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Abstract

This paper shows how existing band-pass filtering techniques and their extension can be applied
to the common current-analysis problem of estimating current trends or cycles. These techniques
give estimates that are “optimal” given the available data, so their standard errors represent a
lower bound on what can be achieved with other univariate techniques. Applications to the
problems of estimating current trend productivity growth, core inflation, and output gaps are
considered.

JEL classification: C1
Bank classification: Econometric and statistical methods; Potential output

Résumé

L'auteur montre comment les techniques actuelles de filtrage passe-bande et leurs prolongements
peuvent servir a estimer des tendances et des cycles courants. Ces techniques donnent des
estimations jugées « optimales » compte tenu des données disponibles, de sorte que les écarts-
types s’y rattachant représentent la borne inférieure de la marge d’erreur qui serait associée aux
résultats produits par d’autres techniques univariées. Dans cette étude, I'auteur examine les
applications de ce filtre aux problémes que posent I'estimation de la croissance de la productivité,
de l'inflation fondamentale et de I'écart de production observés.

Classification JEL : C1
Classification de la Banque : Méthodes économétriques et statistiques; Production potentielle






1. Introduction

A common problem in macroeconomics is that of measuring the business cycle, or more generally
of separating long-run trends from short-term movements. A technique that does so can be
thought of as dilter, one that is applied to raw economic data prior to analysis. The best known is
the Hodrick-Prescott (H-P) filter, which has become the benchmark against which all other filters
in macroeconomics are compared.

The H-P filter is unabashedly arbitrary; it was proposed and adopted largely on the basis that it
gave results that “looked reasonable.” Its use has since been rationalized as an approximate band-
pass filter. A band-pass filter isolates movements in a series between a specified upper and lower
frequency or duration; movements outside the desired frequency band are eliminated. As
commonly used with quarterly economic data, the H-P filter eliminates or greatly reduces most
long-run movements in the series while preserving those at roughly business cycle fre&uencies.
The result is a detrended series that looks like a business cycle and has served as an agnostic basis
for much economic analys?s.

Given its pre-eminent role and its arbitrary nature, the H-P filter has been the focus of much
emulation and innovation in recent years. Baxter and King (1999) propose replacement of the H-P
filter with a more exact band-pass filter, arguing that better results come from using a better
approximation. Gomez (2001) and Pollock (2000) propose the use of other ad hoc filters that are
commonly used in engineering and that also approximate band-pass*ffitedersen (1998) and
Kaiser and Maravall (2001) propose extensions or modifications to the H-P filter to improve its
performance. Most of this literature, however, has ignored the application to current analysis.

The distinguishing feature of current analysis is that it interprets the most recently available
information; the cycle (or trend) of interest is that at the end of the data sample. The dominant

1. Its current popularity stems from its use in the seminal working paper by Hodrick and Prescott (1977),
finally published as Hodrick and Prescott (1997), although the technique dates from the 1920s.
2. In practice, business cycles are defined as having durations of between 6 and 32 quarters. This

definition gained popularity after Baxter and King (1999) stated that Burns and Mitchell (1947)
characterized business cycles in that way. The numbers are not written in stone; Stock and Watson
(1998) quote Burns and Mitchell (1947, 3) as stating that business cycles vary in duration “from more
than one year to ten or twelve years.”

3.  The claim that H-P-filtered output “looks like” a business cycle is a popular misstatement. Business
cycle measurement and analysis, since its infancy, has used the H-P filter (or even simpler moving-
average filters, which produce similar results). It is therefore probably more accurate to say that the
output of these filters hatefinedvhat we think of as business cycles. See Morley, Nelson, and Zivot
(1999).

4.  Both examine Butterworth filters, of which they note that the H-P filter is simply a special case.



focus of the aforementioned literature is historical analysis, in which we care mostly about the
cycle (or trend) somewhere in the middle of the sample. This distinction is sometimes critical.
Most of the analysis in the existing literature is restricted to symmetric filters; to isolate the cycle
or trend at time, such filters use an equal number of observations from before ant®aFtds
precludes their use at the end of the sample. Other filters are justified on the basis of their mid-
sample properties, but can behave quite differently at the end of the §amp|e.

This paper considers the filtering problem from the perspective of current analysis. Rather than
consider ad hoc approximations to band-pass filters, it shows how to construct one-sided band-
pass filters that are optimal in a minimum mean-squared-error (MSE) sense. Unlike the filters
mentioned in the above-noted literature, the optimal filter will vary with the properties of the data
series to be filtered. While such filters are little-known in macroeconomics, they are not new;
Appendices A and B, respectively, review the contributions of Christiano and Fitzgerald (1999)
and Koopmans (1974) and provide a modest extension of their results. The body of this paper
gives an overview of optimal filters and applies them to three problems of widespread interest:
estimating the current output gap, the current trend growth rate of productivity, and the current
trend rate of inflation.

Literature related to that noted above examines the reliability of filtered estimates of trends and
cycles’ Since the current analysis filter discussed in this paper minimizes an MSE criterion, we
can relate its reliability to those of other filters examined in this literature. It also establishes an
upper bound on the accuracy that any such filters can hope to achieve. Because this bound
depends in a complicated way on the properties of the data analyzed, we investigate the properties
of the optimal filter for the three common problems in current analysis.

Section 2 provides a non-technical overview of band-pass filtering and the optimal one-sided
band-pass filter. Appendix B gives the derivation and a more detailed discussion of this filter.
Section 3 applies the filter to three common macroeconomic problems of measuring trends and
cycles and discusses the results. Section 4 summarizes the conclusions and suggests avenues for
further research.

5. Baxterand King (1999), for example, suggest reserving about five years of data from each end of the
sample to provide the necessary leads and lags.

6.  The H-Pfilter is a case in point. Comparisons with band-pass filters are based on its symmetric MA
representation, which is a limit the filter approaches in the middle of a large sample. Its representation
at the end of the sample is quite different; see St-Amant and van Norden (1997).

7.  Examples of this include Setterfield, Gordon, and Osberg (1992), Staiger, Stock, and Watson (1997),
Orphanides and van Norden (1999, 2002), and Cayen (2001).



2.  An Optimal Band-Pass Filter for Current Analysis

2.1 Filters: a primer®

A filter can be thought of as an algorithm for processing a time series to get a more meaningful
statistic; e.g., the process of averaging measured rainfall at a given location to get “average”
rainfall. We can describe this mathematically as

S = 1(9), (1)

whereS is our statisticy is our time series, diid Is our filter. While such processing could be
complex, attention often focuses on a particularly simple and tractable cdgeedhdime-
invariantfilter. The distinguishing features of such filters are that the weight, , we put on a
particular observation does not dependon , and that the operation is Iir;bﬁﬂuch filters can
therefore be described as

S =B = > Bl (2)

If we think of y, as a random error term, the Wold decomposition theorem tells us that this class
of filter is related to the class of autoregressive moving average (ARMA) process. In this situation,
since the properties gf are held fixed, the properti&ané determined b@ (or vice versa).

We are often particularly interested in the dynamicS,afhich may be uniquely characterized

via frequency or spectral analysis. The idea is to decompose all the movem8initacycles of

varying frequency and amplitude. Such a unique decomposition ex@dtsstationary (and if

not, we can difference it until it is.) Furthermore, since cycles of different frequencies are
uncorrelated in the long run, the variancé&afill simply be the sum of its variances over all
frequencies. The relative importance of these different frequencies in the overall variance tells us
something about the dynamic behaviour of the series. For example, an identically, independently
distributed (i.i.d.) error will display a constant variance at all frequencies, while a random walk
will have much more variance at low frequencies (long cycles) than at high (short cycles). The

8.  This section provides an intuitive introduction to the filtering terms used in the rest of this paper. It can
be skipped without loss of continuity by those familiar with spectral analysis.

9.  Several well-known filters do not belong in this class. Examples include the H-P filter (where the
weights vary witht) and the Hamilton filter for the probability of being in a particular regime (which is
anon-linear function oy ).



function decomposing the total variance by frequency is commonly callegebtunor
spectral densityand is typically shown graphed from O (lowest frequencies, infinitely long cycles)
to 1t (highest observable frequencies, cycles of 2 periods).

The spectrum o8 depends on the properties of b(ﬁh and . To understand the effef&ts of ,we
can divide the spectrum &fby that ofy to define thequared gairor transferfunction ofB .
Frequencies at which the squared gain is greater than 1 are accentugtedthile those at which

the squared gain is (close to) zero are (nearly) removedSrdime aim ofband-pasdiltering is

to choose3 to match a particular kind of squared gain function, one that has a gain of 1 over a
particular frequency rangg (1) | 0<| <u < 1 and zero elsewhere. The case where0 is
called a low-pass filter, while = 1t is called a high-pass filter.

If a filter has the propertp}j = B_J- Oj , itis calledsymmetridilter, whereas ifBj =00j>0
the filter is said to bene-sided® Symmetric filters have the property tiSawill tend neither to
lead nor to lag movements in the corresponding componeytshaf same is not generally true
for non-symmetric filterd! This effect of non-symmetric filters is callptase shifand in
general will vary from one frequency to another.

2.2 Business cycle filters

Band-pass filtering is an approach to the measurement of trends or cycles in macroeconomics
whose appeal rests on two key assumptions:

(i) We can agree on some threshold duration such that we wish to interpret movements of longer
duration as trends and those of shorter duration as cycles.

(ii) Aside from this, we wish to remain fairly agnostic about the economic or stochastic processes
generating the data.

We can detrend the data using a low-pass filter (one that passes all frecoeliogitise

threshold; i.e., all duratiorebovethe threshold) to isolate the trend, or, equivalently, use a high-

pass filter to isolate the cycle. Two of the three applications we study below use low-pass filters to

isolate trends. The case of business cycles is more complex, since we wish to exclude both the

trend component and a seasonal/short-lived component. We therefore need a band-pass filter to

block the movements both of very long and very short duration.

10. The only one-sided symmetric filter is the trivial filter, which just multiplies by a constant; we will
ignore that special case and proceed as if these two classes are mutually exclusive.

11. Forexample, consider the difference between a centre-weighted and a one-sided moving average.



The ideal band-pass filter would have a gain of zero outsidg tharterval and a gain of one
inside. Deviations from the former condition would allow leakage from undesired frequencies,
while deviations from the latter would distort the “true” cycle present in the data. This unique
filter exists and is given by the formula

B = sinju—_sinjl
: T
= u—_Iforj = 0.
Tt

for|j| =1 (3)

One problem with this ideal filter is that we require the sum in equation (2) to ge-fsom o to
Truncating this sum at some finite values, $&@andN, results in an approximate filter in which

the desired rectangular shape of its squared gain is contaminated by sinusoidal imperfections (see
Figure 1). Baxter and King (1999) suggest that using valuBsagfsmall as 20 gives reasonable
results for U.S. business cycles if we adopt the Burns and Mitchell cut-offs of 6 and 32 quarters.

The problem with this approach is that it cannot be used for current analysis. Using the Baxter and
King approximation with N = 20 onquarterly data would imply that our most recent estimates of

the business cycle would be 20 quarters prior to the last quarter for which we had data. One way
around this would be to use the Baxter-King formula at the end of the sample, simply omitting
(i.e., replacing by zero) the missing observations, which are not yet known. As Figure 1 shows,
this gives poor results, even for large values of N; the resulting filters have a gain that is far from
1, vary considerably over the frequency band of interest, and leak much more of the frequencies
outside the desired band. Stock and Watson (1998) use a different ad hoc solution. They fit the
available time series to a simple autoregression model, then use forecasts from the fitted model in
place of the required future observations. Unfortunately, they do not provide a justification for this
procedure, nor do they examine how closely it approximates the ideal filter.

Another criticism of this approach is that even if the filter used has a gain function close to that of
the ideal filter, this need not imply that the series it produces will be a good approximation of the
ideally filtered serie$? The problem is that many economic series display a “typical Granger
spectral shape”: the density in their spectrum is highly concentrated at the lowest frequencies.
This in turn means that for band-pass or high-pass filtering (e.g., for measuring business cycles)
we care much more about how well we approximate the ideal filter at low frequencies than at high
frequencies3

12. Forexample, see Guay and St-Amant (1997).

13. Pedersen (1998) re-examines H-P filters from this perspective and suggests alternatives to the
traditional value of 1600 for its smoothing parameter.



2.3 Optimal current-analysis filters

To adapt the band-pass filtering approach to a current analysis context, we would like to have
some optimal filter{ I§j} , Which minimizes

T—lA 00 2
E{X Biyr_j— > B; EVT—J':| : (4)
i'=o j =

In other words, giveil observations on the series we wish to fil{ef,} , the optimal filter will
give us the minimum MSE estimate of what the ideal filter would give us with datadrom  to
—oo . As Appendix A shows, this problem has a unique solution under fairly standard condftions.
In the case whergy,} is stationary, we find that

B =3B, 5)
where

B = [Bo, ..., Br_1]', a lengthT column vector,

Sy = [0,,0.0y1,0 .0y, 7_4]", aT x Tmatrix,

y, 11 y’2,...

Gy’ i = [O-y(_J)i Oy(_J + 1)’ Gy(_J + 2)1 rery O-y(T -1- j)]’1
a lengthT column vector,

Gy = [Oy(_q)! Oy(_q + 1)’ O-y(_q + 2)’ LR Oy(q)]' ' a2q+1
column vector,

0y(Q) = COM Y Vi g)
B = [BO, Bl B° .., BT_l]', aT x 2g+1matrix,

Bj is the weight of the ideal filter, given by equation (3).

In general, these optimal weights depend on (i) the number of observdtimeshave, (ii) the
dynamics of our seriey, , as measured by its autocovariances, and (iii) the ideal \Bgaights, ,

14. Appendix A gives solutions for the case of integrated autoregressive moving average (ARIMA)(p,d,q)
processes{l<d<3 )and surveys related contributions in the literature.



from equation (3). Furthermore, they have an intuitive interpretation as the solution to a regression
problem—one where we regress the doubly infinitg Setly, j} oM aloservationsy . The
resulting coefficients are our optimal weights, and therefore our minimization problem, equation
(4), simply seeks to minimize the variance of the regression residuals.

We can better understand this formula and the above intuition if we consider two special cases.
First, suppose that,  is i.i.d. This means thgtl) =0 fot alD , SO we may-set This
makest}y a scalar, equal to the variancg ahd Sy Is simply the identity matrix times this
variance. This means that equation (5) further simplifigs o [B, ..., By _4] . Put another
way, in this case the optimal solution is simply a truncated version of ideal weights, precisely the
same solution that was seen to give very poor results in Figure 1.

Now suppose thatfollows a stationary MAD) process. Since its autocovariances will be zero

for leads and lags greater th@nthis again effectively determingsn equation (5). Suppose,
however, that instead of using the optimal weights, we use the Stock and Watson approach of
padding ouiT observations witl® forecasts/backcasts from the MA model at each end of the
sample, and then use the Baxter-King approximate filterWithQ. The estimate from this two-

step ad hoc procedure will be identical to the estimate from our optimal filter, because the optimal
weights given in equation (5) reflect both the weights used to form forecasts/backcasts at the ends
of the available sample and the weights that the Baxter-King filter would place on them. Put
another way, equation (5) implies that the Stock-Watson two-step procedure will give optimal
estimates at the end of the sample provided that (i) we use the “right” forecasting model to pad
our data, and (ii) we pad our sample until our forecasts have converged to zero.

Another feature of equation (5) is that it lets us solve for the minimum value of equation (4). This
is useful, since it tells us how well our best end-of-sample estimates can approximate the ideal
estimates. The general solution is given by

%) 2 T—]_A 2
E{ Y B EyT_J} —E{z B, EyT_J} . (6)
. i=o

J:—OO

In the above case, wheyas i.i.d., this reduces to

15. Thisinterpretation is developed further in Appendix A, particularly in section A.1.
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3. Applications

We now examine the performance of the optimal filter by applying it to three problems of
common interest: estimating the current output gap, the current trend growth rate of productivity,
and the current trend rate of inflation. The first of these differs from the other two in that we
analyze the raw data in levels, not growth rates, and in that we seek to isolate the intermediate
frequencies rather than the low frequencies. Because the optimal filter is a function of the
dynamic properties of the series analyzed, our results can be expected to differ across
applications.

3.1 Data

The output seriesY; ) is the natural logarithm of Canadian real GDP (1997 dollars) for the period
1961Q1 to 2001Q1. The inflation serifs,) is the monthly difference of the natural logarithm of
the Canadian all-items CPI (seasonally adjusted) covering the period January 1948 to August
2001. The productivity serig®),) is the natural logarithm of quarterly data on Canadian real
GDP per hours of employment from 1966Q1 to 2001Q2; hours worked are average weekly hours
times the number of people employed, both of which are from Statistics Canada's labour force
survey. Note that deterministic components were removed from all three series prior to analysis.
In the case 0@, antt, , the series were demeaned, for  a deterministic linear trend was also
removed.

For each series, two different estimates of the autocovariance fum:};(q)}, , were then
constructed. The first fit a low-order ARMA model to the data (Table 1), and then used the
estimated parameters of the ARMA model to calculate the implied covaridiiEes.second

used a nonparametric kernel estimdtén both cases, each data sampldl ebservations was

used to calculatBl-1 autocovariances. The two approaches gave sometimes similar estimates, as
shown in the top-left panel of Figures 2 through 4, with the nhonparametric kernel tending to

16. TheARMABIC3(procedure from the Coint module for GAUSS, by Ouliaris and Phillips (1995), was
used for estimation and model selection. This uses the BIC criterion for model selection and a 2- or 3-
stage Hannan-Rissanen iterative estimation procedure.

17. Theresults presented here use the quadratic-spectral kernel (without the data-dependent bandwidth
selection.) Limited experimentation suggested that the results were not sensitive to this choice.



capture somewhat more complex and persistent dynamics. The second panel (top right) of Figures 2
through 4 shows the corresponding spectrum for each series.

The dynamics of the three series look quite different. Quarterly productivity growth shows very
little persistence and is well-approximated as white noise; its spectrum is therefore relatively flat.
Output shows slowly decaying autocovariances, consistent with estimated autoregressive roots of
nearly 0.95. Its spectrum displays the typical Granger shape, with density powerfully
concentrated in the low frequencies. Monthly inflation falls between these two extremes, with the
dynamics of its ARMA approximation showing less persistence than those of the nonparametric
kernel estimaté® The result is two very different-looking spectra, with the ARMA-based

estimate looking quite flat, but the kernel-based estimate showing even more concentration in the
low frequencies than the spectrum for output growth.

3.2 Filtering productivity growth

Trends in productivity growth are the subject of considerable analysis, with interest in current
trends having intensified in recent years. While it is widely acknowledged that labour productivity

is procyclical, most analysis of productivity growth does little to explicitly separate its trend and
cyclical components beyond examining averages of growth rates over several years. It would
therefore be useful to construct optimal estimates of current trend productivity, as well as to know
how reliable such estimates may be. This is precisely what the results from section 2 now enable
us to do.

Since we are trying to remove business cycle influences from productivity growth, we adopt the
Burns-Mitchell-Baxter-King characterization of these cycles as having durations of up to eight
years in length. Our ideal filter for quarterly data is therefore a symmetric low-pass filter that
blocks all frequencies above’16 . This, together with the results presented in section 3.1, is all
we need to construct the optimal filter. Its properties are described in Figure 2 and Table 2.

The third panel in Figure 2 (middle row, left column) compares the weights of the optimal and
ideal filters. In the case of the ARMA model, the two are identical, because the model
approximates quarterly productivity growth as uncorrelated; this is precisely the simple case
discussed in section 2.3. The weights for the kernel model are similar, but die away more slowly
and are somewhat more volatile, reflecting the greater persistence in the series that the kernel
detects.

18. ARMA model selection for the CPI data was problematic. It is doubtful that the MA(12) adequately
captures the persistence of inflation, since this would imply that inflation shocks completely die outin
12 months.
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Panels 4 and 6 in Figure 2 (right column, middle and bottom rows) compare the spectral
properties of the three filters and the two optimally filtered series. The gain of the optimal ARMA
filter shows the same pattern we saw previously in Figure 1 for other truncated ideal filters; the
only difference is the number of observations in the approximdﬁd'me optimal kernel filter has

a more complicated gain function, tending to fluctuate around the gain of the optimal ARMA

filter. Note that the kernel filter has a particularly high gain for some of the frequencies between 0
and 0.1, and a patrticularly low gain for some of the frequencies between 0.1 and 0.2. This relative
emphasis is to be expected, given the peaks and valleys of the kernel-estimated spectrum in these
ranges, and therefore their relative importance in the overall performance of the filter.

Multiplying the spectral density at a given frequency from panel 2 by the squared gain at that
frequency from panel 4 gives us the spectrum of the filtered series shown in panel 6. In contrast to
the relatively flat spectra shown in panel 2, our low-pass filters have succeeded in powerfully
concentrating the spectrum of the filtered series over the desired frequencies. At the same time,
however, the imperfections of the optimal filters are clearly visible; the spectral density at the low
frequencies is only about half that in the raw data, and the ARMA-filtered spectrum has an
artificial peak at the cut-off frequency, which implies a spurious cycle in the filterederies.

The overall performance of the filter across all frequencies is summarized by the statistics
presented in Table 2. The variance of the raw series (line 1) is simply the area under the spectra
shown in panel 2 of Figure?.Similarly, the variance of the ideally filtered series (line 2) is the
area under those spectra lying between frequencies fi/drtl . In this case, the ideally filtered
trend accounts for roughly 1/20th of the total variance of the observed series. The optimally
filtered estimate of that trend captures little more than half of the variance of the ideal trend. Put
another way, the MSE of the optimally filtered estimate will be almost as variable as the estimate
itself; the noise-signal ratios are slightly over 0.9 and the correlation between the optimal and the
ideal estimates will be only about 0.72. Not surprisingly, given the similarities of the ARMA and
kernel estimates of the autocovariance functions, the two optimal filters perform similarly as well.

19. Tounderstand why a filter with a gain everywhere less than 1 may still be optimal, consider the effect
of scaling all the filter weights by some constlnl. This has the effect of scaling the squared gain
everywhere by’ . In the case of the ARMA filter, this will reduce the difference between its gain and
that of the ideal filter at frequencies below the cut-off frequency (i.e., reducing compression), thereby
improving the estimate. This benefit is counterbalanced, however, by the effect of increasing the
difference between the two filters at frequencies above the cut-off (i.e., increasing leakage). The
optimal scale is the one at which the marginal benefits at some frequencies of a change in scale are
exactly equal to the marginal costs at all other frequencies.

20. Ofcourse, the current application is designed to produce a single point estimate, rather than a series, so
this point may be moot.

21. Strictly speaking, it is twice that area, since the full spectrum is symmetric about O; the figure shows
only half that range. This applies to the analysis of subsequent rows in this table, as well.
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3.3 Filtering inflation

As the objective of price stability has moved to the forefront of monetary policy formulation
throughout much of the world over the past decade and a half, more attention has focused on how
to measure and monitor progress towards this goal. Most monetary authorities propose a modified
(or “core”) measure of inflation that aims to capture persistent trends in inflation or inflationary
pressure$? It would therefore be of interest to use band-pass filters to construct optimal measures
of current trends in inflation, where these trends are again defined using a low-pass filter. The
appropriate cut-off frequency to use for such a filter is debatable; for the example we study in this
section, a frequency ai/24 (corresponding to cycles lasting 48 months) is used to give seasonal
influences and short-run nominal shocks ample time to dissipate. Results are presented in Table 3
and Figure 3.

Panel 3 (left column, middle row) in Figure 3 shows us that the optimal weights are now more
different from the ideal weights. While the ideal weights are quite small and vary gradually over
time, both sets of optimal weights put much higher weights on the most recent observations.
Again, the ARMA model gives weights that converge more quickly to the ideal weights than the
kernel model, presumably reflecting the greater persistence in the kernel-estimated dynamics.

Panel 4 (right column, middle row) shows that the gain functions of the optimal filters are again
different from that of the ideal filter in several respects. The gain function for the ARMA filter
resembles the shape shown in Figure 1, with a gain of less than 0.5 for most of the pass band, and
a gain near 1 for only a narrow band near the cut-off frequency. Although the gain drops sharply
beyond that point, it stays significantly above zero for the remainder of the graphed frequency
range. The gain of the kernel filter bears only a rough resemblance to that of the ARMA filter, the
most striking difference being the presence of multiple narrow spikes in the gain function
throughout the pass band and stop band. The gain within the pass band varies by a factor of
roughly 10-to-1, and there are multiple peaks well outside the pass band with gains close to or
exceeding 1.

Panel 6 (right column, bottom row) shows that, despite the apparently irregular gain functions,
both of the resulting filtered series capture most of the density of the raw series at the low
frequencies and have a very sharp drop in density at the cut-off frequency, with very little density
at the higher frequencies. This reflects the fact that both filters have sharp drops in gain at the cut-
off frequency, and that the potentially large leakage they allow from much higher frequencies is

22. Unlike the techniques examined in this paper, many approaches to measuring core inflation rely on the
analysis of disaggregated price movements.
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relatively unimportant, owing to their lack of importance in the original spectrum. Similarly, the
variable gain of the kernel filter within the pass band does not appear to greatly distort the
spectrum of inflation within this band. This is because peaks in the raw spectrum correspond to
frequencies around which the gain is not far from 1, while areas of particularly low gain in the
pass band correspond to troughs in the raw spectrum.

Table 3 confirms the relatively good performance of the optimal filter, particularly for the kernel
model. The optimal ARMA filter performs somewhat better than its counterpart in the case of
productivity growth, giving correlations with the ideal filter of almost 80 per cent and a noise-signal
ratio of 58 per cent. The optimal kernel filter, however, performs much better, giving a 95 per cent
correlation with the ideal filter and a noise-signal ratio of only 11 per cent.

This improved performance is consistent with the basic intuition observed in section 2.3, that
persistence tends to improve the quality of current estimates of the trend. We can understand this
in terms of the Stock-Watson two-step procedure: the more persistent a series is, the better able
we are to forecast it and therefore the better we approximate the ideal filter. Since kernel estimates
of the autocovariance function imply much longer dependence than the MA(12) model chosen by
the ARMA model-specification procedure, they imply that we should be able to forecast inflation
much further into the future and therefore to reduce the difference between mid-sample and end-
of-sample filter estimates.

Another way to understand these results is to recall that as persistence increases, the spectrum of
our data series becomes increasingly concentrated in the lowest frequencies. Since our goal is to
design a low-pass filter, this in turn reduces the importance of leaking higher frequencies,

allowing an increase in the average gain of the optimal filter and thereby a better approximation of
the ideal filter.

3.4 Filtering GDP

Optimal filters for business cycles and their properties are described in Figure 4 and Table 4.
Unlike the two previous filters considered, this is a band-pass rather than a low-pass filter, and it
uses the values suggested by Baxter and Kiod.6, T/ 3) to define the frequencies of interest.

Panel 3 (left column, middle row) of Figure 4 shows that, aside from the first few observations,
the optimal ARMA weights are indistinguishable from the ideal weights. The kernel weights,
however, again display much more variation and die away more slowly. Panel 4 (right column,
middle row) shows that the squared gain of the optimal ARMA filter resembles the patterns
shown in Figure 1. The gain function for the kernel filter roughly follows that of the ARMA filter,
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but with greater volatility, reflected in large, narrow peaks and troughs relative to the ARMA filter.
The peak gain is at the high end of the pass band, with a peak just under 2.0, while several points
in the pass band have gains near zero.

Panel 6 (right column, bottom row) shows that both filtered series have effectively blocked the
high-frequency part of the original spectrum, but that both seem to pass significant amounts at the
lowest frequencies. The results shown in Table 4, similar for both models, apparently reflect this
low-frequency leakage. The correlation of optimal and ideal filter estimates is only about 75 per
cent, and the noise-signal ratio ranges from 72 per cent for the kernel model to 87 per cent for the
ARMA model.

3.4.1 The reliability of current estimates of the output gap

Estimates of the reliability of output gaps are of particular interest for the design of optimal
monetary policies. It is therefore of interest to compare the above results with other recent
estimates in the literature.

Christiano and Fitzgerald (1999) solve roughly the same optimal filter problem solved in this
paper?3 However, on the basis of experiments with models in the IMA(1,q) class, they conclude
that most economic time series can be nearly optimally filtered if we assume that they are random
walks and solve for the corresponding approximately optimal #fiter that case, the filter

weights become functions of only the cut-off frequencies and the sample size. They calculate that
the correlation between their nearly optimal filter and the ideally filtered measure of the business
cycle is roughly 0.65 and that the noise-signal ratio is & This is a lower correlation than we

find for either model, while their noise-signal ratio is too optimistic relative to ARMA results but
slightly pessimistic relative to those of the kernel model.

Orphanides and van Norden (1999, 2002) and Cayen (2001) study other filters that do not have
optimal band-pass properties but are nonetheless used to measure business cycles. They compare
the rolling estimates produced when such filters are applied at the end-of-sample with historical
estimates produced after many subsequent years of data are afiliBesize of this revision

23. See Appendix A for a discussion.

24. The factthatthey use low-order IMA models presumably guarantees that the optimal weights and their
approximate weights will differ only for the last few observations, and even then not by very much. It
would be interesting to see whether the usefulness of the random walk approximation would be
sustained if kernel or ARIMA models were used instead to derive optimal filters.

25. The correlation is taken from the end-point of the graph in the left column, middle row of their Figure
6, while the signal-noise ratio is given on p. 21 in their paper. Note that their band-pass filter is set to
pass all cycles with durations from 2 to 8 years, versus the 6 to 32 quarters used here.

26. Intheterminology of these papers, these are the Final and the QuasiFinal estimates. The Final—
QuasiFinal revision is a better analogue to the estimation error considered in this paper, since both
estimates ignore the role of uncertainty in the underlying data-generating process.
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in estimated business cycles corresponds to the difference between our ideal and optimal filter
estimates. Using U.S. data, Orphanides and van Norden (1999) find correlation coefficients
ranging from 0.63 to 0.96, depending on the model L?gédayen (2001) uses Canadian data and
finds correlation coefficients for the same models ranging from 0.70 t6%.84.

We can also reconstruct noise-signal ratios for Orphanides and van Norden (1999) based on the
ratio of the reported standard deviation of the revisions to the standard deviation of the final measure
of the output gap. These figures are reported in Table 5; the values range from 0.34 to 0.79.

While it may appear to be counterintuitive that non-optimal models appear sometimes to give
better correlations or noise-signal ratios than the optimal measures developed in this paper, it
should be remembered that the two are not strictly comparable, since their definitions of trend and
cycle differ. These results, however, suggest that the optimal frequency-based techniques should
not be expected to give markedly more accurate estimates than other sophisticated time-series
methods.

4, Conclusions

The derivations in Appendix A show how to construct optimal band-pass filters for the ARIMA
models commonly used with macroeconomic time series. Together with the above-noted
applications of such filters, this produces several interesting results.

First, it illustrates that the accuracy of such filters can vary considerably. When a series has little
or no predictability, as is the case for productivity growth, this limits our ability to measure the
current long-term trend. We found therefore that current estimates of trend productivity growth
have correlations barely above 70 per cent with comparable estimates constructed with the benefit
of hindsight; put another way, the filters’ noise-signal ratio approaches 1. This implies that the
measurement of productivity trends is the most difficult of the three problems considered in this
paper.

While the results for inflation were somewhat sensitive to the representation chosen, they
illustrate how increased predictability improves our measurement of current trends. If we accept
that the kernel model is the more plausible representation of inflation dynamics, it implies that
current inflation trends can be measured with considerable accuracy, giving 95 per cent
correlations with the best ex-post measures and noise-signal ratios barely above 10 per cent.

27. Orphanides and van Norden (1999, Table 1, 32). Results are correlations between QuasiFinal and
Final estimates for the Watson, Clark, and Harvey-Jaeger models.

28. Cayen (2001, Table 1, 41).
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Persistence acts as a double-edged sword, however, when we seek to measure current cycles, as
shown by the results for business cycle measurement. On the one hand, it improves the amount of
information available about the future of the series, thereby reducing the difference between
current and future estimates of trend. On the other hand, by increasing the relative amount of
noise to be filtered out, it increases the potential effects of leakage and therefore of measurement
error. In the case of business cycle measurement, we see that optimal filters do not perform
especially well; their correlations and noise-signal ratios are not much better than those for
productivity growth.

The results for business cycle measurement are somewhat surprising in light of previous work that
examined the performance of non-frequency-based models of trends and cycles. Comparison of
these results seems to show that the latter will in some cases perform as well as or better than the
optimal methods analyzed here. The comparisons are potentially misleading, however, since the
definitions of trends and cycles are not comparable across models. The previous work also
focused on models in which output was assumed to follow a stochastic trend, rather than the
deterministic trend assumed here. A reconciliation of these results should examine the extent to
which the results for frequency-based filters are sensitive to the assumption of trend-stationarity.

More generally, the sensitivity of optimal filters to the assumed dynamics of the data series
requires further evaluation. This would allow closer scrutiny of Christiano and Fitzgerald’s (1999)
claim that the assumption of random walk dynamics is adequate for most macroeconomic time
series, which is a potentially important simplification for applied work. It would also have
implications for the accuracy with which business cycles may realistically be measured. The only
source of error considered in this paper’s analysis is the extent to which estimated cycles will be
revised as new observations become available. As noted in Orphanides and van Norden (1999,
2002), other sources include estimation error in the autocovariance function, data revision, and
model misspecification. The results presented herein should therefore be viewed as lower bounds
on the total measurement error in frequency-based estimations of current trends and cycles.
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Table 1: Estimated ARMA Models

Series Qt T Yt
# AR parameters 0 0 1
0 0.968
# MA parameters 0 12 1
1.46 0.312
28
65.28 6.619 74.36
o% x 10°
# observations 141 631 162
Frequency Quarterly Monthly  Quarterly

Table 2: Optimal Filter for Productivity Growth Trends

Statistic? ARMA model  Kernel model

1) Variance of raw series (k0% ?) 65.28 67.15
2) Variance of ideally filtered series 0% © ) 4.08 3.32
3) Variance of optimally filtered series £0% 9 ) 2.14 1.70
4) MSE of filtered estimate (£0° €) 1.94 1.62
5) Correlation with ideal estimdte 0.725 0.715
6) N/S ratid 0.903 0.954

a. All integrals were numerically approximated as Reimann sum over 10,000
equally spaced frequencies on the inte(vad )

b. Differences between the ARMA and kernel estimates of the variance result from
approximations in the construction of the theoretical autocorrelations of the
ARMA model; the kernel estimates precisely match the sample variance of the
series.

. Calculated as the integral of the spectral density over the interudl (-
. Calculated as the integral of the spectral density over the intervat)
. Calculated as (2) - (3).

Calculated as/(3)/(2)
. Calculated as (4) / (3).

Q - O Q9 O
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Table 3: Optimal Filter for Inflation Trends &

Statistic ARMA model Kernel model

1) Variance of raw series (k0% ) 11.90 15.34
2) Variance of ideally filtered series ﬂ>06 ) 1.63 6.60

3) Variance of optimally filtered series d>06 ) 1.04 .94
4) MSE of filtered estimate (06 ) 0.60 0.66
5) Correlation with ideal estimate 0.796 0.949
6) N/S ratio 0.577 0.111

a. See footnotes for Table 2.

Table 4: Optimal Filter for Business Cycle8

Statistic ARMA model Kernel model

1) Variance of raw series (k0% ) 2006 4524
2) Variance of ideally filtered series @OG ) 168.9 442.0
3) Variance of optimally filtered series d>06 ) 90.5 257.2
4) MSE of filtered estimate (106 ) 78.4 184.8
5) Correlation with ideal estimate 0.732 0.763
6) N/S ratio 0.866 0.719

a. See footnotes for Table 2.

Table 5: Reconstructed Noise-Signal Ratios from Orphanides and van Norden (1999)

Errors 2 Final®
Model () (2) Noise/Signal = (1)/(2)
Clark 1.11 2.11 0.53
Harvey-Jaeger 1.22 1.55 0.79
Watson 1.16 3.44 0.34

a. Figures are the reported standard deviations for Final - Quasi-
Final revisions, taken from Orphanides and van Norden
(1999, Table 4, 36).

b. Figures are the reported standard deviations for Final output

gaps, taken from Orphanides and van Norden (1999, Table 1,
32).
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Figure 2: Filtering Quarterly Productivity Growth for its Current Trend
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Figure 3: Filtering Monthly Data on Quarterly Inflation for its Current Trend
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Appendix A: Derivation of the Optimal Filter

This appendix presents a derivation of the optimal one-sided band-pass filter. It draws on
Christiano and Fitzgerald (1999), who derive the optimal filter estimated at each point in the
sample for an IMA(1,q) process.The proof is given in two stages. In section A.2 we derive the
solution under the assumption that our process is a stationarggcess with finite variance.
Sections A.3 and A.4 discuss extensions to the ARMA and ARIMA cases. Appendix B then
compares the contribution of Christiano and Fitzgerald (1999) with that of Koopmans (1974), and
provides additional intuition about the nature of the solution.

After this appendix was prepared, Schleicher (2001) provided a more compact derivation of the
optimal filter for the ARIMA case, which extends the results below to any arbitrary point in the
sample, instead of just the endpoint.

A.1 Notation and Basic Assumptions

We have a sample dtfdiscrete observations on some stochastic s¢yigs . We assume that
{y;} contains no deterministic components (constants or non-stochastic fr&ndshe

remainder of this section, we also assume {ha} is covariance stationary with a know MA(
representation for finitg. We also require that the covariance matrix of

[Yo Yi_1 Yio - Yi_7+ 1] €Xists and has a unique inverse. Finally, we will assume that the
power spectrum of y also exists and is give?‘u by

f ) = %T Dk_z o,(k) (8™, (A1)

whereo(K) is the covariance betwegn  3pnd,

Ideally, we would want to choodex;,, ¢,}  to partition the spectruly} of , sathat contains all
the fluctuations iry, with frequencies between some lower linahd some upper limit,
O<l<us<T, andx, contains those fluctuations with frequencies bélomaboveu.3 We can do

so with an infinite-order time-invariant linear filter,

1.  Typically, one would regress the raw data series on a polynomial time trend and use the resiguals as
which may be stationary or stochastically integrated. As in all spectral analysis, we ignore the
potentially important effects of any imperfections in this detrending.

2. Covariance stationarity plus finite variance is sufficient to guarantee the properties on the covariance
matrix. The power spectrum conditions will be satisfied if the coefficients on the MA representation
are absolutely summable; covariance stationarity guarantees that they are square summable.

3.  Forexample, isolating the fluctuations between 6 and 32 quarters in length with quarterly data would
correspondto = 16 and = w3
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BL= Y B ', (A.2)

j:—oo

such thac, = B(L) Oy, an&, = y,—c, =Yy, {1-B(L)) ,whelde is the lag operator. The
coefficients of this ideal filter are given‘by

_ sinju —sinjl

Bj for j£1 (A.3)
ol otherwise.
L1
Our problem is to choose a set of filter Weigl{m%,-} , to solve

min f |Be™) - B(e™)|” f () o,
{B;} (A.4)

where
B = Y 8§ iy (A.5)

for complexz on the unit circle.

A.2 Solution for the MA(qg) Case

A.2.1 First-order conditions

Rewrite equation (A.4) as

min fﬂé(w) (B(—w) Of (@)deo  whered(w) = B(e') ~B(e™) .

{Bj} (A.6)
Differentiating (A.4) with respect to each elemen{éfj} , We obiIdirst-order conditions
4.  Christiano and Fitzgerald (1999) further impose the restrlctlonﬂﬂ}t- , Which is reasonable

exceptin the special case of low-pass filters.



26

m 0 0 0 .
- _ _ =0,..,T-1
0 Lﬁ(w) [.laE_eS( ) + 8(~0) %Ees(m)mmf (w)doo 0j

In fact,

0 5(-w) = € and 0 5w) = €',
08B, 2B

so (A.7) becomes
0= I" (3(w) €'Y + 5(—w) B-e ') Of (w) dw
—Tt

0 f [B(e™®) &' + B(e") "] Of (w)dow =

I" [Be™) 9 +BE) B O (Wdo  Dj =0,...,T-1.
Tt
Noting thatf Ay(oo) is symmetric about 0, we obtain

J’:[B(e‘“") '+ B(e) ] Of () dw =

f [B(e™) i + B(e) (5] OF (w)dos,
and

IZ[B(e‘i“’) '+ BE®) (57 OF () dw =

ﬁ [B(™) ¥ + B(e®) (&) O (w) oo

Equation (A.9) implies that

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

I;[[B(e_iw) e + B(e®) ') Of (w)dw = J’:[B(e‘“") e + Be') ') Of (w) dw,

]I" B(e™®) & Of (w)do = I" B Of (Wdw 0j =0,...,T-1.
—TT —Tt

(A.12)
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Using the fact thaﬁnei“’jdoo = 2t whenp=0 arﬁ'neiwjdw =0 whgn=123.. ,we
can see that (A.12) simply picks out one term at a time from the convolutions of the filter
coefficients and the spectrum yf

Becauseny(k) has the propertie;,(k) = oy(—k) arytjk) =00k>q , We can write

. . q .
J'" B(e™) (Y Of (w)dw = 2n0 5 By, 0, = 2nB" 3, (A.13)
—Tt
k=-q

where

B = [B. B

j-q+1 Bj

j—q+2 e Bj +q]', a2g+1 column vector, and

j-q

6y = [Gy(_q)! Oy(_q + 1)’ O-y(_q + 2)’ LR Oy(q)]' ’ a2q+1
column vector.

We can similarly transform the right-hand side of (A.12), taking care to account for the truncation

of Be'), and obtain

) o T-1-]
I" Be™) (Y Of (w)dw = 20 5 By [0y(K) = 2B’ (B, (A.14)
-
K=—j

where

AN

B = [By, ..., Br_1]", alengthT column vector, and
Gy, j = [Oy(_J)! 0-y(_J + 1)! O-y(_J + 2)! ey Gy(T -1- j)]’1 a lengthT
column vector.

This allows us to rewrite (A.12) compactly as
B, =0, /B 0j=0.,T-1 (A.15)

A.2.2 Solving the system of first-order conditions

In (A.15), Gy anddj are known and determined by the data, wBiIe is given by (3) in the main
text. This leaves us with linear equations to solve for theslements of3 . Stacking the$e
equations gives us
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BB, = 3,08, (A.16)

where

B =[B° BB ...,B" '), aT x 2q+1matrix, and

Sy = [0y,0.0y,12. 0y, 2 -, Oy, 7_q]', AT x Tmatrix,

The solution is
B =3B, (A.17)

provided thati;l exists and is unique. We know that

a,(0) o,(1) 0,2 .. o(T-1)
oy(—l) oy(O) Oy(l) oy(T -2)
=] o2 oD o) ..ofT-3 (A.18)

_oy(—.'.l'. +1) oy(—.'.l'. +2) oy(—.'.l'. +3) o;,.(.O) |
0,0 o) 02 .. o(T-1)
oy(l) oy(O) oy(l) oy(T -2)
= oy(2) cy(l) oy(O) cy(T -3)

_oy(T -1 cry(T -2) oy(T -3) ... cry(O) |

which is therefore just the covariance matrix of the VEGtON, _1, Vi _o - Yi_ 1+ 1) . Our
solution is therefore applicable whenever this covariance matrix exists and is of full rank.

A.3 The Stationary ARMA(p,q) Case

If we wish to extend our analysis from the Mp\(o the ARMA,q) case, we can use the Wold
Representation Theorem to recast the ARMA model as an infinite-order MA. Assuming that the
other conditions mentioned before (A.1) are respected, we can continue to write our optimization
problem as before and derive the same first-order conditions. The analysis then proceeds until
(A.13), which becomes
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J’" B(e') Y Of (w)dw = 20 5 B, DK = 2m B" m,, (A.19)
-

k=—o

whereB' anoby are now doubly infinite-dimensional vectors. We require only that their dot-
product is well defined and finite. Stacking duequations in (A.16) proceeds as before, the only
change being the dimensionsBf aﬂgl but not their product. The final solution in equation (5)
in the main text is therefore unchanged.

Applying the filter to ARMA processes will in practice require that we truncate the infinite sum at
some point, hoping that the omitted covariance terms are sufficiently close to zero. Of course, for
given parameters for the ARMA process, theoretical autocovariances may easily be calculated, so
that the only limitations to the precision of our calculations are computing power and storage
capacity. It would be unrealistic, however, to believe that we can infer much about
autocovariances beyond tNelth lag from a sample of only observations.

A.4 The ARIMA(p,d,q) Case

We can try to analyze non-stationary ARIMA(p,d,q) processes by first noting that, after
differencingd times, we have ARMA(p,q) processes. It would therefore be tempting to simply
assume a sample of sized, difference itd times, and then apply the analysis as for stationary
ARMA models to the differenced data. There are two faults with this approach, both of which can
be seen in our objective function (A.4). First, instead of attempting to match the ideal band-pass
filter, B(L) , on the non-stationary data, we are trying to match it on the differenced data, which is
equivalent to settin@(L) ({1 — L)G| as our target filter. Second, the power spectrum used to
weight the deviations from the ideal filter would nowflzgy(w) insteafq,(oj) ; it is not clear
how to motivate such a choice in practice.

Instead, note that equation (3) in the main text implies that we can factor
B(L) = (1-L) b(L) = (1—L)2Ebb(L), (A.20)

b(L) = ¥ by ) andbb(L) = Y bb, n'. (A.21)

j:_oo j:—oo

This implies that the ideal band-pass filter will render stationary any series integrated of order no
more than 2.From our objective function in (A.4), we can see that its value will be less than

5.  See Den Haan and Sumner (2001) for a related discussion.
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infinity if and only if our one-sided filteB(L) , also rendgys  stationary. We can therefore
presume that the optimal one-sided filter may similarly be factored as

B(L) = (1—L) B(L) = (1—L)? bb(L), (A.22)

bL) = Y b ) andbb(L) = S bby . (A.23)

j:_oo j:—oo

This common factoring of the ideal and one-sided filters allows us to find solutions in the cases of
I(1) and 1(2) processes. In section A.4.1, we detail the proof for the case of IMA(1,q) processes.
We then briefly discuss the IMA(2,q) case. Extensions to the ARIMA case should be clear from

the above discussion of the ARMA case.

A.4.1 The IMA(1,q) case

Suppose that we haWie-1 observations on a procegsllIMA(1, q) . Our minimization problem
in (A.6) can then be rewritten as

min f 8(0) (1 &™) 0B(~w) (1 -€") I () doo,
{b;} (A.24)

where nowd(w) = b(e"®) —b(e'®) . We can also now factor

F @) = fay() T1-€"9) " 1697, (A.25)

wheref Ay(oo) is the power spectrum for the first-differencg,of . This means that (A.24)

simplifies to

min f 8(w) [B(-w) CF 5, (00)doo.
{bj} (A.26)

We now have an optimization problem that is analogous to our original problem in (A.4). The
only differences are three substitutions:

(i) we use the power spectrumady,  rather thag,of

(ii) the function we seek to match is ndofL) rather tBéh) , and
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(iii) the optimization is over th& coefficients of the differenced filteﬁf,- , rather thanThé
coefficients,B; .

As in the original proof, we work with the spectrum of a stationary series (fygw ) on which we
haveT observations. We therefore arrive at an analogous first-order condition, replacing (A.15)
with

j! —-— I o) -
b Bp, = 0py ;' B1 0j=0..,T-1, (A.27)
where
j '
b" = [b;_qbj_g+1Dj_gs2 - bj1gl" @2g+1 column vector,
Opy = [0py(-0), Op(=0+ 1), Op(=q+2), ..., Op(d)]", @2g+1 column
vector,
0,y(K) is the autocovariance function fay,
Opy,j = [Opy(=0) Opf(=J+ 1), 0p (=] +2D), ..., Op(T=1=])]",
a lengthT column vector, and
B1 = [Do, ..., bT_1]', & lengthT column vector.
These may be stacked and solved for the optiofigl , given by
N -1
By = 2ay (DD, (A.28)
where

B=[b,b, B, ....B '], aT x 2q+1matrix,

SAy = [GAy, 0 GAy, 11 GAy, 2y ey GAy, T—l] ', aT X TmatrIX

While (A.28) determineﬁA1 , this gives us oiflgonditions with which to identify th&+1
coefficients,éj . The remaining condition is (A.22), which implies that the sumjcnvfe%j must
equal zero.

A.4.2 The IMA(2,q) case

The proof for the IMA(2,q) case witi+2 observations proceeds analogously to the IMA(1,q)
case; we again transform the original minimization problem into one involving the power
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spectrum of a stationary series. This means working throughout the prodf ebtervations on
Azy, its power spectrunt, Azy((u) , and autocovariance functmﬁy(k) , the second difference of
the ideal band-pass filtdspp(L) , and recovering the optimal one-sided filter for second-
differenced datab(L)

The basic intuition should by now be clear. Because we know that the ideal two-sided filter will
give us a stationary series, we can transform the optimization problem into an equivalent problem
using suitably differenced data and a suitably differenced ideal filter. This approach may break
down if we try to go beyond the I(2) case, since the ideal filter is no longer sure to give a
stationary filtered series. Fortunately, the vast majority of economic time series do not require
models with orders of integration larger that 2.

6.  Analternative approach would be to change the definition of the ideal filter to ensure stationarity.
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Appendix B: Historical Antecedents

The tools of frequency-domain analysis and signal processing theory have been available for over
a quarter-century. The idea of deriving an optimal filter defined as in equation (A.4) is an obvious
one, and the derivation of its closed-form solution is not difficult. Despite this, it is barely
mentioned or discussed in modern econometrics or macroecorfoBticistiano and Fitzgerald
(1999) derive the optimal filtered estimated at each point in the sample for an IMA(1,q) pfocess.
They make no specific references to previous derivations of this type. They refer, however, to
Stock and Watson'’s (1998) time-domain procedure of forecasting future values of output to “pad”
the sample and applying the Baxter-King filter, but they do not clearly state its relati%nship.

Koopmans (1974), however, gives the closed-form solution for a closely related ptSitiem.
considers the case of two weakly stationary proce§sgs/, } , Where we obserye only  butwe
know their cross-spectral densifqu(co) , as well as their spectral densitj&s), fy(w) . (Recall
that knowingf Xy(co) Is equivalent to knowing their cross-covariance fundﬂg;ﬁk) .) We wish to
construct the linear filteB, (L) , which minimizes

2
E([% +v—BWL) Brl), (B.1)
subject to the restriction th&,(L) is a polynomial in only non-negative powérs of

Koopmans’ proof relies on an underlying intuition based on projections. The optimal one-sided
filter is simply the projection from the space spannedby,, into the space spanned by past and
present values o, H; (t) . This can be broken down into two projection steps, the first being the
projection ofx, onto the space spanned by past, present, and future vaype{sig)) , and the
second being the projection of that result orffp(t) **

7. One reason may be that most introductory treatments of such techniques assume (i) that the data being
analyzed are stationary, and (ii) that our data series are very long. Another reason may be that
economists are confused about how to apply such technigues to non-stationary data; see Den Haan and
Sumner’s (2001, section 3.2, especially 11-12) critique of Harvey and Jaeger (1993) and Cogley and
Nason (1995).

8.  They assert that the proof could be extended to ARIMA (p,1,q), but that this would be “tedious.”
Schleicher (2001) provides just such an extension, with a proof that is considerably more elegant than
the original proof in Christiano and Fitzgerald (1999).

9.  Thisisthe method used in the BPFILTER.SRC routine provided by Estima for RATS; the routine is
Taylor's translation of Watson'’s code for Stock and Watson (1998).

10. See Koopmans (1974), particularly section 7.6, 249-52, and section 5.5, especially example 5.5, 147—
48. Again, there is no mention of the origin of the derivation, presumably because it was considered to
be too well-known or trivial a result.

11. The projection may be broken into two steps becaijgg isa subsplage of
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Koopmans begins by noting that the optitved-sidedfilter has a transfer function given by

B(w) = f,(w)/ fy (). (B.2)
Applying the optimal one-sided filteB,, (L) , to our available sefss, ..., y;} , will give the
same result as applying the doubly infinite optimal two-sided fiigr) , to a doubly infinite

“padded” series{y,} ,wherg =y, for=1,...,T y, =¥, otherwi§e. is simply the
optimal forecast/backcast value pyf  given the available sample from 1 to T. Stock and Watson’s
(1998) approach is therefore an approximation of this, which truncates the forecast/backcast at
some finite values.

The relationship to the problem at hand can be understood by considering the latent wariable,
Ideally, we would like to estimat®, = the (unobserved) output gap. This is possible if we know
ny(k) , its autocovariance function with observed output. This will be the case if we postulate a
structural model, as in the structural unobserved components used by Harvey (1985), Kuttner
(1994), Gerlach and Smets (1997), and Kaiser and Maravall (2001). The optimal estimates we
obtain from the above correspond with the solutions these authors obtain by using the standard
recursive Wiener-Kolmogorov filtering and smoothing equations. Of course, results may be
highly sensitive to the specification of the structural model, as noted by Morley, Nelson, and Zivot
(1999).

The band-filtering approach remains agnostic about the structural model by ch&psing  to be the
optimally band-filtered component of observed output. Since the form of the optimal&{ter, ,
is known,x, = B(L) Oy, andfxy(oo) = B(w) ny(oo) . We can therefore construct the optimal
finite-sample approximation of,  as a function of only the dynamic properties of output. In doing
so, however, we ignore the fact that this definitiox,of  is only an approximation of the output
gap that we ultimately care about. To see this, note that as our sample becomes large, our
estimation error fox, in the middle of our sample tends asymptotically towards zero in this
approach, whereas in the unobserved approach we have asymptotic standard errors associated
with our smoothed estimates.

B.1 Koopmans’ proof

Sincey, is weakly stationary, it has a Wold representation

Ye = > G L& (B.3)
i=0
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whereg; is white noise and we defiGéw) to the transfer function associated with the above
filter. The spectrum of, s thereforéy(w) = C(w) fg(w) .B{w) is (as above) the transfer
function of the optimal symmetric band-pass filter, then since we seek to estimate , we need
to replace it withB(w) £ to account for the offsetwgberiods. It therefore follows that the
optimal two-sided estimates &  are given by

%) = [ " B(w) [O(0) Of(w) = [ D(0) (), (B.4)

where
D(@) = ¥4 e,

The one-sided problem simply replaces future valugg of  with their expectation, which is zero.
This means that the optimal one-sided estimate is given by

%) = fnov(w) f (), (B.5)
whereD () = ¥ | B (B.6)

This derivation has its counterpart in the derivation for the MA(qg) presented in Appendix A,
section A.2. Equation (5) in the main text shows us that we are projecting the optimaBfilter  into
the space spanned by duobservations oy, via théy ariq terms. Note that there are
effectively two distinct truncations occurring: one owing to the limited persistence of the
underlying MA process and the other owing to the finite samplé-%ize.

12. Theformeris easy to overlook in Koopmans'’ treatment, as he assumes a possibly infinite MA
representation.
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