model can

actually fit the data. The out-of-sample exercise, conversely, represents a test of the consistency of the model

with the actual data-generating process.

In both the in-sample and out-of-sample forecasting sections, we begin the exercise in February 2002 (i.e., the

145th monthly observation) and complete it 43 months later in August 2005. This allows us to perform 42 non-

overlapping monthly forecasts, 40 overlapping three-month forecasts, and 37 overlapping six-month forecasts.

To make this clear, for the monthly forecasts we compute the root-mean-squared and mean-absolute error, as

described in equations (116) and (117), for each of the 42 forecasting periods. To perform this computation, we

use 40 forecasted and observed zero-coupon rates. These rates are equally spaced from six months to twenty years.

Using this information, we consider a number of summary statistics of the root-mean-squared and mean-absolute

errors for the one-, three-, and six-month forecasting horizons. At each forecast horizon, for example, we compute

the average, median, maximum, minimum, and the standard deviation of the corresponding root-mean-squared

and mean-absolute forecast errors.

Note that, for each forecasting horizon, we compare the results with a random-walk model. The random-walk

model assumes that zero-coupon interest rates are martingales and, as such, our best estimate of the future value

is the current value. Thus, the random-walk forecast is also a no-change forecast. The random-walk model is a

common comparator in the forecasting literature precisely because it is notoriously difficult to outperform.

4.2.1 In-sample forecasts

Table 3 illustrates the in-sample root-mean-squared and mean-absolute errors for the three empirical models

where the dynamics of the state variables are assumed to follow a VAR(1) process. At the one-month forecasting

horizon, the Fourier-series model exhibits the best in-sample forecasting performance and is the only empirical

model that outperforms the random walk. At the three- and six-month forecasting horizons, all of the models

outperform the random walk. The Fourier-series model exhibits the best in-sample forecasting performance at

the three-month horizon, while the Nelson-Siegel model appears to do the best job at the six-month horizon.

The exponential-spline models appear to be a close second.

The Fourier-series model is the strongest performer when we focus on the root-mean-squared forecast error;

it beats the Nelson-Siegel and exponential-spline models at both the one- and three-month forecasting horizons.

When we focus on the mean-absolute error, however, the exponential-spline model dominates the other models
24Although we are certain many analysts would be very happy to do so.
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across all forecasting horizons. Yet, all three generate very comparable in-sample results. In most cases, the

difference between models is no more than a basis point. As such, it seems that we can conclude that the

in-sample performance of the empirical models is quite similar when considering the entire zero-coupon curve.

Table 3: In-Sample Forecasts with VAR(1) Model: In this table, we again present the root-mean-squared and
mean-absolute error for a series of one-, three-, and six-month forecasts where the state variables are estimated using a
standard VAR(1) model. All values are in basis points.

RMSE MAEModels
Mean Median Max Min STD Mean Median Max Min STD

One-month forecast
Random walk 18.24 13.82 57.47 3.35 12.61 15.61 12.72 54.28 0.28 13.29
Nelson-Siegel 19.22 14.96 58.84 4.70 12.16 15.71 11.96 56.99 0.53 13.16
Exponential spline 19.30 15.37 61.06 8.13 11.35 15.02 11.45 59.69 0.06 12.72
Fourier series 17.86 13.06 60.31 4.84 12.98 15.01 11.10 58.81 0.00 13.88

Three-month forecast
Random walk 29.17 25.32 77.97 7.43 17.48 24.55 20.35 76.76 1.24 18.79
Nelson-Siegel 27.61 20.24 80.25 6.83 17.45 22.57 16.59 77.63 0.10 19.15
Exponential spline 26.42 19.75 81.05 7.11 16.94 20.79 13.03 79.38 0.04 18.92
Fourier series 25.27 18.08 81.51 4.02 19.22 21.18 13.88 79.60 0.14 20.24

Six-month forecast
Random walk 35.69 30.09 79.34 7.99 17.03 30.18 26.91 74.77 3.31 18.67
Nelson-Siegel 30.87 30.23 58.02 18.02 13.05 27.35 24.22 54.66 16.20 13.36
Exponential spline 31.38 30.53 56.67 18.78 12.90 27.12 27.42 53.53 13.84 13.51
Fourier series 33.65 27.28 60.85 23.56 13.38 28.03 22.68 58.58 13.85 16.18

The approach that we have used so far—and which is described in equations (116) and (117)—is not the

typical approach used in the forecasting literature. Typically, instead of examining the root-mean-squared or

mean-absolute forecasting error of the entire zero-coupon yield curve, the focus is on specific zero-coupon rate

tenors. By examining the full zero-coupon curve, we are essentially examining the average forecasting error across

the entire yield curve. We believe, since we are interested in describing the dynamics of the entire term structure

of interest rates, that this type of approach is preferable. We do admit, however, that with our approach there

is some aggregration of information. In particular, we do not capture the ability of a given model to fit one

area relative to other parts of the zero-coupon curve. For this reason, we supplement our analysis with the more

traditional zero-coupon rate tenor-based measures. To this end, we examine the root-mean-squared and absolute

forecast errors for a selection of zero-coupon tenors ranging from three months to 15 years. The results are

provided in Table 4.

The key difference with an analysis of a specific tenor versus consideration of the entire curve is that the

error computations occur across time, rather than at a given point in time. If, for example, we construct a
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Table 4: In-Sample Forecasts with VAR(1) Model by Specific Tenor: In this table, we present the root-
mean-squared and mean-absolute error for a series of one-month forecasts where the state variables are estimated using
a standard VAR(1) models. The difference in this table, however, is that we focus on specific zero-coupon maturities,
rather than the entire zero-coupon curve as presented in Table 3. All values are in basis points.

RMSE MAE
Random Nelson- Exponential Fourier Random Nelson- Exponential FourierTenor

walk Siegel spline series walk Siegel spline series
One-month forecast

3 months 13.35 15.23 10.60 14.55 10.30 12.02 8.07 11.50
6 months 14.84 13.65 13.26 14.79 11.31 11.27 10.88 12.22
1 year 21.09 20.91 19.79 20.20 15.91 16.36 15.45 16.17
2 years 25.21 25.67 25.03 25.74 19.09 19.52 19.08 18.78
5 years 24.98 25.75 24.14 25.26 19.24 19.69 18.47 19.12
7.5 years 23.38 23.78 23.12 22.87 17.92 16.96 16.45 16.72
10 years 23.17 22.85 21.97 22.20 17.44 17.86 17.06 16.83
15 years 20.05 20.66 22.76 20.13 15.18 16.54 18.96 15.14

Six-month forecast
3 months 47.36 37.88 37.59 43.44 41.49 30.52 30.70 34.63
6 months 44.98 37.46 38.70 40.28 37.38 30.93 32.35 32.86
1 year 43.13 41.12 41.15 42.16 35.49 34.85 34.86 35.88
2 years 44.21 43.23 40.05 40.42 38.05 35.64 34.84 34.68
5 years 44.71 39.99 34.73 35.08 36.37 33.84 29.07 29.30
7.5 years 41.11 32.38 27.03 29.30 34.51 26.30 21.49 23.63
10 years 38.93 32.96 27.16 28.63 33.19 26.19 21.19 22.59
15 years 34.94 28.90 30.26 25.96 29.17 22.60 23.80 21.07

sequence of one-month forecasts of the one-year rate, we are essentially computing a time series of forecast

errors. We can then determine the root-mean-squared and mean-absolute forecast errors across the time series.

When analyzing the entire curve, we compute a root-mean-squared and mean-absolute forecast error for each

date in the forecasting interval; we then examine a variety of summary statistics of these forecast errors.

To make this idea more clear, let us work through the specific formulation of the tenor-based forecast errors.

As before, we use equations (110) and (112) to forecast the state variables. In this case, however, we want to

predict a specific zero-coupon rate, which we will denote as z(t, τ) where the tenor is τ − t. We then modifify

equations (111), (113), and (114) as follows:

E
(
z(tq+n, tq+n + τ) | Ftq

)
= exp

−c(τ)− b(τ)T E
(
Xtq+n

| Ftq

)︸ ︷︷ ︸
Equation (110)

 , (118)

E
(
z(tq+n, tq+n + τ) | Ftq

)
= F (τ)T E

(
xtq+n | Ftq

)︸ ︷︷ ︸
Equation (112)

, (119)
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and,

E
(
z(tq+n, tq+n + τ) | Ftq

)
= −

ln

F (τ)T

Equation (112)︷ ︸︸ ︷
E
(
xtq+n | Ftq

)
τ

. (120)

The tenor-based forecast errors, in Table 4, provide a useful perspective. One clear conclusion from Table 4 is

that the forecast errors are not constant across the spectrum of zero-coupon tenors. For the one-month forecast

horizon, the exponential-spline model outperforms the Nelson-Siegel model at the three-month tenor, while it

underperforms at the 10- and 15-year tenor. Also, at the six-month forecasting horizon, the Fourier-series model

fairly dramatically underperforms at short zero-coupon tenors, but outperforms at longer zero-coupon tenors.

Finally, there appears to be a general tendency for the forecast errors to increase with the zero-coupon rate tenor.

Table 5: In-Sample A0(3) Model Forecasts with Different Aγ Matrix Restrictions: In this table, we

present the root-mean-squared and mean-absolute error for a series of one-, three-, and six- month forecasts where the Aγ

matrix found in the market price of risk has a diagonal, symmetric, and unrestricted form. All values are in basis points.

RMSE MAEModels
Mean Median Max Min STD Mean Median Max Min STD

One-month forecast
Random walk 18.24 13.82 57.47 3.35 12.61 15.61 12.72 54.28 0.28 13.29
Diagonal Aγ 20.07 16.55 62.60 5.99 13.31 16.71 13.29 59.78 0.34 13.96
Symmetric Aγ 26.61 23.37 58.95 9.38 11.12 18.62 17.41 58.49 1.14 13.76
Unrestricted Aγ 21.03 17.49 61.17 4.89 13.43 17.56 13.70 57.48 1.13 14.05

Three-month forecast
Random walk 29.17 25.32 77.97 7.43 17.48 24.55 20.35 76.76 1.24 18.79
Diagonal Aγ 32.29 29.02 80.80 8.34 18.50 27.55 25.49 78.19 1.34 20.14
Symmetric Aγ 37.54 35.50 83.40 14.88 15.70 29.34 27.12 82.76 0.70 20.14
Unrestricted Aγ 38.14 33.83 89.05 10.97 20.30 32.79 29.74 87.31 0.07 22.87

Six-month forecast
Random walk 35.69 30.09 79.34 7.99 17.03 30.18 26.91 74.77 3.31 18.67
Diagonal Aγ 42.45 34.95 101.51 12.08 21.08 37.40 31.48 100.15 2.62 22.86
Symmetric Aγ 47.73 43.08 94.48 9.24 19.48 40.68 36.16 93.28 1.91 24.16
Unrestricted Aγ 54.13 51.18 139.80 13.61 28.67 49.09 44.86 135.70 2.27 30.85

We next examine the in-sample forecasting ability of the A0(3) models. Table 5 again illustrates a range

of summary statistics for the root-mean-squared and mean-absolute forecast errors at the one-, three-, and six-

month horizons. These figures are directly comparable with Table 3. The first thing to notice is that the model

with the diagonal Aγ matrix substantially outperforms the symmetric and unrestricted forms of Aγ . This is

the case using either the root-mean-squared or mean-absolute errors. Furthermore, at the three- and six-month

forecasting horizons, the unrestricted form underperforms the other models.
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Table 6: In-Sample Forecasts for A0(3) Model by Specific Tenor: In this table, we present the root-mean-

squared and mean-absolute error for a series of one- and three-month forecasts for the different versions of the A0(3)
model. The difference between this table and Table 5 is that in this table we focus on specific zero-coupon maturities,
rather than the entire zero-coupon curve. All values are in basis points.

RMSE MAE
Random Diagonal Symmetric Full Random Diagonal Symmetric FullTenor

walk walk
One-month forecast

3 months 13.35 13.66 14.32 14.03 10.30 10.47 11.82 10.82
6 months 14.84 14.35 15.68 14.33 11.31 11.87 12.63 11.04
1 year 21.09 20.51 22.24 20.59 15.91 16.89 17.93 16.31
2 years 25.21 25.45 24.94 25.44 19.09 19.53 19.08 19.19
5 years 24.98 26.57 27.53 27.99 19.24 20.70 19.27 21.23
7.5 years 23.38 23.82 26.44 24.85 17.92 17.22 18.96 18.23
10 years 23.17 23.36 23.35 24.50 17.44 17.68 17.63 19.02
15 years 20.05 23.51 32.91 24.70 15.18 18.16 28.94 19.85

Six-month forecast
3 months 47.36 49.88 60.30 46.18 41.49 40.19 45.86 38.86
6 months 44.98 48.50 60.43 44.37 37.38 38.83 48.20 36.52
1 year 43.13 52.03 60.77 46.69 35.49 42.16 50.22 39.38
2 years 44.21 56.81 56.17 54.77 38.05 45.97 45.70 45.18
5 years 44.71 54.41 46.41 65.65 36.37 46.83 37.65 54.68
7.5 years 41.11 43.83 39.29 59.30 34.51 37.20 31.85 49.32
10 years 38.93 43.93 43.38 61.34 33.19 37.55 37.23 51.72
15 years 34.94 44.28 56.24 63.82 29.17 37.86 50.54 54.78

Table 6, by focusing on forecast errors organized by specific zero-coupon rate tenors, provides a different

perspective on the results in Table 5. Specifically, we can see that the symmetric form of Aγ has substantial

in-sample forecasting difficulty at the short end of the curve for the six-month horizon. The root-mean-squared

error of the symmetric model is approximately 10–15 basis points more than that observed in the diagonal and

unrestricted models at the three-month tenor for both the six-month forecasting horizons. At the 10-year tenor,

however, the forecast errors are quite comparable with the diagonal and restricted versions of the A0(3) model;

indeed, they are superior to those posted by the unrestricted model. We also note that, while the diagonal

and unrestricted models are quite comparable for the one-month forecasting horizon, the unrestricted model

substantially underperforms at the six-month horizon for zero-coupon tenors beyond about five years.

It is also interesting, and useful, to compare Tables 3 and 5; this amounts to a fair in-sample forecasting

comparison between the empirical and theoretical models described in this paper. The empirical models demon-

strate superior in-sample forecasting ability relative to the A0(3) models. Indeed, we observe that the best

theoretical model underperforms the worst empirical model for all forecasting horizons from one to nine basis

points. The differential between the two model classes also appears to increase with the forecasting horizon.
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At the one-month horizon, the results are actually quite close. At the three- and six-month horizons, however,

the underperformance of the theoretical models widens. At the six-month horizon, for example, the in-sample

average root-mean-squared error is often about ten basis points more than that observed among the empirical

models. The results are similar, if somewhat less extreme, at the three-month horizon.

4.2.2 Out-of-sample forecasts

While interesting, the in-sample forecasting performance is of secondary relevance compared with the ability of

these models to forecast out-of-sample. We next examine, therefore, the same summary statistics for the out-

of-sample forecasting exercise. Table 7 illustrates the out-of-sample zero-coupon rate forecasting performance

using a VAR(1) model for the state variables of the empirical models. The basic ordering is quite similar to

the in-sample forecasting performance observed in Table 3. That is, by the root-mean-squared error metric,

the Fourier-series model provides the best forecasts at the one- and three-month horizons, while the Nelson-

Siegel model outperforms at the six-month horizon. The random-walk model is, as before, difficult to beat at

both the one- and three-month horizons. When focusing on the mean-absolute error, the exponential-spline

model provides the best out-of-sample forecasts across all horizons. Finally, we observe that the out-of-sample

forecasting performance deteriorates relative to the in-sample results provided in Table 3. This is a natural

outcome, because less information is available for estimating the model parameters in the out-of-sample exercise.

Table 8 examines the root-mean-squared and mean-absolute out-of-sample forecast errors by the specific zero-

coupon tenor. This table is comparable with the in-sample version provided in Table 4. The results are also quite

similar insofar as we observe that the models generally out-of-sample forecast the short end of the zero-coupon

curve more accurately than the long end. The Fourier-series model again has trouble forecasting short-term

zero-coupon tenors; this is a particular problem at the six-month horizon. We previously saw that the Nelson-

Siegel and exponential-spline models look quite similar when we examine the entire curve. By investigating the

individual zero-coupon tenors, however, we can see that the exponential-spline model does slightly better at the

short end, while the Nelson-Siegel model outperforms at the longer tenors.

A final perspective on the out-of-sample forecasting errors of the empirical models is provided in Figure 5.

This figure shows, for the three empirical models, the mean out-of-sample forecast errors by zero-coupon tenor for

the one-, three-, and six-month forecast horizons. We would expect, if the model produced unbiased forecasts,

that the average forecast error should be approximately zero. All three models, however, appear to produce

positive out-of-sample forecast errors for the short-term tenors and negative out-of-sample forecast errors for

the longer-term zero-coupon tenors. Since we define the errors as actual minus forecast, a positive bias in the

forecast errors implies a persistent underestimation of future zero-coupon rates. This trend appears to reverse

itself with negative forecast errors. Negative forecast errors suggest a persistent overestimation of future long-

term zero-coupon rates over the forecasting horizon. We note that the random-walk model exhibits a rather
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Table 7: Out-Of-Sample Forecasts with VAR(1) Model: In this table, we again present the root-mean-squared
and mean-absolute error for a series of one-, three-, and six-month forecasts where the state variables are estimated using
a standard VAR(1) model. All values are in basis points.

RMSE MAEModels
Mean Median Max Min STD Mean Median Max Min STD

One-month forecast
Random walk 18.24 13.82 57.47 3.35 12.61 15.61 12.72 54.28 0.28 13.29
Nelson-Siegel 19.77 16.22 61.94 4.71 12.12 16.35 12.91 59.90 1.63 13.00
Exponential spline 20.21 17.04 62.90 7.62 11.72 15.90 13.03 61.56 0.13 12.93
Fourier series 18.70 14.04 62.32 4.28 13.40 15.92 12.40 60.85 0.42 14.01

Three-month forecast
Random walk 29.17 25.32 77.97 7.43 17.48 24.55 20.35 76.76 1.24 18.79
Nelson-Siegel 30.04 23.78 87.07 11.21 17.43 24.76 20.34 84.05 0.11 19.38
Exponential spline 29.34 21.51 85.70 10.73 17.64 23.48 15.72 84.03 1.16 19.53
Fourier series 28.42 19.61 86.92 8.81 20.26 23.79 17.49 85.05 1.64 21.19

Six-month forecast
Random walk 35.69 30.09 79.34 7.99 17.03 30.18 26.91 74.77 3.31 18.67
Nelson-Siegel 31.65 28.72 59.55 20.67 13.37 27.96 21.85 56.13 16.05 13.93
Exponential spline 32.15 33.35 57.82 20.58 13.09 27.62 26.43 54.64 14.03 13.76
Fourier series 33.89 27.69 62.44 22.19 14.48 28.12 25.38 60.20 7.66 18.06

smooth pattern in average forecasts errors, while the three empirical models demonstrate an oscillatory pattern.

The Fourier-series model, however, exhibits rather less variation relative to the other two models.

We next examine the out-of-sample performance of the theoretical models. Table 9 describes summary

statistics for the one-, three-, and six-month out-of-sample forecasts of the A0(3) model with diagonal, symmetric,

and unrestricted forms of the Aγ matrix that pre-multiplies the state variable vector in the market price of risk.

Unlike the empirical models, the out-of-sample forecasting results are quite different relative to the in-sample

exercise. The surprise is the performance of the unrestricted form of Aγ . At all forecasting horizons, the

unrestricted model has the smallest root-mean-squared and mean-absolute forecast errors. It also has the lowest

variation in forecast performance. In other words, therefore, the unrestricted model is the clear front-runner

among the A0(3) models in terms of out-of-sample forecasting. The next best model is the diagonal model

followed by the symmetric model, which performs quite poorly. None of the models, however, outperforms the

random-walk model.

A view of the out-of-sample performance of the three versions of the A0(3) model by zero-coupon tenor is

outlined in Table 11. What is striking is the quite poor forecasting performance of the diagonal and symmetric

models for short-term zero-coupon tenors at the six-month horizon—either on the basis of root-mean-squared or

mean-absolute error. The forecasting error of the unrestricted model at the three-month tenor is approximately
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Table 8: Out-of-Sample Forecasts with VAR(1) Model by Specific Tenor: In this table, we present the
root-mean-squared and mean-absolute error for a series of one- and six-month forecasts where the state-variable dynamics
are estimated using a standard VAR(1) process. The difference in this table, however, is that we focus on specific
zero-coupon maturities, rather than the entire zero-coupon curve as presented in Table 3. All values are in basis points.

RMSE MAE
Random Nelson- Exponential Fourier Random Nelson- Exponential FourierTenor

walk Siegel spline series walk Siegel spline series
One-month forecast

3 months 13.35 16.04 13.37 19.87 10.30 12.78 10.71 14.60
6 months 14.84 13.99 14.10 16.92 11.31 11.55 11.56 12.99
1 year 21.09 21.32 21.38 22.79 15.91 16.67 16.27 17.32
2 years 25.21 26.40 26.62 28.25 19.09 20.08 19.59 19.94
5 years 24.98 26.39 25.14 26.36 19.24 20.61 19.51 20.21
7.5 years 23.38 23.70 23.68 23.51 17.92 17.42 16.76 17.61
10 years 23.17 23.37 22.72 22.90 17.44 18.45 17.72 17.46
15 years 20.05 21.26 24.35 20.47 15.18 17.15 20.58 15.59

Six-month forecast
3 months 47.36 40.60 45.22 62.53 41.49 32.99 36.47 46.14
6 months 44.98 39.71 43.97 52.93 37.38 32.77 36.45 39.81
1 year 43.13 44.54 46.40 52.12 35.49 37.76 38.94 42.78
2 years 44.21 49.86 46.38 49.45 38.05 40.70 39.44 40.99
5 years 44.71 48.64 41.41 42.60 36.37 42.05 35.03 36.64
7.5 years 41.11 38.33 30.12 34.87 34.51 32.58 24.52 29.42
10 years 38.93 38.49 31.41 33.96 33.19 31.04 25.16 27.52
15 years 34.94 32.83 37.76 30.34 29.17 25.70 30.77 24.33

one half the corresponding forecast errors observed for the diagonal models at the six-month horizon. The exact

reason for this phenomenon is unclear. One probable explanation is that the reduced number of parameters in

the Aγ matrix restricts the ability of the diagonal and symmetric models to accurately capture the dynamics of

risk premia.

We also note that, for both the one- and six-month horizons at the short zero-coupon tenors, the unrestricted

model is quite close to, or occasionally even outperforms, the random-walk model. As we lengthen the tenor,

however, the out-of-sample forecasting performance of the unrestricted model deteriorates relative to the random-

walk model. This contrasts with the empirical models that exhibited difficulty with the short-term zero-coupon

tenors, but forecast better at longer zero-coupon tenors.

Figure 6 provides the final results for the forecasting exercise by outlining the mean A0(3) forecast error by

zero-coupon tenor for the one-month forecast horizon. We also observe an oscillatory pattern in average forecast

errors across the three models. Indeed, the oscillations are larger than those observed for the empirical models

in Figure 5. Specifically, we observe negative errors at the short zero-coupon tenors, a trend towards positive (or
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Figure 5: Out-of-Sample Empirical VAR(1) Forecasts by Tenor: This figure illustrates the mean out-of-

sample forecast errors (in basis points) by specific zero-coupon rate tenors for the three empirical models across the one-,
three-, and six-month forecasting horizons.
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less negative) errors at the intermediate tenors, and a return to negative errors at the longer-term zero-coupon

tenors. Across all forecasting horizons, however, the unrestricted model demonstrates the smallest oscillation and

the closest relationship to the random-walk model. Note that, at the three- and six-month horizons, the diagonal

and symmetric models post negative out-of-sample forecast errors across all zero-coupon tenors. This suggests

that these models routinely overestimate the future value of zero-coupon rates over this forecasting interval.

We have examined the various empirical and theoretical models on the basis of their in- and out-of-sample

forecasting ability on three primary dimensions: the ability to fit the entire zero-coupon curve, the capacity of

these models to fit specific zero-coupon tenors, and the direction of the forecast errors. Overall, the results show

that the empirical models forecast better than the theoretical models on basically every dimension on both the

in- and out-of-sample forecasting exercises. The underperformance of the theoretical models seems to be most
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Table 9: Out-of-Sample A0(3) Model Forecasts with Different Aγ Matrix Restrictions: In this table,

we present the root-mean-squared and mean-absolute error for a series of one-, three-, and six-month forecasts where the
Aγ matrix found in the market price of risk has a diagonal, symmetric, and unrestricted form. All values are in basis
points.

RMSE MAEModels
Mean Median Max Min STD Mean Median Max Min STD

One-month forecast
Random walk 18.24 13.82 57.47 3.35 12.61 15.61 12.72 54.28 0.28 13.29
Diagonal Aγ 21.49 20.31 59.89 3.58 13.57 17.95 15.92 56.75 0.23 14.31
Symmetric Aγ 23.86 19.65 65.11 5.20 13.92 18.84 13.57 62.73 0.36 15.83
Unrestricted Aγ 21.34 17.55 58.46 5.44 12.82 17.46 13.13 57.49 0.95 13.67

Three-month forecast
Random walk 29.17 25.32 77.97 7.43 17.48 24.55 20.35 76.76 1.24 18.79
Diagonal Aγ 37.97 32.80 90.57 8.62 19.80 33.09 29.54 88.56 0.41 22.21
Symmetric Aγ 44.00 37.37 124.68 11.91 28.74 38.15 35.61 119.74 1.22 31.30
Unrestricted Aγ 35.66 30.24 85.33 10.83 18.97 30.03 26.18 83.90 0.41 21.28

Six-month forecast
Random walk 35.69 30.09 79.34 7.99 17.03 30.18 26.91 74.77 3.31 18.67
Diagonal Aγ 56.52 53.22 117.48 16.44 25.92 51.17 48.92 114.80 2.41 28.28
Symmetric Aγ 71.40 56.77 213.13 17.38 45.63 65.17 48.54 206.60 0.20 46.68
Unrestricted Aγ 46.08 42.30 119.39 8.56 24.16 40.36 37.74 115.19 3.68 26.30

evident as we increase the forecasting horizon and increase the zero-coupon tenor.

Within the class of empirical models, we conclude that the Nelson-Siegel model slightly outperforms the

exponential-spline and Fourier-series models. It should be noted, however, that the Nelson-Siegel model does

not dominate the other models. The exponential-spline model, for example, demonstrates the best forecasting

performance using the mean-absolute error metric. Moreover, it also does relatively well using the root-mean-

squared error. The Fourier-series model outperforms when we consider the overall fit to the yield curve at

the one- and three-month forecasting horizons. When we look closer, however, we find that the Fourier-series

approach has difficulty with short zero-coupon tenors and appears to generate more negative forecasts (i.e.,

overestimation) of zero-coupon rate forecasts. The Nelson-Siegel model, conversely, appears to be the most

consistent of the empirical models, as evidenced by the relatively low volatility in the mean out-of-sample forecast

errors. Specifically, it seems to handle the longer forecasting horizons better than the other two models.

Restricting our attention to the three variations on the A0(3) model, we can conclude rather comfortably

that the unrestricted form of the A0(3) model exhibits the best forecasting behaviour. The unrestricted form

dominates at all out-of-sample forecasting horizons and across almost all zero-coupon tenors. The diagonal and

symmetric models appear to have difficulty in capturing the very short end of the zero-coupon curve in out-

of-sample forecasts. Furthermore, these two models also generate relatively large negative (i.e., overestimation)
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Table 10: Out-of-Sample A0(3) Forecasts by Specific Tenor: In this table, we present the root-mean-squared

for three different versions of the A0(3) model. The difference, however, is that we focus on specific zero-coupon maturities,
rather than the entire zero-coupon curve as presented in Table 9. All values are in basis points.

RMSE MAE
Random Diagonal Symmetric Full Random Diagonal Symmetric FullTenor

walk walk
3 months 13.35 14.31 14.79 13.98 10.30 12.22 11.79 10.63
6 months 14.84 19.15 18.18 14.11 11.31 14.84 15.34 10.94
1 year 21.09 25.34 26.98 20.47 15.91 19.37 20.51 16.30
2 years 25.21 27.61 29.05 25.45 19.09 21.34 22.34 19.21
5 years 24.98 27.56 28.20 27.73 19.24 21.28 20.61 19.87
7.5 years 23.38 24.22 26.30 25.08 17.92 17.58 19.01 17.53
10 years 23.17 23.91 25.43 23.65 17.44 18.42 19.44 18.15
15 years 20.05 25.40 29.56 25.31 15.18 20.66 25.20 21.23

Six-month forecast
3 months 47.36 90.80 74.50 46.04 41.49 79.91 63.49 38.17
6 months 44.98 94.03 92.54 43.84 37.38 82.36 75.53 36.04
1 year 43.13 95.54 114.26 45.45 35.49 83.10 90.77 38.41
2 years 44.21 88.15 121.41 52.69 38.05 76.11 94.95 43.74
5 years 44.71 68.77 99.76 59.10 36.37 60.29 77.16 47.13
7.5 years 41.11 53.26 81.01 50.46 34.51 46.18 63.05 39.73
10 years 38.93 52.81 74.79 49.84 33.19 45.40 62.75 41.66
15 years 34.94 52.32 71.47 52.77 29.17 46.47 61.23 44.78

forecasts of future zero-coupon rates, as shown in Figure 6. This suggests that the extra parameters in the Aγ

matrix found in the unrestricted model are quite important for forecasting future zero-coupon rates.

The Nelson-Siegel model, therefore, generally does the best job among both the empirical and theoretical

models in the in- and out-of-sample exercise. We next examine an alternative out-of-sample forecasting exercise

that examines how these models describe excess holding-period returns.

4.3 Forecasting holding-period returns

In the previous section, we focused on the ability of our six models to forecast future zero-coupon rates. This is

similar to the analysis performed in both Duffee (2002) and Diebold and Li (2003). In this section, we change the

focus somewhat by examining the ability of these models to forecast excess holding-period returns. A holding-

period return is a rather simple quantity. It involves the return associated with purchasing an asset, holding it

for some time interval, and then selling it. The excess holding-period return compares this return with what

one would have earned by investing one’s funds at the risk-free rate. We will focus on the excess holding-period

returns associated with pure-discount bonds.
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Figure 6: Out-of-Sample A0(3) Forecasts by Tenor: This figure illustrates the root-mean-squared out-of-sample

forecast errors for the three theoretical A0(3) models across the one-, three-, and six-month forecasting horizons.
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Let us make these ideas somewhat more precise. The n-period holding-period return, h(t, T, n), is given as

h(t, T, n) =
P (t+ n, t+ T )− P (t, T )

P (t, T )
. (121)

Simply put, assume that one buys a (T − t)-period pure-discount bond at time t. One holds this bond for n

periods and then resells it at time t + n. The maturity of this pure-discount bond has become, over this time

interval, T − n. Equation (121) represents the return on this investment strategy. We can also rewrite equation

(121) in terms of zero-coupon rates as

h(t, T, n) =
e−z(t+n,t+T )(T−n) − e−z(t,T )(T−t)

e−z(t,T )(T−t)
. (122)

If one were to invest funds at the risk-free interest rate for n periods, one would purchase an n-period pure-

discount bond and hold it to maturity. The return on this investment, which we denote as g(t, n), is given
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as

g(t, n) =
1− P (t, t+ n)
P (t, t+ n)

, (123)

=
1− e−z(t,t+n)n

e−z(t,t+n)n
.

The excess n-period holding-period return, therefore, is merely the n-period holding-period return less the risk-

free investment; or, more specifically, it is equation (122) less equation (123). We denote it as he(t, T, n), and it

has the following form:

he(t, T, n) =
e−z(t+n,t+T )(T−n) − e−z(t,T )(T−t)

e−z(t,T )(T−t)
− 1− e−z(t,t+n)n

e−z(t,t+n)n
. (124)

The plan is to use the zero-coupon rate forecasts from the previous section to construct excess holding-

period return forecasts, since excess holding-period returns are intimately related to risk premia. Indeed, the

expectations hypothesis—which essentially means that excess holding-period returns are constant across all

maturities—holds in the absence of risk premia. The hope is that, by examining out-of-sample excess holding-

period return forecasts, we can gain some additional insight into the relative performance of our models.

What do excess holding-period returns look like over the 42-month out-of-sample forecast horizon? Figure 7

illustrates the average excess-holding period returns for one-, three-, and six-month holding periods and a wide

range of underlying pure-discount bond tenors.25 The figure also includes the standard deviation of these excess

holding-period returns and the associated Sharpe ratios. We note that excess holding-period returns are, in

general, quite large and volatile. Moreover, the size and variability of excess holding-period returns increases

as we extend the holding period and lengthen the tenor of the underlying pure-discount bond. This should not

be surprising, since, by virtue of their lengthy duration, long-tenor pure-discount bonds are highly sensitive to

interest rate movements.

Table 11 outlines the root-mean-squared and mean-absolute errors for the out-of-sample empirical-model

forecasts of excess holding-period returns. These values are computed by using the zero-coupon rate forecasts in

the previous sections and equation (124). It is immediately clear that all of the empirical models, including the

random walk, have tremendous difficulty in forecasting excess holding-period returns. This is particularly evident

at the longer pure-discount tenors. At tenors beyond five years, the root-mean-squared and mean-absolute errors

exceed 100 basis points for the one-month forecast horizon. At the six-month forecast horizon, the errors are

approximately twice as large, primarily because forecast errors are magnified by the strong interest rate sensitivity

(i.e., long duration) of the long-tenor pure-discount bonds. This is combined with the fact, as evidenced in the

previous section, that forecast errors tend to increase with both the forecast horizon and the pure-discount bond

tenor.
25See Bolder, Johnson, and Metzler (2004) for a more detailed examination of excess holding-period returns on pure-discount

bonds for the Canadian market. Note, however, that these values are broadly consistent with the values obtained in this study.
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Figure 7: Excess Holding-Period Returns: This figure outlines the annualized average excess pure-discount bond
holding-period returns (in basis points) for one-, three-, and six-month horizons. It also includes the standard deviations
of these returns as well as their Sharpe ratios.
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As with the previous forecasting exercise, the empirical models have difficulty in outperforming the random-

walk model. The Nelson-Siegel model seems to do best in forecasting the shortest pure-discount tenor, the

exponential-spline model does best at intermediate tenors (i.e., from about six months to ten years), and the

Fourier-series model outperforms at the longest tenor. Figure 8 provides a bit more insight into the nature of

the errors by outlining the time series of actual and forecast excess six-month holding-period returns (in basis

points) for one-, five-, and ten-year pure-discount tenors. Observe that the actual excess holding-period returns

are substantially more volatile than the model forecasts. We also see that the random-walk model exhibits an

almost flat excess holding-period return profile. The three empirical models appear to do a slightly better job of

capturing the variation in the excess holding-period returns; nevertheless, they fall quite short of the mark. We

also observe that the forecast excess holding-period returns typically underestimate the actual excess holding-
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Table 11: Out-of-Sample Empirical Holding-Period Return Forecasts by Specific Tenor: In this table,
we present the annualized root-mean-squared holding-period forecast errors for our three empirical models, with the
random-walk model included for comparison. We focus on specific zero-coupon maturities, rather than the entire zero-
coupon curve. All values are in basis points.

RMSE MAE
Random Nelson- Exponential Fourier Random Nelson- Exponential FourierTenor

walk Siegel spline series walk Siegel spline series
One-month forecast

3 months 2.20 2.77 3.43 5.58 1.68 2.16 3.00 3.90
6 months 5.86 5.77 5.45 6.85 4.56 4.64 4.48 5.16
1 year 18.57 18.61 18.65 20.12 14.07 14.62 14.40 15.35
2 years 48.27 50.42 51.07 53.90 36.58 38.41 37.89 38.19
5 years 123.56 131.11 124.81 130.96 95.18 102.38 96.94 100.26
7.5 years 174.17 176.71 176.19 175.26 133.86 130.18 125.13 131.72
10 years 230.22 232.21 225.73 227.98 173.79 182.94 175.60 173.63
15 years 301.53 321.83 369.65 309.33 228.82 259.63 311.05 235.65

Six-month forecast
1 year 22.82 20.14 22.31 26.84 18.97 16.63 18.49 20.20
2 years 66.81 73.46 71.43 78.33 58.16 60.46 60.49 64.49
5 years 212.08 237.66 207.72 207.14 172.41 205.42 175.23 176.95
7.5 years 306.49 290.00 229.33 263.36 254.86 246.78 188.63 223.25
10 years 392.61 379.41 304.26 338.86 332.79 308.27 241.02 275.13
15 years 547.27 532.23 597.31 481.17 454.26 416.21 485.00 384.16

period returns. This is consistent with the general trend towards overestimating zero-coupon rates observed in

the previous section.26

Table 12 provides the A0(3) forecast excess holding-period returns for a variety of zero-coupon tenors at

the one- and six-month horizons. The performance of these models is also rather disappointing. With a few

exceptions in the unrestricted model, none of the forecasts succeeds in outperforming the random-walk model.

Indeed, as the forecast horizon increases, the model dramatically underperforms the random walk. As with the

previous forecasting exercise, we observe that the unrestricted A0(3) model outperforms some of the empirical

models at the shorter pure-discount tenors, but continues to underperform at longer tenors.
26To see this more clearly, consider the following representation of the difference in actual and forecast holding-period returns:(

P1(z1)− P0(z0)

P0(z0)

)
︸ ︷︷ ︸

Actual
return

−
(

P̂1(ẑ1)− P0(z0)

P0(z0)

)
︸ ︷︷ ︸

Forecast
return

> 0, (125)

P1(z1)− P̂1(ẑ1)

P0(z0)
> 0,

which implies that P1(z1) > P̂1(ẑ1) and, consequently, z1 < ẑ1, which is an overestimate of the zero-coupon rate.
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Figure 8: Empirical Excess Holding-Period Returns Time Series: This figure outlines the time series of
actual and forecast excess six-month holding-period returns (in basis points) for one-, five-, and ten-year pure-discount
tenors.
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Figure 9 provides a more detailed view of the actual versus the forecast excess holding-period returns. Strik-

ingly, the diagonal model exhibits even less volatility in its excess holding-period returns than the random-walk

model. As the zero-coupon tenor increases, the diagonal model appears to suggest that the excess holding-

period returns tend to zero. This is plainly contrasted by the actual data. The unrestricted model demonstrates

somewhat more forecast variability, but it generates excess holding-period return forecasts that are negative

correlated with the actual excess holding-period returns.27 The underestimate of excess holding-period returns

(i.e., overestimation of zero-coupon rates) is, if anything, even more pronounced among the A0(3) models.

27For the six-month forecasting horizon and the 10-year pure-discount bond tenor, the correlation between the actual excess

holding-period returns and the unrestricted A0(3) model forecasts is -0.27. By contrast, this correlation is approximately 0.50 for

the empirical models.
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Table 12: Out-of-Sample A0(3) Holding-Period Return Forecasts by Specific Tenor: In this table, we

present the root-mean-squared and mean-absolute holding-period forecast errors (in basis points) for the three variations
on the A0(3) model, with the random-walk model included for comparison. We focus on specific zero-coupon maturities,
rather than the entire zero-coupon curve. All values are in basis points.

RMSE MAE
Random Diagonal Symmetric Full Random Diagonal Symmetric FullTenor

walk walk
One-month forecast

3 months 2.20 2.59 3.15 2.74 1.68 2.20 2.65 2.08
6 months 5.86 7.25 6.68 5.54 4.56 5.69 5.87 4.22
1 year 18.57 22.79 24.05 18.09 14.07 17.41 18.33 14.41
2 years 48.27 52.84 55.81 48.37 36.58 40.90 42.91 36.68
5 years 123.56 137.00 139.56 137.41 95.18 105.92 102.22 98.81
7.5 years 174.17 180.53 196.10 186.98 133.86 131.32 142.35 131.25
10 years 230.22 237.25 251.82 234.79 173.79 182.68 192.04 180.00
15 years 301.53 381.88 442.49 380.78 228.82 310.58 376.46 318.62

Six-month forecast
1 year 22.82 47.68 46.89 22.25 18.97 41.74 38.28 18.29
2 years 66.81 140.58 183.97 75.04 58.16 121.37 145.05 63.28
5 years 212.08 338.52 479.39 281.82 172.41 295.34 372.18 225.06
7.5 years 306.49 402.31 601.78 378.04 254.86 348.47 466.27 296.46
10 years 392.61 517.05 729.36 487.98 332.79 440.83 606.51 401.48
15 years 547.27 812.21 1074.39 809.04 454.26 718.16 923.82 684.51

4.4 Testing deviations from the expectations hypothesis

The so-called expectations hypothesis is the central theory of interest rates. To facilitate our discussion of this

theory, let us introduce a bit of notation. We denote the zero-coupon interest rate for a claim at time t and

maturing at time t+ n as

z(t, t+ n) = zn
t . (126)

A forward interest rate beginning at time t, maturing at time t+ n for a tenor of τ , is denoted as

f(t, t+ n, t+ n+ τ) = fn
t,τ . (127)

Note that, most of the time, we will be considering τ = 1; that is, a one-year borrowing rate, n-periods forward.

In this case, we will suppress the value of τ and denote the forward rate as fn
t . Finally, we will denote the short

rate as rt and will use a short-term rate (i.e., the one-month rate) to approximate this value.

While there are a variety of flavours of the expectations hypothesis, in its most basic form it makes the

58



Modelling Term-Structure Dynamics

Figure 9: A0(3) Excess Holding-Period Return Time Series: This figure outlines the time series of actual and

forecast excess six-month holding-period returns (in basis points) for one-, five-, and ten-year pure-discount tenors.
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following statistical claim:

f(t, t+ n, t+ n+ τ)︸ ︷︷ ︸
fn

t,τ

= E

z(t+ n, t+ n+ τ)︸ ︷︷ ︸
zτ

t+n

| Ft

 . (128)

What does equation (128) mean? It essentially states that, on average, the forward rate from time τ to T predicts

the future spot rate over the same period. In other words, although we cannot know the future value of the

zero-coupon rate from time τ to T (i.e., zn+τ
t ), we can use the appropriate forward rate (i.e., fn

t,τ ) as an unbiased

predictor for this unknown rate. Were this to be true, an investor or borrower would be indifferent between

different maturities. Essentially, the equation implies that borrowing for 10 years is equivalent to rolling over a

one-year investment for 10 years.

An enormous amount of empirical work has been performed in the finance literature to test this theory. It
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turns out that the evidence overwhelmingly rejects the extreme version of the expectations hypothesis described

in equation (128). In particular, the data suggest that there is a bias in the ability of the forward rate to predict

future zero-coupon interest rates. This has led to a revision of the expectations hypothesis. The second version

modifies equation (128) to make the following revised statistical claim:

fn
t,τ = E

(
zτ
t+n | Ft

)
+ ξn. (129)

In this case, the same interpretation applies, except for the presence of ξ, which is interpreted as a risk premium.

The theory holds that fixed-income market participants demand a premium over and beyond the forward rate,

to compensate for the various risks associated with holding fixed-income securities. The specific nature of these

risks is not known with certainty, but there is a reasonable consensus that one of the primary risks relates to the

risk of unexpected inflation eroding the real value of an investor’s fixed-income claim.

Again, we can ask the question “does the empirical evidence support the theory summarized in equation

(129)?” The answer is yes, but there is a twist. The financial literature finds overwhelming evidence of risk

premia, but simultaneously rejects the hypothesis that ξn is a constant. Instead, empirical evidence strongly

suggests the existence of a time-varying risk premium. This implies a new version of the expectations hypothesis

to modify equation (129):

fn
t,τ = E

(
zτ
t+n | Ft

)
+ ξn

t , (130)

where ξn
t represents a time-varying risk premium.

There are a number of ways to econometrically test the expectations hypothesis. We will consider two

alternatives. The first econometric test comes from Backus et al. (2001), who introduce both a useful test of

the expectations hypothesis and indicate, quite cleverly, that deviations from the expectations hypothesis are,

in fact, a statistical property of the term structure of interest rates. Dai and Singleton (2002) examine risk-

premium-adjusted yield regressions. Our second econometric test will be the so-called LPY regression, although

we do not adjust for risk premia. The important point is that any model purporting to describe the time-series

dynamics of the term structure of interest rates should be able to replicate the observed deviations from the

expectations hypothesis.

Let us begin with a description of the forward-rate regression suggested by Backus et al. (2001). We saw, in

equation (128), a common form of the expectations hypothesis. Let us apply conditional expectations to both

sides of equation (128), where we condition on the filtration, Ft−1 ⊂ Ft. We can then proceed, as follows, to use
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the law of iterated expectations:

E(f(t, t+ n, t+ n+ τ) | Ft−1) = E (E (z(t+ n, t+ n+ τ) | Ft) | Ft−1) , (131)

E(fn
t,τ | Ft−1) = E (z(t+ n, t+ n+ τ) | Ft−1)︸ ︷︷ ︸

By iterated expectations

,

= f(t− 1, (t− 1) + (n+ 1), (t− 1) + (n+ 1) + 1)︸ ︷︷ ︸
By definition: see equation (128)

,

= fn+1
t−1,τ .

Adjusting the time scale forward by one period, we have that

fn
t,τ = E(fn−1

t+1,τ | Ft), (132)

which is equivalent to saying that fn
t is a martingale.28 As a consequence of this property, Backus et al. (2001)

suggest the following forward-rate regression as a test of the expectations hypothesis:

fn−1
t+1 − rt = αn + βn(fn

t − rt) + εnt , (134)

for a wide range of forward-rate maturities, n. Were the expectations hypothesis to hold, we would expect to see

an estimate of βn approximately equal to unity. In actual fact, as we will see, this does not hold in the data.

The LPY regression, which is a mnemonic for linear projection coefficients in yield-based regressions, has the

following form:

z(t+ 1, t+ n)− z(t, t+ n) = γn + δn

(
z(t, t+ n)− rt

n− 1

)
+ ζn

t , (135)

zn−1
t+1 − zn

t = γn + δn

(
zn
t − rt
n− 1

)
+ ζn

t .

The dependent variable is the difference between the (n − 1)-period zero-coupon rate at time t + 1 and the

n-period zero-coupon rate at time t. One can think of this difference as related to the excess holding-period

return from purchasing an n-period pure-discount bond at time t and selling it one period later when it becomes

an (n − 1)-period pure-discount bond. The independent variable is the excess yield, at time t, on the n-period

zero-coupon rate relative to the risk-free rate, rt, adjusted for n. This excess yield is what, under the expectations

hypothesis, you would expect to earn on an n-period zero-coupon bond over the period. The idea is that the

regression coefficient, δn, should be unity for all n. If this were to be true, it would have two implications. First,

it would imply that, on average, the excess holding-period return on holding an n-period pure-discount bond for
28Recall that the martingale property for an arbitrary stochastic process, {Xt, t ≥ 0}, holds that,

Xt = E(Xs | Ft), (133)

for all s > t.
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one period should be approximately equal to the excess over the risk-free rate offered by the pure-discount bond.

Second, it implies that this relationship will be the same across all pure-discount bond tenors. Again, we will

see that, econometrically, this does not hold.

The goal of this section is to examine how simulated zero-coupon term-structure outcomes from the empirical

and theoretical models capture this phenomenon. The basic approach to this simulation is quite simple. Since our

dataset contains 187 months of data, we wish to compute the slope coefficients to the same number of simulated

months of data. Our only concern is that, given the relatively short simulation horizon, there will be a strong

dependence of the starting values of the state variables. We solve this problem by burning-in our simulations.

That is, we start all of the state variables from their unconditional means and then simulate M + 187 months

of data from each of the empirical and theoretical models; we then discard the first M months of simulated data

and use the final 187 months for the estimation of the forward-rate regression in equation (134). For practical

purposes, we set M=500 or about 40 years. This process is performed 2,500 times for each of the models. We

then consider the distribution of regression coefficients.

The top graph in Figure 10 describes the actual forward-rate regression slope coefficients when we use equation

(134) with our Canadian zero-coupon data. We consider a variety of forward-rate tenors out to 10 years (i.e.,

n = 1, .., 120). Again, were the expectations hypothesis to hold, we would expect to observe a straight line at

unity for all forward-rate tenors. Instead, we note substantial deviations for short forward-rate tenors, with a

gradual tendency towards unity as the forward-rate tenor increases; nevertheless, the slope coefficients are still

less than one at the 10-year forward-rate tenor. Even when we take into account the standard errors—computed

using the Newey-West algorithm with six lags—the probability of a slope coefficient equal to one at the 10-year

tenor seems low.29 These results are broadly consistent with the results of Backus et al. (2001) and Leippold

and Wu (2001) using both American and European data.

The results of the simulation exercise for the forward-rate regression are presented in Table 13. The average

forward rate coefficients and the average Newey-West errors are provided for each of the six empirical and

theoretical models, as well as for the actual data. If we look down the column where the forward-rate tenor is

two months (i.e., n = 2), we observe that the actual regression coefficient is 0.538. This is closely matched only

by the average Nelson-Siegel model slope coefficient of 0.581. None of the A0(3) models demonstrates an average

regression coefficient of less than approximately 0.95, while the exponential-spline and Fourier-series models are

0.782 and 0.885, respectively. Clearly, only the Nelson-Siegel model appears to be capable of capturing the

observed deviations from the expectations hypothesis at the two-month forward-rate tenor.

If, however, we look down the column where the forward-rate tenor is 60 months (i.e., n = 60 or five years),

we can see that the actual regression coefficient is 0.914. All of the models, both empirical and theoretical, are

quite close. The smallest average regression coefficient is for the exponential-spline model, at 0.856, while the
29See Newey and West (1986) and Hamilton (1994) for detailed discussions of the Newey-West approach to the computation of

standard errors.
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largest is for the diagonal version of the A0(3) model, at 0.987.

Table 13: Simulated forward-rate regression coefficients: In this table, we present the average forward-rate
regression coefficients estimated from 2,500 simulations for each of the six models. The values in parentheses are Newey-
West errors computed with six lags.

Forward-rate tenor in months: nModels
2 3 6 12 24 60

No model
Actual data 0.538 0.567 0.659 0.766 0.841 0.914

(0.079) (0.074) (0.061) (0.052) (0.048) (0.033)
Empirical models

Nelson-Siegel 0.581 0.654 0.749 0.811 0.852 0.897
(0.024) (0.027) (0.030) (0.032) (0.032) (0.029)

Exponential spline 0.782 0.780 0.778 0.782 0.804 0.856
(0.043) (0.043) (0.043) (0.042) (0.040) (0.035)

Fourier series 0.815 0.816 0.819 0.825 0.838 0.871
(0.039) (0.039) (0.039) (0.038) (0.036) (0.033)

Theoretical models
Diagonal Aγ 0.999 1.000 1.003 1.003 0.998 0.987

(0.022) (0.021) (0.019) (0.017) (0.016) (0.017)
Symmetric Aγ 0.954 0.952 0.947 0.944 0.946 0.953

(0.028) (0.028) (0.028) (0.026) (0.024) (0.022)
Unrestricted Aγ 0.955 0.953 0.950 0.947 0.947 0.951

(0.018) (0.018) (0.018) (0.019) (0.019) (0.020)

The bottom two graphs in Figure 10 show the average regression coefficients for each of the empirical and

theoretical models superimposed on the actual regression coefficients with the Newey-West standard error bounds.

This provides a very clear view of the inability of the exponential-spline and Fourier-series models to capture

deviations from the expectations hypothesis at the short end of the yield curve. Indeed, Figure 10 underscores

that only the Nelson-Siegel model seems to capture this empirical relationship.

Figure 10 also indicates that none of the A0(3) models seems to be capable of capturing the observed devi-

ations from the expectations hypothesis as described by the forward-rate regression. In fact, all of the models

demonstrate the same general behaviour. The average regression coefficients are greater than 0.90 for the shorter

forward-rate tenors, and they very gradually decline with the forward-rate tenor. The problem, however, is

primarily restricted to the short end of the yield curve. Beyond about 30 months, or about 2.5 years, the average

forward-regression coefficients do fall within the Newey-West standard error bounds. The notable exception is

the diagonal model, which seems to stay at the upper range of the standard error bound on the actual regression

coefficients.

The top graph in Figure 11 shows the actual LPY regression coefficients, along with the standard error
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Figure 10: Forward-rate regression coefficients: This figure describes the forward-rate regression coefficients as
described by Backus et al. (2001) in equation (134) for forward-rate tenors, n = 2, ...120 months. The error bounds are
computed using Newey-West standard errors with six lags.
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bounds, from the actual data. Indeed, the majority of the regression coefficients are negative. Furthermore, for

all holding-period tenors, the point estimates of the regression coefficients are rather far from unity. Also note

that the standard errors in this regression are larger than the forward-rate regression. The result is that unity

lies with the standard error bounds for holding-period tenors between approximately one to five years. These

results are also broadly consistent with the results of Dai and Singleton (2002) and Leippold and Wu (2001)

using both American and European data.

The results of the simulation exercise for the LPY regressions are presented in Table 14. As before, the

LPY regression coefficients and the average Newey-West errors are provided for each of the six empirical and

theoretical models as well as for the actual data. Looking down the column, where the tenor of the underlying

zero-coupon bond is two months (i.e., n = 2), we observe that the actual regression coefficient is -0.286 with
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Table 14: Simulated LPY regression coefficients: In this table, we present the average LPY regression coef-
ficients estimated from 2,500 simulations for each of the six models. The values in parentheses are Newey-West errors
computed with six lags.

Forward-rate tenor in months: nModels
2 3 6 12 24 60

No model
Actual data -0.286 -0.056 0.192 0.200 -0.246 -0.883

(0.089) (0.132) (0.295) (0.543) (0.849) (1.351)
Empirical models

Nelson-Siegel -0.668 -0.281 -0.096 -0.122 -0.316 -1.062
(0.066) (0.059) (0.108) (0.214) (0.387) (0.684)

Exponential spline -0.570 -0.097 0.267 0.254 -0.195 -0.859
(0.069) (0.082) (0.179) (0.359) (0.624) (0.995)

Fourier series 1.148 1.055 0.786 0.293 -0.520 -1.889
(0.794) (0.794) (0.800) (0.841) (0.990) (1.478)

Theoretical models
Diagonal Aγ -0.017 -0.007 0.024 0.076 0.042 -0.595

(0.016) (0.031) (0.064) (0.125) (0.305) (0.946)
Symmetric Aγ -0.061 -0.104 -0.264 -0.624 -1.261 -2.786

(0.029) (0.058) (0.143) (0.299) (0.571) (1.311)
Unrestricted Aγ -0.057 -0.094 -0.232 -0.553 -1.205 -2.890

(0.016) (0.033) (0.084) (0.192) (0.425) (1.153)

a standard error of 0.089. None of the point estimates of this regression coefficient for the other models falls

within a 95 per cent confidence interval. The Fourier-series model is particularly far from the actual regression

coefficient. As we extend the tenor, however, all of the models tend, fairly quickly, to the actual regression

coefficient estimates.

The bottom two graphs in Figure 11 illustrate the data provided in Table 14. Among the empirical models,

we can see that the exponential-spline and Nelson-Siegel models closely track the actual regression coefficients.

Interestingly, the diagonal A0(3) model appears to provide the best fit to the actual LPY regression coefficients;

the unrestricted and symmetric models generate substantially more negative regression coefficients. These point

estimates do, however, lie within the lower boundary of the confidence interval for the actual regression coeffi-

cients.

The results of this section are not entirely conclusive. We can, however, carefully draw a few tentative conclu-

sions. First, it appears that the empirical models, most notably the Nelson-Siegel model, capture the deviations

from the expectations hypothesis fairly well across both econometric tests. The A0(3) models, conversely, seem

to have trouble with shorter tenors in the forward-rate regression, but do fairly well in the LPY regressions.

It is tempting to conclude that the superior forecasting performance of the empirical models stems from their

ability to capture deviations from the expectations hypothesis. This may indeed be so, but the evidence does
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Figure 11: LPY regression coefficients: This figure describes the LPY regression coefficients as described by
Backus et al. (2001) in equation (134) for forward-rate tenors, n = 2, ...120 months. The error bounds are computed using
Newey-West standard errors with six lags.
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not appear to be sufficiently compelling to make a strong case. It is, nevertheless, suggestive that a model’s

forecasting ability is related to its capacity to describe deviations from the expectations hypothesis. Moreover,

it is consistent with the view that forecasting future zero-coupon rate outcomes is intimately related to the

description of risk premia and the associated excess returns inherent in the yield curve.

4.5 A simple portfolio exercise

We consider one final dimension for the comparison of these models. Our interest in these models, as previously

noted, stems from our desire to incorporate them into a stochastic simulation model for taking debt-management

portfolio decisions. It would seem logical, therefore, to consider how these models perform in the context of a
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portfolio-optimization exercise. The actual debt-strategy problem is, however, rather too involved for a clean

comparison of our different models.30 Instead, we will consider a portfolio of zero-coupon bonds in the context

of a simplifed mean-variance setting.

The actual portfolio selection will depend upon the expected excess holding-period returns and their associated

variance. Computing the expected excess holding-period returns comes directly from the model, while the

determination of the variance requires a bit more effort. Recall from equation (124) that the excess n-period

holding-period return, he(t, T, n), has the following form:

he(t, T, n) =
e−z(t+n,t+T )(T−n) − e−z(t,T )(T−t)

e−z(t,T )(T−t)
− 1− e−z(t,t+n)n

e−z(t,t+n)n
, (136)

=
P (t+ n, t+ T )− P (t, t+ T )

P (t, t+ T )
− 1− P (t, t+ n)

P (t, t+ n)
.

The expected n-period excess holding-period returns for a zero-coupon bond with a tenor of T years are

E (he(t, T, n)| Ft) =
E (P (t+ n, t+ T )| Ft)− P (t, T )

P (t, T )
− 1− P (t, t+ n)

P (t, t+ n)
, (137)

where,

E (P (t+ n, t+ T ))| Ft) = exp (−E (z(t+ n, t+ T )| Ft) (T − n)) , (138)

and these expected future zero-coupon rates are formulated using our six different term-structure models, as

described in equations (118–120). We can, for a given model, define the vector of expected n-period excess

holding-period returns at time tq for our portfolio of zero-coupon bonds as

µ
(
tq, ~T , n

)
=


E (he(tq, T1, n)| Ftq

)
...

E (he(tq, TN , n)| Ftq

)
 , (139)

for zero-coupon tenors, ~T =
[
T1 · · · TN

]T
. We compute µ

(
tq, ~T , n

)
for each model at each point tq in our

out-of-sample period using the parameters obtained by estimating the model with data from the interval [t1, tq].

Constructing the associated variance-covariance matrix for our n-period excess holding-period returns requires

some numerical computation. In particular, we bootstrap from the set of historical n-period excess holding-period

return forecasts. The j historical n-period excess holding-period return forecast error has the form

ξj = E (z(tj + n, tj + Ti)| Ftj

)
− z(tj + n, tj + Ti), (140)

for j = 1, ..., q and i = 1, ..., N . Using these forecast errors, we proceed to construct a collection of randomly

selected holding-period returns for each of the various tenors. The following expression describes the holding-
30See Bolder (2002, 2003) for comprehensive discussions of the debt-management problem.
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period return including a randomly selected shock from the historical forecast errors described in equation (140):

he

(
tq, Ti, n, ξ̃k

)
=

exp
(
−
(
E (z(tq + n, tq + Ti)| Ftq

)
+ ξ̃k

)
(Ti − n)

)
− P (tq, Ti)

P (tq, Ti)
− 1− P (tq, tq + n)

P (tq, tq + n)
, (141)

where ξ̃k denotes a uniform randomly selected forecast error from the set {ξ1, ..., ξq}. This is repeated many

times with different randomly selected error terms and pure-discount bond tenors. We can think of this as

artificially generating a dataset from the historical forecast errors; as a consequence, it will, in the limit, have

the same distributional characteristics as the true dataset. It also permits us to construct the following matrix

of holding-period returns:

H
(
tq, ~T , n

)
=


he(tq, T1, n, ξ̃1) · · · he(tq, TN , n, ξ̃1)

...
. . .

...

he(tq, T1, n, ξ̃M ) · · · he(tq, TN , n, ξ̃M )

 , (142)

where M is the number of randomly selected historical forecast errors used to construct the artificial dataset.

This permits us to write the variance-covariance matrix of the n-period excess holding-period returns as

Ω
(
tq, ~T , n

)
= var

(
P (tq, ~T , n)

∣∣∣Ftq

)
, (143)

= cov
(
H
(
tq, ~T , n

))
.

With the expected n-period excess holding-period returns and their associated variance-covariance matrix in

hand, we can proceed to perform the portfolio optimization exercise. Let ω ∈ RN×1 be a vector of portfolio

weights on our N pure-discount bonds. We consider two alternative mean-variance portfolios. First, we compute

the minimum-variance portfolio by solving the following optimization problem:

min ωT Ω
(
tq, ~T , n

)
ω, (144)

subject to:

0 ≤ ωi ≤ 1, for i = 1, ..., N
N∑

i=1

ωi = 1.

The second variation on the mean-variance portfolio is to determine the maximum Sharpe ratio. The associated
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optimization problem has the following form:

max
µ
(
tq, ~T , n

)T

ω√
ωT Ω

(
tq, ~T , n

)
ω

, (145)

subject to:

0 ≤ ωi ≤ 1, for i = 1, ..., N
N∑

i=1

ωi = 1.

To be specific, we look at one-year excess holding-period returns and with a portfolio of zero-coupon bonds

with tenors of T = 13, 18, 24, 48, 60, and 120 months.31 We perform this exercise in an out-of-sample manner,

similar to the previous analysis, with 31 overlapping one-year periods. That is, at each period in the out-of-

sample window, the model parameters are re-estimated, the expected one-year excess holding-period returns

are computed, and the variance-covariance matrix is approximated via the bootstrap technique. Finally, the

two optimization algorithms are run and the portfolio weights are estimated. The remainder of this section

will compare the expected results with the actual results of using the portfolio weights to invest in the optimal

portfolios.

Table 15: Minimum-Variance Portfolio Exercise Results: In this table, we present the summary statistics of
the minimum-variance portfolio optimization performed using the three empirical models and the random-walk hypothesis.
The expected and actual mean, standard deviation, maximum, and minimum excess holding periods (in basis points) are
provided for a 12-month rolling optimization.

Expected ActualModels
Mean σ Max Min Mean σ Max Min

Random walk
Random walk 8.60 4.73 18.26 0.71 9.29 4.08 18.00 0.34

Empirical models
Nelson-Siegel 7.21 3.21 15.51 0.22 9.29 4.08 18.00 0.34
Exponential spline 14.71 3.54 22.65 6.38 9.29 4.08 18.00 0.34
Fourier series 15.87 7.41 32.65 2.20 9.29 4.08 18.00 0.34

Theoretical models
Diagonal Aγ -5.49 1.97 -2.97 -10.42 9.29 4.08 18.00 0.34
Symmetric Aγ -0.34 4.14 8.81 -10.59 9.29 4.08 18.00 0.34
Unrestricted Aγ 7.10 5.77 22.49 -4.96 9.29 4.08 18.00 0.34

Table 15 outlines the expected and actual results associated with the minimum-variance portfolio weights.
31Note that we cannot have Ti ≤ n for any i = 1, ..., N , since the bond will either mature during the holding period (i.e., Ti < n)

or earn the risk-free rate (i.e., Ti = n).
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The first four columns provide a number of summary statistics for the expected return associated with the optimal

portfolio weights for the three empirical models, the three variations on the A0(3) affine model, and the random-

walk model. The final four columns, conversely, demonstrate the same summary statistics for the actual results

corresponding to an actual application of the ensuing optimal portfolio weights. The first point worth observing

is that the actual results are the same for all portfolios; this is because the minimum-variance portfolio consists

entirely of 13-month pure-discount bonds across all models. This should, however, be no surprise. Figure 7

clearly demonstrates that the standard deviation of the excess holding-period returns is an increasing function

of the tenor of the underlying pure-discount bond. Thus, the optimization algorithm selects the shortest tenor

pure-discount bond from among the potential portfolio candidates to minimize the portfolio’s variance.32

Figure 12: Minimum Variance Portfolios: This figure summarizes the expected versus actual one-year excess
holding-period returns of a portfolio of six zero-coupon bonds for each of our six term-structure models and the associated
minimum-variance portfolio. This figure can be compared with the results in Table 15.
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32Apparently, the covariance between the various elements of the portfolio is not sufficient to overcome this effect and lead to some

level of diversification.
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The second item of note is that the random-walk and empirical models do a relatively good job of forecasting

the actual excess holding-period returns associated with the minimum-variance portfolio. The Nelson-Siegel and

random-walk models appear to be the closest, while the exponential-spline and Fourier-series models tend to

overestimate the expected excess holding-period return by around five basis points. A bit of reflection will reveal

that this is essentially another out-of-sample forecasting exercise. At time tq, one basically forecasts the value of

a collection of zero-coupon bonds of the form P (tq + n, tq + Ti) for i = 1, ..., n. In this case, we know that, since

n = 12 and Ti = 13, one is essentially forecasting a single zero-coupon bond, P (tq + 12, tq + 13). In other words,

the key aspect to appropriately determining this optimal portfolio is to predict the one-month zero-coupon rate

that will prevail in one year’s time.

The diagonal and symmetric affine models, however, do not fare quite as well. Again, this is not much of

a surprise, since the diagonal and symmetric A0(3) models—as previously demonstrated—have a substantial

amount of difficulty in forecasting future excess holding-period returns as the holding period lengthens. Indeed,

the expected portfolio returns for the diagonal and symmetric models are slightly negative. The exception is

the unrestricted model that generally seems to forecast the actual portfolio returns quite well. These results

are underscored in Figure 12, which compares the expected versus actual portfolio returns for each of the six

term-structure models across the out-of-sample horizon. The diagonal and symmetric versions of the A0(3) model

appear to fail quite dramatically at forecasting the actual portfolio returns of our pure-discount bond portfolio.

The remaining models tend to have some difficulty over different regions, but generally follow the basic pattern

of the actual portfolio returns.

Table 16: Maximum Sharpe-Ratio Portfolio Exercise Results: In this table, we present the summary statis-
tics of the minimum-variance portfolio optimization performed using the three empirical models and the random-walk
hypothesis. Again, the expected and actual mean, standard deviation, maximum, and minimum excess holding periods
(in basis points) are provided for a 12-month rolling optimization.

Expected ActualModels
Mean σ Sharpe Max Min Mean σ Sharpe Max Min

Random walk
Random walk 85.16 78.07 0.5733 248.30 8.03 58.91 74.59 0.7607 231.23 -166.37

Empirical models
Nelson-Siegel 59.74 114.94 0.6368 438.04 0.22 79.12 141.73 0.5368 496.12 1.96
Exponential 19.87 27.42 1.1652 116.10 6.38 14.90 28.65 0.2831 167.66 0.34
Fourier series 18.43 12.22 1.2196 66.84 2.20 12.96 13.58 1.2727 76.83 0.48

Theoretical models
Diagonal Aγ -0.06 36.84 0.0078 130.49 -47.50 645.77 400.70 1.6116 1509.44 -498.72
Symmetric Aγ 147.87 316.98 0.1880 1014.19 -477.05 299.71 225.57 1.3629 682.91 -12.10
Unrestricted Aγ 123.43 159.31 0.6557 453.44 4.27 105.28 153.26 0.6711 432.24 -198.92

71



Modelling Term-Structure Dynamics

We conclude, therefore, in this minimum-variance setting, that the three empirical models and the unrestricted

version of the A0(3) model appear to be generally useful in formulating minimum-variance portfolios of pure-

discount bonds. To be fair, this is not a terribly stringent test, given the uncomplicated nature of these portfolios.

Let us next examine the maximum Sharpe-ratio portfolios. In this case, differences among the portfolios

recommended by the various term-structure models are evident. Reviewing these results will require us to

examine Tables 16 and 17 simultaneously. For the random-walk model, we observe an average expected one-

year excess holding-period return of about 85 basis points over the out-of-sample horizon. This compares with

an actual portfolio return of around 58 basis points, and involves placing about half of the portfolio in the

shortest tenor pure-discount bond, almost one-quarter of the portfolio in the two-year pure-discount bond, and

the remainder spread among the remaining buckets (with the exception of the 10-year zero-coupon bond). This

appears to be reasonable, given the fairly flat form of the Sharpe ratio for longer holding periods, as described

in Figure 7; the Sharpe ratio does, however, ramp up somewhat for shorter tenors, and flattens out around two

to five years. Moreover, we anticipate, and indeed observe, an increase in expected return associated with the

maximum Sharpe-ratio portfolio relative to the minimum-variance portfolio.

Table 17: Maximum Sharpe-Ratio Portfolio Weights: In this table, we present the average portfolio weights
for our maximum Sharpe-ratio pure-discount portfolios across each of our term-structure models. These average portfolio
weights are associated with the results in Table 16. All values are in basis points.

Empirical models Theoretical modelsRandom
Nelson- Exponential Fourier Diagonal Symmetric FullTenor walk
Siegel spline series

13 months 0.51 0.79 0.99 0.97 0.00 0.25 0.62
1 1/2 years 0.07 0.06 0.00 0.02 0.00 0.00 0.00
Two years 0.23 0.03 0.00 0.01 0.00 0.05 0.00
Four years 0.10 0.00 0.00 0.00 0.00 0.03 0.06
Five years 0.09 0.05 0.01 0.00 0.26 0.58 0.31
Ten years 0.00 0.07 0.00 0.00 0.74 0.10 0.01

Among the empirical models, the Nelson-Siegel model appears to generate the most reasonable maximum

Sharpe-ratio portfolios. It generates an average expected portfolio return of approximately 60 basis points, which

compares favourably with the actual average return of about 80 basis points. The expected and actual realized

Sharpe ratios are also actually quite similar. The exponential-spline and Fourier-series models, conversely, suggest

maximum Sharpe-ratio portfolios that offer only about three to five basis points more than the minimum-variance

portfolios. This is evidenced by Table 17, which indicates that the lion’s share of the portfolio weights remain in

the shortest tenor zero-coupon bond. One suspects that these models forecast generally quite flat Sharpe ratios

as a function of all pure-discount bond tenors.

The unrestricted version of the A0(3) model again tends to outperform the two other affine alternatives.
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Figure 13: Maximum Sharpe-Ratio Portfolios: This figure summarizes the expected versus actual one-year
excess holding-period returns of a portfolio of six zero-coupon bonds for each of our six term-structure models and the
associated maximum Sharpe-ratio portfolio. This figure can be compared with the results in Table 16.

5 10 15 20 25 30

100

200

300

400

Nelson Siegel

Time (months)

E
xp

ec
te

d 
R

et
ur

n

5 10 15 20 25 30

50

100

150

Exponential Spline

Time (months)

E
xp

ec
te

d 
R

et
ur

n

5 10 15 20 25 30

20

40

60

Fourier Series

Time (months)

E
xp

ec
te

d 
R

et
ur

n

5 10 15 20 25 30

0

500

1000

1500
Diagonal

Time (months)

E
xp

ec
te

d 
R

et
ur

n

5 10 15 20 25 30

0

500

1000
Symmetric

Time (months)

E
xp

ec
te

d 
R

et
ur

n

5 10 15 20 25 30

0

200

400

Unrestricted

Time (months)

E
xp

ec
te

d 
R

et
ur

n

Expected return

Actual return

The average portfolio weights for the unrestricted model involve about two-thirds in the shortest tenor and the

remainder are concentrated in the four- to five-year sector. This yields an average expected portfolio return of

123 basis points compared with an actual portfolio return of 105 basis points. Moreover, Figure 13 illustrates

that the expected portfolio returns track the actual returns quite closely. Indeed, only the unrestricted model has

an expected Sharpe ratio (i.e., 0.6557) that is similar to the actual realized Sharpe ratio (i.e., 0.6711). Something

rather odd, conversely, appears to occur with the diagonal implementation of the A0(3) model. It places all of

the portfolio weight in the two longest tenor pure-discount bonds (i.e., five and ten years), to generate a zero

expected excess holding-period return on the portfolio. The actual average returns on this portfolio, however,

are in excess of 600 basis points, with a sizable variance. Clearly, the diagonal model has enormous difficulty in

forecasting excess holding-period returns on longer-tenor pure-discount bonds. The symmetric model fares better

than the diagonal model, although it still has an actual portfolio return of approximately twice the expected
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average portfolio return.

Figure 13 tells a very similar story to that told by Figure 12: the three empirical models and the unrestricted

version of the A0(3) model tend to produce expected portfolio returns, rather than generally track the actual

portfolio returns. The diagonal and symmetric implementations of the A0(3), conversely, do not closely track

actual returns. We conclude, therefore, that there is substantial evidence that four of the six models are poten-

tially useful in a portfolio exercise. Whether we can generalize these results from this simplified setting to the

rather more complex debt-management setting remains, of course, an open question. This analysis, however, is

nonetheless compelling.

5 Conclusion

In this paper, we examine six term-structure models that fall into two different classes. Given the size of the

literature in this field, this is a very small subset of the available collection of models. With our focus on risk-

management and the corresponding need to work under the physical measure, we think this is a reasonably good

start. Moreover, we have restricted ourselves to models that, though not necessarily easy to derive and estimate,

are substantially less complex than many competing models.33

The class of empirical models builds on the work of Diebold and Li (2003)). We examine their dynamic

extension of the Nelson-Siegel model and create a dynamic extension of the exponential-spline model suggested

by Li et al. (2001), as well as the Fourier-series model proposed by Bolder (2002). Each of these models

proposes substantially different mathematical structures for the factor loadings of the term structure. Indeed,

the Nelson-Siegel, exponential-spline, and Fourier-series models propose Laguerre, orthogonalized-exponential,

and trigonometric basis functions, respectively.

The class of theoretical models considered in this paper is also quite small. We consider, within the context

of an affine A0(3) model, different restrictions on the Aγ matrix pre-multiplying the state-variable vector in the

market price of risk. Specifically, we consider a diagonal, symmetric, and unrestricted form for the Aγ matrix.

We consider these alternatives principally through a general desire to reduce the number of model parameters;

to be fair, this is a very modest change in the structure of the model. The differences in the performance of these

versions of the A0(3) model in the forecasting exercise, and the deviations from the expectations hypothesis are,

therefore, quite surprising.

Having worked through the technical details of these models, we compare the models based on four principal

dimensions. First, we consider their in- and out-of-sample ability to forecast future zero-coupon rates on a variety

of different forecasting horizons. This involves examination of how well the models forecast the entire yield curve,

as well as a number of specific zero-coupon tenors. Second, we examine the ability of these models to forecast out-
33The quadratic models of Leippold and Wu (2000, 2001) and the positive models of Flesaker and Hughston (1996) are good

examples.
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of-sample excess holding-period returns associated with holding pure-discount bonds of different tenors. Third,

we use simulation to examine the ability of these different models to capture two alternative econometric tests of

the expectations hypothesis: these include the forward-rate regressions recently proposed by Backus et al. (2001)

and the ubiquitous LPY regression. The idea behind these tests is that a good model should, in general, be able

to reproduce the deviations from the expectations hypothesis observed in the actual zero-coupon data. Finally,

we consider a practical application of these models to a portfolio-optimization problem. Specifically, we use each

of the six term-structure models to select optimal weights for a pure-discount bond portfolio in a mean-variance

setting.

There are several principal observations that we can draw from this work:

• the empirical models demonstrate superior in- and out-of-sample forecasting ability relative to the theoret-

ical models on virtually every possible measure of forecasting performance;

• it is difficult for even the empirical models, which forecast well relative to the theoretical models, to

outperform a random-walk model;

• the underperformance of the theoretical models is particularly evident at longer zero-coupon tenors and

longer forecasting horizons;

• among the empirical models, the Nelson-Siegel model has the most consistent in- and out-of-sample fore-

asting performance, although the exponential-spline model is a fairly close second;

• among the theoretical models, the unrestricted model rather dramatically outperforms the diagonal and

symmetric formulations of the Aγ matrix;

• over the forecasting period, all of the models demonstrate a tendency to overestimate zero-coupon rates

and correspondingly underestimate excess holding-period returns;

• of the six models, only the Nelson-Siegel is capable of reasonably describing the observed deviations from

the expectations hypothesis across both econometric tests;

• those models that exhibit the best performance in forecasting out-of-sample excess holding-period returns

(i.e., the three empirical models and the unrestricted A0(3) model) provide the most reasonable results in

our simplified portfolio-optimization exercise.

Why do the theoretical models underperform the empirical approach? One possible explanation relates

to the fact that, over the forecasting period, the term structure of zero-coupon interest rates was very steep.

Consequently, the A0(3) models may possibly be forecasting that the term structure will revert back to its

normal shape more quickly than actually observed in the data. Duffee (2002) discusses the negative correlation

between yield forecast errors and the slope of the yield curve. That is, when the yield curve is quite steep, the
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forecast errors are quite high; this would suggest that they are missing the generally high-risk premia evident in

a steep yield-curve environment. This does not, however, appear to be the situation in this case. We can say

this because we have somewhat more information. We see that all of the models, although the A0(3) models are

the worst offenders, generally overestimate future zero-coupon rates and correspondingly underestimate excess

holding-period returns. This would suggest that these models actually overestimate risk premia.

Note also that model performance in the forecasting exercise and the expectations hypothesis test does not

appear to be independent. Those models—specifically, the Nelson-Siegel and the exponential-spline model—

that best capture deviations from the expectations hypothesis also exhibit the best performance in the in- and

out-of-sample forecasting exercises, as well as the portfolio-optimization analysis. This supports the view that

forecasting future zero-coupon rate outcomes is closely related to the description of risk premia and the associated

excess returns inherent in the yield curve. It also suggests that the A0(3) models’ difficulty in forecasting the short

zero-coupon tenors stems from the relative difficulty of these models to describe deviations from the expectations

hypothesis.

A few caveats are in order. First, as is always the case, our results are sensitive to the data we use. We

use approximately 15 years of data and allocate the final three-and-a-half years for the out-of-sample forecasting

exercise. To the extent that this period is not representative, our results will be flawed or misleading. But, given

that we have a limited amount of useful data, we have done the best that we can.34

A second caveat is that estimation of the A0(3) models requires the numerical solution of a high-dimensional

and strongly non-linear optimization problem. One can never be certain of having attained a global minimum.

In an effort to solve this problem, we perform a substantial amount of computation. It is nonetheless possible

that parameters for the A0(3) models do exist that outperform the empirical models. While this is an important

caveat, it does return us to the practitioner perspective of this paper. If a heroic computational effort, along with

a healthy dose of good luck, is required to find a model’s parameters, one is probably well advised to actively

consider simpler alternatives.

We therefore conclude that, for a risk-management practitioner, the empirical models offer an appealing

modelling alternative. The Nelson-Siegel and exponential-spline models offer a number of advantages relative

to the A0(3) models. The derivation of these models involves relatively simple mathematics. Even better, the

parameter estimation is fast and efficient, since one need only use basic linear econometrics. Perhaps most

importantly, these models outperform the A0(3) models, and quite often the random walk, in their ability to

out-of-sample forecast zero-coupon rates and excess holding-period returns. Moreover, the Nelson-Siegel and

exponential-spline models also demonstrate an ability, based on two alternative econometric tests, to capture

deviations from the expectations hypothesis. Finally, these models perform reasonably well in the portfolio-

optimization exercise; this is important, since our ultimate practical application for these models involves portfolio
34It is difficult to use zero-coupon data in Canada prior to the 1990s, owing to the relatively fragmented and illiquid nature of the

Government of Canada bond market.
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selection.

These conclusions are not terribly surprising in the case of the Nelson-Siegel model, given the work of Diebold

and Li (2003). What is perhaps slightly novel in this work is that an extension of the Diebold and Li (2003)

approach to other basis functions also does quite well. In particular, the generalization to orthogonalized ex-

ponentials in the form of the exponential-spline model does as well, and occasionally better, than the Nelson-

Siegel model. The parsimony of the Nelson-Siegel is a clear advantage of this model, but we conclude that the

exponential-spline model merits more investigation.
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