
Bank of Canada Banque du Canada
Working Paper 2004-48 / Document de travail 2004-48
An Empirical Analysis of the Canadian Term
Structure of Zero-Coupon Interest Rates

by

David J. Bolder, Grahame Johnson, and Adam Metzler



ISSN 1192-5434

Printed in Canada on recycled paper



Bank of Canada Working Paper 2004-48

December 2004
An Empirical Analysis of the Canadian Term
Structure of Zero-Coupon Interest Rates

by

David J. Bolder, Grahame Johnson, and Adam Metzler

Financial Markets Department
Bank of Canada

Ottawa, Ontario, Canada K1A 0G9
gjohnson@bankofcanada.ca
The views expressed in this paper are those of the authors.
No responsibility for them should be attributed to the Bank of Canada.





iii

Contents

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract/Résumé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. The Data and Estimation Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The estimation algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Sample and subsample periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Model fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Summary of Descriptive Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Average yield curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Descriptive statistics—yield-curve levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Descriptive statistics—first differences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Principal-Components Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Introduction to principal-components analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5. Holding-Period Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

5.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Summary results for holding-period yields—full sample. . . . . . . . . . . . . . . . . . . . . . 26

5.3 Summary results—subsamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Risk-adjusted returns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Appendix: Data-Filtering Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



iv

Acknowledgements

The authors would like to thank Greg Bauer, Scott Gusba, Scott Hendry, Marianne Johnson, and

Ron Morrow for suggestions, guidance, and discussion surrounding earlier drafts, as well as Glen

Keenleyside for editorial assistance. Comments received during a departmental presentation of

the preliminary results are also gratefully acknowledged.



v

s, and

sk-free

to be

e first

nt of

derlie

rves.

two

nadian

f key

nalysis

period

ouvent

rbe de

ement

uteurs

on zéro

ord le

nalyse

va de

cturels

ant cet

t de

alyse en

ements

iverses

 et
Abstract

Zero-coupon interest rates are the fundamental building block of fixed-income mathematic

as such have an extensive number of applications in both finance and economics. The ri

government zero-coupon term structure is, however, not directly observable and needs

generated from the prices of marketable, coupon-bearing bonds. The authors introduce th

public-domain database of constant-maturity zero-coupon yield curves for the Governme

Canada bond market. They first outline the mechanics of the curve-fitting algorithm that un

the model, and then perform some preliminary statistical analysis on the resulting yield cu

The full sample period extends from January 1986 to May 2003; it is broken down into

subsamples, reflecting the structural and macroeconomic changes that impacted the Ca

fixed-income markets over that time. The authors examine the evolution of a number o

interest rates and yield-curve measures over the period, perform a principal-components a

of the common factors that have influenced yield changes over time, and compare holding-

returns over the sample for assets of various maturities.

JEL classification: C0, C6, E4, G1
Bank classification: Financial markets; Interest rates; Econometric and statistical methods

Résumé

Pierre angulaire du calcul pour les titres à revenu fixe, les taux de rendement coupon zéro tr

un nombre imposant d’applications en finance et en économie. Toutefois, comme la cou

rendement coupon zéro sans risque (celle des obligations d’État) n’est pas direct

observable, elle doit être établie à partir des prix d’obligations négociables à coupons. Les a

présentent ici la première banque de données publique sur les courbes de rendement coup

(échéance constante) des obligations du gouvernement canadien. Ils décrivent d’ab

fonctionnement de l’algorithme d’ajustement à la base de leur modèle, puis effectuent une a

statistique préliminaire des courbes de rendement obtenues. Leur période d’estimation

janvier 1986 à mai 2003 et a été divisée en deux afin de tenir compte des changements stru

et macroéconomiques qui ont influé sur les marchés canadiens de titres à revenu fixe dur

intervalle. Les auteurs examinent ensuite l’évolution de plusieurs taux d’intérêt clés e

certaines caractéristiques des courbes de rendement estimées avant de faire une an

composantes principales des facteurs communs ayant façonné le comportement des rend

au fil du temps. Ils comparent aussi les rendements, sur la durée de détention, d’actifs de d

échéances au cours de l’ensemble de la période considérée.

Classification JEL : C0, C6, E4, G1
Classification de la Banque : Marchés financiers; Taux d’intérêt; Méthodes économétriques
statistiques
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1. Introduction

In this paper, we introduce a comprehensive database of constant-maturity zero-coupon

curves for the Government of Canada bond market. The database provides best-fit zero-c

curves based on historical bond closes, beginning in January 1986. It will be kept current an

be publicly available on the Bank of Canada’s website. The first part of the paper review

underlying model used to generate these yield curves. The second part of the paper pro

preliminary statistical analysis of the data. The sample period extends from January 1986 t

2003, a period of almost 17.5 years. We seek to analyze how the yield curve has evolved o

period under examination. Specifically, we

• examine the evolution of the level of key interest rates and yield-curve measures over ti
including the distributional properties of those levels;

• examine the first differences (or daily changes) of these key interest rates and yield-cur
measures, again including the distributional properties;

• perform a principal-components analysis of the common factors that have influenced th
shape of the yield curve over time; and,

• examine the holding-period returns for bonds of various maturities.

Furthermore, given the significant changes that have occurred in both the macroeco

environment and the fixed-income market over the full term of the database, we break dow

full sample period into two subsample periods.

The motivation behind this work is straightforward. Zero-coupon interest rates (or spot rate

the fundamental building block of fixed-income mathematics. These rates are used

tremendous number of applications in both finance and economics, including bond pricin

construction and pricing of derivative products, the generation of forward curves, estimatio

inflation premiums, and modelling of the business cycle. While most financial engineering is

using zero-coupon rates generated from deposit contracts and interest rate swap rates, the

contain a time-varying credit component that complicates matters somewhat. For any applic

that require the use of risk-free interest rates, it is necessary to use a zero-coupon curve t

been constructed from government bond yields.

While the potential uses of a government zero-coupon yield curve are extensive, the estima

such a curve is much less straightforward than it is for the interest rate swap market. By defin

the interest rate swap yield curve is a current-coupon, constant-maturity curve. The intere

swap market has a large number of liquid nodes that maintain a constant maturity (swap s

are quoted for 1-year intervals using a constant-maturity basis). Each date has only one s
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interest rate associated with it. This makes the derivation of a zero-coupon curve rela

straightforward.1 Estimation of a zero curve using the yields on government bonds is,

comparison, a much more difficult problem. The Canadian government bond market cont

large number of issues (80 or more, depending upon the time) of varying maturity, coupon

and yield. Of these bonds, however, only about seven or eight actively trade in the seco

market with any significant frequency. Furthermore, it is not unusual for cash flows that occ

the same date to have different yields, depending on whether these flows represent an

payment (a coupon) or a principal repayment (a residual). These problems necessitate the

numerical curve-fitting techniques to extract zero-coupon rates. These techniques requi

several assumptions be made, depending upon the final use of the interest rates produc

details of the model used, the justification for it, and the assumptions behind it are provid

section 2.

These problems with estimating zero-coupon yield curves using Government of Canada

yields are significant, and, as a result, historical databases of zero-coupon yield curves ha

been readily available in Canada. While historical term-structure databases exist in the

Treasury market (such as McCulloch and Kwon),2 to the best of our knowledge this work

represents the first historical database of Canadian risk-free zero-coupon rates in the

domain.

2. The Data and Estimation Model

2.1 The estimation algorithm

A number of estimation algorithms can be used to derive a zero-coupon yield curve bas

observed market prices of a set of coupon-bearing bonds. The algorithms can, howev

broadly classified as eitherspline-basedor function-based. Bolder and Gusba (2002) provide a

extensive review and comparison of a number of estimation algorithms using Can

government bond data. They conclude that, when evaluated against the criteria of goodnes

composition of pricing errors, and computational efficiency, the Merrill Lynch exponential sp

(MLES) model, as described by Li et al. (2001), is the most desirable term-structure est

model tested. The MLES model, therefore, was selected as the estimation algorithm used t

the historical database of zero-coupon yields. This model, as with the others that were eva

1. For a detailed description of the construction of swap yield curves, see Ron (2000).
2. The U.S. Treasury bond term-structure database is available on J.H. McCulloch’s website at <

www.econ.ohio-state.edu/jhm/jhm.html>.
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by Bolder and Gusba (2002), is strictly based on curve-fitting techniques. That is, it is a st

mathematical process defined as fitting a continuous function to a set of discretely observe

points. The process of generating the yield curve makes no underlying economic assumptio

does it impose any functional form to the yield curve.

The MLES is used to model the discount function,d(t), as a linear combination of exponentia

basis functions. It does not, contrary to its name, utilize splines at all. The original paper m

the discount function as a single-piece exponential spline, which is simply equivalent to fitt

curve on a single interval. The discount function is given as

. (1)

The are unknown parameters fork = 1, ...,N that must be estimated. The parameter , wh

also unknown, can loosely be interpreted as the long-term instantaneous forward rate. The

the number of basis functions used, the more accurate the fit that is realized. For our purpos

use nine basis functions (that is,N = 9). We find that, for values ofN higher than nine, there is no

a substantial improvement in the residual error.

Given the above theoretical form for the discount functions, the next step is to comput

theoretical bond prices. The theoretical price of any bond is simply the sum of the disco

values of its component cash flows, including principal and interest payments. This ca

expressed as

, (2)

wheremi represents the number of cash flows associated with theith bond in the sample,cij is the

specific cash flow associated with time , andd represents the appropriate discount factor. If w

denote each of the basis functions as , wherek = 1, 2, ...,N, we can then solve for matrixH,

defined by

. (3)

d t( ) ζke
kαt–

k 1=

N

∑=

ζk α

P̂i cij d τij( )
j 1=

mi

∑=

τij

f k t( )

Hik cij f k τij( )
j 1=

mi

∑=
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The matrixH is anN x D matrix, whereN is the number of bonds andD is the number of basis

functions used. Following this methodology, the column vector of theoretical prices, , can

expressed as , where  is the column vector of unknown paramete

We next construct a diagonal matrix,W, that incorporates the weights associated with each bo

Its is necessary to weight the various bonds because we are ultimately generating a yield cu

solving for theoretical bond prices, and we are trying to minimize the pricing error across a

sample of bonds. Given the higher price sensitivity per unit of yield for longer-term bonds (hi

duration), if we did not weight the results, the model would treat a given price error on a 1-

bond the same as if it occurred on a 30-year bond. In actuality, the yield error associated w

errors is much greater for the shorter-term instrument.3 To compensate for the greater price/yie

sensitivity of longer-term instruments, the bonds are weighted by the reciprocal of their mod

duration. This places less weight on pricing errors of longer-term bonds, essentially equalizin

weighting in yield space across bonds of different maturities.

The final step in deriving the discount function is to estimate the parameters

assume that the pricing errors are normally distributed with a zero mean and a var

that is proportional to 1/wj, wherewj is the weight assigned to bondj. We next need to find the se

of parameters, , that maximizes the log-likelihood function:

. (4)

This can be expressed in matrix form as

. (5)

Given that the theoretical prices are linear functions of the unknown parameters

can find the maximum-likelihood estimate using generalized least squares.

This leaves one parameter that is still unknown, , and there are two options for dealing w

First, as stated earlier, the value of can loosely be interpreted as the long-term instanta

forward rate. As such, we can utilize economic theory and estimate the parameter directly,

than treat it as an unknown. Second, we can use numerical optimization techniques to so

the value of that minimize the residual pricing error. This is the approach that we use

estimating the yield curves in the database. Li et al. (2001) recommend a range of 5 per cent t

3. For example, a $0.15 price error on a 30-year bond indicates a yield error of only 1 basis poin
equivalent $0.15 error on a 1-year bond represents a yield error of 15 basis points.

P̂

P̂ HZ= Z ζ1 … ζD, ,( )T
=

ζ1 … ζD, ,
P̂j Pj–

ζ1 … ζD, ,

l ζ1 … ζD, ,( ) wj P̂j Pj–( )
2

j 1=

N

∑–=

l Z( ) W HZ P–( ) 2
–=

ζ1 … ζD, ,

α
α

α
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cent, but we find that any economically reasonable value (given the context of the yield

being examined) works well.

2.2 Data filtering

The database of bond prices that we use covers the period from January 1986 to May 2003

approximately 250 days of data for each year in the analysis horizon, this provides more

4,300 observations. Unfortunately, a small number of dates in any given year (typically, bet

10 and 15) appear to be problematic. These dates are characterized by highly non-standar

structure shapes and/or large yield errors. There are two possible explanations for

anomalies. First, there is one (or more) data entry error(s). Second, the data were entered c

(that is, they are correct zero-coupon curves), but market conditions were such that the resu

somewhat non-standard. These market conditions could include things such as one or more

trading “on special”4 in the repo market—and therefore having market yields well below oth

comparable issues—or macroeconomic shocks that result in large, sudden yield movem5

Observationally, it is very difficult to distinguish between these two alternatives. Moreover, in

former case, we would desire to either fix the problem or exclude the date, to avoid the incl

of erroneous data in our sample. In the latter case, however, these dates represent real d

should be included in the sample, to correctly describe the dynamics of the Canadian

structure. To mitigate this problem, we develop a filtering algorithm to help to objectiv

determine which bonds to exclude from the sample. The appendix provides details o

algorithm.

2.3 Sample and subsample periods

Substantial changes have occurred to both the structure of the government bond market a

characteristics of the Canadian economy over the horizon of this study. The period can esse

be considered to consist of two distinct subsample periods or regimes for the fixed-in

markets.

The first subsample period, from January 1986 to December 1996, can be characteri

follows:

4. An issue is referred to as trading “on special” in the repo market if, due to large demand, the in
rate available on a loan that uses that specific issue as collateral is significantly lower than availa
other acceptable collateral.

5. Events such as the 1994 downgrade of Canada’s foreign debt are examples of shocks that cou
yield-curve distortions.
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• Relatively high and volatile inflation and inflation expectations, particularly for the first hal
the subsample. Over this period, the core consumer price index (CPIX) averaged 3.4 pe
with a standard deviation of approximately 1.4 per cent. Inflation expectations (as mea
by the yield spread between nominal and real return bonds) averaged 3.84 per cent,
standard deviation of 0.55 per cent.6

• Large government borrowing requirements, as a consequence of consecutive federal g
ment deficits. Gross borrowing requirements peaked at approximately $67 billion in 199
a result of these large borrowing requirements, little attention was paid to ensuring an effi
issuance structure. Emphasis was put on simply meeting the government’s financing ne

• A fragmented bond market, characterized by a large amount of relatively small, illiquid iss
There was no predictable issuance pattern and there was no regular pattern of building
liquid benchmark issues. Stripping and reconstituting individual cash flows was extremel
ficult for much of the period, and cash flows with the same maturity often traded at diffe
yields, depending upon which underlying bond they came from. Cash flows with the s
maturity date but from different underlying securities were not fungible.

• Few restrictions in primary and secondary market activity, allowing for the possibility of a
gle participant accumulating a significant position in a specific security. This could resu
the specific issue being difficult to borrow in the repo market, forcing it to trade at an a
cially low yield.

The second subsample period, from January 1997 to May 2003, experienced very dif

conditions. It can be characterized as follows:

• Inflation and inflation expectations were low and stable. The Bank of Canada was succ
in meeting its inflation targets, and, after a modest lag, the market adjusted its inflation e
tations accordingly. The CPIX averaged 1.8 per cent over the period, with a standard dev
of 0.55 per cent. The nominal to real return bond spread averaged 2.1 per cent, with a st
deviation of 0.43 per cent.

• Beginning in 1996, the Government of Canada has run a sequence of budgetary sur
This has had a large impact on government borrowing needs. Gross government borro
which had peaked at approximately $67 billion in 1996, fell to $43 billion in 2001.

• Numerous steps were taken by the Department of Finance and the Bank of Canada that
to make the government bond market more efficient. These included the introduction
official benchmark program with explicit issuance targets, a regular and formal consult
with market participants to discuss potential changes to the government debt program, a
implementation of a bond buyback program. The bond buyback program allowed marke
ticipants to sell older, off-the-run issues back to the government, either on a cash basis
trade for the new benchmark bond. The new presence of a large buyer of the illiquid, of
run bonds caused them to begin to trade significantly closer to their “fair” value.

6. The yield spread between nominal and real return bonds is subject to a number of distortion
makes its use as a true measure of inflation expectations problematic. As such, these in
expectations need to be interpreted with care. For a detailed discussion of the issues surround
use of this yield gap as a measure of inflation expectations, see Christensen, Dion, and Reid (20
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• Both the Bank of Canada and the Investment Dealers’ Association (IDA) implemented m
ures to enhance the integrity of the primary and secondary market. These measures in
auction disclosure rules and IDA Article V.7

• The Canadian Depository for Securities (CDS) implemented several initiatives that help
increase the efficiency of the bond market. In 1993, reconstituted, packaged, and g
CUSIPS were introduced for book-entry strip bonds.8 This allowed coupon payments with th
same maturity date to be fully fungible, allowing for increased arbitrage between rich
cheap bond issues. In 1999, any cash flow of a similar type9 that shared a maturity date
became fully fungible, and in 2001 it became possible to reconstitute a bond beyond its
nal issue size. These developments ensured that cash flows that had the same issuer an
rity were valued identically, regardless of which underlying issue they came from.

• Computerized trading strategies and quantitative valuation approaches gained populari
means of arbitraging away pricing inefficiencies in the government and swap yield cu
Hedge funds, many of which specialize in fixed-income relative-value arbitrage, also be
more significant factors in the fixed-income market.

There are effectively two different regime shifts that should be captured. The first is a fisca

macroeconomic shift, highlighted by the achievement of low inflation and a balanced fi

position. The second is a shift in the operation of the actual fixed-income markets thems

including changes to the issuance pattern, changes by CDS, and the growing importa

quantitative trading strategies. As such, no specific date marks a perfect break point. The se

of January 1997 as a break is somewhat arbitrary, and all of the changes highlighted

actually took place either before or after that date. The main point, however, is that the per

the late 1980s and the early 1990s had very different characteristics from the late 1990s an

2000s, and, by the beginning of 1997, most of those changes were evident. If those chang

indeed make the government bond market more efficient, then the theoretical model s

produce a better fit (fewer pricing errors) in the latter period. As well, other differences in

mechanics and behaviour of the zero-coupon yield curves between the two periods m

evident.

7. See <http://www.bankofcanada.ca/en/financial_markets/index.htm> for details of both the a
terms of participation and IDA Article V.

8. CUSIP stands for Committee on Uniform Securities Identification Procedures. A CUSIP nu
identifies most securities. The CUSIP system facilitates the clearing and settlement proc
securities.

9. Fungible cash flows had to be interest payments or principal payments. Interest and pri
payments are not yet fungible with each other.
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2.4 Model fit

Table 1 summarizes some of the high-level details of the estimation results on an annual b

As the table shows, the model provides a significantly better fit in the second subsample p

Both error measures (RMSE and MAE) are smaller. This can be interpreted as being indica

a more efficient bond market, in the sense that there is more consistency in valuation

different specific issues. Cash flows with similar maturities trade much more consistently i

second subsample than they did in the first.

Table 1: Estimation Details

Year
Mean RMSE1

(bps)2
Mean MAE3

(bps)

Mean
available

instruments

Mean
filtered

instruments

1986 17.26 12.11 131 61

1987 15.74 11.12 140 71

1988 13.01 9.47 136 72

1989 11.52 8.39 130 64

1990 12.66 8.84 122 63

1991 10.20 7.62 115 56

1992 11.09 8.48 113 38

1993 9.98 7.56 105 24

1994 5.86 4.02 97 52

1995 5.87 3.21 90 47

1996 8.64 4.87 88 42

Period 1 average 11.08 7.79

1997 7.68 4.39 76 34

1998 5.50 3.40 84 38

1999 5.36 3.42 82 29

2000 6.45 3.69 76 32

2001 2.83 3.04 69 28

2002 4.52 2.75 65 28

2003 3.84 2.30 63 27

Period 2 average 5.17 3.28
1RMSE: Root-mean-square error
2bps: Basis points
3MAE: Mean absolute error
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Brousseau (2002) finds similar results in several European bond markets during the 1

Specifically, he tests U.S., French, German, and Spanish interest rate markets (both gove

and swap yield curves) and evaluates how well market yields correspond to a theoretica

curve over the period from 1994 to 2000. His findings show that U.S. and French curves

consistently well-fitted over the whole period, while German curves were poorly fitted a

beginning of the period, but improved to the point of matching the U.S. treasury curves by th

of the period. Spanish yield curves never exhibited an excellent fit. Brousseau partially attr

this behaviour to the fact that, while computerized trading techniques and quantitative p

models were already the rule in the United States and France by 1994, they did not gain pop

in Germany until later in the 1990s. This process accelerated as the German yield curve b

the reference curve for the European economy. The Spanish market, which did not

quantitative trading strategies to the same degree, did not experience the same shift.

3. Summary of Descriptive Statistics

Section 3.1 shows what an average zero-coupon curve looked like over both the full sample

and the two subsample periods. It also provides some basic descriptive statistics to outli

evolution of four key yield-curve variables over the term of the database. The key yield-c

variables selected for this study are the 3-month yield, the 10-year yield, the slope of the

curve (the difference between the 3-month and 10-year rates), and the degree of curvature

yield curve. The curvature measure, denoted asC, is calculated as follows:

. (6)

That is, curvature is equal to the difference between the yield on a 6-year bond and a

interpolation between the 2-year and 10-year yields.10

3.1 Average yield curves

As a first step in examining the results, Figure 1 depicts what an average yield curve looke

over both the full sample period and the two subsample periods. The average level of the

curve is shown, framed by a one-standard-deviation confidence band.

10. The two portfolio choices (a 6-year bond and a combination of 2-year and 10-year bonds) als
equivalent durations. This results from the fact that the duration of a zero-coupon bond is equa
time to maturity.

C 6y( ) 0.5 2y 10y+( )–=
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Figure 1: Average Zero-Coupon Yield Curves — Full Period and Subsample

As Figure 1 shows, the average yield curve over the entire period was upward sloping, wit

month interest rate of approximately 6.5 per cent and a 10-year interest rate of approximately

cent. The variation around those averages, however, was extremely large. A one-sta

deviation band covered a range for the 3-month rate of approximately 3.5 per cent to 9.5 pe

while for the 10-year rate the band ranged from 5.5 per cent to 9.5 per cent.

Figure 1 also shows the degree to which the yield behaviour differed between the two subs

periods. The average pre-1997 yield curve was upward sloping, with a 3-month rate of abou

cent and a 10-year rate of about 9 per cent. The dispersion of yields around the average leve

however, extremely large. A one-standard-deviation confidence band for the 3-month rate co

a range from 5.5 per cent to 10.5 per cent. For 10-year yields, the range was between 7.5 p

and 10 per cent. The post-1997 average curve had yields that were so much lower that the

confidence band of the second subsample was well below the lower confidence band of th

Furthermore, the dispersion of yields around these average levels was much narrower.

3.2 Descriptive statistics—yield-curve levels

Whereas Figure 1 graphically depicts the general shape of the yield curve over the horizon

database, this section provides a more detailed statistical description of the various yield

measures and their evolution over the full period. It also further highlights the differences bet

the two subsample periods. Figure 7 illustrates the evolution of the levels of the four
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components of the term structure that were examined, including the raw data, the trend

summary statistics. Table 2 shows highlights of the results.

As is obvious from Figure 7, the overall level of yields had a significant downward trend ove

term of the sample, while the levels of steepness and curvature had a modest upward tren

distribution of levels was clearly non-normal for all measures.

Figures 8 and 9, combined with Tables 3 and 4, show the same information broken down f

two subsample periods.

Yields in general appeared to move lower and become less volatile in the second subs

period, with both the mean and standard deviations of the 3-month and 10-year yield me

significantly lower in the later sample. The slope of the yield curve, on the other hand, incre

Table 2: Summary Yield-Curve Statistics—Full Sample Period

Yield-curve
measure

Mean Max Min Std dev Skew Kurtosis
Jarque-Bera
probabilitya

a. This represents the probability that the series is normally distributed.

3-month yield 6.46% 13.57% 1.78% 2.90% 0.61 2.42 0.00

10-year yield 7.62% 11.32% 4.53% 1.80% 0.00 1.60 0.00

Slope 1.16% 4.07% -3.21% 1.66% -0.61 3.03 0.00

Curvature 12.9 bps 82.3 bps -46.7 bps 19.9 bps 0.19 3.09 0.00

Table 3: Summary Yield-Curve Statistics—1986 to 1996

Yield-curve
measure

Mean Max Min Std dev Skew Kurtosis
Jarque-Bera
probability

3-month yield 7.94% 13.57% 2.76% 2.65% 0.22 2.13 0.00

10-year yield 8.84% 11.32% 6.21% 1.06% -0.24 2.40 0.00

Slope 0.90% 3.93% -3.21% 1.83% -0.55 2.46 0.00

Curvature 9.0 bps 82.3 bps -46.7 bps 19.2 bps -0.15 2.61 0.00

Table 4: Summary Yield-Curve Statistics—1997 to 2003

Yield-curve
measure

Mean Max Min Std dev Skew Kurtosis
Jarque-Bera
probability

3-month yield 4.01% 5.76% 1.78% 1.09% -0.23 1.72 0.00

10-year yield 5.61% 7.03% 4.53% 0.48% 0.80 3.45 0.00

Slope 1.60% 4.07% -0.35% 1.20% 0.39 1.90 0.00

Curvature 19.5 bps 72.6 bps -19.9 bps 19.3 bps 0.77 2.65 0.00
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significantly in the second period, and negative slopes (or yield curve inversions) went from

a fairly common occurrence in the earlier period to an extremely rare event in the later. The d

of curvature also increased significantly in the second period, although there was no m

change in variance. In no case did the distribution of any of the key variables take on a n

shape.11

3.3 Descriptive statistics—first differences

Whereas section 3.2 examined the behaviour of the levels of certain key yield-curve mea

over time, an examination of the first differences of these levels is likely of more interest. The

differences (or daily changes) in the level and shape of the yield curve drive the short-term

and return behaviour for government bonds. Since a zero-coupon bond has no interest pay

its return is entirely driven by price changes. Over very short time periods (such as daily),

price changes are almost entirely driven by changes in the yield level.12

The behaviour of these short-term returns is of particular interest. Almost all derivative pr

algorithms, portfolio management tools, and risk-measurement models make some unde

assumptions about the distributional properties of returns over a given time horizon, with the

common assumption being that returns are normally distributed. Since a zero-coupon bond

no coupon payments, its return is entirely driven by changes in price. These price chang

arise from two sources. The first is the simple accretion of price towards the maturity value

happens over time (zero-coupon bonds are issued at a discount and mature at par). The

source is a change in yield. Over relatively short time horizons, the second source is by f

most significant. It follows, then, that to assume that returns are normally distributed is equiv

to assuming that, over short time horizons, yield changes also have a normal distribution. If

in fact not the case, then any models that make the assumption of normality could be prod

results that provide inaccurate prices or risk measures.

11. This is not surprising: since nominal yields are bound at zero, it would be impossible fo
distribution of nominal yield levels to be normal.

12. The price of a zero-coupon bond is also impacted by the simple passage of time. Since
instruments have no coupon payments, they trade at a discount to par. The price then s
converges to par over the life of the bond. While over the long term this effect dominates, its impa
a daily basis is much smaller than that of price changes driven by yield movements. This conver
to par is not an issue for these descriptive statistics, since the first differences were calculated
constant-maturity data.
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Figure 10 illustrates the behaviour of the daily changes in the four main yield-curve mea

over the full sample period. Table 5 provides the statistical details. Figure 11 and Tables 6

show the same information broken down for the two subsample periods.

Three key observations can be made. First, not surprisingly, the average change in the v

yield-curve measures was very small, essentially zero for all measures in both subsample p

Given that these represent daily changes, this small size is to be expected.13 Second, the

uncertainty surrounding the average measure was very high, with standard deviations tha

Table 5: Yield-Curve Measure First Differences—Full Sample Perioda

a. All measures are expressed in basis points.

Yield-curve
measure

Mean Max Min Std dev Skew Kurtosis
Jarque-Bera
probability

3-month yield -0.1 188.3 -120.7 14.5 0.7 14.9 0.00

10-year yield -0.1 62.1 -92.1 7.3 -0.4 14.9 0.00

Slope 0.0 93.1 -176.3 15.0 -0.6 11.5 0.00

Curvature 0.0 66.7 -50.8 4.8 0.6 29.5 0.00

Table 6: Yield-Curve Measure First Differences—1986 to 1996

Yield-curve
measure

Mean Max Min Std dev Skew Kurtosis
Jarque-Bera
probability

3-month yield -0.3 188.3 -120.7 17.3 0.6 11.5 0.00

10-year yield -0.1 62.1 -92.1 8.3 -0.4 13.8 0.00

Slope 0.1 93.1 -176.3 17.7 -0.6 9.2 0.00

Curvature 0.0 66.7 -50.8 5.8 0.5 21.0 0.00

Table 7: Yield-Curve Measure First Differences—1997 to 2003

Yield-curve
measure

Mean Max Min Std dev Skew Kurtosis
Jarque-Bera
probability

3-month yield 0.0 70.8 -51.5 7.9 0.9 12.2 0.00

10-year yield -0.1 23.5 -22.4 5.2 0.2 4.3 0.00

Slope -0.2 53.4 -76.8 8.9 -0.6 8.8 0.00

Curvature 0.0 32.7 -33.3 2.4 0.2 78.9 0.00

13. Realistically, it would be impossible for the average daily change to be significantly different
zero over any reasonable length of time, as this would result in interest rates either falling below
(if the average change was negative), or reaching very high levels (if the average change was po
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very large relative to the mean value. Both the standard deviations and the range of v

however, did become significantly lower in the second subsample. Third, and potentially

importantly, the distribution of yield changes is clearly not normal. Rather, the distribut

appear to have two distinct properties: (i) they are all highly leptokurtic, with a much la

proportion of the observations close to the mean than would be expected under a n

distribution, and (ii) they are subject to extreme outliers, with every measure having se

observations that were up to 12 to 13 standard deviations away from the mean (effectiv

statistical impossibility under a normal distribution). Although the absolute magnitude of

outliers was much smaller in the second subsample, their distance from the mean, as meas

standard deviations, was very similar.

Short-term changes in the yield curve, therefore, clearly were not normally distributed

indicated by the Jarque-Bera probabilities). As a result, the short-term returns on the unde

zero-coupon bonds were not normally distributed. The historical characteristics of

distributions (both highly leptokurtic and subject to extreme outliers) has some intere

repercussions for the pricing algorithms, portfolio management models, and risk measure

rely on the underlying assumption of normally distributed returns. These models would

systematically underpredicted the probability of a very small change in yields, while at the

time also underpredicting the probability of a very large change in yields. Options market

however, appear to compensate for at least part of this pattern by pricing options with va

strike prices using different implied volatility levels. Options with strike prices that are furt

away from the current price trade with a higher implied volatility than do options with st

prices close to the current price. This, in effect, compensates for the fact that the deep out-

money options are more likely to be exercised than the standard normal distribution assum

of some option-pricing models would indicate. Nonetheless, it remains an interesting quest

to whether specific trading strategies that were structured to benefit from the tendency of yie

either move very little or very much (relative to a normal distribution) would have b

abnormally profitable.

4. Principal-Components Analysis

4.1 Introduction to principal-components analysis

Principal-components analysis attempts to describe the behaviour of correlated random va

in terms of a small number of uncorrelated “principal components” (PCs). The main idea is

this behaviour, or co-movement, can usually be described by a small number of prin

components. Thus, we aim to describe the interrelationships between a large number of cor
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random variables in terms of a much smaller number of uncorrelated random variables

allows us to determine the main factors that drive the behaviour of the original, correlated ra

variables.

To begin, consider a random (column) vectorX = (X1, X2,... XM)T, whereT denotes the matrix

transpose operator, with covariance matrix . As long as none of theXi is an exact linear

combination of the other components of the random vectorX, will be positive definite. If is a

positive definite matrix of dimensionm, it has a complete set ofm distinct and strictly positive

eigenvalues, and there exists an orthogonal matrixA, consisting of the unit eigenvectors of

such that

, (7)

whereD is a diagonal matrix with the eigenvalues of  along the diagonal.

Consider the random vector defined by

. (8)

The covariance matrix ofZ is given by

= ATE[XXT]A

= AT A

= D.

Thus, by making the transformationZ = ATX, we have constructed a set of uncorrelated rand

variables,

,

whereai is theith unit eigenvector of , corresponding to the eigenvalue . Using the fact thA

is an orthogonal matrix, so that  for , it follows that

. (9)

To get an intuition for the objective of principal-components analysis, considerm linear

combinations of the first . That is, define them-dimensional random vectorY via

Σ
Σ Σ

Σ

A
TΣA D=

Σ

Z A
T

X=

E ZZ
T[ ] E A

T
XX

T
A[ ]=

Σ

Z* i ai
T

X=

Σ λi

ai
T
aj 0= i j≠

Σ λ1a1a1
T λ2a2a2

T … λmamam
T

+ + +=

l mZi<
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where

,

.

The covariance matrix ofY is given by

. (10)

Expanding (9) as in (8), the covariance matrix ofY is given by

. (11)

From (10) we see that, if the lastm-l eigenvalues of are small, then will be a goo

approximation of . Intuitively, this means that only the firstl principal components are needed t

adequately describe the correlation and co-movement of the original random variables,Xi. In

other words, there are really onlyl “driving forces” that govern the co-movement of the origin

variables. In our context, it turns out that we will be able to describe a very large portion o

correlation between zero-coupon spot rates across the maturity spectrum with only three P

It is preferable to work with standardized data when the objective is to describe the corre

matrix. If we define

,

then we have random variables with zero mean and unit variance. In addition, the cova

matrix of X* will be identical to the correlation matrix ofX. Hence, we can find the eigenvalue

and eigenvectors of and apply the above results, eliminating small eigenvalues. In add

since we are dealing with sample data, we will replaceE[Xi] with and withSi, the sample

standard deviation for theith variable (zero-coupon rate, in this case).

Y AlZl=

Al a1 a2 …al
=

Zl Z1 Z2 …Zl

T
=

E YY
T[ ] E AlZlZl

T
Al

T[ ]=

AlE ZlZl
T[ ]Al

T
=

AlDl Al
T

=

ΣY λ1a1a1
T λ2a2a2

T … λlalal
T

+ + +=

Σ ΣY

Σ

X∗i Xi E
Xi[ ]
σi

----------–=

Σ∗

Xi σi
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The usefulness of identifying a small number of factors that drive the returns of fixed-inc

securities has been recognized by market participants; Litterman and Scheinkman (1991) w

first to use principal-components analysis to accomplish this task. They find that over 98 pe

of the variation in the returns on government fixed-income securities can be explained in ter

three factors, which they calllevel, steepness, and curvature. Subsequent analysis of othe

sovereign debt markets, such as Switzerland and Germany (Buhler and Zimmermann 199

the short-term money markets (Knez, Litterman, and Scheinkman 1994) provides similar re

with the same three factors explaining a large percentage of the variation in bond returns. S

4.2 applies this analysis to zero-coupon Government of Canada bond yields over the per

determine whether the variation in Canadian yields can be explained by similar factors. As

the relative importance of the factors, and how that relative ranking evolved over time, wi

examined.

4.2 Results

For each year in our sample, we construct the sample correlation matrix from the centred

. This is done simply for convenience—when we express the zero-coupon ra

linear combinations of the principal components, there will be no constant term. Table 8 s

the results from our principal-components analysis. We define the percentage variation exp

by theith PC as

.

As such, the percentage explained indicates how large a given eigenvalue is relative to the

The results shown in Table 8 are interesting, because they indicate that, similar to Litterma

Scheinkman’s results, an average of 99.6 per cent of the correlation between zero-coupo

can be explained in terms of only three uncorrelated PCs, and that this total explanatory

was stable across the two subsample periods.

Xi t,
c

Xi t, Xi–=

λi

λi

λ j
j 1=

m

∑
---------------=
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It is possible to add some context to how these three principal components impact the shape

yield curve. Recall that the PCs can be expressed as

,

where the columns ofA constitute the unit eigenvectors of the sample correlation matrix for

selected zero-coupon rates. SinceA is orthogonal, it is invertible, withA-1 = AT. Therefore, we can

express the standardized data,X*, as a linear combination of the PCs:

.

Thus, theith standardized zero-coupon rate can be written as

,

Table 8: Percentage Variation Explained

Year Component 1 Component 2 Component 3 Total

1986  0.910  0.066 0.017 0.993

1987  0.970  0.022  0.006  0.998

1988  0.902  0.080  0.013  0.995

1989  0.709  0.250  0.031  0.990

1990  0.831  0.118  0.046  0.996

1991  0.919  0.075  0.003  0.997

1992  0.877  0.109  0.010  0.997

1993  0.937  0.042  0.012  0.991

1994  0.964  0.033  0.001  0.999

1995  0.931  0.064  0.004  0.999

1996  0.925  0.068  0.005  0.998

Period 1 mean 0.898 0.084 0.013 0.996

1997  0.547  0.428  0.019  0.994

1998  0.763  0.213  0.019  0.995

1999  0.834  0.148  0.015  0.997

2000  0.751  0.234  0.013  0.998

2001  0.814  0.179  0.006  0.999

2002  0.690  0.293  0.015  0.998

2003  0.679  0.307  0.012  0.998

Period 2 mean 0.726 0.258 0.014 0.997

Full sample mean  0.831  0.152  0.014  0.996

Z A
T

X∗=

X∗ AZ=

X∗i ai 1, Z1 ai 2, Z2 … ai m, Zm+ + +=
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whereai,j is the ith component of thejth eigenvector (the unit eigenvector corresponding to t

eigenvalue ). Since , we can express theith zero-coupon rate as

. (12)

Because we are dealing with sample data, we replace with , the sample mean of theith rate,

and withSi, the sample standard deviation for theith rate. The coefficientsai,j are obtained

from the eigenvectors of the estimated correlation matrix of the standardized data. As well,

the first three PCs explain over 99.5 per cent of the variation, we can shorten equation (12)

only m = 1,2,3.

Figure 2 shows the sensitivities of each rate versus their maturity for the first three PCs. In

words, a given curve in the graph plots the (rescaled) components of the eigenve

corresponding to the first three factors. This helps to facilitate the interpretation of these PC

Figure 2: Sensitivities of Zero-Coupon Rates to First Three Factors

For the first PC, we see that the sensitivities of the rates to this factor are roughly constant

maturities. Thus, if this PC increased by a given amount, we would observe a (approxim

parallel shift in the zero-coupon term structure. This PC corresponds to thelevel factor of

Litterman and Scheinkman. As Table 8 indicates, this PC is the most important determinant

movements of the term structure, accounting for an average of 83 per cent of the total var

The explanatory power of this first PC is not stable over the two subsample periods, howeve

level is significantly less important in explaining total variation in the zero-coupon yield curv

λ j X∗i
Xi µi–( )

σi
---------------------=

Xi µi σiai 1, Z1 σ2ai 2, Z … σiai m, Zm+ + + +=

µi µ̂i

σi
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the latter subsample period than it is in the first (although it is still by far the most important o

three).14

The second PC tends to have an effect on short-term rates that is opposite to its effect on

term rates. An increase in this PC causes the short end of the yield curve to fall and the long

the yield curve to rise. This is thesteepnessfactor—a change in this factor will cause the yiel

curve to steepen (positive change) or flatten (negative change). Table 8 shows that the r

importance of this factor changed materially over the two subsample periods, accountin

roughly twice the variation in the second subsample period as it did in the first. Changes

steepnessof the yield curve explain significantly more of the total variation in the curve in

post-1997 sample than they do in the pre-1997 sample. In both cases, though, this factor is

to thelevel PC in terms of the amount of variation in the yield curve it explains.

The third PC corresponds to thecurvaturefactor, because it causes the short and long ends

increase, while decreasing medium-term rates. This gives the shape of the zero-coupon

curve more or less curvature. This PC seems to be the least significant of the three, accoun

an average of less than 2 per cent of the total variation in term-structure movements. As we

amount of variation explained by this PC does not vary significantly over the two subsa

periods.

To further facilitate the interpretation of these principal components, Figure 3 illustrates

happens to a sample yield curve when there is a shock to one PC. The figure illustrates the

yield curve on 12 March 2003 and the recalculated yield curve (via equation (12)) after incre

one PC by five units.

14. Thep-values for heteroscedastict-tests for equality of means between the two subsample periods
bothlevelandsteepnessare 0.00.
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Figure 3: Sensitivities of Zero-Coupon Rates to a Principal-Component Shock

Figure 3 shows that, although the first PC does not induce a perfectly parallel shift in the

structure (the shift higher in yields is accompanied by a modest steepening of the yield cur

affects all rates by roughly the same amount. The second PC makes the yield curve b

steeper, whereas the third PC introduces more curvature into the shape of the term structu

As Table 8 shows, the first three PCs account for an average of 99.6 per cent of the total va

in the yield curve, and this proportion is stable over the two subsamples. Since we have use

maturity points to describe a specific zero-coupon curve (m = 9), there are, by definition, nine

principal components. The fourth through ninth PCs, however, have very little effect on the

structure, accounting for a total of only 0.4 per cent of the variation. Not surprisingly (given

linkages between the U.S. and Canadian government bond markets), these results are

similar to those of the earlier studies. The same three factors (level, steepness, and curvatu

found to explain almost all of the variation in Canadian bond yields, and the relative rankin

the importance of these factors is the same.
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4.3 Potential applications

The principal-components analysis essentially shows that any daily shift in the zero-coupon

curve can be separated into three uncorrelated components. These components, in o

importance, are a more or less parallel movement, a change in steepness, and a cha

curvature. Traditional interest rate risk management emphasizes duration, assuming that o

first PC is important. This analysis clearly shows that this type of hedging ignores a subst

amount of risk, because in the post-1997 period a parallel shift represented only 73 per cent

total variation in yields. A portfolio can be duration-neutral (i.e., the assets have the same du

as the liabilities), but still be exposed to changes in slope and curvature (the second and

PCs).

Principal-components analysis allows the creation of PC durations, with each duration mea

the sensitivity of the portfolio to one of the three components. A more complete hedging str

would then entail having a portfolio of assets that offset the three key durations (level, slope

curvature) of the liability portfolio. The analysis above shows that, properly constructed,

hedge would protect against more than 99 per cent over the variability in the term structure

use of principal-components analysis in hedging fixed-income portfolios has been the subje

relatively large amount of research; additional information is provided by Barber and Co

(1996), Golub and Tilman (1997), and Lardic, Priaulet, and Priaulet (2001).

Principal-components analysis is also useful in the construction of functional forms of the

curve. Yield curves can be modelled in a number of ways, depending on the motives for the

the final curve. Practitioners, who focus on pricing accuracy, generally favour straight c

fitting algorithms (such as the MLES) and no-arbitrage models, which are primarily conce

with accurately fitting the term structure at a specific point in time. At the other end of

spectrum are the economic-based models, which employ expectations regarding inflation,

economic growth, and the dynamics of the short rate over time. Falling somewhere in be

these two approaches is the functional specification of the yield curve. Functional represen

of the yield curve use a small number of time-varying latent factors to model its evolution. In

of the earliest and best-known papers on this approach, Nelson and Siegel (1987) cons

parametrically parsimonious model of the yield curve based on three time-varying param

Although these parameters are not specifically interpreted as factors in the original pa

number of subsequent authors have interpreted them as the specific factors level, slop

curvature.15 While the results of the principal-components analysis confirm that the dynamic

15. See, for example, Diebold and Li (2003), Diebold, Rudebusch, and Aruoba (2003), and Duffi
Kan (1996).
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the yield curve can be reasonably fully modelled with only these three factors, these func

forms can further be developed by the addition of macroeconomic factors (as in Die

Rudebusch, and Aruoba 2003).

Another potential application of principal-components analysis lies in Monte Carlo simulation

interest rate paths. One way to simulate the yield-curve changes necessary for a Monte

simulation would be to generate random vectors from the joint (multivariate) distribution of z

coupon rates. We would like to use as many rates as possible, however, and we cannot for

fact that yields of differing maturities are highly correlated. Thus, we could not simply genera

month changes independently of 10-year changes, since this would ignore the patterns in

movements of these rates. To generate yield-curve changes via the joint distribution of y

therefore, would be cumbersome and very difficult—it would involve generating them fro

high-dimension distribution (we would most likely want to use at least 10 rates). Further, this

distribution could potentially be very complicated in the presence of our empirically obse

correlations between rates. Simulation might be straightforward if we assume that yield ch

are multivariate normal; however, as we have shown in sections 3 and 4, the normal distrib

does a very poor job of describing yield changes.

An alternative would be to simulate the principal components themselves and transform

back into yields. There are two main reasons why this makes the simulation process easie

the principal components are uncorrelated, so we can generate them independently. This

that we do not have to take into account the likely effect of a change in the 3-month rate on th

year rate, which simplifies tremendously the target distribution in the Monte Carlo simula

Second, we find that there are only three principal components that are significant drivers

shape of the term structure. Thus, instead of generating samples from the 10-dimen

distribution of yields, we can simply generate from the 3-dimensional distribution of the first t

components.

5. Holding-Period Returns

The expectations hypothesis of the term structure of interest rates maintains that longe

interest rates are simply the geometric average of future short-term rates, plus a term prem

the value of the term premium is set to zero, it follows that the expected returns on bonds

maturities are equal over a given time horizon (e.g., buying a 10-year bond and selling it in

year provides the same expected return as buying a 1-year bond and holding it to maturity)

term premium is positive, longer-term bonds will have a higher expected return over a
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investment horizon than shorter-term instruments will. This extra return, however, compen

for the higher risk associated with longer-term instruments.

We will use the historical yield series to answer three questions related to this hypothesis.

have bonds of different maturities provided equivalent returns for a given holding period, or

longer-term instruments provided some measure of excess return (i.e., is the term premium

or positive)? Second, were the returns earned from holding longer-term instruments riskier

variable) than they were for shorter-term bonds? Third, were the risk-adjusted returns a

maturities equivalent, or did one sector tend to outperform the others on a risk-adjusted ba

5.1 Definitions and notation

The usual notation for the price at timet of a default-free, zero-coupon bond (having a face va

of $1) maturing on dateT is P(t,T). This means that the price of a bond with a time-to-maturity

T years can be expressed asP(t,t+T). The continuously compounded zero-coupon rate,z(t,T), is

defined as:

,

which gives:

.

Our yield-curve data consist of 4,204 daily yield curves. In the usual notation, the data cons

a set of 4,204 functions:

.

We will use this notation in the following analysis, with the assumption that one year has

days, since our yield curves contain rates in 3-month increments (each of which is taken

0.25 years). As a result, for any given dateti, we have the 90/360-year (3-month) and 180/36

year (6-month) rates, but not the 90/365-year or 180/365-year rates.

The next step is to define holding-period returns. AnN-day holding-period return (HPR)

beginning at timeti on T-year bonds is defined as the net percentage return that is realized

the following hypothetical strategy:

P t T,( ) e
T t–( ) z t T,( )⋅–

=

z t T,( ) 1
T t–
----------- P t T,( )( )log–=

z ti T,( ) i; 1 2 … 4204, , ,={ }
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• At a given date,ti, purchase a risk-free zero-coupon bond maturing inT years (i.e., at dateti +
T). For simplicity, assume that the face value of the bond is $1. The price of this bond at dti
is given by P(ti, ti + T).

• Hold the bond forN days.

• On dateti + N/360, sell the bond. Note that, as of dateti + N/360, the bond will have a time-to-
maturity of (T - N/360) years, but will still be maturing at dateti + T. Also note thatti + N/360
will represent a date that isN days afterti. The price of this bond when it is sold atti + T is P(ti
+ N/360,ti + T).

• Defining , the net percentage return to the strategy is

.

The holding-period return for a zero-coupon bond is therefore simply the difference betwee

price at which the bond is sold,P(ti + d, ti + T), and the price at which the bond is bought,P(ti, ti
+ T), divided by the total investment made on dateti.

16 Expressed in terms of zero-coupon yield

rather than prices, we get

.

It will be useful in the subsequent sections to consider holding-period yields (HPYs), which

denoted byX(ti, N, T) and defined as the solution to the relation

. (13)

One way to interpret these HPYs is as follows: if an investor had been paid interest continu

at a fixed rate ofX(ti, N, T)on a $1 investment between datesti andti+d, they would have earned

$HPR(ti, N, T) in interest. Note that, since it depends on the bond price atti+d, X(ti, N, T) is not

known at timeti. It is simply the rate at which an investor would have earned exactly the s

16. This allows for a much cleaner calculation of holding period returns than would be the case
coupon-bearing instruments, which would necessitate including the return earned from th
investment of periodic cash flows.

d
N

360
---------=

HPR ti N T, ,( )
P ti d ti T+,+( ) P ti ti T+,( )–

P ti ti T+,( )
------------------------------------------------------------------------=

Pti d ti T+,+

Pti ti T+,
--------------------------------- 1–=

HPR ti N T, ,( )
T d–( ) z ti d ti T+,+( )⋅–( )exp

T z ti ti T+,( )⋅–( )exp
----------------------------------------------------------------------------=

T z ti ti T+,( ) T d–( ) z ti d ti T+,+( )⋅–⋅( ) 1–exp=

e
d X ti N T, ,( )⋅

1– HPR ti N T, ,( )=
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amount in interest as if they had used the HPR strategy. We can use equation (13) to de

explicit expression forX(ti, N, T):

.

In the following sections, we deal exclusively with HPYs, comparing them with yields on z

coupon bonds that are held until maturity. For this purpose, we need to express the HPRs a

type of continuous rate, as opposed to a simple percentage return.

Our analysis focuses on the concept of excess HPYs. The excess yield is defined as the ex

the HPY compared with some risk-free reference rate. The risk-free reference rate is defin

the yield on a zero-coupon government bond withd years to maturity. This yield is risk-free in

that the investor does not need to sell the bond at timeti+d, but rather the bond matures with

known terminal value of $1. As a result, the realized yield is known at timeti with certainty (i.e.,

it is risk-free).

5.2 Summary results for holding-period yields—full sample

HPYs are calculated for a holding period ofN = 180 days and using zero-coupon instruments w

maturities ofT = 1, 2, 5, and 10 years. To calculate excess returns, these HPYs are compare

the yield on a zero-coupon instrument with a 180-day maturity. The data are as follows:

• There are 3,334 observations.

• The first observation,X(t1, 180, T),is the yield corresponding to the return realized betwe
31 March 1989 and 27 September 1989.17

• The last observation,X(t3334, 180, T),is the yield corresponding to the return realized betwe
29 November 2002 and 28 May 2003.

As before, we examine both the entire data set and the two subsample periods: the pr

subsample and the post-1997 subsample. Table 9 and Figure 4 show the summary results

full period. It is immediately evident that HPYs get both larger and more volatile as the mat

of the bonds held increases. A 1-year instrument has the smallest mean and median re

standard deviation that is one-fifth as large as the 10-year instrument, and does not pro

negative return in any of the periods examined. At the other end of the spectrum, the 10-yea

has the highest average return (both mean and median), the largest standard deviation,

produced negative returns of up to -46 per cent over a 180-day period. The results conform

17. This represents the first 180-day period that did not have a large number of missing observation
to 31 March 1989, there is a gap of 35 days.

X ti N T, ,( ) 1
d
--- T z ti ti T+,( ) T d–( ) z ti d ti T+,+( )⋅–⋅( )⋅=
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(higher expected return).

Figure 4: Daily Observations of 180-Day HPYs

As stated earlier, excess HPYs are a more accurate way to compare the dynamics of HPY

time, since they adjust for changes in the level of the reference risk-free rate (the 180-day r

Table 9: Summary Statistics for 180-Day HPYs

Bonds Mean (%) Median (%) SD (%) Max (%) Min (%) Skewness Kurtosis

1-year 6.66 6.29 2.89 15.08 1.01 0.58 2.86

2-year 7.58 7.05 4.39 20.43 -6.75 0.03 2.95

5-year 9.22 9.75 8.67 34.13 -24.20 -0.51 3.97

10-year 10.95 12.14 14.53 46.19 -45.98 -0.70 4.20
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this case) over the periods examined. Table 10 and Figure 5 show the summary statistics

excess HPYs over the full sample.

Figure 5: Daily Observations of 180-Day Excess HPYs

Not surprisingly, the summary statistics for excess HPYs show the same pattern as they do

absolute HPYs. The magnitude of the incremental risk and return becomes clearer, howeve

year instrument shows a minimal excess return, with a mean value of only 66 basis points

10-year bond shows a mean excess return of 489 basis points, almost 7.5 times as larg

difference in standard deviations is equally striking, with the 1-year instrument having a sta

deviation of 118 basis points, whereas the 10-year bond shows a standard deviation of

1,450 basis points.

Table 10: Summary Statistics for 180-Day Excess HPYs

Bonds Mean (%) Median (%) SD (%) Max (%) Min (%) Skewness Kurtosis

1-year 0.61 0.66 1.18 4.05 -3.27 -0.53 3.55

2-year 1.53 1.61 3.57 12.53 -11.10 -0.64 4.09

5-year 3.17 4.05 8.35 26.18 -28.24 -0.80 4.35

10-year 4.89 6.45 14.48 38.18 -49.66 -0.80 4.18
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5.3 Summary results—subsamples

Section 3.1 demonstrated that yields are generally significantly less volatile in the se

subsample (the post-1997 period). This section examines the behaviour of excess HPYs o

subsamples. Theoretically, the reduced risk of longer-dated bonds (the lower yield vola

evident in the second subsample) should result in lower excess HPYs.

As Tables 11 and 12 show, both the average excess HPYs and their associated standard de

are lower in the post-1997 period. The decline in the level of risk associated with longer-

instruments (the standard deviation of the excess HPYs) is most noticeable. While the fall

value of the excess HPYs is not very large (ranging from 19 basis points for the 1-year asse

basis points for 10-year assets),18 the decrease in the standard deviation of these return

material, with all maturities experiencing decreases of approximately 50 per cent. These r

support the hypothesis that the bond market became “safer” in the post-1997 period, of

broadly similar returns, but with a lower level of risk associated with those returns.

Another way to illustrate the levels of risk in the two subsample periods is to examine

probability of realizing negative excess returns. In other words, what were the odds of earnin

than the risk-free rate by owning longer-maturity assets? To pose the question in a sl

different way, what were the odds of realizing positive excess returns? Tables 13 and 14 sh

frequency and size of negative and positive excess returns over the two subsample periods

Table 11: Summary Statistics for Excess HPYs: Pre-1997

Bond Mean (%) Median (%) SD (%) Max (%) Min (%) Skewness Kurtosis

1-year  0.69  1.04  1.4  4.05  -3.27  -0.73  2.79

2-year  1.69  2.37  4.37  12.53  -11.10  -0.78  3.27

5-year  3.46  4.93  10.17  26.18  -28.24  -0.85  3.55

10-year  5.24  8.30  17.48  38.18  -49.66  -0.85  3.48

Table 12: Summary Statistics for Excess HPYs: Post-1997

Bond Mean (%) Median (%) SD (%) Max (%) Min (%) Skewness Kurtosis

1-year  0.51  0.40  0.70  2.86  -1.61  1.09  4.33

2-year  1.32  1.05 2.20 8.13  -3.57  0.71  3.23

5-year  2.79  3.35  5.35  15.86  -11.58  -0.16  2.66

10-year  4.45  5.59  9.82  31.79  -21.92  -0.17  2.96

18. These differences in excess HPYs are not statistically significant, given the small difference
relatively large associated standard deviations.
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The probability of earning a positive excess return for a given period is, obviously, equal to

minus the probability of earning a negative excess return.

Interestingly, the chance of losing money (as defined by earning less than the risk-free rate

not vary considerably either across bond maturities or across subsample periods. In all cas

chances of earning a negative excess return are roughly between 25 per cent and 30 per cen

does vary considerably, over both maturity and subsample periods, is the size of the a

negative excess returns: it increases sharply as the term-to-maturity of the bond increas

well, the mean excess negative return is significantly lower for all terms in the post-1997 pe

A similar pattern occurs in the size of the mean excess positive returns: it increases as the te

maturity of the underlying bond increases, and it decreases significantly in the post-1997 p

The negative and positive excess return statistics shown in Tables 13 and 14 continue to s

the hypothesis that the bond market has become less risky in the post-1997 period. Wh

probabilities of earning either positive or negative excess returns does not materially chang

size of those excess returns does. In the pre-1997 period, the size of excess return shock

positive and negative) are significantly larger than they are in the post-1997 period.

Table 13: Frequency and Size of Negative Excess Returns

Pre-1997 Post-1997

Maturity Probability (%) Mean (%) Probability (%) Mean (%)

1-year 25.4 -1.44 23.9 -0.23

2-year 25.8 -4.28 31.1 -0.93

5-year 29.4 -8.94 30.0 -3.67

10-year 31.6 -15.16 30.5 -7.17

Table 14: Frequency and Size of Positive Excess Returns

Pre-1997 Post-1997

Maturity Probability (%) Mean (%) Probability (%) Mean (%)

1-year 74.6 1.42 76.1 0.74

2-year 74.2 3.76 68.9 2.33

5-year 70.6 8.63 70.0 5.56

10-year 68.4 14.65 69.5 9.55
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5.4 Risk-adjusted returns

The excess HPY data in the previous section support two primary conclusions. First, bo

expected risk and the expected return increase as the time-to-maturity of the bond exa

increases. For the full sample, the mean 180-day excess HPY increases from 0.61 per cent

year bond to 4.89 per cent for a 10-year bond. The standard deviation of these returns inc

from 1.18 per cent for the 1-year asset to almost 14.5 per cent for the 10-year asset. It appe

longer-dated assets carry a positive risk premium to compensate for the additional volatil

their returns. Second, while the mean excess HPYs decline slightly in the post-1997 perio

level of risk (as measured by the standard deviation of those excess HPYs) declines much

substantially.

In this section, we examine the HPYs after adjusting them for risk. The simplest way to do t

to construct Sharpe ratios for the various HPYs. Sharpe ratios are defined as the ratio of the

return on a risky asset to its volatility. We can calculate the ex post (or historic) Sharpe ra

follows:

.

The Sharpe ratio (S) is equal to the mean excess HPY divided by the standard deviation of t

HPYs. The larger the value ofS, the higher the risk-adjusted return.

Table 15 and Figure 6 show the Sharpe ratios for the various maturities over the full samp

pre-1997 subsample period, and the post-1997 subsample period.

Table 15: Sharpe Ratio Calculations—Excess HPYs

Full sample Pre-1997 subsample Post-1997 subsample

Bond
Mean
Excess

HPY (%)
SD (%) Sharpe

Mean
Excess

HPY (%)
SD (%) Sharpe

Mean
Excess

HPY (%)
SD (%) Sharpe

1-year 0.61 1.18 0.52 0.69 1.40 0.49 0.51 0.70 0.73

2-year 1.53 3.57 0.43 1.69 4.37 0.39 1.32 2.20 0.60

5-year 3.17 8.35 0.38 3.46 10.17 0.34 2.79 5.35 0.52

10-year 4.89 14.48 0.34 5.24 17.48 0.30 4.45 9.82 0.45

S
HPY
σHPY
-------------=
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Figure 6: Sharpe Ratios

Two main characteristics of the Sharpe ratios are apparent. First, they decrease with the ti

maturity of the bonds for the full sample period and for both subsample periods. The increm

return earned by longer-maturity bonds does not compensate for the extra risk (according

measure of risk adjustment). Second, Sharpe ratios for every maturity are higher in the pos

period than in the pre-1997 period, by approximately 50 per cent. As before, it appears th

Canadian bond market offered a superior risk-reward trade-off in the post-1997 period.

6. Conclusions

We have introduced a comprehensive database of Government of Canada zero-coupo

curves, and provided some preliminary statistical analysis of the data to draw some g

conclusions about the behaviour and evolution of Canadian government bond yields ov

period. Three main conclusions can be drawn.

The first is that the behaviour of the government bond yields was significantly different in

latter part (January 1997 to May 2003) of the sample. By almost any measure, the bond m

became a “safer” place in this second subsample period. Indications of this decrease in r

numerous. The yield-curve model provided a much better fit in the latter period, indicative o

idiosyncratic pricing behaviour by individual securities. The level of volatility of the vario

yield-curve measures (3-month, 10-year, slope, and curvature) fell significantly in the se

subsample period, both for levels and first differences. Measures of risk based on holding-

returns also showed lower risk in the second subsample. While excess HPYs were smaller
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second subsample, the standard deviation of these returns was significantly lower, lead

better risk-adjusted performance across the yield curve.

The second conclusion results from the principal-components analysis. This analysis show

three factors (which we refer to as level, slope, and curvature) account for over 99.5 per c

the total variation in the yield curve over the full sample period. While this proportion

remained extremely stable over the period (ranging from 99.0 to 99.9 per cent), the break

among the three factors varies considerably. Thelevel factor explains an average of almost 90 p

cent of the variability in the first subsample period, but only 73 per cent in the second.

amount of variability explained by theslopefactor, meanwhile, rises from 8 per cent in the fir

subsample period to almost 26 per cent in the second. In the period after 1996, the absolut

of yields appears to have become relatively less significant, with the shape of the yield

accounting for an increasing amount of yield-curve variability.

The third conclusion concerns the distributional properties of the daily changes of the va

yield-curve measures. The distribution of these daily changes is not normal for any

measures examined. The actual distributions are much more leptokurtic than normal, with a

proportion of observations than would be expected occurring right around the mean. As we

distributions are characterized by “fat tails,” with a much larger proportion of outliers obse

than would be expected. These distributional properties hold in both subsample periods (alt

variability is much lower in the second). The daily changes in both the level (3-month and 10

interest rates) and shape (slope and curvature) of the yield curve average zero (and, in fact,

more likely to be zero than a normal distribution would suggest), but are prone

disproportionately large moves in either direction. The behaviour of the yield curve, in gen

can be characterized as general stability punctuated by periods of extreme moves.

We have provided a relatively high-level statistical overview of the behaviour of the Governm

of Canada yield curve over a period of approximately 17.5 years. Our analysis is based upo

we believe to be the first constant-maturity Government of Canada yield curve to be availa

the public domain. These data are a new and rich resource for further research, and will be

available on the Bank of Canada’s website.19

19. While we will make the data available in the public domain, the authors request that anyone m
use of the database cite this paper.
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Figure 7: Yield-Curve Measures — Full Sample Period
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Figure 8: Yield-Curve Measures — 1986 to 1996
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Figure 9: Yield-Curve Measures — 1997 to 2003
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Figure 10: Yield-Curve Measure First Differences — Full Sample Period
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Figure 11: Yield-Curve Measures — Distributions of First Differences
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Series: _3_MONTH_DIFF_2
Sample 2626 4204
Observations 1579

Mean  0.026619
Median -0.133470
Maximum  70.75429
Minimum -51.48298
Std. Dev.  7.940762
Skewness  0.880654
Kurtosis  12.15424

Jarque-Bera  5717.449
Probability  0.000000

3-Month Rate First Differences
1987 to 2003
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Series: _10_YEAR_DIFF
Sample 2626 4204
Observations 1579

Mean -0.130796
Median -0.058060
Maximum  23.50954
Minimum -22.41209
Std. Dev.  5.187751
Skewness  0.166485
Kurtosis  4.332995

Jarque-Bera  124.1979
Probability  0.000000

10-Year Rate First Differences
1997 to 2003
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Series: SLOPE_DIFF_2
Sample 2626 4204
Observations 1579

Mean -0.157415
Median  0.069890
Maximum  53.36209
Minimum -76.77255
Std. Dev.  8.907191
Skewness -0.625204
Kurtosis  8.795817

Jarque-Bera  2312.907
Probability  0.000000

Yield Curve Slope First Differences
1997 to 2003
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Series: CHANGE_PRE
Sample 1 4204
Observations 2624

Mean  0.010238
Median  0.102860
Maximum  66.73337
Minimum -50.78972
Std. Dev.  5.805065
Skewness  0.547965
Kurtosis  21.04353

Jarque-Bera  35726.86
Probability  0.000000

Curvature Measure First Differences
1986 to 1996

O
cc

ur
re

nc
es

Change (bps)

0

100

200

300

400

500

600

700

800

-30 -20 -10 0 10 20 30

Series: CHANGE_POST
Sample 1 4204
Observations 1578

Mean -0.013220
Median -0.032190
Maximum  32.72021
Minimum -33.33750
Std. Dev.  2.419586
Skewness  0.176550
Kurtosis  78.88280

Jarque-Bera  378609.8
Probability  0.000000

Curvature Measure First Differences
1997 to 2003
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Series: SLOPE_DIFF_1
Sample 2 2625
Observations 2624

Mean  0.138159
Median  0.794575
Maximum  93.08722
Minimum -176.2600
Std. Dev.  17.65143
Skewness -0.581050
Kurtosis  9.201169

Jarque-Bera  4352.011
Probability  0.000000
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Appendix: Data-Filtering Algorithm

As the yield-curve data were constructed, a small number of observations stood out as “st

days. Specifically, this meant one of three things:

• The yield curve for the day in question did not exhibit a typical smooth, monotonic sh
(with the exception of the hump in the 20- to 25-year section and inversions at the very
end).

• The curve looked very different from its immediate neighbours. That is, the curve looked
different from both the preceding two days and the following two days.

• Pricing errors were uncharacteristically large on the given day (or the model fit was
poor).

It is natural that some days in our sample have poor data. Two examples would be days on

there were data entry errors and days with stale price data for some bond issues. Either o

mistakes could result in an inaccurate yield curve exhibiting one, or both, of the prob

described above. It is tempting to simply write such days off and delete them from the sa

ascribing their “strange” shape to errors of the type described above. However, it is imposs

tell in hindsight whether a given “bad” curve has an atypical shape because of raw data pro

or because of unusual market conditions. For example, consider a curve with the “strange”

and let this be the curve corresponding to dayti. If the curves from the previous two days,ti-2 and

ti-1, look similar to each other, and the following two days,ti+ 1 and ti+ 2, look similar to each

other, but differ fromti-2 and ti-1, then it may simply be that the market was in an adjustm

period on dayti, and as such the curve looks “strange” due to the fact that it was in the proce

undergoing a significant change. Given this type of ambiguity, it is difficult to objectively s

through the collection of yield curves and determine those days that truly should be discard

To make the process as objective as possible, the following filtering algorithm was develop

(i) For a given year, the mean and standard deviation of both the yield root mean square 

and the yield mean average error were calculated. These are denoted by ,

, and , respectively.

(ii) We computed  and .

(iii) We identified days, indexed byi, such that  or

.

YRMSE σYRMSE

YMAE σYMAE

YRMSE σYRMSE+ YMAE σYMAE+

YRMSEi YRMSE σYRMSE+>

YMAEi YMAE σYMAE+>
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(iv) For each of these days, the bond with the largest pricing error in yield terms was elimina
The algorithm was then rerun for that day.

(v) The new results were evaluated based on two criteria. First, was there a large decrea
pricing errors when the bond was excluded? Second, did the curve fit its neighbours b
after excluding the bond? If the answer to these questions was yes, the curve was kep
excluding the bond made little difference, the curve was discarded. Neither of these cr
were necessary or sufficient in and of themselves, and in some cases curves were ke
satisfied one condition but not the other.

As noted earlier, these criteria are somewhat subjective. It was necessary to balance the

throwing out a curve that looked suspicious, but contained valid information, against keep

day that contained inaccurate information. Ultimately, the algorithm erred on the side of kee

potentially erroneous curves. Since the number of suspect curves was very small relative

entire sample, it was felt that the potential inclusion of a small number of erroneous curves w

not significantly distort the results.
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