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Abstract

This paper describes a new test for evaluating conditional density functions that remains
valid when the data are time-dependent and that is therefore applicable to forecasting
problems. We show that the test statistic is asymptotically distributed standard normal
under the null hypothesis, and diverges to infinity when the null hypothesis is false. We
use a bootstrap algorithm to approximate the distribution of the test statistic in finite
samples, and show that the bootstrapped distribution converges to the asymptotic
distribution in probability. A Monte Carlo simulation study reveals that the bootstrap
test works well and is highly robust to the value of the smoothing parameter in the
kernel density estimator. An application to inflation forecasting is also presented to
demonstrate the use of the test.

JEL classification: C12, C15, E37
Bank classification: Econometric and statistical methods

Résumé

Les auteurs décrivent un nouveau test qui permet d’évaluer les densités de probabilité
conditionnelles dans le cas de séries temporelles et qui se révéle par conséquent utile
pour la prévision. lls montrent que la statistique du test a pour loi asymptotique une loi
normale centrée réduite si I’lhypothése nulle est vraie, mais qu’elle diverge vers I'infini si
celle-ci est fausse. Lorsqu’ils se servent d’un algorithme de rééchantillonnage bootstrap
pour représenter la distribution de la statistique du test sur de petits échantillons, ils
constatent que la distribution ainsi obtenue converge vers la loi asymptotique en
probabilité. Une simulation de Monte-Carlo révele que le niveau et la puissance du test
bootstrap sont satisfaisants et qu’ils ne sont pas sensibles a la valeur prise par le
parametre de lissage dans I’estimateur a noyau de la densité. Enfin, les auteurs
appliquent leur test a la prévision de I'inflation pour en démontrer I'utilité.

Classification JEL : C12, C15, E37
Classification de la Banque : Méthodes économétriques et statistiques






1. Introduction

Conditional density functions arise in a variety of areas. One of the more useful
applications involves the production of density forecasts, where the probability density
of the forecast of a time series, such as the rate of inflation, can be used to make probability
statements regarding the future course of that series.! The probability density, however,
and its resulting interpretation, is conditional on the hypothesis that the model used to
produce the forecasts is correctly specified. A test is thus required to determine whether
the conditional density function implied by the model corresponds to the one implied by

the data.

There is a long history of testing to determine whether a random variable
originates from a stipulated distribution. For example, Kolmogorov (1933) introduced a
test for evaluating whether an independent and identically distributed sample of random
variables comes from a given continuous univariate distribution function. Much later,
Bickel and Rosenblatt (1973) proposed a test for density functions based on estimation of
kernel densities. Their test, however, requires that the distribution under the null
hypothesis be completely specified; i.e., that there be no unknown parameters under the
null. Fan (1994, 1995) extended the Bickel and Rosenblatt test to allow for the presence of
unknown parameters, deriving both asymptotic and bootstrapped versions of the test.
Fan and Ullah (1999) proposed a further extension that allows for weakly dependent data.

All of the above tests, however, were designed only for unconditional density functions.

1. Inits Inflation Report, the Bank of England regularly displays density forecasts for inflation over the next
two years through the use of fan charts. For details on the construction of fan charts, see page 52 of the
February 1999 Inflation Report.



Tests for evaluating conditional densities have a more recent history. Andrews
(1997) proposed a conditional Kolmogorov test of conditional distribution functions. The
asymptotic null distribution of Andrews’ test is dependent upon a nuisance parameter, so
the critical values for his test are obtained by a bootstrap procedure. Zheng (2000) used
the Kullback-Leibler information criterion as a basis for testing conditional density
functions. Zheng’s test is consistent against all alternatives to the null, but the simulation
results revealed that the power and size are sensitive to the smoothing parameters, and
that, in particular, there are large differences between the test’s true and nominal sizes. A
limitation of the above tests is that the data must be independently and identically

distributed. Clearly, this rules out time-series applications.

In the area of time series, Diebold, Gunther, and Tay (1998) proposed an exact test
for evaluating conditional density forecasts based on an integral transform of the
conditional density function for dependent observations. Their approach requires a
visual assessment of histograms, and is limited by the requirement that there be no

unknown parameters under the null hypothesis.

In this paper, we propose a new, computationally convenient test for evaluating
conditional density functions that remains valid for time-series data. The test statistic is
based on the integrated squared difference between the conditional density function
implied by the parametric model and a nonparametric estimate of the true conditional
density function. Our test can be used to determine whether a sample of random

variables originates from a given conditional distribution, which can be applied to the



evaluation of density forecasts, and it can also be used to perform specification tests of

parametric models.

Recognizing that the standard normal distribution may not provide an accurate
approximation of the small sample distribution of our test statistic under the null
hypothesis, and that the true size of the test is very sensitive to the amount of smoothing
used in the kernel estimate of the conditional density function, we use the bootstrap to
approximate the finite-sample distribution of our test statistic. As in Horowitz (1994) and
Fan (1995), given the original sample, our bootstrap sample always satisfies the null
hypothesis. Thus, the distribution of the bootstrap test statistic always approximates the

true distribution of the test statistic even when the null hypothesis is false.

This paper is organized as follows. In section 2 we introduce the test statistic for
the conditional density function and establish its asymptotic distribution. In section 3 we
explain how the bootstrap can be used to approximate the finite-sample distribution of
the test statistic. Section 4 presents a Monte Carlo simulation study to investigate the
performance of the test in finite samples. Section 5 describes an application to two
inflation-forecasting models, and section 6 concludes. Appendix 1 presents technical
assumptions, Appendix 2 gives proofs of our results, and Appendix 3 presents the central

limit theorem for degenerate U-statistics.

2. An Asymptotic Test for Evaluating Conditional Density Functions

Let the observations consist of {ZI}P: where Z, = (X, Y;), with unknown

1 1

conditional density function Ti(y|x) of y,, given x, = x, and marginal density function

T(x) of x,, with y, andx; being vectors of dimension p and g, respectively. T,(y| X, 8) isa



parametric family of conditional density functions, with 8 0 © being a compact subset of

R® . We assume that the sample { Z,} ?: , comes from a random sequence that is a strictly

stationary and absolutely regular process with coefficient (3;, which is defined as
t t

B, = supnElsu P M;’°+|(Z){ P(AIM_,(Z2))—-P(A)}], where MZ) denotes the o-

algebra generated by (Z, ... ,Z;) for s<t.

We are interested in testing

Ho: T(y|X) = 1(Y| % 6p), for somef,

Hy: Ti(y|X) # (Y| %, 6),  for all 6. 1)

The identifying information in our test is the conditional density 1,(y|x, 6,) of y given x.
The null hypothesis restricts the conditional density function to be of the form
(Y| X, 6,) . We use this restriction to test the null hypothesis by basing our test on the

following distance measure between the conditional density functions:

T = _[j[(n(yIX)—Tro(ylx 90))H(X)]2w(X. YdF(x,y) , 2)

where w(x, y) isaweight function and F(X, y) is the cumulative distribution function of
{Z;} . Distance measures similar to (2) were used by, for example, Bickell and Rosenblatt
(1973), Hall (1984), and Fan (1994, 1995). This measure is a useful indicator of model
misspecification, since T = 0 if and only if the model is correctly specified; that is, if H is
true. The weight function allows us to focus on the relevant issue: namely, how the model
performs in a particular range of the conditional distribution. The cumulative
distribution function F(x, y) is introduced to make our test statistics computationally

simpler. In this paper, we assume that w(x, y) = 1; w(x y) # 1 can be treated similarly.



The true conditional density function 1(y|X) can be consistently estimated by the

kernel estimator whether or not the model is correctly specified, where

(X, ¥) 3)

iy} = T

and

fx, y) = % p+qu Kd( X‘Ekm hy‘D

T(x) = % hqu K[?(t

In the above equations, K(I)Jis a kernel function and h = h, is a sequence of smoothing
parameters used in the nonparametric estimation of the conditional density function. We
use the product kernel, for example K(y,) = I‘Iip: 1KY i) K(x) = I‘II - 1k(x ), and
K(yp %) = MP_ 1K(Y ) % ni_ 1K(% ;) , where K(Jis a univariate kernel function and y; ;

and x, ; are the i components of y, and x,, respectively.

Suppose that 0, is an asymptotically normal estimator of 6, under the null. The
parametric conditional density function is estimated by T, (y|X, én) . Let F, be the
empirical cumulative distribution estimate. Inserting these estimates into the definition

of T, given by (2), yields the following estimator of T:

n
To(Fn Bo) = 3 [0 |%) ~ Ty %, Bn)) x Fix)1” (4)
t=1
Under the null hypothesis, the parametric and nonparametric conditional density
function estimators are consistent estimators of the true conditional density function.
Thus, their distance will converge to zero as the sample size increases. If the null

hypothesis is false, the distance will not converge to zero, because the nonparametric



conditional density estimate will converge to a conditional density function outside the
parametric class of Tro(yt|xt, 0) . The following result describes the asymptotic properties

of the test statistic.

Theorem 1; Let

3, = 6 P2 (BB -6, PV L0t

n

Under Assumptions 1-5 in Appendix 1, we have
(@) Under Hy, J, - N(0,1) in distribution.

(b) Under H,,Pr(J,,2B,)) — 1, for any non-stochastic sequence B, = o(nm(p+ /2y

where G, 6,, and G, are consistent estimators of o, g, , and o, respectively. These are

o’ = ZH{HK(Ul)K(UZ)K(Ul +Vv,)K(u, + v,)du;du,} 2dv1dv2 (5)
x [[{m(x y)} *dxdy

oy = [[K*(x Y)dxdyx [ [{T(x, y)} “dxdly (6)
0y = [KEX)dxx [T (Y| )m(x)m(x, y)cxdly (7)
6% = 2[[{ [ (Uy, UK (Uy + V3, Uy + vp)auydug} “dvdvy x5 [k, v (8)

i=1

61 = [[K (% y)dxdy> n‘li;(ﬁ(xi,yi)) ©)



6 = [KE)dyx 5 {[fix, )1°/ 7)) - (10)
i=1

Proof: See Appendix 2.2

3. A Bootstrap Test for Evaluating Conditional Density Functions

The test statistic in Theorem 1 has an asymptotic standard normal distribution
under the null hypothesis. Our simulation studies reveal that there are large differences
between the true and nominal sizes of the test in small samples (see section 4.1), which
indicates that the finite-sample distribution of the test statistic cannot be well
approximated by the standard normal distribution. Consequently, there is a need to
provide a better approximation of the finite-sample distribution under the null
hypothesis. In this section, we propose that the bootstrap be used to approximate the

finite-sample distribution to conduct inference in small samples.

We propose the following bootstrapping algorithm to obtain the null distribution

of the test:

1. Estimate the unknown parameter 6, using the sample {Z; = (x;, yi)}i": 1+ With the

estimate denoted as 6.

2. For each x; in the sample {Z; = (xi,yi)}in:l, generate a value of y;lJ by random
sampling from the conditional density function T (y| X, éo) . Use this simulated sample,

{Z,0= (x, y;0}/'_ ,, as the bootstrap sample.

3. Use the sample {ZE{}P: , to compute J, , given in Theorem 1, and denote it by J 1,

2. Note that the integrals of squared kernels are generally known for some popular kernels, such as the
Gaussian kernel, and do not need to be computed. See, for example, Pagan and Ullah (1999).



3.0 60 P92t 08,0 -6, h P9 4 5,00 h,

where 60 F 5 6,0 6,0 are estimators of o, F, g, 0,, respectively, from the bootstrap

sample. Also, énD is the estimator of 8, from the bootstrap sample.

4. Repeat Steps 2 and 3 m times, yielding bootstrap replications Jnﬂl, e Jnﬂn. The
empirical distribution of Jnﬂl, e Jnﬂn is used to approximate the finite sample

distribution of J, under the null.

Having computed the test statistic, J,,, and obtained the empirical sampling

n1

distribution of the bootstrap test statistic, J,[J, under the null, the a-level bootstrap critical
. [fl_“) xm . -

values are given by J, . Atest of size a can therefore be conducted by obtaining

the null distribution for J,, and determining whether J, >JnEfl_a) ™ 1f so, the null is

rejected; otherwise, we fail to reject the null.

The following result shows that the distribution of the bootstrap test also tends to

the standard normal in probability.

Theorem 2: Under Assumptions 1-6 in Appendix 1, conditional on
Xn = { (% ¥)} - 1+ 3.0~ N(O, 1) in distribution.
Proof of Theorem 2: See Appendix 2.
4. Monte Carlo Study
In this section, we report some simulation results to examine the finite-sample size

and power of the asymptotic and bootstrap tests.



41 Size

To study the size performance, we simulate data from the Ornstein-Uhlenbeck
process, which Vasicek (1977) used to model the dynamic movement of interest rates. The
Ornstein-Uhlenbeck process is dx, = (B —x,)dt+adW, , where W, is a Wiener process, 3

and o are constants, with the normal transition (conditional) density function given by

expQ]

- - - - 0 ()/—I3—(X—[3)e_(r))ZD
0) = = = = , 11
TolyI B) = P0G Y= ons’(t) O 25°(1) E -

2
where sz(r) = 0—[1—e_2(T)], T = s—t,and 6 = (B, 0). The marginal density function

. 0 1rx—Br20 2 _ _ .

is T(X) = iexpg—lg(—sg , Where v = 9_ . The discrete sampling observations
J2rv 025N E O 2

along the continuous sampling interval are observed over equispaced intervals with

sampling interval T = 1. The starting values of the data-generating process are directly

drawn from its marginal density. We choose the parameter space

O O
O = %([3, o), %s B <10, %s o< 10% The parameters (6, = (B, 0,)) aresetto B, = 1 and

o, =1L

Since the transition (conditional) density function has an explicit functional form,
the log-likelihood function conditioned on the first observation of the Ornstein-

Uhlenbeck process can be calculated as

1,(8) = 3 IN[To(X 41 O)]
t=1

= gE—gn" )~ 3 25'(1)

" {(xm—s—(xt—mel)z}
1

Under H, the conditional maximum-likelihood estimator of 6 = (3, 02) is given by
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By = —L—n=t (12)

and

2 2 {(Xt—(ﬁn—xt—l))z] (13)

l1-e /' n

Thus, (Y| X, én) can be obtained.

It is easy to check that lim,  _o7(x) = O, lim = 0. From Hansen

X -

0]
M‘

and Scheinkman (1995), the integral operator is a strong contraction. Therefore, there
exists A such that [, = O()\') , where O<A<1. It follows that Assumption 3 in
Appendix 1 is satisfied. 1,(8) is the quasi-log-likelihood function and O = (Bn, 6§) the
guasi-maximume-likelihood  estimator. In  Assumption 5 (Appendix 1),
Ay(8) = {Ex(az(logno(xt|xi_1, 6))/68602)}_1, where E, expresses the conditional
expectation of x, given x,_, and ¢(Z;,0) = (alogrro(xi|xi_1, 0)/00) .

. 0 x*0 .
We use the standard normal density, K(x) = L expg—x— ] as the kernel function.

JemoO2Q

The smoothing parameter h is chosen accordingto h = cn /223

, Where c is a positive
constant. To see how the bootstrap approximation performs, we choose values of ¢ in the

interval [0.4, 1.4]; similar results are found for values outside this range.

Throughout the experiment, we discard the first 500 observations to eliminate any
start-up effects. The number of Monte Carlo replications is fixed at 500, and the number
of bootstrap replications is 100 for sample size n =50, 100. See Hall (1986) for a theoretical
explanation of the ability of the bootstrap to produce satisfactory results with few

replications of the bootstrap sampling process. The bootstrap critical values are given by
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JnEPg for the nominal level a =1 per cent, JnD95 for a =5 per cent, and JnDQO for a =10 per

cent. The bootstrap test will reject the null hypothesis at 1 per cent (5 per cent, 10 per cent),

it >3 703 ° 3 9.

Table 1 reports the true sizes of the tests (J,, and J, 1) based on both the asymptotic
critical values and bootstrapped critical values. We find that the empirical sizes vary
enormously from the nominal sizes when asymptotic critical values are used. By contrast,
the use of bootstrapped critical values dramatically reduces the differences between the
empirical and nominal sizes. In addition, empirical sizes of the asymptotic test change
drastically with respect to the smoothing parameters. However, the empirical sizes of the
bootstrap test are very close to the nominal sizes at 1 per cent, 5 per cent, and 10 per cent

significant levels for all values of the smoothing parameters considered.

4.2 Power

To study the power performances, we simulate data from a square-root process,

which Cox, Ingersoll, and Ross (1985) used to model the dynamic movement of spot

172

interest rates. The square-root process, dx, = (B—x,)dt+ox;” "dW,, where B ando

are constants, has the transition density function given by

9 1
To(y|% 8) = P(X= y|Xe= %) = c& "B q2un)’]

2
02(1—e_(t_s))

v==_Xx, g-= A;’ -1, and Iq(.) is the modified Bessel function of the first
o

kind of order q. The marginal density function is a gamma density function; i.e.,

with X, taking non-negative values, where 6 = (B,0), C =

e—(t—s)’

(@]

u=cCcy

\Y)
n(y) = %n"_le—"w, where w = Zi2 andv = 2% , with parameters being set to p = 1,
o

o
0=0.5.
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In our study of the test’s power, the null hypothesis continues to stipulate that the
data are generated by the Ornstein-Uhlenbeck process, while the data are in fact
generated by the square-root process. Good power therefore requires a high percentage
of rejections of the null. Table 2 indicates that for any given choice of smoothing
parameter, the power of the test J,, increases rapidly with respect to the sample size and
is very close to 100 per cent rejection of the null at n = 400, in line with the consistency

property of the test. Similar results can be found for the bootstrap test, J,*.

5. Application: Inflation Forecasting

To illustrate the use of the bootstrap test developed in this paper, we apply it to two
Canadian inflation-forecasting models: a simple AR(1) and a vector autoregression (VAR)
proposed by McPhail (2000). We empirically test the conditional density functions
implied by these two models, given the specifications of their disturbance terms. The

AR(1) model is
pt = G+Bpt—l+€ta (14)

where P; = 100x log(P,/P;_4,) is the year-over-year growth rate of the core consumer
price index (i.e., the CPI excluding food, energy, and the effect of changes in indirect taxes)
and g, is assumed to be a normally distributed disturbance term with mean zero and
variance 2. This measure of CPI is closely monitored by the Bank for evidence of
underlying price pressures in the economy. The conditional density function of P;, given
Pi_1, is therefore Ty(P;|P;_1, 6) = @[(Pi—a—BP;_1)/0]/0, where 6 = (a, B, o%) and @

is the standard normal density function.
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The VAR is based on a view that broad money contains useful information on the
future path of inflation, especially in the long run. Let P, M, Y, and S express, respectively,
the core CPI, broad money (the sum of M2, , Canada Savings Bonds, and non-money
market mutual funds sponsored by deposit-taking institutions), GDP, and the log of the
spread between rates on medium-term (3- to 5-year) government bonds and short-term

(90-day) commercial paper. The general form of the VAR is

DF:)tD 1 Par®i2 Oiz Oy Dpt 1D i
t% _ %32E+ g’zr U120 U3 az% E\At 1D+ %tZD (15)
. %3% 8131’ O32 U3z 0‘345 DYt 10] %BD

where k = 100x log(ki/k;_,), fork={P, M, Y}. Assume that €, is normally distributed

with mean zero and variance o°. The conditional density function of Py, given

Piot, Mi—1, Yeo1, Sy Tfo(pt|pt—1, Mi_1, Yi_1,S_1,0) . is

Q(Pr—0y,Pr_1—0a ;M1 —05Yy_1—0,,S_4)/0l/0,
where 8 = (a4, 045, 045 044 0). For the AR(1) model we use monthly observations of
core CPI from January 1984 to March 2001. For the VAR model we are constrained by the

frequency of national accounts data, and therefore use quarterly observations from

1968Q1 to 2001Q1.

The number of bootstrap replications, m, is 100. Bandwidths are chosen via leave-
one-out cross-validation. Table 3 gives the results of the tests. At the 5 per cent significance
level, we reject the null of equality of the conditional densities for both models, indicating

that we should not use the conditional densities implied by the parametric models to
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make probability statements about future inflation. Figures 1 and 2 plot graphs of both
the nonparametric and model-implied conditional density functions. Figure 1 shows that
the nonparametric density is somewhat skewed relative to the parametric density, and
that a higher probability should be given to lower levels of inflation. In Figure 2, the
nonparametric conditional density has thinner tails than the parametric density, with

most probability located around an inflation rate of 2 per cent.

Based on the nonparametric  estimates  of H(Pt| Pi_1) and
T(Py|Pi_1, M¢_1, Yi—1, S _1) using (3), and conditional density functions implied by the
AR(1) and VAR models, Table 4 computes the probability that next period’s (April 2001
for the AR(1) and 2001Q2 for the VAR) inflation rate will lie in various ranges. For the
AR(1) model, the parametric density produces a probability of 0.41 that next period’s
inflation will be between 1 and 2 per cent, while this probability rises to 0.60 for inflation
being between 2 and 3 per cent. In contrast, the nonparametric density places a larger
weight on lower inflation, namely 0.71 between 1 and 2 per cent, and 0.29 between 2 and
3 per cent. Both densities agree, however, that it is virtually certain that inflation will be
in the 1 to 3 per cent official target range set by the Bank. For the VAR model, the densities
are less agreeable. In particular, the parametric density implies that there is about a 20 per
cent chance of witnessing an inflation rate above 3 per cent, while the nonparametric
density views this possibility as being virtually non-existent. In the conduct of monetary
policy, if the erroneous parametric density were used to set interest rates, policy-makers
would be presented with a scenario in which the risk of higher inflation would be
overstated. This could lead to interest rates being set at a higher level than would be

necessary had the correct conditional density been used.
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6. Conclusion

This paper has proposed asymptotic and bootstrap tests for testing parametric
conditional density functions. These tests are based on comparing kernel density
estimates of the true unknown conditional density function with the conditional density
function implied by the model. The test statistics are more convenient to compute than
others in the literature. Under appropriate conditions, the proposed tests are shown to
have standard normal distributions under the null, and to be consistent against all
possible fixed alternatives. The Monte Carlo simulation study illustrates that the
bootstrap test provides a reliable approximation to the null distribution of T, for sample
sizes as small as 50, with the bootstrap test being robust to the choice of the smoothing

parameter.

In an application to inflation forecasting, we show that the probabilities of inflation
being in different ranges can vary considerably when they are extracted from either the
parametric or nonparametric conditional densities, and such differences in probabilities
can influence policy decisions. In particular, the VAR model considered in this paper
appears to overstate the risk of high inflation rates relative to the nonparametric
conditional density. Such miscalculations of risk can lead to less-informed policy

decisions.

In future work, as another empirical exercise, we could apply the bootstrap test
proposed in this paper to test the specification of continuous-time models of the spot
interest rate. Furthermore, these tests could be extended to test for conditional symmetry

(Bai and Ng 2001) and two-sample goodness-of-fit tests for conditional density functions.
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Table 1: Percentage Rejections of the True Null (Size) with Asymptotic and Bootstrap
Critical Values

1 per cent significance levei£50)

c 0.4 0.6 0.8 1 1.2 1.4
Jn 100 74.2 18.6 5.2 2.0 0.2
In* 1.4 1.2 0.8 1.2 1.0 0.6

5 per cent significance level=50)
Ji 100 92.8 53.0 18.8 9.0 2.8

NP 5.4 4.6 4.2 4.0 4.8 4.4

10 per cent significance levelH50)

JIn 100 98.8 71.0 33.8 19.8 8.0

Jn* 10.0 10.0 8.0 8.2 9.2 9.8

1 per cent significance levai£100)

Jn 100 76.0 17.0 8.2 3.2 1.8

Jn* 1.2 1.0 1.2 0.6 0.8 1.0

5 per cent significance levai£100)

Jn 100 91.8 60.2 18.2 8.4 7.6

Jn* 5.8 4.8 5.2 4.2 4.6 4.6

10 per cent significance leveliH100)

Jn 100 99.4 79.0 32.8 19.4 8.4

Jn* 11.0 9.4 8.2 10.2 9.8 8.6

Notes: In each case, the number of bootstrap replicatioms=is100, with 500 Monte Carlo replications performed.
Data are generated from the Ornstein-Uhlenbeck prodgss.a test performed with asymptotic critical values,

-1/2.25

andJy* with bootstrapped critical values.is used to select the smoothing parameter cn of the condi-

tional nonparametric kernel density functions the size of the simulated sample.



19

Table 2: Percentage Rejections of the False Null (Power)

1 per cent significance level

c 0.4 0.6 0.8 1 1.2 1.4
n=50 94.8 39.8 17.2 10.6 4.2 4.0
n=100 100 72.6 44.2 28.2 21.2 15.2
n=200 100 98.6 81.8 62.2 50.4 44.6
n=400 100 99.8 98.2 924 93.0 88.8
5 per cent significance level
n=50 99.0 67.2 41.8 28.2 16.6 134
n=100 100 92.2 71.2 55.0 44.8 334
n=200 100 99.4 96.2 84.4 76.0 72.6
n=400 100 100 99.8 97.8 98.6 99.4
10 per cent significance level
n=50 100 83.6 59.4 42.8 31.2 22.8
n=100 100 96.0 82.8 71.6 58.8 50.8
n=200 100 100 98.4 91.6 86.2 87.0
n=400 100 100 100 98.8 99.6 99.4

Notes: Data generated by the square-root process, with the false null stipulating the Ornstein-Uhlenbeck process.

Results shown are for the asymptotic telt,c is used to select the smoothing paraméter cn

-1/2.25

of the

conditional nonparametric kernel density functiaris the size of the simulated sample. 500 Monte Carlo repli-

cations were performed.
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Table 3: Bootstrap Test Results for Inflation Forecasts

Model Bootstrap critical Estimated test Result
values (5% level) statistic

AR(1) 2.4145 2.9244 Reject H,

VAR 45.8011 64.7704 Reject Hy

Note: The null hypothesis states that the parametric conditional density equals the true conditional density approxi-
mated by the nonparametric kernel density; the alternative is that the conditional densities are not equal.

Table 4: Inflation Probabilities at Different Ranges

AR(1) VAR

Inflation range ) X - X . .
Nonparametric AR(1) implied Nonparametric VAR implied
density forecast | density forecast | density forecast | density forecast

<1% 0.005 0.000 0.007 0.050
1% to 2% 0.708 0.406 0.487 0.286
2% to 3% 0.287 0.594 0.485 0.453

> 3% 0.000 0.000 0.021 0.211

1to 3% 0.995 1.000 0.971 0.739

Notes: Inflation is defined as the annual core CPI inflation rate. For the AR(1) model, the probabilities are for infla-
tion being in the stipulated ranges in April 2001. For the VAR model, the probabilities are computed for the sec-
ond quarter of 2001.
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Appendix 1: Assumptions

The following assumptions are used to derive the limiting distribution of J, and
J U

n

Assumption 1. The kernel function k(l)Jis a bounded, symmetric about O, of order r, twice
continuously differentiable function on R, and satisfies fo k(Xdx = 1.

r>max (p+ 9/4,(q-p)/2}.

/a

Assumption 2. The smoothing parameters are chosen as h=h = cnt , Where c is a

positive constant. Further, p+q<a <(p+Qq)/2+ 2r.

Assumption 3. The sequence of observations, {Zt}[‘: 1 = {x yt}tn

_ , » Isabsolutely regular

with coefficient B, = O()\') for some fixed O<A <1.

Assumption 4. The parameter space © [J R% is compact. The joint density function 1i(x, y)
and the marginal density function 1(x) of x, are r + 1 times continuously differentiable
and uniformly bounded. The conditional density function 1,(x|y, 8) and its derivatives
with respect to x,y, and 0 are uniformly bounded and uniformly continuous on

RPxRIx0O .

Assumption 5. Let 8, be an estimator of B8,. There exists 60 © such that 0, - 80

consistently, and én has a linear expansion of the form

n
A 1
JnBr-00) = = 5 A(8D)9(Z;, 80) + 0p(1), (16)
&y
where  Ay(6) is a random matrix, ¢(z 0) is a measurable function, and

E[¢(Z, BED|xi] = 0 foranyt=1. 6 = 6, if the model is correctly specified.
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Assumption 6. Let PU denote the probability measure corresponding to the distribution of

z;0 conditional on {Z;}'_ ,, and let 8, be the bootstrap estimator of 8,. Then

8.0- 8 = %nt;Ao(éom(zi, Bo) + 0,(1) |

where 8y is the estimator of 6, under the null hypothesis of correct specification.

From Assumption 1, there is no need to use a kernel of order greater than 2 unless
p+q>7 and g<3p, or g>3pandg=p+4. Under Assumption 2, we have
nhP*@72+2° g nhP*9 ., w. Assumption 3 is used to restrict the amount of
dependence allowed in the observations such that asymptotic theory can be applied. It
requires that the underlying process {Z;} be absolutely regular with a geometric decay
rate. This is not a very restrictive assumption, because many well-known processes satisfy
Assumption 3. For example, a continuous-time parametric diffusion process,
dx, = p(x, 0)dt+a(x, 0)dW,, which is widely used in theoretical financial models to
represent the stochastic dynamics of asset prices, interest rates, macroeconomic factors,
etc., satisfies this assumption provided the marginal density function 1i(x,), the drift

function p(x, 0), and volatility o(x;, 8) satisfy lim, o(x, 0)m(x) = 0 and

~0orx- o
iMy o or x - wl0(X 8)7(2u(X, 8) —0(X, 8)d0(X, 8)/0X)| <eo. Masry and Tjostheim
(1995) also established Assumption 3 for non-linear ARCH models. Assumptions 4 and 5
are required to ensure that under H, the effect of estimating 1,(y| x, 6,) by T,(y| x,én)

on the asymptotic distribution of J, is asymptotically negligible as the sample size
increases to infinity. These two assumptions are also standard for ensuring the

consistency and asymptotic normality of the quasi-maximum-likelihood estimator (see

White 1982). In Assumption 5, in the case of the maximume-likelihood estimator, the
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function ¢(z 8) is the conditional score function (9/96)logm,(y|x 6) and the matrix
Ay(0) = [H(Gz/dze)(logno(y| X, 8) x T,(Y| %, 9))dxdy]_1 is the inverse of the asymptotic
information matrix. Finally, Assumption 6 ensures that the bootstrap estimator énD has

the same asymptotic properties as On.
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Appendix 2: Proofs

Proof of Theorem 1: Let

To(F.80) = [[L(T(Y|X) —Tio(y| x.86))Ft(x)] “dF

(17)

= n_zﬂ{i sh(x, y)TdF'

j=1
where

su(% ¥) = Kp(x=%)Kp(y = ;) = Tip(¥] % B)Kpp(x = X;)
Kn(x=%)) = hK[(x=x)/hg], Kn(y=y)) = A °K[(y=y;)/hy],
denoting s)(x,y) = sh(x, y) —E(s(x ¥)) .
We will prove (a) of Theorem 1 by showing that
) & nh®P* YT (F o) -6,n P Y+ 5,0 h % - N(0,1) in distribution,

i) &6 P YT (F,8,)-6,n h P Y4 6,0t S N(0,1)  in distribution, and

Gii) & nh®* YT (F 8, -6,n PP+ 6,0 thT - N(0,1)  in distribution.
Proof of (i): 6 'nh®* V[T _(F,0,) 6,0 "0 PP+ 6,0 h - N(0,1)

We decompose T, (F, 6,) into the following four terms,

Y [f(Sh06 Ys(x V)

k=1

n 22 s (x, y)S<(x, y)dF +n” n (s (% ) dF
e e IO 2 J[istey

i=1

T,(F,6p)

+2(n =) Y [[sh(x VE(S\(x, y)oF
j=1
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+ (L= [(E(Six ) oF
= D, 4(6) + D, »(8) + D, 5(65) + D, 4(8,) - (18)

Noting that, under H,, by changing variables we have

E(si(x ¥)) = E[Kp(x=x)Kp(y = yp)] = T(Y| N E[Kp(x = %,)]
= HK(u)K(v)T[(x—hu, y— h\)dudv—n(y|x)IK(s)n(x—hs)ds

= O(hr) uniformly in (x, y) by Assumption 1 and Assumption 4.
First, we show nh(p+Q)/Z[Dnz(eo)—oln_lh_(p+Q)+02n_1h_q] = 0p,(1) . For this purpose,
we evaluate E(D,,(6,)) and Var(D,,(8,)) separately. By using Assumption 1 and

Assumption 4, we have
E(nDya(8)) = [[ELKG(x=x)Kp(y ~yy)]dF
=2 [yl ) ELKR(x=X)Kp(y = Y1) ] oF
+ [[EITE(YIKG(x = x,)]dF
= h(P* “)UKZ(U, v)dudvf [i(x, y)dF (1 + o(h*"))
—2n™ IKz(x)deJ’Tr(y| X)X, y)dF (1 +O(h'))
+h IKZ(x)deIth(y| )T(X)dF (1 + O(h*")) (19)
Var(Dyy(8)) = var[n_z z [J(shex y))zdF}
=1

=y varl[[(shx ) dF] +

=1
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@) 3 B[S0 9 0Fy— [E(S 00 ) o]
l1<j<ks<n

(20)
k 2 K 2 O]
X , dF - [(E , dF
L[ sn0x 9)"0F = [JE(5,(x y)) "dF] O
The first term on the right-hand side of equation (20) equals
nvar([[(s(x ) dF])
2 (21)

U
U
H

-3 1 2 2 1 2
, dF] —[E : dF
RS 00 ) 0F) = B (506 ) oF)

O( n—3h—2(p + Q)),

and for any 0 <9 <1/ 3 the absolute value of the second term on the right-hand side of

equation (20) equals

-4 N . 5 . X
o 1stksnE'EJﬂ(%<x, y) —EL(sh(x ) T1dF (x, y)
* [[L(sh(% 90)° —EL(Si(% ) NeF (% 9}
g n [36/(1+6)x0(h_2(p+q)n_3)
kZl k (22)

= o(h 2P 93,

by Lemma 1 (the inequality of the function of a stationary, absolutely regular process) in

Yoshihara (1976). Therefore, by (21), (22), and Assumption 2,

Var(D,,(8,)) = O(nh 2P+ %)
o(1).

It follows immediately by Chebyshev’s inequality that

nh®* 92[D ,(8,) —E(D,n(8p))]
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= nhP*Y2[D ,(8) o P* Vs g,nh 7Y = 0,(2). (23)

Now, we consider D, 3(6,) andD_,(8y). First, because E(D,3(6,)) = O, it is
sufficient to show that E(nh('D+‘]')/zDrB(eo))2 = 0(1) by Chebyshev’s inequality. For this

purpose, we have

E(Dps(80)) =
- 2.2 i k
4(n-n’) 2 JTITEG O s PE(S(% VE(S (% 9)dF1(x Y)dF(X, )

= 4(n—1_n—2)2j; [TJTELSIx V(% ITE(S(x YE(S (% 9)AF (x, Y)dF(%, )

= o(n*h¥y+n? Be i "Po(h™), (24)

1<j<ks<n

where, for any 0<d<1/3, the last equality above is obtained by using Lemma 1 in
Yoshihara (1976) and the facts that E(qﬁ(x, y)) = O(hr), E(s,11(>‘(, y)) = O(hr) uniformly
in (x, y) and(%, y), and HHE[#(X, y)(5L(% 9)]1dF (%, y)dF(%, y) = O(1). Hence, from
(24) we have E(D,4(6,))°= O(n'h*") . Now, by using Chebyshev’s inequality, we have
nh®*92D3(8,) = 0,(1),and by H[E(gﬁ(x, W dF(x, y) = O(h*") and Assumption 2,

we have nh®* 92D ,(8,) = 0 (1).

It remains to show that D;(6,) gives the asymptotic normal distribution. For this
purpose, we use a central limit theorem for degenerate U-statistics from Fan and Li (1999),

which is reproduced in Appendix 3.

Let  Z = (x,¥).Z; = (x;,y;) and H.(Z,Z)) = 2Us'n(x, )5 (%, Y)dF (X, y).
Hence D, (8,) = n? zk H.(Z;, Z;) = n_ZUn, and E[H.(Z;, Z))|Z;= z] = 0 under
1<j<ksn

Hy.
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We now verify that assumptions (Al), (A2), and (A3) in Fan and Li (1999) are

satisfied under Assumptions 1-5. Let T = [n1/4] and m = [C logn], where C is a

positive constant:

0n= E[Hn(Z1, 2,)°] = 2f[[[EIS(% )S:(% NS(X S (% IAF 1 (%, y)dF(%, 5)

= 2[[{[[[[30(% N82% Y8y NS(% HF (Xg, Y1, X ¥) drydyyddly,}
x dF (x, y)dF (X V)
= oﬁl + o(oﬁl) , (25)

where
Oﬁl = ZII{IIIIKh(X_Xl)Kh(y_yl)Kh(X_Xz)Kh(y_yz)Kh()_(_Xl)Kh(y_yl)
Kh(X=%)Kp(¥ = Y2)F(Xq, Y1, Xp, ¥o) X dy; dxody, AR (X Y)AF(X Y).

By changing variables, we have

02, = 2h‘('°+q)ﬂ{ [[K (U U)K (uy + w, u, + W) du, du, } “dwdw x Un“(x, y)dxdy. (26)

By (25) and (26), we have o> = hP* 95?4 o(hP* ¥y similarly, one can show that

E[H%(Z,,Z,,)] = O(h>P* Dy Hence p,, = O(hP* Py By definition,
1“1+t n2

Hna DILU{IIKh(X— X)) Kp (Y = Yp) K (X = %) Ky (y = ¥o) dF (X, y)}4F(X11 Y1r X0, Y2)

= o(h™*P* 9y \where we use the notation a, Ob, to denote that a, and b, have the

same order of magnitude:
~ 2
V22 = E[[[[IIIIH0< Y808 ¥)5:0¢, ¥ )80 y )08 yI08, ¥R (', )

x dF (3, y2)dF (%, y°)
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= o(h?®* 9. Now we consider ¥,,, = max. [{E[H(z Z)H(z, Z)1}°dF (2) .

Let 2 = (7,2) , Zs = (Zs, Z2), Z, = (Z{, Z) , then

~ 1 2
Ynia DH’{J’J’H’K(ul, V) K(Uy, Vo)Ky(Ug + (21 =Z5)/h, vy +(2,—Z)/h) x
K (Uy + (2= Z1)/ D, Vy + (2, — Z0)/h)F (2, + huy, Z, + hvy)F (2, + huy, 2, + hvy)

du duydv,dv,} °F(z,, 2,)dzdz,

= O(1) O

Similarly, one can show that y,; = O(hP*9¢*1=2) ‘for (i, j) = (1, 1), (2 2), (1, 3).

Summarizing the above, we have shown that Grz] = O(h_(ID+ q)) ,

Hoe = O P D),y = O(PT9), G5, = O(HPT D)

. > ~ rilo
Y14 O(h (p+ q))’ Yoi1 = O(l), ynij — O(h (p+a)(i+]j )), where
(,j) = (1, 2,(2 2),(1,3), thus, under Assumptions 1-5, and

174

m = [Clogn|,F = [n~ 7], Al (i)-(vii) in Fan and Li (1999) are all satisfied.

Next, let x = (X, X,), Y = (Yq,Y,) , by definition,

1~ Y1 (X5 —Y>)
h

G(x y) = oaq—(pw)HHK(u, VKF P Ut +v+w2%judvdmidw25,
n

n

using a similar argument as above, it is straightforward that

0(23 - E[GZ(ZS, ZS)] - o(h—Z(p+Q))’ unGl — O(l), “nGZ — O(h—(p+OI))

— o —2 1+9d
Mgt = O P PO)y 61y = O(1), Mgy = O(h 2P 9y
My = O(H 2P AA+BMN=2pway py o o3P+ AL+ (30)/4)
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Therefore, (A2) (i)-(iv) are satisfied. To see that (A3) (i)—(vi) are satisfied, note

—Crlogpn)

that B, = O()\m) = O(A = O((n_cr), where [ = logA >0. Hence, we have

mznzﬁﬁf(“ ® - 0(1) provided we choose C>4/T . Hence, (A3) (i)—(Vvi) are satisfied.

It follows from Theorem 21 in Fan and Li (1999) that
ﬁ[Un—E(Un)]/(non) - N(O, 1) in distribution. By noting that
0 _ " O
E(nhP*92E(D_,(8,))) = o%h(p“”(l/2 26/(1+9)) S Bﬁ/(“f’)g as long as 0<3<1/3,
~(p+0)/2 . k=1 (p+q)2 2 .
ando, = h o(1+0(1)), we obtain that nh Dn1(6g) = N(0,0%) in
distribution.

Proof of (ii): & 'nh®* VT (F,, 8,)-6,n PP+ 5,0 h Y - N(0,1)

Suppose the null hypothesis holds. Now we prove that the estimator 6, does not

affect the limiting distribution of T (F, én) . In fact, by Assumption 4,
To(F, B0) = [T/ ~Tho(y| %80) ()] o
= [fLx ) =iy  xBn) R0 “dF
= [0 Y) = T(yITON) AR + [T 1% 80) = Ti(y]% B) )] o
=2 [(f(x, ) = o(¥] % Bo) (X)) (To(y] . Bn) — (] % B)) Fi(x)dF
= T,(F,8,) —2L,(8,, 61) + 0,(1/n),

where L, (8, 8y) = _[J'(ﬁ(x, y) = Tio(Y] % B) T(X)) (T (Y| X, B) — (Y| X, 85))Fe(x)dF, which

can be written as

L(8g, 6,) = =2[[ (%, y) =T(x, ) (T(X) =10 (Mo (Y| %, On) — (Y| % B))dF
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=2 [Tio(¥ 1% 8) (F(x) = T1(x)) (T (Y| % Bn) ~Tho(] x, B))oF
+2[[([(x, y) =% ) (T(X] . Bn) — (Y| % 80))TH(x)dF

=2[[(FI) = 7(x)) (T (y] X, 8n) = To((y] % B)) Ty X, Bo) () dF
= L1(8g 0n) + L ya(Bg, Bn) + La(8g, Bn) + La (8, Bn). (27)

By following the proof of Theorem 3.2 of Fan (1994) and using the central limit theorem
for degenerate U-statistics in Fan and Li (1999), one can prove that
U(ﬁ(x)—n(x))zdF = 0,(1/(nh?)  and [[ (e ) =Ti(x y)’dF = O (L/(nhP*%).
Therefore, the first term and second term on the right-hand side of equation (27) satisfy

nh(p+ Q)/ZLnl(eO’ én) = op(l) .
nhP* Y2 (86 8n) = 0,(1). Ln3(8p 8n) and Ly,(8, 8n) can be decomposed as

L2108 0n) + L 1ao(B0, 8n) and L, 41(8p, 8n) + 1142(8g, B1) , respectively, where

Ly31(8g, Bn) = 2[[(f(x y) = ET(x, ) (T(y| % Bn) — (Y| X, 65))Ti(x)dF

Lns2(80: 8n) = 2[[(Eft(x, y) = Ti(% 1)) (M(y]% Bn) = Tg(y1 x. Bp)) ()
Lnaz(Br 8n) = —2[[(Ft0) ~ER()(T(y] % B) ~Tho(y| % 8p)) () dF
Lna2(B: 80) = 2{[(ER() ~T100)) (Tg(y] X Br) ~Tho (| % 8p)) X GF

First, we consider the third term, L 5(6,, én). By using Assumption 5, we have

Loga(8 B0) = (Ph D)™ S [1(K 4= %, v, =¥) ~ELK( =%, %= Y)])
ij=1
x (9Tto(y] % 8)//08) 4 _ g Ao(Bo)D(Z;, Bp)dxdly+ (M),



33

where

Mo = (PN S 1RO =% %= Y) —ELKO§ =X, 3= Y)D)
ij=1
x (0TH(Y|%, 8)708) |5 _ g Ao(B0)9(Z;, Bp)dxdy.
We show that nh(p+qy2(l'ln) = op(l) .

My = (°h P75 (KOG =% Y= Y) —EIKO§ =%,y =¥)])

(E|

x (0Ti(y| X 8)/08)|4 - eoAO(GO)q)(Zj, 8,)dxdy

+ (n2h(Pray™ S [0 =% ¥ =) ~E[K(% =%, % =Y)])
i=1

x (OM(y| 8)/08)|¢ - o Ag(B0)d(Z;, Bp)dlxdly

= I_Inl-l_ I_|n2'

Because I, is adegenerate U-statistic, it is straightforward to show that I, =

-1+¢e/2

Op(n ) by Proposition 2 in Denker and Keller (1983), where € is any small positive

number. We can take it that € is small enough such that nhP* q)/ZI'Im op(l) . Using a

similar argument as in Lemma 2 in Hall (1984), we have nh(P* q)/ZI'InZ op(l).

Hence, nh®™ 9L (8, 8,) = 0,(1), i=1, 2. Similarly, nh®" V2L (8, 8,) = 0 (1),

i=1, 2. This finishes the proof of (ii).
Proof of (iii): 6 nhP* V[T (B ,8,) -6, h P D4 ,nh™ - N(O,1)

We can express T.(F., 8,) = T,(F,8,) + T (8y 6n), where,
rn(e()) én) = Tn(l’i! én) _Tn(Fl 90)

7Y [0 Ysh(x Y)d(Fa=F)

ij=1

S {50 YiSh 0% Y~ [(S(x V)Sh(x, y))dF )

k=1
M1(Bo, On) + ICH On) + M3(Bo, On) + Mha(Bo, On).



34

where

F1(80,80) = 0 5 ({5106 Y)Sh(% Y} = EL8,0 Yd$h0% )| (6, X)1})

k#i, i
Ma(80, 8n) = 2077 S {506, ¥)sh(x;, ¥))}
e
Ma(8g, Bn) = 0™ > (Srj1(xj’yj))2
i=1

M na(Bg, Bn) = —n_SZJ’J'Sin(X, Y)S:-\(X, y)dF.
iy

By E[(s(x, )] = O(W"* @) andl ,(8, 8,)20), we have  T,4(8y 8y =
0 (N P D) T (8,8n) = - 'TL(F, 8p) = o, (n hP*¥2) " By straightforward
computation, one can show that both [ 1(8,, ) andr (8, 8y) are o (n~h P 9"?),

Hence,
& P YT (B 8,)-6,n P an Y

~—1 /2 ~ -1 A =1, —
= 6P VAT (F,80) 6,0 PV 4 6,0 Y + 0,(2)

- N(0O, 1), in distribution.

Since the proof of (b) is almost the same as that of (a), we provide only a sketch of it. It is
easy to prove that Tn(lin, én) - IJ’[(n(y| X) = T(Y| X, 90))(T[(X))]2d|: in probability.

Under H,, J’J’[(Tt(y| X) =T (Y| %, 90))T[(x)]2dF >0 . Therefore, we have that
P[nRP 92T (£ 8,)>B] - 1 in probability.

Note that under Assumptions 3 and 4 the distribution of the (x;, y;) is absolutely

continuous. For any (i, j) there exists a positive constant C such that

UG Y1 = (M0, Y1 S T sup i Y) =6 Y| = 0,(1),

by Assumptions 1-4 and inequality (3.9) in Bierens (1983). Hence,
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23 RO = 2 3 I, y1°+ 0p(D) = [[Tmx )T dxely + 0,(1),
i=1 i=1

where the last equality is obtained by the Law of Large Numbers. Therefore,

6° = 0%+ op(l). The same argument will also yield 6; = o, + op(l), i =12
Proof of Theorem 2:

Before we proceed, it is important to note that Step 2 ensures that, in the bootstrap
world, H, always holds with 8 = Bo. Since the detailed proof is similar to the proof of

Theorem 1, we give only a sketch of the proof here. It is easy to see that

TnEKFa éO) = Dn]_l:KéO) + Dnzqé()) + Dn3|:Ké0) + Dn4|:Ké0) .

Let PU denote the probability measure relative to the distribution of the bootstrap
sample conditional on the original sample, and 8! is the maximum-likelihood estimator
of By. Then Gl 0o = Nt % Ao(éo) x¢(Z,H éo) +0,(1). Applying the same argument
as in the proc;f: ' of Theorem 1, it can be shown

that [D,,,((8) - 6,thh "9 _g,thh79) = o ((nh'P* V%)™

~ -1 ~ -1
Dya(80) = 0,((Nh®* V%)™, and D4(80) = 0,((nh®*P"%) ™). Now, by a similar
proof to that of nh®*??D_(8,) —~ N[0,0°] , we have under condition on X,

nhtP* 92D 0@,) — N[0, 6”] . Also, one can show that L, (8o, 8,0, L, (8o, 6,1,

Ln3(é()’ énl:b! Ln4(é0! énEb’ rn]_l:(éOl én[bi rnZEKQO! énl:b’ rn3|:K(é0! én)[b, andrn4q601 énlib

]
hP* 92" Taken together, conditional on X, the distribution of J O

are o IOD((n
converges to the standard normal in probability. Hence, the bootstrap critical value will
approach the asymptotic critical value of J,;, and so the bootstrap test J,Uis as consistent

asthetest J,.
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Appendix 3: Central Limit Theorem For Degenerate U-Statistics®

Let {Z,} be a strictly stationary, absolutely regular stochastic process with

coefficient B,. Let U, = z z H.(Z.,Z), where H, depends on n and satisfies
1<s<t<n

J’Hn(x, y)dF(x) = 0 forally, and F (Jis the marginal distribution function of { Z,} . Let
o) denote the joint distribution function of {Z, , ..., Z } 1=234dQ (7,.7)
denote either dF; ; (7,7 )ordF(z)dF(z); and dQ_; i(z.7,7) be either

(z,z,7) or dF(z)dF; ;(z,z,), where {]; ], s} Iis any possible

| v ig

permutation of  {i} i, i3} . Similarly, dQ_; |

vininiZp%,%,7,) denote either
(7

%4, %), dF (7, 7)dF 5 (7,7), or dF(z)dF; ; 1 (7,7.,7),

'1'2'3'4"'2 i 4,

where { ], ], J3, J4} Is any permutation of {i,i,,i51,}. Also, let {Zt}tn: 1 be ani.i.d.
sequence having the same marginal distribution as {Z} and define

G(x y) = E[H(Zy OH(Zu Y] 0y = [[H (21, 2,)dF(2)dF(2,) = E[H*(Z3, Z2)];

4(1+3)0

U 4(1+8 5 5
Mha ma)%maéi E[H(Z, ZJ)| e, E|H(ZZ’ Zl)| S

0O : .
Mnij = ma)%maéi ts ¢t'I|HI(ZT’ ZS)HJ(Zt” Zs’)| th s t,s (2, Zg 7, Zg),

ma)ﬁ#s SI|H (ZT’ ZS)H (Zt Zs)| th S, s(zti S Zs’) }:
(i,j) = (1,0),(11),(2 2) or(1 3);
Mpgi1 = max max, sﬂG(Zs' z,)G(z, ZS')|1+5dQS,S(zS, zy)

max: « ¢s"I|G(Zs’ Zs)G(Zs" Zs")|1+6dQs, s, s”(zs’ Ly, Zg: )

ma)%iS#s”#s”’I|G(zs’ Zs’)G(Zs”’ Zs”)|1+6dQs s,s”, s(zs Zgh Ly Ly )}

oy = max H H(Zy, Z5)], max, E[H(Z, ZI1}; Mae = E[HY(Z1, Z2)];

3.  This appendix is adapted from Fan and Li (1999).



37

Vnaa = max, . o [{ELH(z Z)H(z Z)]1}"dF (2)

E[HX(Zy, Zo)(H*(Z,, Z3))],

9n22
Vo = max maxg Kz, ZS)Hj(Zt,,ZS,)],ma>j’E[ H(z, 2)H'(Zy, 25)1dF§ (24 26)}

for (i,j) = (1, 1),(2,2) or (1, 3), and the two maximums inside the curly brackets are
taken for all l<sztsnls<s #t'snszsortzt. If t=1t, dF (z,7) means

dF(z),
0g = E[G(ZyZJli Moy = Max, s|[EG(Z, Zy));

2 2,5 =
Hpgo = max max, sEG (Zs, ZS,), EG (Z4,27)};

Mnet = max{ max, ¢E(|G(Z, Zg)|" "% E[G(Zy, Z2)|" 7))

= max max, ¢»¢|E[G(Zy Z)G(Zy, Zg1)]|,
max, ¢ »¢|E[G(Zy Z)G(Zy Zg)]|
MaX, ¢z g ¢ 50| E[G(Zy Zg)G(Zgn Zg)]|} -

Ync11

Theorem: Let 1 =r, = [nl/A],m =m, =o(r),k =k, =[n/(r+m)]. Consider the

following assumptions:
AL (i) My, 1,/ 0> = o(1), (ii)rm’y,,5/ (n°0%) = o(1), (iii) rm’y, .,/ (n°c}) = o(1)
. 2. 2 2 4, _ N 3~ 4, _
(iV)ry,»/(no,) = o(1), (v) rm .,/ (n"c,) = o(1), (viyrm'r ,,/(no,) = o(1)
(vii)rm4\~/n14/noﬁ = o(1);
A2, ()M U, g/ O = 0(1), (i) MY, 10/ 05 = 0(1), (iii) m'u>e, /05 = o(1),

(iv)moa/(no7) = o(1),

A3, (i) nMEIRY 0 6 = 1), (i) n°METIRY (1062 = (1)

(i) rm* M5t OBy /gt = o(1),

1/(1+6)B<S/(1+6)/04 - o(1)
n i)

. 3
(iv) r’'n(M,,,+ M, ,) m

1/(1+6)[35/(1+5)/04 = o(1)
n )

2 2
(V) m"n"M, 11 m
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2/(1+ 5)[325/(1+5)
m

(Vi) m°n°M, o, /65 = o(1).

Let { Z,} beastrictly stationary, absolutely regular process, and assume that assumptions

J2u, o
(Al) to (A3) hold. Then g - N(O, 1) in distribution.

n
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