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Abstract

The authors use the efficient hedging methodology for optimal pricing and hedging of equity-

linked life insurance contracts whose payoff depends on the performance of several risky assets.

In particular, they consider a policy that pays the maximum of the values of n risky assets at some

maturity date T, provided that the policyholder survives to T. Such contracts incorporate financial

risk, which stems from the uncertainty about future prices of the underlying financial assets, and

insurance risk, which arises from the policyholder’s mortality. The authors show how efficient

hedging can be used to minimize expected losses from imperfect hedging under a particular risk

preference of the hedger. They also prove a probabilistic result, which allows one to calculate

analytic pricing formulas for equity-linked payoffs with n risky assets. To illustrate its use,

explicit formulas are derived for optimal prices and expected hedging losses for payoffs with two

risky assets. Numerical examples highlighting the implications of efficient hedging for the

management of financial and insurance risks of equity-linked life insurance policies are also

provided.

JEL classification: G10, G12, D81
Bank classification: Financial markets

Résumé

Les auteurs emploient la méthode de couverture efficiente pour tarifer et couvrir de manière

optimale des contrats d’assurance vie indexés sur actions et dont le rendement dépend du

comportement d’un nombre n d’actifs risqués. Leur analyse porte en particulier sur le cas d’une

police qui verse à son titulaire, s’il est encore en vie à la date d’échéance T du contrat, une somme

égale à la plus élevée des valeurs prises par les n actifs risqués. Les polices de ce type comportent

autant un risque financier, découlant de l’incertitude entourant l’évolution du prix des actifs sous-

jacents, qu’un risque d’assurance, associé à la longévité du titulaire. Les auteurs montrent que la

méthode de couverture efficiente peut servir à minimiser l’espérance des pertes résultant d’une

couverture imparfaite, et ce, selon la propension au risque de l’opérateur en couverture. Ils

démontrent aussi un résultat probabiliste sur lequel peut s’appuyer le calcul des formules

analytiques servant à l’évaluation de la somme qui reviendra au titulaire de la police étant donné

un nombre n d’actifs risqués. Afin d’illustrer l’utilité de la méthode, les auteurs déduisent des

formules explicites permettant d’établir les prix optimaux et les pertes de couverture attendues

dans le cas où n est égal à deux. D’autres illustrations chiffrées sont données, afin de mettre en



vi

lumière les diverses applications de la méthode de couverture efficiente dans la gestion du risque

financier et du risque d’assurance propres aux contrats d’assurance vie indexés sur actions.

Classification JEL : G10, G12, D81
Classification de la Banque : Marchés financiers



1. Introduction

Equity-linked insurance contracts have been studied since the middle of the 1970s. The payoff of such
policies depends on two factors: the value of some underlying financial instrument(s) (hence the term
equity-linked), and some insurance-type event in the life of the owner of the contract (death, retirement,
survival to a certain date, etc.). As such, the payoff contains both financial and insurance risk elements,
which have to be priced so that the resulting premium is fair to both the seller and the buyer of the contract.
The famous results of Black and Scholes (1973) and Merton (1973) tell us that, in an idealized market
setting, as long as the seller receives a price equal to the expectation under the risk-neutral probability
measure of the discounted payoff, the seller can hedge this payoff perfectly – with probability of successful
hedging equal to 1. Perfect hedging relies on the ability to trade the financial asset(s) underlying the
payoff and the option itself so as to offset any movement in the values of the underlying asset(s) and the
option. However, mortality risk cannot be offset in the same manner, since mortality is not (yet) traded,
which makes the insurance market incomplete and renders perfect hedging of equity-linked life insurance
contracts impossible (see section 5 for more details).

The goal of this paper is to illustrate how to apply efficient hedging to minimize the shortfall risk when
dealing with equity-linked life insurance contracts written on several risky assets. The shortfall risk is
defined as the expectation of the potential loss from the imperfect hedging strategy, weighted by some loss
function reflecting the hedger’s risk preferences. In this paper, the terms ‘risk preference’ and ‘loss function’
refer to the attitude of the hedger (the insurance firm underwriting the policy) toward financial market risk.
We do not discuss general risk preferences of market participants in the context of economic equilibrium.
Rather, we consider whether the company selling an equity-linked policy is risk-averse, risk-indifferent, or
possibly a risk-taker. Such an approach is taken in Foellmer and Leukert (2000), who develop the efficient
hedging methodology in a mathematical finance-type context of optimal hedging under budget constraints.
Building on the work of Kirch and Melnikov (2005), we extend the application of efficient hedging in the
insurance context, showing that this method is a powerful tool that allows for many quantitative risk
management possibilities, while at the same time being computationally practical, understandable, and
justifiable not only to academics, but also to practitioners in the insurance industry.

We consider a single-premium equity-linked life insurance contract that enables its holder to receive
the greater of the values of several risky assets (such as stocks) at the maturity of the contract, provided
the policyholder survives to this date. We prove an interesting probabilistic result, which we refer to as the
multi-asset theorem, that allows us to derive explicit pricing formulas for payoffs involving n risky assets.
We show how to apply the theorem in the context of the efficient hedging of payoffs on two risky assets by
calculating formulas for optimal prices and maximal expected losses resulting from imperfect hedging for
each of the risk-preference cases. In this, we extend the work of Melnikov and Romaniuk (2006)1 from a
budget-constrainted investor utilizing quantile hedging for a contract with a single risky asset to a multi-
asset Black-Scholes-Merton-type setting. We use historical values of the Dow Jones Industrial Average and
Russell 2000 stock indexes to show how a company that sells an equity-linked contract on these indexes
can assess, quantify, and hedge the resulting financial and insurance risk components based on a given risk
preference. The significance of risk preferences on optimal hedging strategies is also illustrated numerically.

The paper is structured as follows. Section 2 motivates the question of optimal pricing of equity-linked
1Note that the alternative spelling of Romanyuk is Romaniuk.
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insurance in general, the particular payoff under consideration, and the choice of hedging methodology.
Then we review briefly the existing literature on the pricing of equity-linked insurance and hedging of
payoffs on multiple risky assets (section 3), and explain our paper’s contribution. In sections 4 and 5 we
discuss the financial and the insurance market settings. In section 6 we present the formal set-up of the
problem in the context of pricing of equity-linked life insurance contracts via efficient hedging.

We present the multi-asset theorem and the formulas for optimal prices and shortfall risk amounts for
each of the risk-preference cases of the hedger in section 7. We illustrate theoretical results on the use of
efficient hedging in general, when the investor is unable or unwilling to put up the entire amount needed
for a perfect hedge. In section 8 we expand this topic by looking at maximal expected losses that the
investor could bear based on the investor’s risk preference theoretically, and provide a numerical example.
In section 9 we examine risk management strategies that measure and balance financial and insurance
risk elements when efficient hedging is applied to price equity-linked life insurance contracts. Section 10
concludes with suggestions for future work. The proofs of theoretical results are included in appendixes.

2. Motivation

The insurance industry has grown at a tremendous pace in the past decade, especially with the devel-
opment of new markets in Europe and Asia. Equity-linked (also known as ‘index-linked’) contracts, and
contracts paying one unit of some risky asset (‘unit-linked’), have been especially successful. For example,
in discussing world insurance growth in 1997, Swiss Re reported high growth in the life insurance business
in Europe, North America, and the emerging markets in Western Europe, noting that the high growth
rates were spurred in particular by dynamic business in unit-linked and index-linked insurance products
(Swiss Re 1997). The National Association for Variable Annuities cited that, in the United States, the
total industry sales of equity-indexed annuities grew from 0.2 to 12.6 billion dollars between 1995 and
2003 (NAVA 2004). Additionally, the Spanish Institute for Foreign Trade reported that, in Spain in 2000,
the greatest growth occurred in unit-linked insurance products: 81 per cent compared with 21 per cent in
other types (Spanish Institute for Foreign Trade 2002). Winterthur Life achieved a strong and remarkable
growth in unit-linked business in Hong Kong in 2003, and launched markets for unit-linked insurance in
2001 and 2002 in Japan and Taiwan, respectively (Winterthur Life 2004). The Canadian market for seg-
regated funds2 has also been quite successful, raising around 60 billion dollars in assets in 1999 (Hardy
2003).

Equity-linked and unit-linked businesses incorporate a wide variety of products, including variable
annuities (United States), unit-linked insurance contracts (United Kingdom), equity-indexed annuities
(United States), and segregated funds (Canada). The payoff on the maximum of several risky assets is
embedded in some form in most products mentioned above. For example, in its simplest form, the payoff
on the maximum of the values of a risky asset and a deterministic guarantee is incorporated in segregated
funds and indexed universal life insurance, where premiums earn interest based on the performance of some
risky fund but the insurance firm also guarantees a minimum rate of return. This payoff is also studied
widely in the literature, for example, as an ‘asset-value guarantee’ (Brennan and Schwartz 1976, 1979;
Boyle and Schwartz 1977), or ‘minimum death or maturity guarantee’ (Bacinello and Ortu 1993; Aase and
Persson 1994). The payoff on the maximum of several risky assets is embedded in variable universal life
products and segregated funds, where the premiums can be invested in one of the available risky funds,

2This is the name usually associated with equity-linked products in Canada.
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and the investor can generally switch premiums to a better (more profitable) fund at certain dates. Since
the payoffs considered in this paper are building blocks for a variety of equity-linked products, there is
value to knowing how to price them properly.

Due to the rapid growth of equity-linked business, it is important to address the question of ‘correct’
pricing of equity-linked products in general. From the perspective of the insurance industry, the effects
of failing to adopt adequate pricing and risk management models can be devastating. If the company
overestimates and overprices its risks, the consumer will bear the financial burden of excessive insurance
premiums, which may lead to government inquiries and regulation. If, on the other hand, the company
undervalues its risks, it may face substantial losses and lose the confidence of investors and shareholders.
In a stable and efficient economy, it is desirable to have all firms operating optimally in some sense; for
example, without the risk of large losses or even bankruptcy. If a big insurance firm defaults, the negative
effects of this event could be felt by the financial markets and the national economy, as well as individuals,
shareholders, and clients of the firm. Clearly, some of the events causing large losses to insurance companies
cannot be predicted (natural disasters, terrorist activities, etc.). However, fluctuations in the prices of risky
assets and mortality patterns can be analyzed quantitatively and qualitatively to help build proper pricing
tools for insurance firms. Thus the question of finding hedging methodologies that can assess and value
financial and insurance risks, and provide appropriate risk management strategies, is of great interest and
significance from both theoretical and practical perspectives.

One of the impediments to risk pricing arises from the growing market demand for flexible and person-
alized insurance products. To respond to this demand and compete with financial institutions, insurance
firms quickly develop and advertise, along with traditional life and health insurance, comparative products
for investment and wealth management (variable annuities, segregated funds, etc.). The latter instruments
are attractive to investors, since they tend to have shorter maturities and more exposure to financial market
risk than traditional insurance contracts. Moreover, the ‘assurance’ component (a guarantee of some sort
paid upon the death of the investor or upon surival to the contract’s maturity), together with generous
tax benefits of equity-linked products, make them very successful alternatives to traditional investment
instruments.

Before examining the pricing of equity-linked insurance products in more detail, we review how insur-
ance firms hedge these contracts currently, and discuss whether these methods are appropriate. Several
general practices of insurance companies have been pointed out in the literature. For example, Bacinello
(2001) notes that mortality risk is generally not included explicitly in the valuation of insurance policies.
Instead, firms account for this risk by using ‘safety-loaded’ life tables where survival probabilities are
‘loaded’ to reflect mortality/survival risks. Dahl (2004) states that, traditionally, insurance firms calculate
premiums and reserves based on deterministic mortality and interest rates, and that to compensate for
this, firms overprice financial and insurance risks, which results in higher than necessary premiums as well
as room for error in estimating proper mortality and interest rates.

To illustrate how such ‘actuarial judgment’ may fail, Hardy (2003) brings up the case of Equitable
Life (a large mutual company in the United Kingdom). In the 1980s, U.K. interest rates were higher
than 10 per cent, and Equitable Life issued many contracts with guaranteed annuity options, in which
the guarantees would move into the money only if interest rates fell below 6.5 per cent. Relying on their
personal judgment, actuaries at Equitable Life believed that rates would never fall below 6.5 per cent.
However, in the 1990s interest rates did fall below 6.5 per cent and the policies were cashed in, generating
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such large guarantee liabilities that Equitable Life was forced to close to new business.
In this setting, one may argue that life insurance firms could buy options to manage the risks they

carry from reinsurance companies. In this way, life insurance firms could insure their own risks. While
reinsurance companies have been selling options that could be used to manage risks inherent in equity-linked
contracts, the prices of these options have been such that life insurance firms selling the original equity-
linked policies would be losing substantial portions of their expected profits. On top of that, insurance
firms would be undertaking another risk – the risk of default of the reinsurer. Moreover, in some markets
(such as segregated funds in Canada), reinsurance companies are becoming more and more reluctant to
provide reinsurance at prices that are acceptable to insurance firms (Hardy 2003).

The International Accounting Standards Board (IASB) has highlighted the problem of improper pricing
of financial and insurance risks (Biffis 2005). The IASB recognizes that mortality risk cannot be ignored in
actuarial calculations and recommends that firms price both financial and insurance risks explicitly. The
efficient hedging approach, discussed in this paper, allows the insurance firm to price the risks arising from
volatility in the prices of risky assets and mortality fluctuations. Also, the firm is able to choose and control
its desired risk exposure for both financial and insurance risk elements. Efficient hedging is intuitive, since
the minimization of potential losses is an obvious and natural criterion for risk management, and flexible,
since it enables the hedger to incorporate risk preferences when pricing equity-linked policies. Finally, it
allows users to derive explicit formulas for the premiums of contracts in consideration. While numerical
solutions can be found to many problems arising in finance, it is still desirable to have closed-form solutions
to these problems.3

3. Literature Overview

The topic of pricing of equity-linked insurance contracts became popular soon after the celebrated papers
by Black and Scholes (1973) and Merton (1973) on the valuation of call options. Since equity-linked
contracts incorporate both financial and insurance risk elements, perfect hedging in the sense of Black and
Scholes (1973) and Merton (1973) does not work: the mortality risk of the option holder cannot be offset
by trading in the insurance market, since mortality is not a traded asset.4 This section reviews some of
the research on the pricing of risks entailed in equity-linked insurance products.5

Early contributions to the pricing of equity-linked insurance include Brennan and Schwartz (1976,
1979), Boyle and Schwartz (1977), and Delbaen (1986); among later authors on this topic are Bacinello
and Ortu (1993), Aase and Persson (1994), Ekern and Persson (1996), Boyle and Hardy (1997), and
Bacinello (2001). Note that most of these papers do not price financial and insurance risks explicitly.
For example, Ekern and Persson (1996) calculate premiums for a large variety of equity-linked contracts,
including those with payoffs where the contract owner chooses the larger of the values of two risky assets
(and possibly a guaranteed amount) at the maturity of the contract, similar to the payoffs considered here.
But the authors disregard mortality risk, calling it “unsystematic risk,” for which “the insurer does not
receive any compensation.” The justification provided is the traditional argument that mortality risk can

3As noted in Musiela and Zariphopoulou (2004), very few existing optimization-type approaches to optimal pricing of
equity-linked insurance have produced explicit formulas that are intuitive and convey the idea behind the methodology.

4However, it appears that a market for mortality is slowly developing. Special thanks to the anonymous referee of Melnikov
and Romaniuk (2006) for this interesting and useful observation.

5For a more detailed literature review, please see Romanyuk (2006).
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be eliminated by selling a large number of equity-linked contracts. Note, however, that pooling mechanisms
do not seem to work.6

Another method for the valuation of equity-linked contracts stems from the utility-based indifference
pricing approach, introduced by Hodges and Neuberger (1989) in the context of incomplete markets due
to transaction costs. Here, the premium for the contract is calculated in such a way as to make the
hedger (the insurance company, in our case) indifferent between including and not including a specified
number of contracts in their portfolio. The method is extended to equity-linked insurance by Young and
Zariphopoulou (2002a,b), who look at utility-based pricing when insurance risks are independent of the
underlying financial asset (as in the setting considered in this paper), and Young (2003), who considers the
situation where death benefits payable to the policyholder depend on the value evolution of the underlying
financial asset.

Moeller (1998, 2001) incorporates financial and group mortality risk and determines the optimal hedging
strategy as the one minimizing squared errors in future costs of the strategy. Our paper uses the efficient
hedging methodology, whose goal is to minimize the expected losses of the hedger. This approach and
the related concept of quantile hedging, where the probability of successful hedging is maximized, were
developed by Foellmer and Leukert (1999, 2000) without the context of pricing and hedging of equity-linked
contracts.7 A number of papers adapt quantile and efficient hedging to the insurance setting to price equity-
linked contracts (Krutchenko and Melnikov 2001; Melnikov 2004a,b; Melnikov and Skornyakova 2005; Kirch
and Melnikov 2005; Melnikov, Romaniuk, and Skornyakova 2005; Melnikov and Romaniuk 2006). Our work
extends the research in the above contributions, where payoffs include one or two risky assets, by studying
the application of efficient hedging in a more general financial setting with n risky assets, whose returns are
modelled by correlated Wiener processes. We also add to the existing results by examining quantitatively
and qualitatively the maximal expected losses resulting from imperfect hedging based on the risk preference
of the hedger.

European-type contracts with payoffs involving several risky assets have been studied by Margrabe
(1978), who calculates the perfect hedging price of an option to exchange one risky asset for another (see also
Davis 2002), and Stulz (1982), who derives analytical formulas for prices of European call and put options on
the minimum or maximum of two risky assets in the classical Black-Scholes-Merton-type setting. Johnson
(1987) generalizes the latter result to payoffs with n risky assets using a change of numeraire technique, the
characteristics of call/put options, and the lognormal properties of the underlying assets. Boyle and Tse
(1990) present a fast and accurate approximation algorithm to value options on the maximum or minimum
of several assets. Boyle and Lin (1997) obtain upper bounds for prices of call options on several assets
without making any assumptions about the probability distribution of these assets. Laamanen (2000)
further extends the result of Johnson (1987) to the payoffs on m best of n risky assets by utilizing a
recursive approach in pricing calculations. We will derive a more general probabilistic-type result that
allows us to value not only payoffs with several assets, but also to calculate directly expectations resulting
from such payoffs being contingent upon other events; for example, when using efficient hedging to price
equity-linked life insurance contracts.

6As indicated by the anonymous referee of Melnikov and Romaniuk (2006).
7Related contributions include Spivak and Cvitanic (1999), Cvitanic and Karatzas (1999), Cvitanic (2000), Nakano (2004),

and Kirch and Runggaldier (2004).
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4. Financial Setting

We work in a financial market with an interest rate r > 0, a riskless asset (a bank account, for instance)
B = (Bt)t∈[0,T ], and risky assets Si = (Si

t)t∈[0,T ], i = 1, . . . , n with price evolutions

dBt = rBtdt ⇔ Bt = B0e
rt, B0 := 1;

dSi
t = Si

t(µidt + σidW i
t ) ⇔ Si

t = Si
0e

(
µi−

σ2
i
2

)
t+σiW

i
t
, (1)

where the constants µi ∈ R, σi > 0 are the return and the volatility of the instantaneous return dSi

Si of the
risky asset Si. We model dSi

Si by correlated Wiener processes W i = (W i
t )t∈[0,T ] with the variance-covariance

matrix Ln:

Ln =

 σ2
1 · · · σ1σnρ1n
...

. . .
...

σ1σnρ1n · · · σ2
n

 . (2)

Obviously Ln is symmetric. We make the standard assumptions that Ln is invertible and that ρ2
ij < 1, i 6= j;

that is, the risks underlying the assets cannot be perfectly (positively or negatively) correlated. All processes
are given on a standard stochastic basis (Ω,F , F = (Ft)t∈[0,T ], P ) and are adapted to the filtration F,
generated by W i.

Define a trading strategy, or portfolio, as a predictable process π such that

π = (πt)t∈[0,T ] = (βt, γ
1
t , . . . , γn

t )t∈[0,T ]. (3)

Here, β represents the money invested in the riskless asset, B, and γi
t is the number of shares of Si

t held
in the portfolio at the instant of time t. The capital of π (also referred to as the wealth generated by π) is
given by

V π
t = βtBt + γ1

t S1
t + · · ·+ γn

t Sn
t . (4)

The strategies whose discounted capital satisfies

V π
t

Bt
= V π

0 +
n∑

i=1

∫ t

0
γi

ud

(
Si

u

Bu

)
(5)

are called self-financing. Only self-financing strategies that generate non-negative wealth are admissible.
As is typical in such a setting, we assume that it is possible to trade in the financial market without
any frictions (all assets are perfectly divisible, there are no transaction costs, there are no restrictions on
lending/borrowing, etc.), and that the market admits no arbitrage opportunities.

From option pricing theory, we know that in the complete case, the equivalent martingale measure P ∗

is unique (see, for example, Melnikov, Volkov, and Nechaev 2002). Consider a contingent claim whose
payoff is an FT -measurable non-negative random variable H satisfying H ∈ L1(P ∗). In a complete market,
the payoff H can be hedged perfectly; that is, there exists a unique (admissible) hedging strategy with
(minimal) cost V0 such that

P (VT ≥ H) = 1. (6)
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In other words, the wealth generated by the perfect hedge will be sufficient to cover the liability of the
option writer with probability 1. We also know that the cost of this perfect hedge is given by

V0 = H0 = E∗(He−rT ). (7)

Above, and for the remainder of the paper, e will denote the exponent function, T the maturity of the
contract, and E and E∗ the expectations with respect to the subjective (‘real-world’) and objective (risk-
neutral, or equivalent martingale) measures P and P ∗, respectively.

In our setting, the financial payoff allows the policyholder to receive the largest of the values of n risky
assets at maturity:

H = max{S1
T , . . . , Sn

T }. (8)

The perfect hedging price of this payoff is calculated according to (7), and we know how to derive the
explicit formula for the price (see, for instance, Johnson 1987 or Romanyuk 2006). However, problems
arise when H is payable only upon the survival of the policyholder until the policy’s expiration at T . As
we will see shortly, such a condition lowers the initial (perfect hedging) price of H, creating a positive
probability that the writer of the policy will default on the payment of H.

Before we discuss the insurance setting, let us briefly remark on the financial market setting in the case
of two risky assets, since we will illustrate the use of the multi-asset theorem in the process of deriving
optimal prices for the payoff on the maximum of two assets.

In the financial market setting with two risky assets, the fluctuations in asset returns are modelled by
two Wiener processes W 1 and W 2 with correlation ρ under P . Because there are two assets to trade and
two sources of risk (W 1,W 2), the financial market is complete (and arbitrage-free; see Melnikov, Volkov,
and Nechaev 2002). Therefore, there exists a unique risk-neutral probability measure P ∗ with density Z
such that

Zt =
dP ∗

dP
|Ft , t ∈ [0, T ]. (9)

Using the general methodology for finding martingale measures (presented in Melnikov and Shiryaev 1996,
and Melnikov, Volkov, and Nechaev 2002), we calculate the expression for Z explicitly (for derivation
details, see Appendix A):

Zt = eφ1W 1
t +φ2W 2

t −
σ2

φ
2

t, (10)

where

φ1 =
r(σ2 − σ1ρ) + ρµ2σ1 − µ1σ2

σ1σ2(1− ρ2)
, φ2 =

r(σ1 − σ2ρ) + ρµ1σ2 − µ2σ1

σ1σ2(1− ρ2)
, (11)

and
σ2

φ = φ2
1 + φ2

2 + 2ρφ1φ2. (12)

Under P ∗, the evolutions of S1 and S2 can be rewritten as

dSi
t = Si

t(rdt + σidW i∗
t ) ⇔ Si

t = Si
0e

(
r−σ2

i
2

)
t+σiW

i∗
t

, i = 1, 2. (13)
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Here, W i∗ = (W i∗
t )t∈[0,T ] are Wiener processes with correlation ρ under P ∗ that satisfy

W i∗
t = W i

t + θit, (14)

with
θi =

µi − r

σi
. (15)

It follows that discounted S1 and S2 are martingales with respect to P ∗. Using (10) and (14), we rewrite
the expression for Z under P ∗:

Zt = e
φ1W 1∗

t +φ2W 2∗
t −

(
σ2

φ
2

+φ1θ1+φ2θ2

)
t

. (16)

Note that in derivations of pricing formulas, we will use the formulas for Si and Z under both the original
(P ) and the risk-neutral (P ∗) probability measures.

Next, consider the parameter θi given in (15). In the financial literature, θ is referred to as the market
price of risk: this is the additional ‘reward’ per unit volatility investors receive to compensate them for the
willingness to bear risk when putting money in risky, as opposed to riskless, assets. We require that

θi > 0 ⇔ µi > r; (17)

otherwise, an arbitrage strategy with zero initial outlay and positive expected return could be constructed
(short a stock and invest the proceeds in a bond, then use the principal and interest from the bond to buy
back the stock).

In the setting with two risky assets, the payoff takes the form

H = max{S1
T , S2

T } = S1
T I{S1

T≥S2
T }

+ S2
T I{S1

T <S2
T }

. (18)

As such, H is the payoff for a purely financial contract, whose fair price is determined uniquely by (7).
The explicit formula for the fair price (see, for example, Stulz 1982) is given by

H0 = E∗ (max{S1
T , S2

T }e−rT
)

= S1
0 ·Ψ1(ỹ1) + S2

0 ·Ψ1(ỹ2), (19)

where Ψ1 denotes a one-dimensional cumulative normal distribution: for u ∼ N(0, 1),

Ψ1(c) =
∫ c

−∞

e−u2/2

√
2π

du. (20)

The constants ỹ1, ỹ2 are defined as

ỹ1 =
ln
(

S1
0

S2
0

)
+ σ2

2 T

σ
√

T
, ỹ2 =

ln
(

S2
0

S1
0

)
+ σ2

2 T

σ
√

T
, (21)

and

σ2 = σ2
1 + σ2

2 − 2ρσ1σ2. (22)
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5. Insurance Setting

Let a random variable τ(x) on a probability space (Ω̄, F̄ , P̄ ) denote the remaining lifetime of a person of
current age x. We make the standard assumption that the insurance risk arising from clients’ mortality
and the financial market risk have no (or very minimal) effect on each other, and hence the two probability
measures P and P̄ are independent (Luciano and Vigna 2005).

Term insurance products are types of policies whose payoff occurs before the maturity of the policy.
For example, one could buy a 20-year policy paying 10,000 Canadian dollars in case the death of the
policyholder occurs within 20 years from the date of purchase. On the other hand, the payoff of life
insurance products occurs on or after the maturity of the policy, as long as some prespecified event did
not happen prior to the maturity date. We work with a single-premium equity-linked life insurance policy
where the policyholder receives the payoff H given by (8), provided that the policyholder is alive to collect
that payoff. That is, we consider the payoff H̄:

H̄ = H · I{τ(x)>T}, (23)

where I refers to the indicator function that equals 1 if the insured survives to T ({τ(x) > T}), or 0 if the
insured dies before T . The fair premium U0 for a contract with such a payoff is

U0 = E∗ × Ē
(
He−rT I{τ(x)>T}

)
= E∗ (He−rT

)
P̄{τ(x) > T}

= E∗ (He−rT
)

T px , (24)

where T px = P̄{τ(x) > T} denotes the probability of a life aged x surviving T more years, and E∗ × Ē
denotes the expectation with respect to the product measure P ∗ × P̄ .

Notice that the mortality of the insured client (as reflected by the client’s survival probability T px)
makes it impossible for the insurance firm writing the contract to hedge its payoff with probability 1:

0 < T px < 1 ⇒ U0 < H0 = E∗ (He−rT
)
. (25)

As mentioned previously, since mortality is not traded directly, it is not possible to hedge mortality risk as
one hedges the risk associated with trading financial options, by taking positions in the underlying risky
asset(s). Thus the insurance market is incomplete.

6. Efficient Hedging for Equity-Linked Life Insurance

In the situation when the quantity U0 (24), collected by the firm from the sale of the equity-linked life
insurance contract with payoff (23), is strictly less than the amount H0, necessary to hedge the payoff
perfectly, the firm faces the risk of default. To reduce this risk, the company must find some appropriate
imperfect hedging technique that optimizes hedging outcomes, given constraints on initial capital available
for hedging. In this section, we show how efficient hedging can be applied in this situation.8

8In this paper, we give only the general idea behind the efficient hedging methodology and refer the reader to Foellmer and
Leukert (2000) and Romanyuk (2006) for details on the method and its extension to our setting.
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The purpose of efficient hedging is to minimize the potential losses, weighted by the hedger’s risk
preference, from imperfect hedging. More specifically, efficient hedging aims at finding an admissible
hedging strategy π∗ that minimizes the shortfall risk:

E
(
l((H − V π∗

T )+)
)

= min
π

E
(
l((H − V π

T )+)
)

with V0 ≤ U0 < H0. (26)

Here, l denotes the loss function that reflects the investor’s (hedger’s) risk preference. Foellmer and Leukert
(2000) work with power loss function l(x) = xp, p > 0, where the different values for p reflect the particular
view toward risk. Note that p > 1 implies that the investor is risk-averse: the larger the investor’s losses,
the more the investor ‘feels’ them. The case p = 1 corresponds to risk indifference, where the investor
perceives losses one-for-one with the dollar amount lost. If 0 < p < 1, the investor is a risk-taker: the
investor cares less about larger losses than smaller ones. While this last attitude may seem irrational, we
can think of this type of investor as an addicted gambler, who finds it more and more difficult to stop
playing as their losses get larger.

Foellmer and Leukert (2000) show that the solution to the problem in (26) is the perfect hedge π∗ for
the modified contingent claim

H∗ = ϕ∗H, (27)

where ϕ∗ is determined9 as

ϕ∗ = 1−

(
I
(
a∗e−rT ZT

)
H

∧ 1

)
for p > 1, (28)

with I = (l′)−1 denoting the inverse of the derivative of the loss function l,

ϕ∗ = I{1>a∗e−rT H1−pZT } for 0 < p < 1, (29)

and, finally,
ϕ∗ = I{1>a∗e−rT ZT } for p = 1. (30)

The inequalities in (26) reflect the fact that the investor is budget constrained, U0 < H0 (H0 =
E∗(He−rT ) is the amount needed for a perfect hedge), and the requirement that the initial cost V0 of the
optimal hedging strategy must not be greater than the amount available to the hedger, V0 ≤ U0. Note
that the cost of the optimal hedging strategy π∗ (the one minimizing the shortfall risk for payoff H under
the budget constraint U0) is the price of the perfect hedge for the modified contingent claim H∗, given by
U0 (Foellmer and Leukert 2000).

It is worthwhile to highlight the elegance of the efficient hedging approach in the situation with financing
constraints. The constraint on the initial hedging capital may arise due to some external factor beyond
the hedger’s control (such as mortality risk in equity-linked life insurance contracts), or a circumstance
within the decision-making power of the hedger (the hedger may be unwilling to put up the entire amount
required for perfect hedging and be prepared to take some risk as a trade-off for offering the contract at a

9The expressions for ϕ∗ correspond to those denoted ϕ̃ in Foellmer and Leukert (2000) for r = 0. We work with a non-zero
interest rate. Please see Romanyuk (2006) for more information on how to adapt the results of Foellmer and Leukert (2000)
to our setting in particular, and to the pricing of equity-linked life insurance contracts in general.
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lower price). In either case, the hedger can solve the problem of insufficient initial capital by minimizing
the shortfall risk as follows. The hedger should invest U0 into the (optimal) strategy π∗, which perfectly
hedges the modified contingent claim H∗, and the desired optimization goal will be achieved. Of course,
one must take care to select the H∗ and π∗ that correspond to the appropriate risk preference. We believe
that this risk management approach is easy to understand and thus is likely to be implemented.

In section 7.1, we will illustrate the situation where the investor cannot provide the entire amount of
H0 required for a perfect hedge and is ready to accept some shortfall risk. Since shortfall is an amount
that could be lost due to imperfect hedging, it is expressed in dollar terms. We will show the possible risk
management strategies based on two different perspectives of the hedger. First, we will calculate the level
of shortfall risk if the hedger is willing to invest U0, taken as a percentage of H0, into the optimal hedge.
Second, we will illustrate how much initial capital U0 is required if the hedger wants to keep shortfall at
some acceptable level, specified beforehand.

We can extend our study of efficient hedging far beyond purely financial risk management considera-
tions: the flexibility of this hedging methodology makes it an excellent risk management tool for insurance
applications, particularly in the case of equity-linked life insurance products. Let us discuss this point in
more detail. On the one hand, we showed in (24) that U0 is the fair premium for an equity-linked life
insurance contract with payoff H̄ (23). On the other hand, the main result of efficient hedging tells us that
the budget constraint (U0 in our case) is also the cost of the optimal strategy π∗, which perfectly hedges
the modified contingent claim H∗ given by (27). Based on this, we obtain the following equalities for the
price of the equity-linked life insurance contract in consideration:

U0 = E∗ × Ē(H̄e−rT ) = E∗(H∗e−rT ) (31)
= E∗(He−rT )T px = E∗(H∗e−rT ),

from which we can express the survival probability of the policyholder as

T px =
E∗(H∗)
E∗(H)

. (32)

The term E∗(He−rT ) above is known ((19) for the payoff with two assets; for n assets, see Johnson 1987):
it is simply the cost of the perfect hedge for H (7).

Equations (31) and (32) are essential to the subsequent risk management analysis of efficient hedging
in insurance applications, since they give a quantitative connection between financial and insurance risk
components. Such a connection allows the insurance firm to assess accurately the risks it bears, and to
implement specific strategies to control these risks according to the preferred risk management approach.
That is, the firm can either offer equity-linked contracts to any client and then, based on the fair price
received from this client, minimize the shortfall risk, or the firm can set the acceptable amount of expected
shortfall and then analyze clients for the contracts accordingly.

More specifically, using the first approach, the firm will derive the client’s survival probability T px

based on the client’s known age x from life tables or some appropriate mortality model. Then the firm will
find a∗ from (27) and (32), and proceed to compute the shortfall risk using (26). Note that the obtained
value for the minimized shortfall may not fit the company’s desired risk profile. Alternatively, the firm can
utilize equation (32) in reverse: first, choose some acceptable amount of shortfall, calculate a∗, and then
find the survival probabilities T px of potential clients. Next, using life tables or an appropriate mortality

11



model, the ages of clients paying fair premiums (under the prescribed risk level) can be derived and risk
management consequences analyzed in light of the firm’s risk preferences. We will illustrate both of these
approaches in section 9.

7. Theoretical Results

In this section, we present the multi-asset theorem, which is used in computing pricing and shortfall
formulas for equity-linked life insurance contracts with payoff H̄ (23). As a particular application of the
theorem, we give explicit formulas for the fair premium, shortfall risk amount, and maximal expected
shortfall for each of the three risk attitudes of the hedger (risk aversion, risk taking, and risk indifference).
Recall that the shortfall risk amount is the expected loss from the imperfect hedge that results from the
constraint U0 on the initial hedging capital available to the investor; this shortfall risk is minimized when
U0 is invested into the optimal hedge π∗ (see discussion before (31)).

Based on equations (8), (24), and (31), in order to find, for instance, the fair premium U0 for the case
of risk indifference (see (30)), we need to evaluate the following expression:

U0 = E∗
(

max {S1
T , S2

T , . . . , Sn
T }

erT
ϕ∗
)

(33)

= E∗
(

S1
T

erT
I{1>a∗e−rT ZT }I{S1

T≥S2
T }

I{S1
T≥S3

T }
· · · I{S1

T≥Sn
T }

)
+E∗

(
S2

T

erT
I{1>a∗e−rT ZT }I{S2

T >S1
T }

I{S2
T≥S3

T }
· · · I{S2

T≥Sn
T }

)
+ · · ·+ E∗

(
Sn

T

erT
I{1>a∗e−rT ZT }I{Sn

T >S1
T }

I{Sn
T >S2

T }
· · · I{Sn

T >Sn−1
T }

)
.

Because Si and Z depend on normally distributed Wiener processes W i, we can represent the expectations
above as

E∗ (e−zI{x1<X1} · · · I{xn<Xn}
)
, (34)

where X1, . . . , Xn are constants, and z, x1, . . . , xn are normally distributed random variables with appro-
priately determined means, variances, and correlations. To compute such expectations explicitly, we prove
the following theorem.

Theorem 1: multi-asset theorem
Let xi ∼ N(µi, σ

2
i ), i = 1, . . . , n and z ∼ N(µz, σ

2
z) be n + 1 normally distributed random variables with a

variance-covariance matrix Rn+1 given by

Rn+1 =

 σ2
1 · · · σ1σzρ1z
...

. . .
...

σ1σzρ1z · · · σ2
z

 . (35)
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Then, for some given constants Xi,

E
(
e−zI{x1<X1} · · · I{xn<Xn}

)
= e

−
(

µz−
σ2

z
2

)
·Ψn(X̂1, . . . , X̂n), (36)

X̂i =
Xi − µi

σi
+ σzρiz.

In the formulation of the theorem, we refer to xn+1 as z, to distinguish the fact that the n + 1 random
variable is in the exponent. Also, Ψn, n > 1, denotes the n-dimensional cumulative normal distribution
(see below) of n random variables with mean 0, variance 1, and the correlation matrix

R̃n =

 1 · · · ρ1n
...

. . .
...

ρ1n · · · 1

 , (37)

with the inverse R̃−1
n = Ãn.

The general formula for the k-dimensional cumulative normal distribution of (k) random variables
yi ∼ N(µi, σ

2
i ) with the variance-covariance matrix Dk is given by

Ψk
general(c1, . . . , ck) =

1
(2π)k/2|Dk|1/2

∫ c1

−∞
· · ·
∫ ck

−∞
e−

1
2

∑k
i=1

∑k
j=1 bij(yi−µi)(yj−µj)dy1 · · · dyk, (38)

Dk =

 σ2
1 · · · σ1σkρ1k
...

. . .
...

σ1σkρ1k · · · σ2
k

 , Bk = ‖bij‖k = D−1
k .

Please note that, for the remainder of the paper (including the appendixes), Ψk, k > 1, without the
subscript ‘general,’ will refer to the k-dimensional cumulative normal distribution of correlated random
variables with mean 0 and variance 1.

Proof. See Appendix B.

Theorem 2: premiums and shortfall risk amounts
Suppose that an insurance firm has sold an equity-linked life insurance contract with payoff providing
the maximum of two risky asset values upon the survival of the buyer until the maturity of the contract.
Suppose further that the firm decides to use efficient hedging to minimize the shortfall risk.

Part I. The firm’s risk preference is risk aversion: for the loss function l(x) = xp, p > 1.
a. The fair premium for the contract is

U0 = S1
0 ·Ψ2(x̃A

1 , ỹ1, ρ
A
1 ) + S2

0 ·Ψ2(x̃A
2 , ỹ2, ρ

A
2 )

−M ·
[
Ψ2(c̃1, ỹ

c
1, ρ

A
1 ) + Ψ2(c̃2, ỹ

c
2, ρ

A
2 )
]
. (39)
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b. The shortfall risk amount is given by

E
(
l((H − VT )+)

)
= N ·

[
Ψ2(c̄1, ȳ

c
1, ρ

A
1 ) + Ψ2(c̄2, ȳ

c
2, ρ

A
2 )
]

+(S1
0)pe

(
µ1−

σ2
1
2

)
Tp+

σ2
1
2

Tp2

·Ψ2(k̄1, ȳ
k
1 ,−ρA

1 )

+(S2
0)pe

(
µ2−

σ2
2
2

)
Tp+

σ2
2
2

Tp2

·Ψ2(k̄2, ȳ
k
2 ,−ρA

2 ). (40)

Part II. The firm’s risk preference is risk taking: for the loss function l(x) = xp, 0 < p < 1.
a. The fair premium for the contract is

U0 = S1
0 ·Ψ2(x̃T

1 , ỹ1, ρ
T
1 ) + S2

0 ·Ψ2(x̃T
2 , ỹ2, ρ

T
2 ). (41)

b. The shortfall risk amount is given by

E
(
l((H − VT )+)

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp+

σ2
1
2

Tp2

·
[
Ψ1(ȳT

1 )−Ψ2(x̄T
1 , ȳT

1 , ρT
1 )
]

+(S2
0)pe

(
µ2−

σ2
2
2

)
Tp+

σ2
2
2

Tp2

·
[
Ψ1(ȳT

2 )−Ψ2(x̄T
2 , ȳT

2 , ρT
2 )
]
. (42)

Part III. The firm’s risk preference is risk indifference: for the loss function l(x) = xp, p = 1.
a. The fair premium for the contract is

U0 = S1
0 ·Ψ2(x̃I

1, ỹ1, ρ
I
1) + S2

0 ·Ψ2(x̃I
2, ỹ2, ρ

I
2). (43)

b. The shortfall risk amount is given by

E
(
l((H − VT )+)

)
= S1

0eµ1T ·
[
Ψ1(ȳI

1)−Ψ2(x̄I
1, ȳ

I
1 , ρ

I
1)
]

+S2
0eµ2T ·

[
Ψ1(ȳI

2)−Ψ2(x̄I
2, ȳ

I
2 , ρ

I
2)
]
. (44)

Above, Ψ2 denotes two-dimensional cumulative normal distribution (see (38)) with the corresponding
correlations

ρA
i = ρT

i =
φj(σj − σiρ)− (φi − σi(p− 1))(σi − σjρ)

σE
i σ

,

ρI
i =

φj(σj − σiρ)− φi(σi − σjρ)
σφσ

, (45)

for i, j = 1, 2.
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The remaining constants are defined as

M =
(

a∗

p

) 1
p−1

· e
σ2

φT

2(p−1)2

e
rT+

(
r+

σ2
φ
2

+φ1θ1+φ2θ2

)
T

p−1

, (46)

N =
(

a∗

p

) p
p−1

· e
σ2

φTp2

2(p−1)2

e

(
r+

σ2
φ
2

)
Tp

p−1

, (47)

x̃A
i =

ln
(
(Si

0)
p−1 p

a∗

)
+
[
p
(
r + σ2

i
2

)
+

σ2
φ−σ2

i

2 + φi(θi − σi) + φj(θj − ρσi)
]

T

σE
i

√
T

, (48)

c̃i =
ln
(
(Si

0)
p−1 p

a∗

)
+
[
p
(
r − σ2

i
2

)
+

σ2
φ+σ2

i

2 − σ2
φ

p−1 + φi(θi + σi) + φj(θj + ρσi)
]

T

σE
i

√
T

, (49)

ỹc
i =

ln
(

Si
0

Sj
0

)
+
(

σ2
j−σ2

i

2

)
T + [φi(σi − σjρ)− φj(σj − σiρ)] T

p−1

σ
√

T
, (50)

c̄i =
ln
(
(Si

0)
p−1 p

a∗

)
+
[
r +

σ2
φ

2 − σ2
φp

p−1 + (p− 1)
(
µi −

σ2
i
2

)
+ p(φiσi + φjσiρ)

]
T

σE
i

√
T

, (51)

ȳc
i =

ln
(

Si
0

Sj
0

)
+
[
µi − µj +

σ2
j−σ2

i

2 + p
p−1 (φi(σi − σjρ)− φj(σj − σiρ))

]
T

σ
√

T
, (52)

k̄i =
ln
(

a∗

p (Si
0)

1−p
)
−
[
r +

σ2
φ

2 + (p− 1)
(
µi −

σ2
i
2

)
− p(φiσi + φjσiρ− σ2

i (p− 1))
]

T

σE
i

√
T

, (53)

ȳk
i =

ln
(

Si
0

Sj
0

)
+
[
µi − µj +

σ2
j−σ2

i

2 + p(σ2
i − σiσjρ)

]
T

σ
√

T
, (54)
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x̃T
i =

[
σ2

φ−σ2
i

2 + φi(θi − σi) + φj(θj − ρσi) + p
(
r + σ2

i
2

)]
T − ln

(
(Si

0)
1−pa∗

)
σE

i

√
T

, (55)

x̄T
i =

[
r +

σ2
φ

2 − (1− p)
(
µi −

σ2
i
2

)
− p(σ2

i (1− p) + φiσi + φjσiρ)
]

T − ln
(
(Si

0)
1−pa∗

)
σE

i

√
T

, (56)

ȳT
i =

ln
(

Si
0

Sj
0

)
+
[
µi − µj +

σ2
j−σ2

i

2 + p(σ2
i − σiσjρ)

]
T

σ
√

T
, (57)

x̃I
i =

[
r +

σ2
φ

2 + φi(θi − σi) + φj(θj − ρσi)
]

T − ln (a∗)

σφ

√
T

, (58)

x̄I
i =

[
r +

σ2
φ

2 − φiσi − φjσiρ)
]

T − ln (a∗)

σφ

√
T

, (59)

ȳI
i =

ln
(

Si
0

Sj
0

)
+
[
µi − µj + σ2

2

]
T

σ
√

T
, (60)

(σE
i )2 = σ2

φ + (1− p)2σ2
i − 2σi(1− p)θi. (61)

Note that ỹi are given in (21), φi in (11), θi in (15), σ in (22), and σφ in (12). Also, the formulas for the
premium and the shortfall risk for the cases of risk aversion and risk taking hold as long as the technical
conditions ρ 6= θ1

θ2
and ρ 6= θ2

θ1
are satisfied, as explained in the proof of Theorem 2. The conditions are

not restrictive in any way: the likelihood of having two risky assets with a correlation of the underlying
Wiener processes being exactly equal to the ratio of θi is very small. However, in case this does happen,
there are ways to deal with the situation (please see the proof for more details).

Proof. See Appendix C.
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7.1 Example: applying efficient hedging

Let us demonstrate how an investor can use efficient hedging to deal with insufficient initial capital. We
do not deal with an insurance risk element yet; that aspect of equity-linked life insurance contracts will be
illustrated in section 9. For now, we focus on showing what risk management strategies are available to
the hedger utilizing the efficient hedging technique under budget constraints.

To calculate the parameters for our model (µi, σi, ρ, i = 1, 2), we use daily stock prices of the Russell
2000 (RUT-I) and Dow Jones Industrial Average (DJIA) indexes from 1 August 1997 to 31 July 2003. The
data are taken from Yahoo! finance.10 The first index, RUT-I, reflects the performance of 2000 smaller
firms in the United States, while the second, DJIA, represents 30 large and prestigious U.S. companies.
The parameters are calculated using a standard approach in finance (see, for example, Hull 2005):

ln
(

St+∆t

St

)
=

(
µ− σ2

2

)
∆t + σ

√
∆tz, (62)

where z ∼ N(0, 1). In our case ∆t = 1
252 , since we take the business year to have 252 days. We estimate

the mean and the standard deviation of ln
(

St+∆t

St

)
in a straightforward manner, and then multiply them

by 252 and
√

252, respectively, to obtain annualized values. Note that we add to the annualized mean half
of the estimated (annualized) variance to obtain µ.

The estimated parameters are as follows:

µ1 = 0.0482, µ2 = 0.0419, σ1 = 0.2234, σ2 = 0.2093, ρ = 0.71.

We take the 31 July 2003 values of the indexes for the initial prices of the risky assets, correcting for the
large difference between the two, so that

S1
0 = (9233.8/476.02) · 476.02, S2

0 = 9233.8.

For the estimate of the interest rate, we look at five-year nominal yields on U.S. treasury securities11 and
take r = 0.04, or 4 per cent, which is close to the average of the yields in the early 2000s.

We consider a five-year contract with payoff max {S1
5 , S2

5} and the situation where the seller of the
contract is not able to collect (or is not willing to provide) the amount necessary to invest into the perfect
hedging strategy. We calculate the perfect hedging price (19) and the price of the optimal hedging strategy
as prescribed by efficient hedging ((43), (41), and (39)). We analyze two risk management approaches.
First, we find the amounts of an expected shortfall ((44), (42), and (40)) for the different risk preferences
based on the available level of initial capital, given as a percentage of the perfect hedging price. Second,
we look at what levels of initial capital the investor requires to hedge the payoff with the desired level of
shortfall risk. We take p = 1, p = 0.8, and p = 1.2 to describe the respective attitudes of risk indifference,
risk taking, and risk aversion.

The results are summarized in Tables 1 and 2. Note that the perfect hedging price for the contract is
US$10, 587.54.

10Available online at <http://www.finance.yahoo.com>.
11Available online at <http://www.federalreserve.gov>.
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Table 1: Expected shortfall (amount and percentage of the perfect hedging price) based on selected levels
of initial hedging capital (given as a percentage of the perfect hedging price) for risk indifference, risk
taking, and risk aversion

Initial capital available Expected shortfall
p = 1.0 90 1,101.54 (10.40)

95 533.87 (5.04)
99 100.51 (0.95)

p = 0.8 90 160.06 (1.51)
95 77.19 (0.07)
99 14.10 (0.01)

p = 1.2 90 5,240.32 (49.50)
95 2,290.30 (21.63)
99 326.77 (3.09)

Table 2: Initial capital (amount and percentage of the perfect hedging price) required to maintain a selected
shortfall risk level (given as a percentage of the perfect hedging price) for risk indifference, risk taking, and
risk aversion

Acceptable shortfall risk Initial capital needed
p = 1.0 10 9,568.06 (90.37)

5 10,062.45 (95.04)
1 10,476.20 (98.95)

p = 0.8 10 4,478.03 (42.30)
5 7,346.77 (69.40)
1 9,866.17 (93.19)

p = 1.2 10 10,309.31 (97.37)
5 10,431.13 (98.52)
1 10,546.32 (99.61)

First, we observe some expected patterns across all risk-preference cases. The higher the initial capital
provided by the investor for the optimal hedging strategy, the smaller is the shortfall amount (Table 1).
Equivalently, the lower the shortfall risk acceptable to the investor, the greater is the amount of initial
capital required for the optimal hedge (Table 2). Such results agree with our intuition about the short-
fall/capital relationship, which will be examined in more detail in section 8.

Next, let us compare the values between the three risk-preference cases. Table 1 shows that, for the
same given level of initial capital, the amount of expected shortfall will be perceived as less by a risk-taker
and more by a risk-averse investor than the shortfall expected by a risk-indifferent investor. We take the
risk-indifference case as the benchmark, since this shortfall amount is the actual expected dollar loss. For
example, suppose that three investors can provide the initial capital of only 90 per cent of the amount
required for the perfect hedge. The actual minimized expected loss in this situation is about 1,100 dollars;
this is the amount a risk-indifferent investor would see as being lost due to insufficient initial capital.
A risk-taker, providing the same dollar amount for the optimal hedge, would value the expected loss at
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only 160 dollars; clearly, the risk-taker cares less about losing money than the risk-indifferent investor. A
risk-averse investor, on the other hand, would ‘feel the pain’ much more sharply: for such an investor, the
perceived loss from insufficient initial capital is valued at over 5,000 dollars (Table 1).

We observe a similar pattern in Table 2. To keep the level of acceptable shortfall risk at, say, 5 per cent,
the risk-indifferent hedger would invest about US$10, 000 into the optimal hedge. For the same shortfall
risk, the risk-taker would give only US$7, 300, while the risk-averse investor would pay about US$400 more
than is required by the benchmark case of risk indifference. Again, this is due to the fact that the risk-taker
feels losses less, and the risk-averse investor more, than the hedger who values losses based on actual dollar
amounts.

Based on the foregoing discussion, let us think about the shortfall/capital relationship a little more.
When the level of initial capital available for hedging approaches the perfect hedging price, the expected
shortfall should approach zero. Equivalently, the smaller the level of shortfall risk acceptable to the hedger,
the larger should be the capital required to invest in the optimal hedging strategy. These intuitive ideas
are somewhat illustrated in Tables 1 and 2 and will be proved in Theorem 3 (section 8). But what happens
to the expected shortfall for each risk attitude as the capital available for hedging becomes increasingly
smaller? Intuitively, it seems correct to think that the expected shortfall should approach the expected
(under the subjective probability measure P ) full amount of the payoff in the case of risk indifference. A
hedger who values losses one-for-one with actual dollar amounts should not expect to lose more or less than
the payoff H, which has to be paid to the buyer of the contract at its maturity. But a risk-taking hedger,
who cares less about losses, should value the maximal expected shortfall less (and a risk-averse investor
more) than the risk-indifferent person. This is an interesting topic, and we will examine it in more detail
in the next section.

8. How Much Can You Lose?

Following the discussion about maximal expected losses, let us see what happens to the shortfall risk as
the initial amount available for hedging
a. approaches the perfect hedging price, or
b. approaches zero.
We already gave the intuition behind the relation capital/shortfall. The aim of this section is to justify
and quantify the idea that as initial capital approaches the perfect hedging price, the amount of shortfall
goes to 0. And, as initial capital goes to 0, the shortfall risk increases to some boundary that depends on
the risk preference of the hedger.

Theorem 3: maximal expected shortfall

Part I. The investor’s risk preference is risk aversion.
a. Whenever the initial capital of the optimal hedging strategy (39) approaches the perfect hedging price
(19), the shortfall risk (40) goes to 0.
b. The shortfall risk approaches

max shortfallA = (S1
0)pe

(
µ1−

σ2
1
2

)
Tp+
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1
2
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whenever the initial hedging capital goes to 0. Note that ȳk
i are given in (54).

Part II. The investor’s risk preference is risk taking.
a. Whenever the initial capital of the optimal hedging strategy (41) approaches the perfect hedging price
(19), the shortfall risk (42) goes to 0.
b. The shortfall risk approaches

max shortfallT = (S1
0)pe

(
µ1−

σ2
1
2

)
Tp+

σ2
1
2

Tp2

·Ψ1(ȳT
1 ) + (S2
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2
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σ2
2
2

Tp2

·Ψ1(ȳT
2 ) (64)

whenever the initial hedging capital goes to 0. Note that ȳT
i are given in (57).

Part III. The investor’s risk preference is risk indifference.
a. Whenever the initial capital of the optimal hedging strategy (43) approaches the perfect hedging price
(19), the shortfall risk (44) goes to 0.
b. The shortfall risk approaches

max shortfallI = S1
0eµ1T ·Ψ1(ȳI

1) + S2
0eµ2T ·Ψ1(ȳI

2) (65)

whenever the initial hedging capital goes to 0. Note that ȳI
i are given in (60).

Proof. See Appendix D.

8.1 Example: maximal shortfall based on risk preference

Let us illustrate how the amounts of the maximal shortfall risk differ based on the risk preference of the
hedger. We use the same data, estimates, and contract type as in the numerical example in section 7.1.
Based on these numbers, we calculate that, in the case of risk indifference (p = 1), the largest expected
shortfall is US$13, 270.06. Table 3 provides the values for risk taking (0 < p < 1) and risk aversion (p > 1).

Table 3: Values of maximal shortfall risk (dollar amounts) for various risk preferences of the investor
p, risk taking Max shortfall p, risk aversion Max shortfall

0.0001 1.00 1.0001 13,282.81
0.1 2.56 1.1 34,696.96
0.2 6.56 1.2 90,917.44
0.3 16.87 1.3 238.749.10
0.4 43.45 1.4 628,313.24
0.5 112.15 1.5 1,657,112.04
0.6 290.10 1.6 4,379,958.56
0.7 752.02 1.7 11,601,974.26
0.8 1,953.64 1.8 30,799,160.76
0.9 5,086.17 1.9 81,939,309.75

0.9999 13,270.06 2.0 218,470,861.00
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First of all, note that, as p → 1, the values of the maximal expected shortfall for both risk aversion
and risk taking approach the amount of the largest expected shortfall in the risk-indifference case, which
is expected. When a risk-taking investor becomes more risk-averse, that investor begins to value potential
losses higher. And, when risk aversion grows, the investor becomes increasingly sensitive to shortfall risk.
These results agree with our intuition. It is interesting to observe that, when the level of risk aversion
changes by 1 (from p = 1 to p = 2), the value of the potential loss increases by a factor of about 15,000
(that’s a lot!). Or, when risk-taking habits change from 1 to 0, the expected loss decreases by a factor of
about 13,000. Such situations seem too extreme; in the real world, the risk attitudes of the majority of
investors probably fall close to p = 1.

9. Managing Financial and Insurance Risks

In the numerical examples presented so far, we have ignored the element of insurance risk that arises due
to the dependence of the payoff on the client’s survival to the maturity of the equity-linked contract. We
have illustrated the situation where the initial capital available to the investor is smaller than the amount
needed for a perfect hedge (for whatever reason). We have analyzed the resulting implications on the
levels of shortfall risk per given amount of initial hedging capital (and vice versa: initial capital required
per specified level of shortfall), as well as on maximal shortfall amounts depending on the investor’s risk
preference.

Next we analyze the insurance component of optimal hedging under budget constraints, and illustrate
how the mortality risk of the policyholder affects the risk management considerations for the seller of the
policy. We study the situation where an insurance company sells a contract allowing its holder to choose
the larger of two risky fund values at the expiration of the contract, provided that the client survives to
that date to collect the payoff. Recall that the conditioning of the payoff on the client’s survival to the
maturity of the contract reduces the fair premium of this contract, leaving the hedger (the insurance firm)
with insufficient initial capital for a perfect hedge (section 6). Thus at each moment after the sale of the
policy, the insurance firm is exposed to financial risk arising from market fluctuations, and insurance risk
resulting from the policyholder’s mortality. Below, we examine how the firm can assess and manage both
of these risk components. Please note that the estimated financial parameters are the same as the ones
used in section 7.1.

9.1 Example: minimizing the shortfall risk

In this setting, the insurance firm selects the first approach of efficient hedging (see the end of section 6):
the firm minimizes the shortfall risk given a limited initial capital. Suppose a 60-year-old client approaches
the firm with the intention of buying a five-year contract that will allow the client to receive the greater
of Dow Jones Industrial Average and Russell 2000 index values upon survival to the contract’s maturity.
To compare mortality risk implications by country, we consider a client from each of the following three
countries: Canada, Sweden, and the United States.

Since the company knows the client’s age, it can estimate the client’s five-year survival probability based
on some mortality model (as shown in Melnikov and Romaniuk 2006) or life tables for the corresponding
country. We calculate the necessary survival probabilities

5p60 = 1p60 · 1p61 · · · · · 1p64
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using 2002 total life tables (for both males and females) for Canada, Sweden, and the United States from
the Human Mortality Database.12 The insurance firm would use these values in equation (31) to calculate
the fair premium U0 to be quoted to the client. Upon receipt of U0, the firm would use equation (43), (41),
or (39) to find a∗, which is needed to calculate the minimized shortfall risk (44), (42), or (40), depending on
the risk attitude of the firm. Once the company knows how much shortfall it carries, it can decide whether
such a risk profile is acceptable to its managers and shareholders. Table 4 gives values of the minimized
shortfall risk for a five-year contract with 60-year-old clients from Canada, Sweden, and the United States.

Table 4: Expected shortfall (amount and percentage of the perfect hedging price) based on contracts with
60-year-old clients from Canada, Sweden, and the United States for risk indifference, risk taking, and risk
aversion

Canada Sweden U.S.
p = 1.0 486.68 (4.60) 426.48 (4.03) 619.42 (5.85)
p = 0.8 70.36 (0.66) 61.58 (0.58) 89.76 (0.85)
p = 1.2 2,059.50 (19.45) 1,768.95 (16.71) 2,717.21 (25.66)

We can make several conclusions based on the results in Table 4. First, insurance firms that attract
Swedish clients seem to be in the best position, those that attract Canadian clients are in the middle
position, and those that attract U.S. clients are in the worst position, relatively speaking, since the smallest
losses due to imperfect hedging are expected in Sweden and the largest in the United States, for all risk-
preference cases. This result is explained by mortality trends in the three countries: based on 2002 data,
Swedish clients are expected to live longer than their U.S. counterparts; Canada’s outlook is close to, but
not as good as, that for Sweden. Higher survival probabilities mean higher premiums, resulting in greater
initial capital to invest into optimal hedging strategies, and lower expected losses from imperfect hedging.

Second, the more risk-averse the firm, the greater is the loss it expects from not being able to hedge
the payoff perfectly. Conversely, for the same amount of mortality risk (the sale of a contract to a 60-
year-old client), shortfall risks are much smaller for risk-taking companies than for their risk-indifferent or
risk-averse counterparts. For example, in Canada, a risk-indifferent firm would value its expected loss at
just under US$500; to a risk-averse firm, this loss would be worth over US$2, 000, while a risk-taker would
perceive the shortfall as only about US$70. Such results agree with our earlier discussion of the effects of
risk preference on expected shortfall (sections 7.1 and 8).

But what if the minimized shortfall amounts shown in Table 4 are not acceptable to the insurance firm:
maybe they are too large, or perhaps the firm is willing to carry bigger potential losses? In this situation,
the company would be better off considering the other direction suggested by efficient hedging. The firm
would fix the level of shortfall risk first, then look at the ages of clients paying fair premiums under the
specified shortfall, and draw the corresponding risk management conclusions. This is the approach we
examine next.

12Available online at <http://www.mortality.org>.
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9.2 Example: fixing the level of shortfall risk

Suppose the insurance firm selling five-year equity-linked life insurance contracts on the maximum of the
Dow Jones Industrial Average and Russell 2000 requires that the level of shortfall risk not exceed some
specified value. Based on the selected risk profile and its risk preference, the firm will use equations (44)
((42) or (40)) and (43) ((41) or (39)) to compute the survival probabilities of potential clients from (31).
Then, based on the life tables used in the preceding example, the firm will determine the ages of clients
who are paying fair premiums for the contracts in consideration. These ages (which we call critical ages)
are shown in Table 5.

Table 5: Critical ages of clients in Canada, Sweden, and the United States based on selected levels of
shortfall risk (given as percentages of the perfect hedging price) for risk indifference, risk taking, and risk
aversion

Shortfall level Canada Sweden U.S.
p = 1.0 10 68 69 66

5 61 62 58
1 44 46 38

p = 0.8 10 89 87 89
5 81 80 80
1 64 65 62

p = 1.2 10 54 55 50
5 48 49 42
1 32 35 16

As an example, suppose that a risk-indifferent firm accepts a shortfall level of 5 per cent. For all
three countries, the critical ages are close to 60. This implies that the premium received from a 60-year-old
policyholder would guarantee the firm hedging its liability (the payoff of the shorted equity-linked contract)
with the expected loss of no more than the amount equal to 5 per cent of the perfect hedging price. Recall
from section 7.1 that the perfect hedging price is US$10, 587.54.

A natural question arises: what are the risk implications when clients below or above the age of 60
wish to purchase the same contract? To keep the shortfall level at 5 per cent, the firm needs a particular
amount of funds (as determined by (24)) to invest into a hedging strategy. Therefore, clients of all ages
must pay this amount as the contract premium. Clients above 60 will be paying more than their fair share,
as their survival probabilities are lower than those of a 60-year-old. However, clients below 60 will enjoy
purchasing the contracts at a discount, compared with the premium they should have paid.

From Table 5, we see that the proportion of people purchasing contracts at a discount decreases with
lower levels of acceptable shortfall. This is logical: the less financial risk the firm is willing to carry, the
larger the proportion of people who have to pay higher premiums for the contract. Conversely, the riskier
the firm (in terms of acceptable shortfall), the more discounts it can offer to its clients: the proportion of
people under the critical age increases with higher shortfall levels. Moreover, this observation is reinforced
in the context of the firm’s attitude to risk. Comparing the values of critical ages for p = 1, p = 0.8, and
p = 1.2, we see that a risk-taking firm offers more discounts, and a risk-averse one less, than a risk-indifferent
company for the same level of shortfall. This result holds for for all the countries in consideration.
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Finally, note that the critical ages for clients from the United States are almost always lower, and from
Sweden they are almost always higher, than the ages of clients from Canada for a given shortfall level.
This, again, is the result of the specific mortality trends in the three countries: to keep the shortfall risk at
a particular acceptable level, insurance firms can attract older clients in Sweden than in the United States,
since these (older) Swedish clients have the same survival probabilities as their younger counterparts in the
United States. Canada falls somewhere in the middle but closer to Sweden, just as in the example from
the previous section.

10. Future Direction

For future studies, there are several interesting directions worth exploring. First, a natural extension of
the current setting is to consider other types of insurance products and their variations. In particular,
one could study term insurance agreements (in which the payoff is paid upon the death of the insured
client before the maturity of the contract), and also contracts with extra benefits or provisions, such as
reversionary or terminal bonuses, paid at the maturity of the contract or upon the death of the insured
client. This latter type of contract incorporates elements of both life and term insurance, with payoff to
be received at the maturity of the agreement, but with a bonus paid at or before maturity, at a random
time.

Second, one could study efficient hedging in the context of mortality modelling, as was done in Melnikov
and Romaniuk (2006) with quantile hedging. More specifically, the insurance firm could improve its risk
management strategies by utilizing appropriate mortality models to price the mortality risks inherent
in equity-linked insurance products. Models that treat mortality as a stochastic process (such as those
proposed in Biffis 2005; Luciano and Vigna 2005; Dahl 2004; Lee and Carter 1992) are good alternatives
to consider to the traditional life tables or models with deterministic mortality (for example, the classical
actuarial models of Gompertz or Makeham).

Another possibility is to study the application of efficient hedging to credit-risk derivatives, which are
contracts whose payoffs are conditioned on the firm’s default or bankruptcy. Therefore, unlike in our
setting, where the financial payoff is independent of the insurance event in the life of the policyholder, the
study of credit-risk derivatives would require an analysis of optimal hedging in a setting where the payoff
and the conditioning event are dependent and have to be priced accordingly. The multi-asset theorem, or
some variation of it, may prove useful in this situation.
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Appendix A

We calculate the density Z of the risk-neutral measure P ∗ for the financial setting with two risky assets
(see section 4). We wish to express Zt = dP ∗

dP |Ft as a stochastic exponent of some process N :

Zt = E(Nt).

Since there are two Wiener processes in our model, Nt has the form Nt = φ1 ·W 1
t + φ2 ·W 2

t .
Let us represent Bt, S1

t , and S2
t as stochastic exponents of processes h, H1

t , and H2
t , respectively. In

our set-up,
h = rt, H i

t = µit + σiW
i
t .

The general methodology for finding martingale measures (Melnikov and Shiryaev 1996; Melnikov, Volkov,
and Nechaev 2002) states that the process

κi
t(h, H,N) = H i

t − ht + Nt + 〈(h−H i)c, (h−N)c〉t

should be a martingale with respect to P , from which the constants φ1 and φ2 are calculated.
For κ1 and κ2, we get the following:

κ1
t = µ1t + σ1W

1
t − rt + φ1W

1
t + φ2W

2
t + σ1φ1t + σ1φ2ρt,

κ2
t = µ2t + σ2W

2
t − rt + φ1W

1
t + φ2W

2
t + σ2φ2t + σ2φ1ρt.

To make these martingales, we must have

µ1t− rt + σ1φ1t + σ1φ2ρt = 0 and µ2t− rt + σ2φ2t + σ2φ1ρt = 0,

therefore,

φ1 =
r(σ2 − σ1ρ) + ρµ2σ1 − µ1σ2

σ1σ2(1− ρ2)
and φ2 =

r(σ1 − σ2ρ) + ρµ1σ2 − µ2σ1

σ1σ2(1− ρ2)
.

Returning to the stochastic exponent form, we get the following expression for Z:

Zt =
dP ∗

dP
|Ft = E(φ1W

1
t + φ2W

2
t ) = e

(
φ1W 1

t +φ2W 2
t −

σ2
φ
2

t

)
,

where

σ2
φ = φ2

1 + φ2
2 + 2ρφ1φ2.

This is how we obtain the equations for Z and φi in (10) and (11).
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Appendix B

Proof of Theorem 1.
We prove the multi-asset theorem (36). For n + 1 normally distributed correlated random variables

xi ∼ N(µi, σ
2
i ) and z ∼ N(µz, σ

2
z) with variance-covariance matrix Rn+1:

Rn+1 =

 σ2
1 · · · σ1σzρ1z
...

. . .
...

σ1σzρ1z · · · σ2
z

 , (66)

and given constants Xi, i = 1, . . . , n,

E
(
e−zI{x1<X1} · · · I{xn<Xn}

)
= e

−
(

µz−
σ2

z
2

)
·Ψn(X̂1, . . . , X̂n), (67)

X̂i =
Xi − µi

σi
+ σzρiz.

Above, Ψn denotes the n-dimensional cumulative normal distribution of correlated random variables with
mean 0 and variance 1 (see the discussion following (38)). Note that we make the standard assumption
that all variance-covariance matrices are invertible.

First, let us introduce notation. As mentioned, Rn+1 is the variance-covariance matrix for xi, i =
1, . . . , n + 1, where z denotes xn+1, so that µn+1 = µz, σn+1 = σz, and whenever used in powers, i + z =
i + n + 1. The inverse of Rn+1 is denoted

An+1 = ‖aij‖n+1 = R−1
n+1. (68)

We denote Rn the variance-covariance matrix for xi, i = 1, . . . , n:

Rn =

 σ2
1 · · · σ1σnρ1n
...

. . .
...

σ1σnρ1n · · · σ2
n

 . (69)

Its inverse is denoted

An = ‖aij‖n = R−1
n . (70)

We will also encounter these matrices in the proof:

R̃n+1 =

 1 · · · ρ1z
...

. . .
...

ρ1z · · · 1

 , (71)

and its inverse

Ãn+1 = ‖ãij‖n+1 = R̃−1
n+1, (72)
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as well as

R̃n =

 1 · · · ρ1n
...

. . .
...

ρ1n · · · 1

 , (73)

and its inverse

Ãn = ‖ãij‖n = R̃−1
n . (74)

Next, let us recall some useful facts from linear algebra and apply them to our setting.
1) For any matrix M, we have this relationship between the determinants of M and its inverse M−1:

|M−1| = 1
|M|

. (75)

2) Constants can be factored from determinants. For us,

|Rn+1| = σ2
1σ

2
2 · · ·σ2

nσ2
z |R̃n+1|. (76)

3) For M, the entries of its inverse M−1 = ‖minv
ij ‖ are given by

minv
ij =

(−1)i+j

|M|
· |Mji|, (77)

where Mji is the matrix M with the jth row and ith column removed.
4) In our setting, since Rn+1 is symmetric, the entries of its (symmetric) inverse An+1 satisfy

aij =
(−1)i+j

|R|
· |Rij |; (78)

similar formulas hold for the entries of Ãn+1, An, and Ãn.
5) Based on points (2) and (4), we have for An+1 = ‖aij‖n+1:

aij =
(−1)i+jσ2

1 · · ·σiσj · · ·σ2
nσ2

z |R̃
ij
n+1|

σ2
1 · · ·σ2

nσ2
z |R̃n+1|

=
(−1)i+j |R̃ij

n+1|
σiσj |R̃n+1|

; (79)

a similar relation holds for An = ‖aij‖n.
Next we begin the proof of the multi-asset theorem. Based on the expression for the multi-dimensional

cumulative normal distribution (38), we see that the following equality has to be established:

E
(
e−zI{x1<X1} · · · I{xn<Xn}

)
=

1
(2π)(n+1)/2|Rn+1|1/2

∫ X1

−∞
· · ·
∫ Xn

−∞

∫ ∞

−∞
e−ze−

1
2

∑n+1
i=1

∑n+1
j=1 aij(xi−µi)(xj−µj)dz dx1 · · · dxn =

e
−
(

µz−
σ2

z
2

)
(2π)n/2|R̃n|1/2

∫ X1−µ1
σ1

+σzρ1z

−∞
· · ·
∫ Xn−µn

σn
+σzρnz

−∞
e−

1
2

∑n
i=1

∑n
j=1 ãij x̂ix̂jdx̂1 · · · dx̂n. (80)
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Recall that xi ∼ N(µi, σ
2
i ), z ∼ N(µz, σ

2
z) with variance-covariance matrix Rn+1 and its inverse An+1 =

‖aij‖n+1, whereas x̂i ∼ N(0, 1) with correlation matrix R̃n and its inverse Ãn = ‖ãij‖n.
To save space, let us write ∫ a

−∞
fdy =

∫ a1

−∞
· · ·
∫ an

−∞
fdy1 · · · dyn. (81)

Let us simplify the expression in the exponent in (80) using the substitutions

z̃ =
z − µz

σz
⇒ dz = dz̃σz,

x̃i =
xi − µi

σi
⇒ dxi = dx̃iσi, (82)

with limits on the integral involving z̃ remaining ±∞ and the others changing from Xi to Xi−µi

σi
, and the

simplification of entries of inverses stated earlier in point (5) (see (79)):

n+1∑
i=1

n+1∑
j=1

aij(xi − µi)(xj − µj)

=
n∑

i=1

n∑
j=1

aij(xi − µi)(xj − µj) + 2
n∑

i=1

azi(z − µz)(xi − µi) + azz(z − µz)2

=
n∑

i=1

n∑
j=1

aijσiσj x̃ix̃j + 2
n∑

i=1

aziσzσiz̃x̃i + azzσ
2
z z̃

2

=
n∑

i=1

n∑
j=1

(−1)i+j |R̃ij
n+1|

σiσj |R̃n+1|
σiσj x̃ix̃j + 2

n∑
i=1

(−1)i+n+1|R̃iz
n+1|

σzσi|R̃n+1|
σzσiz̃x̃i +

(−1)2(n+1)|R̃n|
σ2

z |R̃n+1|
σ2

z z̃
2

=
n∑

i=1

n∑
j=1

(−1)i+j |R̃ij
n+1|

|R̃n+1|
x̃ix̃j + 2

n∑
i=1

(−1)i+n+1|R̃iz
n+1|

|R̃n+1|
z̃x̃i +

|R̃n|
|R̃n+1|

z̃2. (83)

With the constant −1
2 from the exponent, we complete the square for all terms in the above expression

that contain z̃:

−σz z̃ −
1
2
|R̃n|
|R̃n+1|

z̃2 −
n∑

i=1

(−1)i+n+1|R̃iz
n+1|

|R̃n+1|
z̃x̃i

= − 1
2|R̃n+1|

[
z̃|R̃n|1/2 +

σz|R̃n+1|+
∑n

i=1(−1)i+n+1|R̃iz
n+1|x̃i

|R̃n|1/2

]2

+
1

2|R̃n+1|

[
σz|R̃n+1|+

∑n
i=1(−1)i+n+1|R̃iz

n+1|x̃i

|R̃n|1/2

]2

. (84)
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Continuing with our calculations, let us make another substitution:

z̄ =
1

|R̃n+1|1/2

[
z̃|R̃n|1/2 +

σz|R̃n+1|+
∑n

i=1(−1)i+n+1|R̃iz
n+1|x̃i

|R̃n|1/2

]
,

dz̄ = dz̃
|R̃n|1/2

|R̃n+1|1/2
. (85)

Notice that the limits on the integral involving z̄ remain ±∞.
Based on the two substitutions (82) and (85), point (1) about factoring constants from determinants

(75), the simplification of the sum (83), and the completion of the square (84), the expectation in (80)
takes form

1
(2π)(n+1)/2|Rn+1|1/2

∫ X

−∞

∫ ∞

−∞
e−ze−

1
2

∑n+1
i=1

∑n+1
j=1 aij(xi−µi)(xj−µj)dz dx (86)

=
e−µz

(2π)(n+1)/2|R̃n+1|1/2

√
2π|R̃n+1|1/2

|R̃n|1/2

∫ X−µx
σx

−∞
e
− 1

2|R̃n+1|

·e

[∑n
i=1

∑n
j=1(−1)i+j |R̃ij

n+1|x̃ix̃j−
(

σz |R̃n+1|+
∑n

i=1(−1)i+n+1|R̃iz
n+1|x̃i

|R̃n|1/2

)2
] ∫ ∞

−∞

e−
z̄2

2

√
2π

dz̄ dx̃

=
e−µz

(2π)n/2|R̃n|1/2

∫ X−µx
σx

−∞
e
− 1

2|R̃n+1|

[∑n
i=1

∑n
j=1(−1)i+j |R̃ij

n+1|x̃ix̃j−
(

σz |R̃n+1|+
∑n

i=1(−1)i+n+1|R̃iz
n+1|x̃i

|R̃n|1/2

)2
]
dx̃.

For the next step, let us represent the expression in the exponent as

−1
2
· J,

with J determined as follows:

n∑
i=1

n∑
j=1

(−1)i+j |R̃ij
n+1|

|R̃n+1|
x̃ix̃j −

1
|R̃n+1|

(
σz|R̃n+1|+

∑n
i=1(−1)i+n+1|R̃iz

n+1|x̃i

|R̃n|1/2

)2

(87)

=
n∑

i=1

n∑
j=1

(−1)i+j

(
|R̃ij

n+1||R̃n| − |R̃iz
n+1||R̃

zj
n+1|

|R̃n||R̃n+1|

)
x̃ix̃j − 2σz

n∑
i=1

(−1)i+n+1 |R̃
iz
n+1|
|R̃n|

x̃i − σ2
z

|R̃n+1|
|R̃n|

= J.

Also, let us make notational simplifications

rij =
(−1)i+j

|R̃n|

(
|R̃ij

n+1||R̃n| − |R̃iz
n+1||R̃

zj
n+1|

|R̃n+1|

)
(88)

and

si = (−1)i+nσz
|R̃iz

n+1|
|R̃n|

. (89)
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Based on (87), (88), and (89), the expectation in (86) becomes

e−µz

(2π)n/2|Rn|1/2

∫ X−µx
σx

−∞
e
− 1

2|R̃n+1|

[∑n
i=1

∑n
j=1(−1)i+j |R̃ij

n+1|x̃ix̃j−
(

σz |R̃n+1|+
∑n

i=1(−1)i+n+1|R̃iz
n+1|x̃i

|R̃n|1/2

)2
]
dx̃

=
e−µz

(2π)n/2|Rn|1/2

∫ X−µx
σx

−∞
e
− 1

2

(∑n
i=1

∑n
j=1 rij x̃ix̃j+2

∑n
i=1 six̃i−σ2

z
|R̃n+1|
|R̃n|

)
dx̃. (90)

Next, consider the original equality we are trying to establish, given in (80). Using this substitution,

x̂i = x̃i + σzρiz, (91)

we can rewrite the last expression in the equality as shown:

e
−
(

µz−
σ2

z
2

)
(2π)n/2|R̃n|1/2

∫ X−µx
σx

+σzρxz

−∞
e−

1
2

∑n
i=1

∑n
j=1 ãij x̂ix̂jdx̂

=
e
−
(

µz−
σ2

z
2

)
(2π)n/2|R̃n|1/2

∫ X−µx
σx

−∞
e−

1
2

∑n
i=1

∑n
j=1 ãij(x̃i+σzρiz)(x̃j+σzρjz)dx̃, (92)

with X−µx

σx
+ σzρxz in the upper limit referring to each individual upper limit Xi−µi

σi
+ σzρiz.

At this point, compare (90) and (92): if we can show that the expressions in the exponents are equal,
then we will have completed the proof of the theorem. Let us proceed with this idea in mind.

First, we expand the exponent of (90):

n∑
i=1

n∑
j=1

rij x̃ix̃j + 2
n∑

i=1

six̃i − σ2
z

|R̃n+1|
|R̃n|

= r11x̃
2
1 + r22x̃

2
2 + · · ·+ rnnx̃2

n

+2r12x̃1x̃2 + 2r13x̃1x̃3 + · · ·+ 2r1nx̃1x̃n

+2r23x̃2x̃3 + · · ·+ 2r2nx̃2x̃n

...
+2r(n−1)nx̃n−1x̃n

+2s1x̃1 + 2s2x̃2 + · · ·+ 2snx̃n − σ2
z

|R̃n+1|
|R̃n|

. (93)
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Next, let us expand the exponent of (92). After some algebraic manipulations, we obtain

n∑
i=1

n∑
j=1

ãij(x̃i + σzρiz)(x̃j + σzρjz) = ã11x̃
2
1 + ã22x̃

2
2 + · · ·+ ãnnx̃2

n

+2ã12x̃1x̃2 + 2ã13x̃1x̃3 + · · ·+ 2ã1nx̃1x̃n

+2ã23x̃2x̃3 + · · ·+ 2ã2nx̃2x̃n

...
+2ã(n−1)nx̃n−1x̃n

+2x̃1

n∑
j=1

ã1jσzρjz + 2x̃2

n∑
j=1

ã2jσzρjz + · · ·+ 2x̃n

n∑
j=1

ãnjσzρjz

+
n∑

i=1

n∑
j=1

ãijσ
2
zρizρjz. (94)

Comparing the terms in the two expansions, we see that we need to show three things:
1. rij = ãij ,
2. si =

∑n
j=1 ãijσzρjz, and

3. σ2
z
2
|R̃n+1|
|R̃n|

= σ2
z
2 − 1

2

∑n
i=1

∑n
j=1 ãijσ

2
zρizρjz.

Before we prove these, we establish the following relations about determinants:

|R̃zj
n+1| =

n∑
i=1

(−1)i+nρiz|R̃ij
n |, (95)

and

|R̃n| = |R̃n+1| −
n∑

i=1

(−1)i+n+1ρiz|R̃iz
n+1|. (96)

Now we are ready to prove relations 1, 2, and 3. First, consider relation 2. Using the expression for
entries of inverses (78), we have:

n∑
j=1

ãijσzρjz =
n∑

j=1

(−1)i+j |R̃ij
n |

|R̃n|
σzρjz. (97)

But from the definition of si in (89) and relation (95), we obtain the following:

si = (−1)i+nσz
|R̃iz

n+1|
|R̃n|

= (−1)i+nσz

n∑
j=1

(−1)j+nρjz
|R̃ij

n |
|R̃n|

= σz

n∑
j=1

(−1)i+jρjz
|R̃ij

n |
|R̃n|

. (98)
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Comparing (97) and (98), we see that relation 2 is proved.
Next, let us look at relation 3. We will prove this equation using (96) and (95). On the one hand,

σ2
z

2
|R̃n+1|
|R̃n|

=
σ2

z

2

(
1 +

n∑
i=1

(−1)i+n+1ρiz
|R̃iz

n+1|
|R̃n|

)

=
σ2

z

2

1 +
n∑

i=1

(−1)i+n+1ρiz

n∑
j=1

(−1)j+nρjz
|R̃ij

n |
|R̃n|

 . (99)

On the other hand,

σ2
z

2
− 1

2

n∑
i=1

n∑
j=1

ãijσ
2
zρizρjz =

σ2
z

2
+

σ2
z

2

n∑
i=1

n∑
j=1

(−1)i+j+1|R̃ij
n |

|R̃n|
ρizρjz. (100)

Comparing (99) and (100), we see that relation 3 is proved.
Finally, note that to prove 1, we need to show that

(−1)i+j

|R̃n|

(
|R̃ij

n+1||R̃n| − |R̃iz
n+1||R̃

zj
n+1|

|R̃n+1|

)
=

(−1)i+j |R̃ij
n |

|R̃n|

⇔ |R̃ij
n+1||R̃n| − |R̃iz

n+1||R̃
zj
n+1| = |R̃n+1||R̃ij

n |. (101)

To facilitate the proof of relation 1, we express all matrices in the last identity above in terms of R̃n+1,
with the necessary rows/columns removed. Thus we must prove that

|R̃ij
n+1||R̃

(n+1)(n+1)
n+1 | − |R̃i(n+1)

n+1 ||R̃(n+1)j
n+1 | = |R̃n+1||R̃ij,(n+1)(n+1)

n+1 |. (102)

Note that

R̃ij
n = R̃ij,(n+1)(n+1)

n+1 (103)

is the matrix R̃n+1 with rows i, n + 1 and columns j, n + 1 removed.
Instead of proving (102) directly, we will prove this more general result:

for n ≥ 3 and any choice of i, j, k, l ≤ n, the following holds for any n× n matrix M:

|Mij
n ||Mlk

n | − |Mlj
n ||Mik

n | = ΓilΓjk|Mij,lk
n ||Mn|. (104)

Above, Mij,lk
n is Mn with rows i, l and columns j, k removed. Also, the function Γab is defined as

Γab =


1 if b > a
0 if b = a
−1 if b < a.

(105)

We will prove (104) by induction on n.
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Before we begin the proof, note that if l = i or k = j, then (104) holds trivially. Next, without loss of
generality, we assume that

l > i and k > j. (106)

We can make such an assumption, because if i were smaller than l (or k < j), then we could rename the
variables i, l (or j, k), which would introduce a negative sign on both sides of equation (104).

Also, we will prove that (104) is valid for every matrix Mn if and only if the following formula holds
for every Mn:

|Mij
n ||Mnn

n | − |Mnj
n ||Min

n | = |Mij,nn
n ||Mn|. (107)

Proof.
⇒ Assume that (104) holds. Let k, l = n, n. Then (107) holds as well.
⇐ Assume that (107) is true. Construct a new matrix M̄n by moving row l and column k in matrix

Mn to positions n, n. Then,

|Mij
n | = (−1)l+k|M̄ij

n |,
|Mlk

n | = |M̄nn
n |,

|Mlj
n | = (−1)n−k|M̄nj

n |,
|Mik

n | = (−1)n−l|M̄in
n |,

|Mij,lk
n | = |M̄ij,nn

n |,
|Mn| = (−1)l+k|M̄n|. (108)

Based on the equations above, (104) turns into

|M̄ij
n ||M̄nn

n | − |M̄nj
n ||M̄in

n | = |M̄ij,nn
n ||M̄n|. (109)

And, since (107) holds for any matrix by assumption, in particular, it holds for M̄. Therefore, (109) implies
that (104) is true, which completes the proof.

We proceed to prove (104) by induction as follows. For the first step, we show that (107) holds for
n = 3, implying that (104) also holds for n = 3. For the inductive hypothesis, we assume that (104) holds
for some n and show that (107) is true for n + 1, which is equivalent to (104) being true for n + 1.

Step 1. Here we have n = 3 and i, j = 1, 1, 1, 2 or 2, 2 (the case for i, j = 2, 1 is equivalent to i, j = 1, 2
by transposition). For each of these possibilities, (107) is shown to be true by direct verification (omitted
here).

Step 2. Assume that (104) holds. That is,

|Mij
n ||Mlk

n | − |Mlj
n ||Mik

n | = ΓilΓjk|Mij,lk
n ||Mn| (110)

is true for every matrix M and some n, and for all possible values of i, j, k, l ≤ n. Using this assumption,
we will prove that (107) holds for n + 1.

We want to show that for any i, j < n + 1,

|Mij
n+1||M

(n+1)(n+1)
n+1 | − |M(n+1)j

n+1 ||Mi(n+1)
n+1 | = |Mij,(n+1)(n+1)

n+1 ||Mn+1|. (111)
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First, we expand the determinants above by row/column n + 1 whenever possible. Using notational
simplifications

Mij,lk
n = Mij,l(n+1),(n+1)k

n+1 ,

Mij
n = Mi(n+1),(n+1)j

n+1 ,

Mn = M(n+1)(n+1)
n+1 , (112)

we can write

|Mij
n+1| =

j−1∑
k=1

i−1∑
l=1

(−1)l+k+1ml(n+1)m(n+1)k|Mij,lk
n |

+
j−1∑
k=1

n∑
l=i+1

(−1)l+kml(n+1)m(n+1)k|Mij,lk
n |

+
n∑

k=j+1

i−1∑
l=1

(−1)l+kml(n+1)m(n+1)k|Mij,lk
n |

+
n∑

k=j+1

n∑
l=i+1

(−1)l+k+1ml(n+1)m(n+1)k|Mij,lk
n |+ m(n+1)(n+1)|Mij

n |,

|M(n+1)j
n+1 | =

n∑
l=1

(−1)l+nml(n+1)|Mlj
n |,

|Mi(n+1)
n+1 | =

n∑
k=1

(−1)k+nm(n+1)k|Mik
n |,

|Mn+1| = m(n+1)(n+1)|Mn|+
n∑

l=1

n∑
k=1

(−1)l+k+1ml(n+1)m(n+1)k|Mlk
n |. (113)

Here, mab denotes entry in row a and column b in Mn+1.
Next we utilize the new notation (112) and the expansions for the determinants (113) to rewrite (107)

for n + 1: [
j−1∑
k=1

i−1∑
l=1

(−1)l+k+1ml(n+1)m(n+1)k|Mij,lk
n |+

j−1∑
k=1

n∑
l=i+1

(−1)l+kml(n+1)m(n+1)k|Mij,lk
n |

+
n∑

k=j+1

i−1∑
l=1

(−1)l+kml(n+1)m(n+1)k|Mij,lk
n |+

n∑
k=j+1

n∑
l=i+1

(−1)l+k+1ml(n+1)m(n+1)k|Mij,lk
n |

+m(n+1)(n+1)|Mij
n |

]
· |Mn| −

n∑
l=1

n∑
k=1

(−1)l+kml(n+1)m(n+1)k|Mlj
n ||Mik

n |

= |Mij
n ||Mn|m(n+1)(n+1) + |Mij

n | ·
n∑

l=1

n∑
k=1

(−1)l+k+1ml(n+1)m(n+1)k|Mlk
n |. (114)
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Note that using the Γ function (105), we can simplify the sums on the left-hand side of the equation
above to get the following:[

n∑
k=1

n∑
l=1

(−1)l+k+1ΓilΓjkml(n+1)m(n+1)k|Mij,lk
n |

]
· |Mn| (115)

=
n∑

l=1

n∑
k=1

(−1)l+k+1ml(n+1)m(n+1)k

(
|Mij

n ||Mlk
n | − |Mlj

n ||Mik
n |
)

.

Comparing the terms inside the sums, we see that they are equal by the induction hypothesis.
Therefore, (107) holds for n + 1, and thus (104), which is equivalent to (107) (see (109)), holds for

n + 1 also. And the general formula (104) implies that our particular case for R̃n+1 (102) is true as well.
This, in turn, shows the equality of the last set of coefficients (relation 1), and completes the proof of the
multi-asset theorem.
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Appendix C

Proof of Theorem 2.
The general strategy for deriving pricing and shortfall risk formulas for all risk-preference cases of

efficient hedging is as follows. We first simplify the expression for the modified contingent claim H∗ = ϕ∗H
(27). Second, we rewrite U0 in terms of indicator sets, which we simplify by introducing new Wiener
processes. Third, we evaluate the resulting expectations of type (34) explicitly by utilizing the multi-asset
theorem (36).

Part Ia. We wish to calculate the fair premium for the case of risk aversion using efficient hedging.
The success ratio ϕ∗ for this case is given by (28):

ϕ∗ = 1−

(
I
(
a∗e−rT ZT

)
H

∧ 1

)
, p > 1,

with I = (l′)−1 denoting the inverse of the derivative of the loss function l. Since we are using l(x) = xp,
we have

l′(x) = pxp−1 ⇒ I(x) = x
1

p−1

(
1
p

) 1
p−1

; (116)

therefore,

I
(
a∗e−rT ZT

)
= k∗ · (ZT )

1
p−1 ,

where k∗ =
(

a∗

perT

) 1
p−1

. (117)

Then, H∗ simplifies to

H∗ = ϕ∗H = H −
(
k∗(ZT )

1
p−1 ∧H

)
=
(
H − k∗(ZT )

1
p−1

)
I{

k∗(ZT )
1

p−1 <H

}, (118)

which leads to the following expression for the fair premium:

U0 = E∗
(

ϕ∗H

erT

)
= E∗

(
H

erT
I{

k∗(ZT )
1

p−1 <H

} − k∗

erT
(ZT )

1
p−1 I{

k∗(ZT )
1

p−1 <H

}
)

= E∗

(
S1

T

erT
I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T}

)
− E∗

(
k∗

erT
(ZT )

1
p−1 I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T}

)

+E∗

(
S2

T

erT
I{

k∗(ZT )
1

p−1 <S2
T

}I{S1
T <S2

T}

)
− E∗

(
k∗

erT
(ZT )

1
p−1 I{

k∗(ZT )
1

p−1 <S2
T

}I{S1
T <S2

T}

)
.(119)

Next, we simplify the sets of the indicators above by transforming the linear combination of two Wiener
processes into a single new Wiener process. With the help of (13), for {S1

T ≥ S2
T } and {S1

T < S2
T } we have
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the following:

{S1
T ≥ S2

T } =
{

σ2W
2∗
T − σ1W

1∗
T ≤ ln

(
S1

0

S2
0

)
+

σ2
2 − σ2

1

2
T

}

=
{

σW̃ 1
T ≤ ln

(
S1

0

S2
0

)
+

σ2
2 − σ2

1

2
T

}
=

s1 ≤
ln
(

S1
0

S2
0

)
+ σ2

2−σ2
1

2 T

σ
√

T

 ,

{S1
T < S2

T } =
{

σ1W
1∗
T − σ2W

2∗
T < ln

(
S2

0

S1
0

)
+

σ2
1 − σ2

2

2
T

}

=
{

σW̃ 2
T < ln

(
S2

0

S1
0

)
+

σ2
1 − σ2

2

2
T

}
=

s2 <
ln
(

S2
0

S1
0

)
+ σ2

1−σ2
2

2 T

σ
√

T

 . (120)

Here, si = W̃ i
T√
T
∼ N(0, 1) with respect to P ∗, and W̃ i = (W̃ i

t )t∈[0,T ] are new Wiener processes under P ∗

satisfying

W̃ 1
t =

σ2W
2∗
t − σ1W

1∗
t

σ
, W̃ 2

t =
σ1W

1∗
t − σ2W

2∗
t

σ
, σ2 = σ2

1 + σ2
2 − 2ρσ1σ2. (121)

Note that σ represents the volatility of a risky asset with the underlying risk process W̃ i, and it is
the same as the σ in (22). Also, since σ2 must be positive, we need to check that the expression in the
definition of σ2 above is positive:

σ2 = σ2
1 + σ2

2 − 2ρσ1σ2

> σ2
1ρ

2 + σ2
2 − 2ρσ1σ2 as ρ2 < 1

= (σ1ρ− σ2)2 ≥ 0
⇒ σ2 > 0. (122)

Next, we need to express
{

k∗(ZT )
1

p−1 < S1
T

}
and

{
k∗(ZT )

1
p−1 < S2

T

}
similarly. Since the calculations

are symmetric for the formulas involving Si, from now on we show derivations for S1 and state only the
results for sets involving S2.

Consider the set
{

k∗(ZT )
1

p−1 < S1
T

}
. Using (16) and (13), we can write

{
k∗(ZT )

1
p−1 < S1

T

}
=

k∗e

φ1
p−1

W 1∗
T +

φ2
p−1

W 2∗
T −

(
σ2

φ
2

+φ1θ1+φ2θ2

)
T

p−1

< S1
0e

(
r−σ2

1
2

)
T+σ1W 1∗

T


=

{
σ̃A

1 W̃ 1A
T < ln

(
S1

0

k∗

)
+
(

r − σ2
1

2

)
T +

(
σ2

φ

2
+ φ1θ1 + φ2θ2

)
T

p− 1

}

=

sA
1 <

ln
(

S1
0

k∗

)
+
(
r − σ2

1
2

)
T +

(
σ2

φ

2 + φ1θ1 + φ2θ2

)
T

p−1

σ̃A
1

√
T

 , (123)
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where W̃ 1A = (W̃ 1A
t )t∈[0,T ] is a Wiener process under P ∗ such that

W̃ 1A
t =

(
φ1

p−1 − σ1

)
W 1∗

t + φ2

p−1W 2∗
t

σ̃A
1

, (124)

(σ̃A
1 )2 =

(
φ1

p− 1
− σ1

)2

+
φ2

2

(p− 1)2
+ 2ρ

φ2

p− 1

(
φ1

p− 1
− σ1

)
=

(φ1 − σ1(p− 1))2 + φ2
2 + 2ρφ2(φ1 − σ1(p− 1))

(p− 1)2

=
σ2

φ + σ2
1(p− 1)2 − 2σ1(p− 1)(φ1 + ρφ2)

(p− 1)2
,

and sA
1 = W̃ 1A

T√
T
∼ N(0, 1) (with respect to P ∗). To simplify the expression for (σ̃A

1 )2 above, we use the
definition of σφ given in (12).

We must check that (σ̃A
1 )2 > 0. First, note that φi (11) can be expressed as

φ1 =
ρθ2 − θ1

1− ρ2
and φ2 =

ρθ1 − θ2

1− ρ2
(125)

⇒ φ1 + ρφ2 = −θ1,

which allows us to write

(σ̃A
1 )2 =

σ2
φ + σ2

1(p− 1)2 + 2σ1θ1(p− 1)
(p− 1)2

=
σ2

1p
2 + 2σ1(θ1 − σ1)p + σ2

φ + σ2
1 − 2σ1θ1

(p− 1)2
. (126)

Denote
Q(p) = σ2

1p
2 + 2σ1(θ1 − σ1)p + σ2

φ + σ2
1 − 2σ1θ1. (127)

We examine the discriminant D of the quadratic Q(p) to see when Q(p) > 0:

D = 4σ2
1(θ1 − σ1)2 − 4σ2

1(σ
2
φ + σ2

1 − 2σ1θ1) = 4σ2
1(θ

2
1 − σ2

φ). (128)

Next we need to figure out the sign of θ2
1 − σ2

φ. Observe that using (125) and (12), we can write

σ2
φ =

θ2
1 + θ2

2 − 2ρθ1θ2

1− ρ2
, (129)

which, in turn, leads to

θ2
1 − σ2

φ = −ρ2θ2
1 + θ2

2 − 2ρθ1θ2

1− ρ2
= − 1

1− ρ2
(ρθ1 − θ2)2 ≤ 0, as ρ2 < 1. (130)

We see that D < 0 as long as ρθ1 − θ2 6= 0, or, equivalently,

ρ 6= θ2/θ1. (131)
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This implies that Q(p) > 0; that is, (σ̃A
1 )2 > 0. For the set with S2 we get a symmetric condition:

ρ 6= θ1/θ2. (132)

It is precisely (131) and (132) that give rise to the technical conditions in Theorem 2.
In case ρ = θ2/θ1, the quadratic Q(p) would have a double root at

−(θ1 − σ1)/σ1,

which means that volatility σ̃A
1 would equal 0 if p happened to be precisely equal to the root of Q(p).

This would make the set in (123) equal to Ω (or the empty set) and reduce our calculations with sets
involving S1 to those done previously for the case of perfect hedging (see Johnson 1987 or Romanyuk
2006). Alternatively, p could be adjusted slightly to not equal the root of Q(p), and we would proceed
with computations as shown in the remainder of the proof.

Before we return to the simplification of the set
{

k∗(ZT )
1

p−1 < S1
T

}
, consider (126):

(σ̃A
1 )2 =

σ2
φ + σ2

1(p− 1)2 + 2σ1θ1(p− 1)
(p− 1)2

=
(σE

1 )2

(p− 1)2
, (133)

with σE
1 defined in (61). Then we can write

{
k∗(ZT )

1
p−1 < S1

T

}
=

sA
1 <

ln
(

S1
0

k∗

)
+
(
r − σ2

1
2

)
T +

(
σ2

φ

2 + φ1θ1 + φ2θ2

)
T

p−1

σ̃A
1

√
T


=

sA
1 < (p− 1)

ln
(

S1
0

k∗

)
+
(
r − σ2

1
2

)
T +

(
σ2

φ

2 + φ1θ1 + φ2θ2

)
T

p−1

σE
1

√
T

 . (134)

Consider the expression for U0 in (119). Using (120) and (134), we can write a part of this expression
in simplified form as

E∗

(
S1

T

erT
I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T}

)
= S1

0e−
σ2
1
2

T E∗

eσ1W 1∗
T I{sA

1 <k̃A
1 }

Is1≤
ln

(
S1
0

S2
0

)
+

σ2
2−σ2

1
2 T

σ
√

T



 , (135)

where

k̃A
1 = (p− 1)

ln
(

S1
0

k∗

)
+
(
r − σ2

1
2

)
T +

(
σ2

φ

2 + φ1θ1 + φ2θ2

)
T

p−1

σE
1

√
T

. (136)
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Next we apply the multi-asset theorem (36) for n = 2. We take z = −σ1W
1∗
T ∼ N(0, σ2

1T ), x1 = sA
1 ∼

N(0, 1), and x2 = s1 ∼ N(0, 1); the necessary correlations are calculated to equal

ρx1z = −p− 1
σE

1

(
φ1

p− 1
− σ1 +

φ2ρ

p− 1

)
,

ρx2z =
σ1 − σ2ρ

σ
,

ρx1x2 =
φ2(σ2 − σ1ρ)− (φ1 − σ1(p− 1))(σ1 − σ2ρ)

σE
1 σ

= ρA
1 , (137)

with ρA
1 defined in (45).

Applying the theorem with the above parameters to the expected value in (135), and simplifying the
resulting constants, we get

E∗

(
S1

T

erT
I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T}

)
= S1

0Ψ2(x̃A
1 , ỹ1, ρ

A
1 ), (138)

with x̃A
1 and ỹ1 given in (48) and (21).

Let us return to U0 in (119). We will simplify another term in this expression using (16), (134), and
(120):

E∗

(
k∗

erT
(ZT )

1
p−1 I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T}

)

=
k∗

erT
e
−
(

σ2
φ
2

+φ1θ1+φ2θ2

)
T

p−1

E∗

e
φ1

p−1
W 1∗

T +
φ2

p−1
W 2∗

T I{sA
1 <k̃A

1 }
Is1≤

ln

(
S1
0

S2
0

)
+

σ2
2−σ2

1
2 T

σ
√

T



 . (139)

Define a Wiener process W̃ p = (W̃ p
t )t∈[0,T ] under P ∗ as

W̃ p
t =

φ1

p−1W 1∗
t + φ2

p−1W 2∗
t

σp
, (140)

σ2
p =

φ2
1

(p− 1)2
+

φ2
2

(p− 1)2
+ 2ρ

φ2φ1

(p− 1)2
=

σ2
φ

(p− 1)2
> 0,

with σφ given in (12). Then (139) becomes

k∗

erT
e
−
(

σ2
φ
2

+φ1θ1+φ2θ2

)
T

p−1

E∗

e

(
σφ

p−1
W̃ p

T

)
I{sA

1 <k̃A
1 }

Is1≤
ln

(
S1
0

S2
0

)
+

σ2
2−σ2

1
2 T

σ
√

T



 . (141)

44



We apply the multi-asset theorem (36) with z = − σφ

p−1W̃ p
T ∼ N

(
0,

σ2
φ

(p−1)2
T

)
, x1, x2 = sA

1 , s1 ∼ N(0, 1)

under P ∗, and the correlations

ρx1z =
σ1(p− 1)(φ1 + ρφ2)− σ2

φ

σφσE
1

,

ρx2z =
φ1(σ1 − σ2ρ)− φ2(σ2 − σ1ρ)

σφσ
,

ρx1x2 = ρA
1 . (142)

After some simplifications (see (136), (21) and (117)), the expectation in (141) becomes

E∗

(
k∗

erT
(ZT )

1
p−1 I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T}

)
= M ·Ψ2(c̃1, ỹ

c
1, ρ

A
1 ), (143)

with M , c̃1, and ỹc
1 defined in (46), (49), and (50), respectively.

At this point, to complete the proof of Ia, all above calculations would be repeated for expectations
involving S2. But, as mentioned previously, since the results are symmetric, we omit these calculations
here and simply state that by putting together (138), (143), and their respective counterparts for S2, we
obtain the formula for the fair premium for the risk-aversion case of efficient hedging (Theorem 2, part Ia).

Part Ib. Next let us derive the formula for the shortfall risk for the case of risk aversion. Based on
(28) and (117), the shortfall risk can be expressed as

E
(
l((H − V π∗

T )+)
)

= E (l((1− ϕ∗)H)) = E
((

I(a∗e−rT ZT ) ∧H
)p)

= E

(
(k∗)p(ZT )

p
p−1 I{

k∗(ZT )
1

p−1 <H

}
)

+ E

(
HpI{

k∗(ZT )
1

p−1≥H

}
)

. (144)

Note that the first equality is established in Foellmer and Leukert (2000, 123). This expression further
reduces to

E
(
l((H − V π∗

T )+)
)

= E

(
(k∗)p(ZT )

p
p−1 I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T }

)

+E

(
(S1

T )pI{
k∗(ZT )

1
p−1≥S1

T

}I{S1
T≥S2

T }

)

+E

(
(k∗)p(ZT )

p
p−1 I{

k∗(ZT )
1

p−1 <S2
T

}I{S1
T <S2

T }

)

+E

(
(S2

T )pI{
k∗(ZT )

1
p−1≥S2

T

}I{S1
T <S2

T }

)
. (145)
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Consider the sets above and note that now we are working under the subjective probability measure
P . Using (10) and (1), we simplify {S1

T ≥ S2
T } and {S1

T < S2
T } by rewriting them in terms of new Wiener

processes as follows:

{S1
T ≥ S2

T } =
{

σ2W
2
T − σ1W

1
T ≤ ln

(
S1

0

S2
0

)
+
(

µ1 − µ2 +
σ2

2 − σ2
1

2

)
T

}

=

s1 ≤
ln
(

S1
0

S2
0

)
+
(
µ1 − µ2 + σ2

2−σ2
1

2

)
T

σ
√

T

 = {s1 ≤ ȳ1},

{S1
T < S2

T } =
{

σ1W
1
T − σ2W

2
T < ln

(
S2

0

S1
0

)
+
(

µ2 − µ1 +
σ2

1 − σ2
2

2

)
T

}

=

s2 <
ln
(

S2
0

S1
0

)
+
(
µ2 − µ1 + σ2

1−σ2
2

2

)
T

σ
√

T

 = {s2 < ȳ2}, (146)

with W̄ i = (W̄ i
t )t∈[0,T ] such that

W̄ 1
t =

σ2W
2
t − σ1W

1
t

σ
, W̄ 2

t =
σ1W

1
t − σ2W

2
t

σ
, σ2 = σ2

1 + σ2
2 − 2ρσ1σ2 > 0, (147)

random variables si = W̄ i
T√
T
∼ N(0, 1) under P , and ȳi given by

ȳ1 =
ln
(

S1
0

S2
0

)
+
[
µ1 − µ2 + σ2

2−σ2
1

2

]
T

σ
√

T
, ȳ2 =

ln
(

S2
0

S1
0

)
+
[
µ2 − µ1 + σ2

1−σ2
2

2

]
T

σ
√

T
. (148)

For the rest of the proof, we show only derivations for sets involving S1, since results for sets with S2

are symmetric. Next we have to simplify
{

k∗(ZT )
1

p−1 < S1
T

}
. Using the same approach as when working

with this set under P ∗ (see equations (123)-(134)), we can write{
k∗(ZT )

1
p−1 < S1

T

}
=

{
sA
1 < k̄A

1

}
, (149)

where

k̄A
1 = (p− 1)

ln
(

S1
0

k∗

)
+
(
µ1 −

σ2
1
2

)
T +

σ2
φ

2
T

p−1

σE
1

√
T

, (150)

and sA
1 = W̄ 1A

T√
T
∼ N(0, 1) (with respect to P ) with a new Wiener process W̄ 1A = (W̄ 1A

t )t∈[0,T ] defined by

W̄ 1A
t =

(
φ1

p−1 − σ1

)
W 1

t + φ2

p−1W 2
t

σ̃A
1

, (151)

for which (σ̃A
1 )2 = (σE

1 )2

(p−1)2
> 0 as long as ρ 6= θ2/θ1 (see the discussion following (124)).
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We simplify
{

k∗(ZT )
1

p−1 ≥ S1
T

}
similarly and obtain

{
k∗(ZT )

1
p−1 ≥ S1

T

}
=

sA
1 ≤ (p− 1)

ln
(

k∗

S1
0

)
−
(
µ1 −

σ2
1
2

)
T − σ2

φ

2
T

p−1

σE
1

√
T

 = {sA
1 ≤ −k̄A

1 }. (152)

Let us simplify the first expectation in (145):

E

(
(k∗)p(ZT )

p
p−1 I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T }

)
= (k∗)pe

−
σ2

φTp

2(p−1) E

(
e

(
σφp

p−1
W̄ p

T

)
I{sA

1 <k̄A
1 }

I{s1≤ȳ1}

)
, (153)

with k̄A
1 and ȳ1 given in (150) and (148). Above, we use a Wiener process W̄ p = (W̄ p

t )t∈[0,T ] (with respect
to P ) satisfying

W̄ p
t =

φ1

p−1W 1
t + φ2

p−1W 2
t

σp
, (154)

where σ2
p =

σ2
φ

(p−1)2
> 0 (see (140)).

To evaluate the expectation in (153), we apply the multi-asset theorem (36) with z = − σφp
p−1W̄ p

T ∼

N

(
0,

σ2
φp2

(p−1)2
T

)
, x1, x2 = sA

1 , s1 ∼ N(0, 1) under P , and the corresponding correlations given in (142). As

before, after appropriate simplifications, we obtain

E

(
(k∗)p(ZT )

p
p−1 I{

k∗(ZT )
1

p−1 <S1
T

}I{S1
T≥S2

T }

)
= N ·Ψ2(c̄1, ȳ

1
c , ρ

A
1 ), (155)

with c̄1, ȳc
1 defined in (51), (52).

Similarly, we simplify the second expectation in (145). Using (1), (152), and (146), we get

E

(
(S1

T )pI{
k∗(ZT )

1
p−1≥S1

T

}I{S1
T≥S2

T }

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp

E
(
eσ1pW 1

T I{sA
1 <−k̄A

1 }
I{s1≤ȳ1}

)
. (156)

We proceed in the usual manner, applying the multi-asset theorem (36) with z = −σ1pW 1
T ∼ N(0, σ2

1p
2T ),

x1, x2 = sA
1 , s1 ∼ N(0, 1) under P , and correlations given by

ρx1z =
p− 1
σE

1

(
φ1

p− 1
− σ1 +

φ2ρ

p− 1

)
,

ρx2z =
σ1 − σ2ρ

σ
,

ρx1x2 = −φ2(σ2 − σ1ρ)− (φ1 − σ1(p− 1))(σ1 − σ2ρ)
σE

1 σ
= −ρA

1 . (157)
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After appropriate simplifications, the expectation in (156) becomes

E

(
(S1

T )pI{
k∗(ZT )

1
p−1≥S1

T

}I{S1
T≥S2

T }

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp+

σ2
1
2

Tp2

Ψ2(k̄1, ȳ
k
1 ,−ρA

1 ), (158)

with k̄1, ȳk
1 defined in (53), (54).

Repeating the above steps for the remaining two expectations in (145) that involve S2 and putting
together (155) with (158) enables us to write the final formula for the shortfall risk in Theorem 2, part Ib.

Part IIa. To derive the formula for the fair premium for the case of risk taking, recall that the success
ratio ϕ∗ (29) has the form

ϕ∗ = I{1>a∗e−rT H1−pZT }, 0 < p < 1.

Using this, we rewrite U0 as follows:

U0 = E∗
(

ϕ∗H

erT

)
= E∗

(
H

erT
I{1>a∗e−rT H1−pZT }

)
= E∗

(
S1

T

erT
I{1>a∗e−rT (S1

T )1−pZT}I{S1
T≥S2

T }

)
+ E∗

(
S2

T

erT
I{1>a∗e−rT (S2

T )1−pZT}I{S1
T <S2

T }

)
. (159)

As in the proof of Parts Ia and Ib, we show calculations for S1; the calculations for S2 are symmetric.
The set

{
1 > a∗e−rT (S1

T )1−pZT

}
simplifies to{

1 > a∗e−rT (S1
T )1−pZT

}
=

{
σE

1 W̃ 1T
T <

(
r +

σ2
φ

2
+ φ1θ1 + φ2θ2 − (1− p)

(
r − σ2

1

2

))
T − ln

(
a∗(S1

0)1−p
)}

= {sT
1 < k̃T

1 }, (160)

where

k̃T
1 =

(
r +

σ2
φ

2 + φ1θ1 + φ2θ2 − (1− p)
(
r − σ2

1
2

))
T − ln

(
a∗(S1

0)1−p
)

σE
1

√
T

, (161)

the random variable sT
1 = W̃ 1T

T√
T
∼ N(0, 1) under P ∗, and the Wiener process W̃ 1T = (W̃ 1T

t )t∈[0,T ] is defined
by

W̃ 1T
t =

((1− p)σ1 + φ1)W 1∗
t + φ2W

2∗
t

σE
1

, (162)

with σE
1 given in (61).

Here we do not have to check again that (σE
1 )2 > 0, since in (133) we derived the relation (σ̃A

1 )2 =
(σE

1 )2

(p−1)2
> 0, and (126)-(130) show that (σ̃A

1 )2 > 0 as long as ρ 6= θ2
θ1

(ρ 6= θ1
θ2

) holds.
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Using (13), (120), and (160), the expectation in (159) becomes

E∗
(

S1
T

erT
I{1>a∗e−rT (S1

T )1−pZT}I{S1
T≥S2

T }

)
= S1

0e
−σ2

1
2

T E∗

eσ1W 1∗
T I{sT

1 <k̃T
1 }

Is1≤
ln

(
S1
0

S2
0

)
+

σ2
2−σ2

1
2 T

σ
√

T



 . (163)

Next we apply the multi-asset theorem (36) to evaluate this expectation. We take z = −σ1W
1∗
T ∼

N(0, σ2
1T ), x1, x2 = sT

1 , s1 ∼ N(0, 1) (with respect to P ∗). The corresponding correlations are

ρx1z = −(1− p)σ1 + φ1 + ρφ2

σE
1

,

ρx2z =
σ1 − σ2ρ

σ
,

ρx1x2 = ρT
1 , (164)

with ρT
1 defined in (45).

After appropriate simplifications, we obtain this expression for the expectation in (163):

E∗
(

S1
T

erT
I{1>a∗e−rT (S1

T )1−pZT}I{S1
T≥S2

T }

)
= S1

0Ψ2(x̃T
1 , ỹ1, ρ

T
1 ). (165)

The constants x̃T
1 , ỹ1 are given in (55), (21). Repeating these calculations for the expectation in (159)

containing S2 and putting them together with the above result produces the finalized formula for the fair
premium for the case of risk taking for Theorem 2, part IIa.

Part IIb. To derive the formula for the shortfall risk for the risk-taking case, based on (29) and the
arguments of Foellmer and Leukert (2000, 129) that establish the first equality below, we can write

E
(
l((H − V π∗

T )+)
)

= E (l(H)− ϕ∗l(H)) = E (Hp)− E (ϕ∗Hp)

= E
(
(S1

T )pI{S1
T≥S2

T }

)
+ E

(
(S2

T )pI{S1
T <S2

T }

)
−E

(
(S1

T )pI{1>a∗e−rT (S1
T )1−pZT}I{S1

T≥S2
T }

)
−E

(
(S2

T )pI{1>a∗e−rT (S2
T )1−pZT}I{S1

T <S2
T }

)
. (166)

As before, we show calculations for items involving S1.
Consider the expectation E

(
(S1

T )pI{S1
T≥S2

T }

)
. Using (146) and (148), this expectation can be written

as

E
(
(S1

T )pI{S1
T≥S2

T }

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp

E
(
eσ1pW 1

T I{s1≤ȳ1}

)
. (167)
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To evaluate this expression, we use the multi-asset theorem (36) for n = 1: z = −σ1pW 1
T ∼ N(0, σ2

1p
2T ),

x1 = s1 ∼ N(0, 1) under P , and

ρx1z =
(σ1 − σ2ρ)

σ
. (168)

Following these considerations, the expectation in (167) becomes

E
(
(S1

T )pI{S1
T≥S2

T }

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp+

σ2
1
2

Tp2

Ψ1(ȳT
1 ), (169)

where Ψ1 denotes one-dimensional cumulative normal distribution (20) and ȳT
1 is defined in (57).

Next consider the set
{
1 > a∗e−rT (S1

T )1−pZT

}
. We simplify the set under P , similarly to what was

done in (160) under P ∗:

{
1 > a∗e−rT (S1

T )1−pZT

}
=

{
σE

1 W̄ 1T
T <

(
r +

σ2
φ

2
− (1− p)

(
µ1 −

σ2
1

2

))
T − ln

(
a∗(S1

0)1−p
)}

= {sT
1 < k̄T

1 }, (170)

where

k̄T
1 =

(
r +

σ2
φ

2 − (1− p)
(
µ1 −

σ2
1
2

))
T − ln

(
a∗(S1

0)1−p
)

σE
1

√
T

, (171)

the random variable sT
1 = W̄ 1T

T√
T
∼ N(0, 1) under P , and the Wiener process W̄ 1T = (W̄ 1T

t )t∈[0,T ] is defined
by

W̄ 1T
t =

((1− p)σ1 + φ1)W 1
t + φ2W

2
t

σE
1

, (172)

with σE
1 given in (61).

Let us return to the other expectation involving S1 in (166):

E
(
(S1

T )pI{1>a∗e−rT (S1
T )1−pZT}I{S1

T≥S2
T }

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp

E
(
eσ1pW 1

T I{sT
1 <k̄T

1 }
I{s1≤ȳ1}

)
, (173)

and, as before, we apply the multi-asset theorem (36) with z = −σ1pW 1
T ∼ N(0, σ2

1p
2T ), x1, x2 = sT

1 , s1 ∼
N(0, 1) (with respect to P ). The corresponding correlations are the same as those defined in (164).

Finally, after some simplifications, we can write

E
(
(S1

T )pI{1>a∗e−rT (S1
T )1−pZT}I{S1

T≥S2
T }

)
= (S1

0)pe

(
µ1−

σ2
1
2

)
Tp+

σ2
1
2

Tp2

Ψ2(x̄T
1 , ȳT

1 , ρT
1 ). (174)

The constants x̄T
1 , ȳT

1 are given in (56), (57). Performing symmetric calculations for expectations with S2

and putting together (169) with (174) allows us to write the final result for the shortfall risk for the case
of risk taking in Theorem 2, part IIb.
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Part IIIa. Let us calculate the fair premium for the case of risk indifference. Recall that the success
ratio ϕ∗ (30) has the form

ϕ∗ = I{1>ZT a∗e−rT }, p = 1.

With this, U0 can be written as

U0 = E∗
(

ϕ∗H

erT

)
= E∗

(
H

erT
I{1>ZT a∗e−rT }

)
= E∗

(
S1

T

erT
I{1>ZT a∗e−rT }I{S1

T≥S2
T }

)
+ E∗

(
S2

T

erT
I{1>ZT a∗e−rT }I{S1

T <S2
T }

)
. (175)

We need then only simplify the set {1 > ZT a∗e−rT } and apply the multi-asset theorem to the expec-
tation with S1 above. Using the expression for density with respect to P ∗ (16), we have

{1 > ZT a∗e−rT } =

1 > e
φ1W 1∗

T +φ2W 2∗
T −

(
σ2

φ
2

+φ1θ1+φ2θ2

)
T

a∗e−rT

 = {sI < k̃I}, (176)

where

k̃I =

(
r +

σ2
φ

2 + φ1θ1 + φ2θ2

)
T − ln (a∗)

σφ

√
T

, (177)

the random variable sI = W̃ I
T√
T
∼ N(0, 1) for the Wiener process W̃ I = (W̃ I

t )t∈[0,T ] (with respect to P ∗)
defined as

W̃ I
t =

φ1W
1∗
t + φ2W

2∗
t

σφ
, (178)

with σφ given in (12).
Next, using (120), we can write

E∗
(

S1
T

erT
I{1>ZT a∗e−rT }I{S1

T≥S2
T }

)
= S1

0e−
σ2
1
2

T E

e
σ1W 1∗

T I{sI<k̃I}Is1≤
ln

(
S1
0

S2
0

)
+

σ2
2−σ2

1
2 T

σ
√

T



 . (179)

To evaluate this expectation, we use the multi-asset theorem (36) with z = −σ1W
1∗
T ∼ N(0, σ2

1T ),
x1, x2 = sI , s1 ∼ N(0, 1) (with respect to P ∗), and correlations

ρx1z = −φ1 + φ2ρ

σφ
,

ρx2z =
σ1 − σ2ρ

σ
,

ρx1x2 = ρI
1, (180)
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with ρI
1 defined in (45). After simplifications, the expectation in (179) becomes

E∗
(

S1
T

erT
I{1>ZT a∗e−rT }I{S1

T≥S2
T }

)
= S1

0Ψ2(x̃I
1, ỹ1, ρ

I
1). (181)

The same calculations for the expectation with S2, together with the ones above, lead to the final formula
for the fair premium for the risk-indifference case in Theorem 2, part IIIa.

Part IIIb. Next we derive the shortfall risk formula for risk indifference. Using the expression for ϕ∗

(30) and the fact that l(x) = x, we can write

E
(
l((H − V π∗

T )+)
)

= E ((1− ϕ∗)H) = E(H)− E(ϕ∗H)

= E
(
S1

T I{S1
T≥S2

T }

)
+ E

(
S2

T I{S1
T <S2

T }

)
−E

(
S1

T I{1>ZT a∗e−rT }I{S1
T≥S2

T }

)
−E

(
S2

T I{1>ZT a∗e−rT }I{S1
T <S2

T }

)
. (182)

For E
(
S1

T I{S1
T≥S2

T }

)
, we have

E
(
S1

T I{S1
T≥S2

T }

)
= S1

0e

(
µ1−

σ2
1
2

)
T
E
(
eσ1W 1

T I{s1≤ȳ1}

)
, (183)

based on (146) and (148). To this expression we apply the multi-asset theorem (36) with z = −σ1W
1
T ∼

N(0, 1), x1 = s1 ∼ N(0, 1), and

ρx1z =
(σ1 − σ2ρ)

σ
. (184)

We obtain

E
(
S1

T I{S1
T≥S2

T }

)
= S1

0eµ1T Ψ1(ȳI
1), (185)

with Ψ1 given in (20) and ȳI
1 in (60).

Consider {1 > ZT a∗e−rT }. Under P , this set simplifies to

{1 > ZT a∗e−rT } =

{
1 > eφ1W 1

T +φ2W 2
T−

σ2
φ
2

T a∗e−rT

}
= {sI < k̄I}, (186)

where

k̄I =

(
r +

σ2
φ

2

)
T − ln (a∗)

σφ

√
T

, (187)
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the random variable sI = W̄ I
T√
T
∼ N(0, 1) for the Wiener process W̄ I = (W̄ I

t )t∈[0,T ] (with respect to P ),
defined as

W̄ I
t =

φ1W
1
t + φ2W

2
t

σφ
, (188)

with σφ given in (12).
Based on the considerations above, we can write

E
(
S1

T I{1>ZT a∗e−rT }I{S1
T≥S2

T }

)
= S1

0e

(
µ1−

σ2
1
2

)
T
E
(
eσ1W 1

T I{sI<k̄I}I{s1≤ȳ1}

)
, (189)

and apply the multi-asset theorem (36) with z = −σ1W
1
T ∼ N(0, σ2

1T ), x1, x2 = sI , s1 ∼ N(0, 1) (with
respect to P ), and the corresponding correlations given in (180). After some simplifications, the expectation
in (189) takes form

E
(
S1

T I{1>ZT a∗e−rT }I{S1
T≥S2

T }

)
= S1

0eµ1T Ψ2(x̄I
1, ȳ

I
1 , ρ

I
1). (190)

The constants x̄I
1, ȳI

1 are given in (59), (60).
Putting together (185) with (190) and performing similar calculations for expectations involving S2

enables us to derive the final formula for the shortfall risk for the case of risk indifference (Theorem 2,
part IIIb).
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Appendix D

Proof of Theorem 3.
We prove Theorem 3 starting with the easiest case of risk indifference (part III), then going to the

intermediate risk-taking case (part II), and finishing with the more difficult case of risk aversion (part I).
Note that all relevant formulas for fair premiums (initial capital available for hedging) and shortfall risk
amounts are given in Theorem 2, followed by the definitions of the constants to which we will refer in the
proof below.

Part IIIa. We want to show that as the initial hedging capital (43) approaches the perfect hedging
price (19), the shortfall risk (44) goes to 0. Observe that the efficient hedging price approaches the perfect
hedging price whenever

Ψ2(x̃I
i , ỹi, ρ

I
i ) → Ψ1(ỹi) ⇔ x̃I

i →∞ ⇔ a∗ → 0. (191)

And, when a∗ → 0,

x̄I
i →∞ ⇔ Ψ1(ȳI

i )−Ψ2(x̄I
i , ȳ

I
i , ρ

I
1) → 0, (192)

so the shortfall risk goes to 0, which is what we needed to show.
Part IIIb. Here we establish that the maximal shortfall approaches (65) as the initial hedging capital

goes to 0. Note that the capital goes to 0 whenever Ψ2(x̃I
i , ỹi, ρ

I
i ) → 0; that is, when x̃I

i → −∞, or a∗ →∞.
But this implies that x̄I

i also → −∞, so that

Ψ2(x̄I
i , ȳ

I
i , ρ

I
i ) → 0,

which leaves the expression (65) for the largest expected shortfall.
Part IIa. Next we prove that as the initial capital (41) approaches the perfect hedging price (19), the

shortfall risk (42) goes to 0. Observe that the capital approaches 0 whenever Ψ2(x̃T
i , ỹi, ρ

T
i ) → Ψ1(ỹi); that

is, whenever x̃T
i →∞, or a∗ → 0. But in this case x̄T

i →∞ and

Ψ2(x̄T
i , ȳT

i , ρT
i ) → Ψ1(ȳT

i ),

which causes the shortfall risk to approach 0 as well.
Part IIb. Let us show that the maximal shortfall approaches (64) whenever the initial hedging capital

goes to 0. This latter event occurs when Ψ2(x̃T
i , ỹi, ρ

T
i ) → 0, which is equivalent to x̃T

i → −∞, or a∗ →∞.
But then, also, x̄T

i → −∞ and Ψ2(x̄T
i , ȳT

i , ρT
i ) → 0, so that the maximal shortfall risk takes the form (64).

Part Ia. To see that as the initial capital available to the hedger (39) approaches the perfect hedging
price (19), the shortfall risk amount (40) goes to 0, observe that

Ψ2(x̃A
i , ỹi, ρ

A
i ) → Ψ1(ỹi) ⇔ x̃A

i →∞ ⇔ a∗ → 0.

Then M → 0 and c̃i → ∞ (thus Ψ2(c̃i, ỹ
c
i , ρ

A
i ) → Ψ1(ỹc

i )), which means that the limit of the product
M ·Ψ2(c̃i, ỹ

c
i , ρ

A
i ) (of type 0 · const) equals 0 as a∗ → 0. Therefore, the initial hedging capital approaches

the perfect hedging price as a∗ → 0.
But whenever this happens, we also get that N → 0 and c̄i → ∞, so Ψ2(c̄i, ȳ

c
i , ρ

A
i ) → const, and the

product N ·Ψ2(c̄i, ȳ
c
i , ρ

A
i ) → 0. At the same time, a∗ → 0 implies that k̄i → −∞ and Ψ2(k̄i, ȳ

k
i ,−ρA

i ) → 0.

54



Putting together all of the above, we get that the shortfall risk goes to 0 whenever the initial capital
available for investing into the optimal hedging strategy for the risk-aversion case approaches the perfect
hedging price.

Part Ib. Finally, let us establish that as the initial hedging capital goes to 0, the maximal shortfall
amount approaches (63). The proof of part Ib of Theorem 3 requires more work, as we encounter indeter-
minate forms for some of the limits. First, we establish that the initial capital available for hedging (39)
goes to 0 as a∗ → ∞. Notice that as a∗ → ∞, x̃A

i → −∞ and Ψ2(x̃A
i , ỹi, ρ

A
i ) → 0. At the same time,

c̃i → −∞, so Ψ2(c̃i, ỹ
c
i , ρ

A
i ) → 0, but M →∞. Thus we have to show that

lim
a∗→∞

M ·Ψ2(c̃i, ỹ
c
i , ρ

A
i ) → 0. (193)

To deal with this indeterminate form, we refer to the definition of M (46) and the expression for the
cumulative normal distribution of two correlated random variables (see 38), and apply L’Hospital’s rule to
evaluate the following limit:

lim
a∗→∞

M ·Ψ2(c̃i, ỹ
c
i , ρ

A
i ) = const · lim

a∗→∞

∫ ỹc
i

−∞ e
−c̃2i +2ρc̃iy−y2

2(1−ρ2)

(
−1

a∗2π
√

1−ρ2

)
dy

− 1
p−1(a∗)

−p
p−1

= const · lim
a∗→∞

∫ ỹc
i

−∞ e
−(y2+ρ2c̃2i−2ρc̃iy)+ρ2c̃2i−c̃2i

2(1−ρ2) dy

2π
√

1−ρ2

(a∗)
−1
p−1

= const · lim
a∗→∞

e−
c̃2i
2

∫ ỹc
i

−∞ e
−(y−ρc̃i)

2

2(1−ρ2) dy

2π
√

1−ρ2

(a∗)
−1
p−1

. (194)

Note that the const in the front takes care of all the constants remaining from the definition of c̃i and
taking of the derivatives.

We can represent c̃i as c̃i = − ln a∗+k1
k2

, where k1, k2 are constants corresponding to (49). Then we
rewrite the expression multiplying the integral above as follows:

e−
c̃2i
2

(a∗)
−1
p−1

=
e
−1
2

(
− ln a∗+k1

k2

)2

(a∗)
−1
p−1

=
e
− (ln a∗)2

2k2
2

− k1 ln a∗

k2
2

− k2
1

2k2
2

(a∗)
−1
p−1

= (a∗)
− ln a∗

2k2
2
− k1

k2
2
+ 1

p−1 · e
− k2

1
2k2

2 . (195)

Taking the limit of this expression as a∗ →∞, we obtain

lim
a∗→∞

(a∗)
− ln a∗

2k2
2
− k1

k2
2
+ 1

p−1 · e
− k2

1
2k2

2 = lim
a∗→∞

const · 1

(a∗)
ln a∗
2k2

2

= 0. (196)
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So far, we have shown that the coefficient in front of the integral in (194) approaches 0 as a∗ → ∞.
Next we just need to make sure that the integral does not affect this result. Making the substitution

z̃ =
y − ρc̃i√

1− ρ2
, (197)

we obtain ∫ ỹc
i

−∞
e
−(y−ρc̃i)

2

2(1−ρ2)
dy

2π
√

1− ρ2
=

1√
2π

∫ l̃2

l̃1

e
−z̃2

2
dz̃√
2π

, (198)

which is bounded regardless of what happens to the limits from substitution l̃1 and l̃2. Therefore, the
product of the (bounded) integral and the coefficient in (196) will be of type 0 · const, so the limit of this
product as a∗ →∞ will be 0.

Having established that as a∗ → ∞, the capital of the optimal hedging strategy for the risk-aversion
case approaches 0, let us see what happens to the shortfall risk. Whenever a∗ →∞, k̄i →∞ also, meaning
that Ψ2(k̄i, ȳ

k
i ,−ρA

i ) → Ψ1(ȳk
i ). So, to show that the maximal expected shortfall is given by (63), we need

to prove that

lim
a∗→∞

N ·Ψ2(c̄i, ȳ
c
i , ρ

A
i ) → 0. (199)

We do this in the same way as for the limit (193) above. Note that a∗ → ∞ means that N → ∞ and
Ψ2(c̄i, ȳ

c
i , ρ

A
i ) → 0 (because c̄i → −∞).

Based on the definition of N (47) and the formula for Ψ2 (see (38)), we have to evaluate

lim
a∗→∞

N ·Ψ2(c̄i, ȳ
c
i , ρ

A
i ) = konst · lim

a∗→∞

∫ ȳc
i

−∞ e
−c̄2i +2ρc̄iy−y2

2(1−ρ2) −dy

a∗2π
√

1−ρ2

−p
p−1(a∗)

−p
p−1

−1

= konst · lim
a∗→∞

e−
c̄2i
2

∫ l̄2
l̄1

e
−z̄2

2
dz̄
2π

(a∗)
−p
p−1

, (200)

with konst taking care of all the constants resulting from the definition of c̄i, derivatives, and simplifications.
Note that the steps to rewrite the expression above are identical to those in (194). We have substituted

z̄ =
y − ρc̄i√

1− ρ2
(201)

with limits l̄1 and l̄2. Again, as in (198), the integral in (200) is bounded. Similarly to c̃i, based on the
definition of c̄i in (51) and appropriate constants m1,m2, we can write c̄i = − ln a∗+m1

m2
. Then, following

the same steps as in (195), the coefficient multiplying the integral in (200) can be written as

(a∗)
− ln a∗

2m2
2
−m1

m2
2
+ p

p−1 · e
− m2

1
2m2

2 .
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From this, we see that the coefficient approaches 0 as a∗ → ∞. Therefore, the overall product in (200)
goes to 0 also.

Based on these considerations and the expression for the shortfall risk (40), we conclude that as the
initial capital of the optimal hedging strategy approaches 0, the shortfall risk approaches its maximal level,
given by (63), and we finish the proof of Theorem 3, part Ib.
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