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Abstract

This paper examines asset allocation strategies in an extreme value at risk (VaR) framework in
which the risk measure is thpequantile from the extreme value distribution. The main focus is on
the allocation problem faced by an extremely risk-averse institution, such as a central bank. The
optimal portfolio in terms of excess return over the risk-free rate per unit of risk is also described.

An example of asset allocation is presented using a 1-year treasury bill and a 5-year zero-coupon
bond. The allocation is conducted using different risk measures: duration, standard VaR, the
guantile of the empirical distribution, and the quantile of the extreme distribution. An
approximation procedure is described for the allocatidt-a$sets. An example of allocating

eight Canadian treasuries and bonds is given (covering the whole Canadian term structure).

The implications of the results on optimal allocation of capital under stressed market conditions
are discussed. Some practical issues concerning the use of the results are described, such as who
should allocate capital based on extreme values.

JEL classification: C0O, C4, C5, G1
Bank classification: Financial markets

Résumeé

L'auteur examine diverses stratégies de répatrtition de I'actif a I'aide d’'un cadre d’analyse de la
valeur exposée au risque dans lequel la mesure du risque est le quantile p'dedeedistribution

des valeurs extrémes. Il se penche principalement sur le probleme de répartition auquel est
confrontée une institution extrémement réfractaire au risque, telle une banque centrale. L'auteur
présente également le portefeuille « optimal », soit celui qui maximise I'excédent de rendement
par rapport au taux sQr, par unité de risque.

L'étude propose I'exemple d’un portefeuille de bons du Trésor a 1 an et d’obligations coupon zéro
a 5 ans réparti selon différentes mesures du risque : duration, quantile de la distribution normale,
guantile de la distribution empirique et quantile de la distribution des valeurs extrémes. L'auteur
décrit une procédure d’approximation pour la répartitiohl detifs. Un exemple fondé sur la
répartition de huit obligations et bons du Trésor du Canada (couvrant I'ensemble de la structure
des taux d’'intérét en place au Canada) illustre I'application de cette procédure.

L’'auteur examine les implications des résultats pour la répartition optimale du capital lorsque des
tensions s’exercent sur le marché. Il aborde également certaines questions pratiques soulevées par
les résultats (p. ex. celle de savoir quels investisseurs devraient se fonder sur la théorie des valeurs
extrémes pour déterminer la composition de leur portefeuille).

Classification JEL : CO, C4, C5, G1
Classification de la Banque : Marchés financiers






1. Introduction

Asset allocation was first addressed in a return-variance framework (Markowitz 1952). The
allocation of capital among a set of assets is an optimization problem: an investor could consider
maximizing the return per unit of risk or solving for the minimum risk portfolio. Using variance

as a measure of risk and assuming normality of returns leads to optimal allocation under normal
market conditions. The assumption of normality gives the same weight to positive and negative
returns and underweights extreme shocks relative to central observations. Many financial returns
do not follow a normal distribution, and are better represented by fat-tailed distributions. In fact,
ignoring the fat-tail phenomenon might lead to an optimistic allocation of assets, since the
allocation underweights high-risk tail events. On the other hand, the assumption of normality
makes the calculus much easier, because the optimization problem has a closed form; a mixture of
N normal distributions is a normal distribution. Also, using fat-tailed distributions to represent the
returns adds complexity to the problem (no closed form exists), and the allocation can be very
time-consuming and may not be possible (in terms of the time calculation) for a large set of assets.
Using fat-tailed distributions solves part of the problem, but how would one achieve a
conservative allocation of assets? In this case, where an investor is mainly interested in extreme
shocks, we need a model that fits the tail of the distribution without making any assumptions
about the nature of the underlying distribution. Extreme value theory (EVT) can be used for that
purpose (see Bensalah 2000).

In this paper, in addressing the problem of asset allocation we will focus on stressed market
conditions, using the quantile from an extreme value distribution (EVD) as a measure of risk.
Section 2 allocates two fixed-income securities using different measures of risk and using
different assumptions about the underlying distribution of returns. Surprisingly, the allocation
using the quantile from the EVD allocates some weight to the 5-year zero-coupon bond. This
result goes against the principle that associates more risk with longer-duration assets, which is
widely accepted in the world of fixed-income securities. We also present the minimum risk
portfolio1 and the optimal portfolio in terms of maximizing return per unit of risk. Section 3
presents an approximation procedure to solve the problem in the case of a large set of assets and a
lack of a closed form. The results for allocating two and three fixed-income securities, using an
intuitive and straightforward (but time-consuming) procedure, as well as an approximation
procedure, are presented and compared. Section 4 offers some conclusions and introduces some
ideas that might improve the accuracy of the solution.

1.  The minimum risk portfolio is selected on the basis of minimizing a given measure of risk (for
example, variance).



2. Asset Allocation using Different Measures of Risk

The asset-allocation problem was first addressed by Markowitz (1952) in a framework that
considers the risk-return trade-off and using variance of returns as a measure of risk. The use of
the variance and the assumption of normality of returns makes this problem easy to solve, because
of the nature of the normal distribution: a mixturéNafiormal is a normal distribution.

An investor using a variance as a measure of risk to allocate assets should understand the
following: (i) the same weight is given to negative and positive returns, and (ii) the optimal return

is achieved using this measure only if the market remains under normal conditions, because more
importance is given to the central observations (assumption of normality). Hence, the importance
of extreme shocks is underestimated.

Since many financial distributions of returns are fat-tailed, an approximation by a normal
distribution leads the importance of extreme shocks to be underestimated. Huisman, Koedijk, and
Pownall (1999) compare the allocation of an index of bonds and an index of stocks using a normal
value at risk (VaR) and a VaR from the empirical distribution as measures of risk. They conclude
that, assuming normality, one obtains the same portfolio allocation for any choice of confidence
level. The assumption of normality renders the investor’s attitude towards risk (in terms of
increasing the confidence level) unimportant in the optimization process (the normal VaR is a
linear function of the variance). On the other hand, the non-parametric nature of the empirical
distribution leads to a change in the optimal portfolio for different confidence levels. The problem
with using the empirical distribution is that it does not allow for an allocation based on a very high
confidence level (no out-of-sample projecfipHuisman, Koedijk, and Pownall also use a fat-
tailed distribution to capture the effect of the tail. Although allocating two assets is not time-
consuming under any distribution assumption, for non-normal distribution—since no closed form
exists for the optimization problem—allocating a large set of assets could be impossible (see
section 3). They conclude that the use of a measure of risk that can capture higher moments of the
distribution is more adequate.

The use of fat-tailed distribution improves the accuracy of measuring risk and reduces model risk.
Using thep-quantile of a fat-tailed parametric distribution as a measure of risk could be beneficial
for investors who are mainly concerned with central observations but also want to capture more
accurately the downside risk. For those investors, an allocation under the assumption of a fat-tailed

2. Foravery high quantile (say, 99.99 per cent), one should choose the 0.01 per cent observation from the
ranked sample. Even with very large samples of data, this quantile may not exist when empirical
distributions are used. The lack of a parametric form in the distribution does not permit a projection to
the high quantile measures of the distribution.



distribution (such as thiestudent distribution) and based on a reasonable confidence level (not far
into the tail) could be useful.

Some investors, however, are concerned with extreme shocks. They want a model that accurately
fits the tail of the distribution. EVT provides such a tool. It has four major advantages over the
classic methods: (i) it focuses on extreme shocks and ignores the central observations; (ii) it
makes no assumption regarding the underlying distribution of returns, so the model risk is
reduced; (iii) it is a parametric approach, so out-of-sample projection is possible; and, (iv) it is
better able to capture event risk (i.e., crashes, currency devaluations).

Thus, using the quantile from an EVD can be interesting for some risk-averse investors, who want
to achieve a very conservative allocation of assets—in other words, a portfolio allocation that is
robust under stressed market conditions.

2.1 A two-asset allocation example using different measures of risk

In this section, two fixed-income securities are allocated based on four measures of risk. The
results for each measure are described. Series of daily returns over a 5-year period (1995-2000)
are used with mean returns of 10 July 2000.

2.1.1 Duration

Duration, which is probably the most popular fixed-income risk measure, is the first derivative of
the price with respect to the interest rate, and so it represents the sensitivity of the price to a
parallel change in interest rates. Duration is simple to use. For example, to choose between a 1-
year treasury-bill and a 5-year zero-coupon bond, we choose the instrument that has a short
duration to minimize the risk, which in our case means that we put all of our capital in the 1-year
treasury bill. Duration, however, does not capture the curvature effect (convexity) and higher
interest rate moments, and it assumes parallel changes for the whole term structure.

2.1.2 Normal VaR

If we assume that returns are normal, the VaR op-tpgantile of the normal distribution is a
linear function of the variance. This implies that portfolio allocations are the same for any



confidence level chosen by the investor. In Table 1, the optimal allocation using a normal VaR
corresponds to an optimal allocation using duration.

Table 1: Allocation using Normal VaR (per cent)

Minimum risk portfolio

Optimal portfolio

VaR
Return
Weight 1-year treasury bil

5-year zero-coupon bond

0.10410
6.2983
100
0

0.10410
6.2983
100
0

2.1.3 Historical VaR

For allocations based on a historical VaR (Tables 2 and 3), no assumption is made about the
underlying distribution of returns, and we use the quantile of the empirical distribution as a
measure of risk. We still give the same weight, however, to all the observations, and we cannot
perform an allocation based on a very high confidence level (an out-of-sample projection is not
possible; see Table 2, column 0.9999). These two facts show the weakness of using non-
parametric distributions to model the distribution of returns.

Table 2: Allocation using Historical VaR (minimum risk portfolio) (per cent)

Confidence level 0.99 0.999 0.9999
VaR 0.3243 0.60411 NA
Return 6.2958 6.2983 NA
Weight 1-year treasury bil 99 100 NA
5-year zero-coupon bond 1 0 NA

Table 3: Allocation using Historical VaR (optimal portfolio) (per cent)

Confidence level 0.99 0.999 0.9999
VaR 0.32437 0.60411 NA
Return 6.2983 6.2983 NA
Weight 1-year treasury bil 100 100 NA
5-year zero-coupon bond 0 0 NA




2.1.4 Extreme VaR

In this subsection, we use tipequantile from the EVD to allocate the 1-year treasury bill and the
5-year zero-coupon bond (Tables 4 and 5). The focus is on extreme shocks. Table 4 shows how the
dependency between the two assets differs in the tail from what the normal distribution may
suggest. If we take into account the extreme shocks, we should allocate part of our capital to the
long-duration bond, and the same applies for the optimal portfolio in terms of return per unit of
risk. Figure 1 shows this allocation graphically. The 1-year treasury bill seems to be more volatile
in an extreme condition, so investing 100 per cent of the capital in this asset can be very risky
under extreme conditions.

Table 4: Allocation using Extreme VaR (Minimum Risk Portfolio) (per cent)

Confidence level 0.99 0.999 0.9999
VaR 1.2120 1.8637 2.4127
Return 6.2703 6.2397 6.2065
Weight 1-year treasury bil 89 77 64
5-year zero-coupon bond 11 23 36

Table 5: Allocation using Extreme VaR (Optimal Portfolio) (per cent)

Confidence level 0.99 0.999 0.9999
VaR 1.2259 1.9145 2.4910
Return 6.2881 6.2626 6.2371
Weight 1-year treasury bil 94 86 76
5-year zero-coupon bond 6 14 24

In the end, we can say that there is no final answer or optimal measure of risk. Any allocation is
optimal if its underlying assumptions correspond to the risk preference of the investor (i.e., the
sensitivity of the investor to tail events). Understanding the risk preference is key before using any
methodology. An institution that cares especially about extreme events should allocate assets
conditioned on extreme events. To achieve this very conservative allocation of assets, however,
some basis points of the portfolio return are conceded.



3. Allocating a Large Set of Assets using an Approximation Procedure

Asset allocation using thquantile of the normal distribution (a linear function of the variance,

in this case) as a measure of risk is straightforward. The assumption of normality simplifies the
calculus, because a mixturedimarginal normal distributions is a normal distribution, and the
second moment of the resulting distribution can be written in terms of the marginal distribution’s
variances and covariances. Solving for the optimal portfolio in terms of minimum risk is well
understood in the literature and maximizing the return per unit of risk is equivalent to maximizing
the Sharpe ratio. The asset-allocation problem under the assumption of normality is reduced to a
simple optimization problem, which can be solved for any number of assets and under any kind of
constraints. Relaxing the assumption of normality adds a great deal of complexity to the problem.
If we assume that the distribution of returns is not normal, no closed form for the optimization
problem exists (i.e., we cannot write the resulpaguantile of the portfolio distribution in terms

of the parameters of the individual distributions of assets).

In our case, we chose thaquantile of an EVD as a measure of risk. A mixtur&&VD is not
necessarily an EVD, this being one of the limitations of EVT (see Bensalah 2000).

One can, nevertheless, compute the risk-return value of individual portfolios. As such, an intuitive
procedure used to solve this problem is to draw the surface of all possible portfolios in a return-
risk framework and then choose the optimal portfolio in terms of minimum risk or maximum
return per unit of risk. Unfortunately, this procedure works well only for a limited number of
assets, as the computational burden is large. To illustrate this fact, Algorithm | describes the
procedure for allocating two assets.

Algorithm I: Allocating two assets
Step 1 - Define a step of 1 per cent.

Step 2 - Allocate 99 per cent to the first asset.

Allocate 1 per cent to the second asset.

Estimate the EVD of the portfolio, theequantile, and return.
Step n - Allocate (100-n) per cent to the first asset.

Allocate n per cent to the second asset.

Estimate the EVD of the portfolio, theequantile, and return.
Step 100 - Allocate 1 per cent to the first asset.

Allocate 99 per cent to the second asset.

Estimate the EVD of the portfolio, theequantile, and return.

End - Select the portfolio of minimum risk or the portfolio of maximum return per
unit of risk.



We can see that we need 100 calculations if we choose a precision of 1 per cent; for three assets
we need 100*100 calculations; and foassets we neetDd™*  calculations.

This procedure quickly becomes very cumbersome in terms of computation time for a large set of
assets. The problem is that we have no control over the number of portfolios to draw to properly
map the surface of all possible portfolios. We can choose a smaller number of portfolios to draw
combined with an interpolation between every two portfolios. However, for a large set of assets,
the computation problem remains unsolved.

Algorithm Il allows us to control the number of portfolios, gives an approximation of the solution,
and can take into account the available computer resources.

Algorithm II: Allocating two assets
Step 1 - Define a number of portfolios as m.

Step 2 - Randomly generate the weight of the first assetiuro, 1] , from a uniform
distribution [0,1], and set the weight of the second asset to:

W, = 1-W,

Estimate the EVD of the portfolio, thequantile, and return.

Repeat step 2 m times.

End - Select the portfolio of minimum risk or the portfolio of maximum return per
unit of risk.

We can see that we have control over the number of points (portfolios) we want to draw and thus
we can determine how accurate we want our approximation of the surface to be, taking into
account the available computer resources. Parallel programming suits this kind of problem,
because each estimation at each point is independent of the others. We just have to be careful not
to generate the same random weights in all the parallel programs (by manipulating the seeds of
the random generator).

Tables 6 and 7 apply this procedure to two and three assets. Also, the procedure is compared to
the solution based on Algorithm | for giviqgquantile as a measure of risk. Figures 1 to 8 plot the
results presented in Tables 6 and 7.



Table 6: Allocating Two Assets (minimum risk portfolio (per cent)

Confidence level (0.9999) (1@(? ggtlr?f;nliins) raArlm%%ﬁhg:tlféﬁgs) raArlm%%ﬁhg:tlféﬁgs) rﬁr'%%ﬁh;gr't'féﬁgs)
VaR 2.4127 2.4132 2.4132 2.4132
Return 6.2065 6.2032 6.2032 6.2032
Weight 1-year treasury bill 64 62.6886 62.6886 62.6886
Weight 5-year zero-coupon bond 36 37.3114 37.3114 37.3114
a. See Figures 2, 3, and 4 for graphs.
Table 7: Allocating Three Assets (minimum risk portfolio} (per cent)
Algorithm | Algorithm II Algorithm II Algorithm II Algorithm II Algorithm II Algorithm Il
Confidence level (0.9999) (10,000 (80 random (100 random | (200 random | (1000 random | (2000 random | (5000 random
portfolios) portfolios) portfolios) portfolios) portfolios) portfolios) portfolios)
VaR 2.0301 2.0884 2.0884 2.0550 2.0385 2.0291 2.0291
Return 6.2356 6.2430 6.2430 6.2448 6.2390 6.2351 6.2351
Weight 1-year treasury bill 91 90.8006 90.8006 92.2364 91.315f 90.9912 90.9912
Weight 5-year zero-coupon bond 0.9 2.0636 2.0636 0.2101 0.370f7 0.0063 0.0063
Weight 30-year zero-coupon bond 8.91 7.1356 7.1356 7.5534 8.3135 9.0025 9.0025

a. See Figure 5, 6, 7, and 8 for graphs.




Now, we extend the procedure to allocltaumber of assets and we apply it to eight Canadian
treasury bills and bonds (covering the whole Canadian term structure, as regards maturity). Series
of daily returns over a 5-year period (1995-2000) are used to estimate the EVD. The EVD is
estimated using the maxima sampled over 90-day non-overlapping ir?teés@sBensalah 2000

for a discussion on sampling the maxima).

Algorithm IlI: Allocating N assets
Step 1 - Define a number of portfolios as m.

Step 2 - Randomly generate the weight of the first asggtuo, 1] , from a uni-
form distribution [0,1].

W, OU[0, 1-W,]

W, OU[0, 1— W, —W,]
W, OU[0, 1-W; =W, —W,]
W, = 1-W, -W,-W

e W g

Estimate the EVD of the portfolio, thequantile, and return.
Repeat step 2 m times.

End - Select the portfolio of minimum risk or the portfolio of maximum return
per unit of risk.

3. One way to build the sample of extremes is to divide the original sample into non-overlapping equal inter-
vals of time and take the maximum within each interval. The EVD is estimated to fit the samples of these
maxima.
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Tables 8 and 9 show the results of allocating the eight assets.

Table 8: Minimum Risk Portfolio Simulation (per cent)

100 200 400 1000 5000 10,000 20,000

Confidence level (0.9999) random random random random random random random

portfolios | portfolios | portfolios | portfolios | portfolios | portfolios | portfolios
VaR 0.45 1.64 0.54 0.52 0.19 0.19 0.19
Return 5.53 5.81 5.53 5.53 551 5.51 5.51
1-month treasury bill 70.98 16.28 92.08 91.3d 94.25 94.45 95.39
2-month treasury bill 22.41 13.63 1.29 1.42 2.31 2.31L 1.52
3-month treasury bill 4.36 29.77 2.82 3.09 2.44 2.46 2.47
6-month treasury bill 0.89 12.76 1.21 1.33 0.61 0.61 0.06
1-year treasury bhill 0.05 17.81 1.68 1.85 0.17 0.1y 0.06
5-year zero-coupon bond 0.05 0.82 0.0 0.08 0.9 0.09 0.45
10-year zero-coupon bond 0.12 0.74 0.0 0.0B 0.04 0.04 0.05
30-year zero-coupon bond 1.14 8.19 0.7 0.8 0.97 0.07 0.02

Table 9: Optimal Portfolio Simulation (per cent)

100 200 400 1000 5000 10,000 20,000

Confidence level (0.9999) random random random random random random random

portfolios | portfolios | portfolios | portfolios | portfolios | portfolios | portfolios
VaR 2.82 2.82 2.52 1.02 1.60 1.60 1.98
Return 6.03 6.03 5.66 5.74 6.03 6.03 6.15
1-month treasury bill 16.99 16.99 75.68 57.56 11.64 11.64 0.29
2-month treasury bill 2.08 2.08 0.61 0.78 17.37 17.3p 4.35
3-month treasury bill 13.12 13.12 3.84 6.14 1.73 1.78 4.93
6-month treasury bill 20.08 20.08 5.88 12.49 11.2% 11.25 14.32
1-year treasury bill 43.68 43.68 12.79 10.4§ 51.71 51.11 52.62
5-year zero-coupon bond 3.70 3.7¢ 1.04 10.6[L 3.22 3.2 21.56
10-year zero-coupon bond 0.24 0.24 0.07 0.4 0.8 0.28 0.83
30-year zero-coupon bongd 0.12 0.12 0.04 1.5D 2.85 2.85 1.10

We can summarize the results of the approximation procedure; see Figures 9 and 10 for a
graphical example using 10,000 and 20,000 random portfolios. For an automatic allocation using
a precision of 1 per cent (using Algorithma0'  portfolios would have to be estimated.
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The quality of the approximation depends on the number of points randomly generated and on the
number of assets to allocate. Figures 11 and 12 illustrate how the random-mapping solution
evolves with the number of random portfolios. We can set up a convergence rule based on the
minimum fluctuation between the estimated portfolios. That is, we can increase the number of
random portfolios calculated (m) until the optimal portfolio varies little between each increment
in the number m. This is likely to lead to a sampling size that is significantly smaller than the one
required by Algorithm 1X00" ).

Using a more sophisticated measure of risk is difficult and can be very time-consuming. Mapping
the original set of assets into a small set could be a first step before solving for the optimal
benchmark portfolio.

4, Conclusion

Asset allocation is a complex problem that should take into account the risk profile, different
kinds of constraints (minimum or maximum holdings; shortfall constraints, such as the confidence
level), and the universe of assets. The emergence of VaR as an ex-post risk measure was a
revolution in the world of risk management. Using VaR with more complex assumptions than
normality in a proactive way (i.e., to allocate assets) is a new challenge.

A better understanding of the risk profile will lead to the use of appropriate assumptions and
measures of risk. Investors who equally weight positive and negative returns (and focus on the
central observations) can continue to use the variance as a measure of risk and the assumption of
normal distribution of returns. This approach is compatible with their perception and
understanding of their risk profile. Even investors who focus on central observations, however,
might think that the downside risk should play a bigger role than the normal assumption might
suggest. The use of fat-tailed distributions (suchstisdent) and thp-quantile as a measure of

risk can partially capture the effect of the tail. A third category of risk-averse investors needs to
minimize the risk of extreme shocks. EVT provides a model that focuses on extreme shocks
without making any assumptions about the underlying distribution of returns, reducing the
model’s risk. Central banks likely fall into this category and EVT captures the event risks that they
would tend to focus on.

Also, in times of market stress, adjusting asset allocations on an EVT basis could be an alternative
strategy to the classic flight to quality. Having different reaction strategies reduces the behaviour
risk (the risk that all market participants react the same way, increasing the magnitude of a shock).
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By relaxing the assumption of normality, however, the computation time can become explosive.
The approximation procedure presented in this paper gives a reasonable approximation of the real
solution based on a random mapping of the surface of all possible portfolios. This procedure was
used to allocate eight Canadian treasury bills and Canada bonds (covering the whole Canadian
term structure, as regards maturity). The resulting portfolio can be seen as a Canadian fixed-
income benchmark for an extremely risk-averse institution. Other algorithms to generate the
random weights could be considered. We might see some improvement to the procedure if, as a
second step, we could sample the portfolios around the approximation to improve the solution’s
accuracy.
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Figure 1: The allocation of a 1-year treasury bill and a 5-year zero-coupon bond using a precision step of 1 per cent
(100 portfolios). “*" is the minimum risk portfolio, and “O” is the optimal portfolio in terms of return/
risk.
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Figure 2: The allocation of a 1-year treasury bill and a 5-year zero-coupon bond using 25 random portfolios. “O” is
the minimum risk portfolio.
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Figure 3: The allocation of a 1-year treasury bill and a 5-year zero-coupon bond using 50 random portfolios. “O”
is the minimum risk portfolio.
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Figure 4. The allocation of a 1-year treasury bill and a 5-year zero-coupon bond using 70 random portfolios. “O”
is the minimum risk portfolio.
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Figure 5: The allocation of a 1-year treasury bill, a 5-year zero-coupon bond, and a 30-year zero-coupon bond
using a precision step of 1 per cent (10,000 portfolios). “*” is the minimum risk portfolio, and “O” is the
optimal portfolio in terms of return/risk.
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Figure 6: The allocation of a 1-year treasury bill, a 5-year zero-coupon bond, and a 30-year zero-coupon bond
using 80 random portfolios. “O” is the minimum risk portfolio.
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Figure 7: The allocation of a 1-year treasury bill, a 5-year zero-coupon bond, and a 30-year zero-coupon bond
using 1000 random portfolios. “O” is the minimum risk portfolio.
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Figure 8: The allocation of a 1-year treasury bill, a 5-year zero-coupon bond, and a 30-year zero-coupon bond
using 2000 random portfolios. “O” is the minimum risk portfolio.
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Figure 9: The allocation of eight Canadian fixed-income securities using an approximation of 10,000 random port-
folios. “M” is the minimum risk portfolio, and “O” is the optimal portfolio in terms of return/risk.
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Figure 10: The allocation of eight Canadian fixed-income securities using an approximation of 20,000 random port-
folios. “M” is the minimum risk portfolio, and “O” is the optimal portfolio in terms of return/risk.
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Figure 11: Random simulation for the minimum risk portfolio
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Figure 12: Random simulation for the minimum risk portfolio
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