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Abstract

This paper evaluates linear and non-linear forecast-combination methods. Among the non-

methods, we propose a nonparametric kernel-regression weighting approach that allows

maximum flexibility of the weighting parameters. A Monte Carlo simulation study is perform

to compare the performance of the different weighting schemes. The simulation results show

the non-linear combination methods are superior in all scenarios considered. When forecast

are correlated across models, the nonparametric weighting scheme yields the lowest mean

squared errors. When no such correlation exists, forecasts combined using artificial neural

networks are superior.

JEL classification: C53, C14, E27
Bank classification: Econometric and statistical methods

Résumé

Les auteurs de l’étude évaluent les méthodes linéaires et non linéaires de combinaison de

prévisions. Entre autres formules de pondération non linéaires, ils proposent une technique

d’estimation non paramétrique par la méthode du noyau qui offre une souplesse maximale

matière de pondération. Afin de comparer l’efficacité de différentes formules de pondératio

procèdent à une simulation de Monte-Carlo. Les résultats obtenus montrent que les métho

combinaison non linéaires sont supérieures aux autres dans le cas de tous les scénarios en

Lorsque les erreurs de prévision sont corrélées d’un modèle à l’autre, c’est la formule de

pondération non paramétrique qui produit les erreurs quadratiques moyennes les plus faib

les erreurs ne sont pas corrélées, les prévisions combinées à l’aide de réseaux neuronaux

artificiels s’avèrent les meilleures.

Classification JEL : C53, C14, E27
Classification de la Banque : Méthodes économétriques et statistiques
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1. Introduction

By definition, economic models are simplifications of reality. They help us understand econ

phenomena and are often used to predict the future paths of key variables. Since there are

competing views of the world, there are, of course, many types of models that can help expl

Some models may prove to be superior to others over a certain time frame or regime, but s

is a model reliable for all states of the economy. Random disturbances, be they economic,

political, or natural, ensure that no model can prove infallible.

To guard against uncertainty, economic forecasters often monitor multiple models that are 

around different paradigms, so that if a disturbance occurs at least one model may capture i

risk-minimizing behaviour is akin to the portfolio-diversification strategy of investors who spr

their investments across several stocks or industries to minimize the impact of any downtur

given area of economic activity.

When providing policy advice, it is often useful to consolidate forecasts from competing mo

into a single forecast by assigning weights to them. The major practical difficulty is to deter

how the weights should be chosen. Surveys of the forecast-combination literature by Clem

(1989), Granger (1989), and Diebold and Lopez (1996) reveal that many methods have be

proposed. The simplest approach is to assign constant weights to each forecast using a sim

average, so that each forecast would be assigned the same weight; see, for example, Mak

and Winkler (1983). Another simple approach is to choose the weights that minimize the su

squared forecast errors, as proposed by Granger and Ramanathan (1984).

One problem with the above approaches is that the weights remain fixed over time. This m

prove inadequate, especially in economic data, where changes in policy regimes may indu

structural changes in the pattern of forecast errors of the different models, thereby altering 

relative effectiveness of each model over time. Logically, since forecasters are constantly try

improve their models, this would suggest that the relative performances of the different mo

are also changing over time.

The possible usefulness of time-varying combination weights has long been recognized in 

forecast-combination literature, and several authors have proposed different ways to estim

them. For example, Bates and Granger (1969) suggest estimating time-varying weights by

moving subsets of the data. This approach has been used by Clemen and Winkler (1986). 

recently, Diebold and Pauly (1987) have demonstrated that weight functions can be specifi

polynomial functions of time. They argue that forecast errors can be greatly reduced throug

systematic combination of forecasts when serial correlation exists in the forecast errors.
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Although the aforementioned papers are successful in relaxing the assumption of constant-w

functions, the functional form of the weight function is still assumed to be known, apart from

finite number of unknown parameters. If the forecaster’s objective is to minimize forecast e

there is no reason to believe that a linear combination of the different forecasts will prove to

optimal. To this end, it should be productive to investigate the usefulness of non-linear weig

functions, of which the linear form is simply a special case.

In this paper, we compare the performance of several linear and non-linear methods that c

used to assign weights to forecasts produced from different models under several different

assumptions regarding the structure of forecast errors. This exercise is similar to that perfo

by Diebold and Pauly (1987), who assessed the performance of linear combining methods

the assumption that the forecast errors were independently distributed.

Among the non-linear methods, we use the artificial neural network (ANN) approach sugge

by Donaldson and Kamstra (1996), in addition to proposing a nonparametric kernel-regres

time-varying (NPTV) weighting approach. The NPTV allows the form of the weight function

be determined by the forecast errors, which should allow maximum flexibility in situations o

structural change of unknown form. The proposed nonparametric estimator for the unknow

weight function is obtained by modifying the method of Robinson (1989). Our simulation res

reveal that the non-linear methods are superior to linear methods. This superiority is more

pronounced when we introduce serial and cross-correlations into the forecasting errors of t

individual forecasting models, which are realistic features in time-series data.

This paper is organized as follows. Section 2 presents a nonparametric procedure to comb

individual forecasts. Section 3 describes a Monte Carlo simulation study performed to eval

this and other combination methods. Section 4 performs an empirical application to combin

forecasts of Canadian GDP growth to demonstrate the use of the different forecast-combin

methods. Section 5 concludes and offers suggestions for future research.

2. Combining Forecasts Using Nonparametric Weights

This section introduces a nonparametric estimator that can be used to estimate the combin

weight function. Let . . .  denote  competing forecasts of made at timet-1 such

that when  . . . ,  we have

, (1)

where  is an error term with a zero mean.

f t
1

f t
2, , f t

m
m yt

t 1,= T

yt β1 t( ) f t
1 β2 t( ) f t

2
. . . +βm t( ) f t

m ζt+ + +=

ζt
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One interesting issue is whether the weight functions are known functions of timet. If they are

specified as known functions oft and of several finitely unknown parameters, the specification

reduces to a standard one of parametric specification. For example, Diebold and Pauly (198

a deterministic non-linear (polynomial) function int. An alternative approach to the specificatio

of the weight function is to assume that it is generated by a finite-parameter stochastic mode

an AR(1) was used in Sessions and Chatterjee (1989). Again, after some manipulation, the

forecast-combining problem there is of a parametric type.

As alternatives to the above, we propose instead not to impose any unnecessary restrictions

weight function, but rather allow the forecast errors to dictate the form of the weight functio

Furthermore, to capture any dynamics in the forecast variable not captured by them individual

forecasts, we allow for serially correlated disturbances  in the combining regression (equ

1). This kind of specification for the weight function leads us to approach the estimation of 

weights in a nonparametric fashion. The implementation of one-step-ahead forecasts depe

the estimates of  for the given data

 at time . Robinson (1989) provides a

nonparametric estimation approach of , … , at , … , . However, t

nonparametric estimation procedure proposed in Robinson cannot be used to estimate

, since the observation  is not available at timeT.

Therefore, a modification is required to estimate , ... , . We

propose the following kernel-estimation procedure:

, (2)

where ,  and kernel function,K(⋅), is a real-valued

function heavily concentrated around the origin, and is a smoothing parameter and depen

.

yt

ζt

β1 T 1+( ), β2 T( 1)+ … , βm T( 1)+,

yt{ }t 1=
T

f t
1{ }t 1=

T 1+
f t

2{ }t 1=
T 1+

, … , f t
m{ }t 1=

T 1+
, , T 1+

β1 t( ) β2 t( ), βm t( ) t 1 2,= T

β1 T 1+( ), β2 T 2+( ), … , βm T 1+( ) yT 1+

β1 T 1+( ) β2 T 1+( ), βm T 1+( )

β̂ T 1+( )
β̂1 T 1+( )

:̇

β̂m T 1+( )

Σt 1=
T 1+

K T 1+( ) t, f t f t'( )
1–
Σt 1=

T
K T 1+( ) t, f tyt= =

Ki j, K
i j–

T 1+( )h
--------------------- 

 = f t f t
1

... ,f t
m,[ ]′=

h

T 1+
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As in Robinson (1989), we assume that  satisfy a Lipschitz condition

order , , where  is some positive constant. The smoothing parameter  is req

to satisfy , , and .

The consistency and asymptotic normality of  for can be verified in the

following manner,

. (3)

However, we know from equation (15.8) in Robinson (1989) that the second term on the rig

hand side in (3) is . Therefore, the leading term is the first term, which is consis

and asymptotically normally distributed, as in Robinson (1989).

3. Simulation Study

The purpose of this section is to design and perform a Monte Carlo simulation experiment 

study the performance of linear and non-linear forecast-combining methods. We consider fi

common linear methods: the combination of forecasts using a simple average (SA), ordinary

squares (OLS), non-negative restricted least squares (NRLS), equality restricted least squa

(ERLS), and weighted least squares with polynomial weights (WLSP). In addition to the

nonparametric estimator in section 2, we consider a second non-linear combination method

on ANN, proposed by Donaldson and Kamstra (1996).

3.1 Design

In this simulation study, we wish to forecast a time series, , over the next  periods in on

period steps, with  denoting the number of available in-sample observations, using inform

available at period , where , and three different values ofSare considered:S=

20, 50, 100. Such a forecast is denoted as . The mean-squared error (MSE) is

therefore

. (4)

The performance of different combined forecasts is compared for three different time series

which are generated from

β1 τ( ) β2 τ( ) ... , βm τ( ),,

δ δ0 δ 1≤< δ0 h

h 0→ T 1+( )h ∞→ T 1+( )h1 2δ+
0→

β̂ T 1+( ) β T 1+( )

β̂ T 1+( ) Σt 1=
T 1+

K T 1+( ) t, f t f t'( )
1–
Σt 1=

T 1+
K T 1+( ) t, f tyt=

Σt 1=
T 1+

K T 1+( ) t, f t f t'( )
1–

K 0( ) f tyt( )–

Op
1

T 1+( )h
--------------------- 

 

yt S

T

T s+ s 0 ... , S-1,=

ŷT s 1 T s+ + +

MSE
Σs 0=

S 1–
ŷT s 1 T s+ + + yT s+–( )

S
-------------------------------------------------------------------

2

=
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, (6)

. (7)

Equations (5), (6), and (7) represent, respectively, AR(1), MA(1), and SETAR(1, 1) process

Calibrating the models, we set , respectively. This ensures

stationarity of the AR and MA models, while the SETAR model has rapid mean-reversion a

the threshold  and slow mean-reversion below it.  is assumed to be distributed as

The threshold and starting values are assumed to be 0.0. The models selected are standard

in the forecasting of stationary processes.

To assess the performance of forecast-combination methods, we generate 1080 observatio

discard the first 880 observations to eliminate any start-up effects. The number of replication

each combined method is set to 500. We useMatlab 5 running on a Sparc Ultra 10 for this

exercise.

In this Monte Carlo experiment, we focus on the case of three individual forecasts,

, which will be presented later. The combined forecasts with constant weights

based on the following linear regression model:

, t = 1, 2, ... , T, (8)

where  observations on  are regressed on the  observations of the three forecasts. T

general form of the combining forecasts with constant weights is

. (9)

 are obtained by, respectively, a simple average where , OLS,

ERLS, and NRLS, which are all well-documented estimators. We also obtain combined fore

using WLSP as follows:

, (10)

where , i = 1, 2, 3, and the parameters  are estimated by the

weighted least squares approach. Therefore, the combined forecast with polynomial weigh

. (11)

yt ρyt 1– ηt+=

yt θηt ηt 1–+=

yt

ρ1yt 1– ηt if y t 1– τ<,+

ρ2yt 1– ηt if y t 1– τ≥,+



=

ρ θ ρ1, andρ2 to 0.9, 0.9, 0.6, 0.4, ,

τ ηt N 0 1,( )

f t
1

f t
2
, and f t

3,

yt β1 f t
1 β2 f t

2 β3 f t
3

vt+ + +=

T yt T

ŷT 1+ β̂1 f T 1+
1 β̂2 f T 1+

2 β̂3 f T 1+
3

+ +=

β̂1 β̂2 β̂3, , β̂1 β̂2 β̂3
1
3
---= = =

yt P
1

t( ) f t
1

P
2

t( ) f t
2

P
3

t( ) f t
3

vt+ + +=

P
i

t( ) p0
i

p1
i
t+= p0

i
and p1

i

ŷT 1+ P
1ˆ

T 1+( ) f T 1+
1

P
2ˆ

T 1+( ) f T 1+
2

P
3ˆ

T 1+( ) f T 1+
3

+ +=
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For the non-linear combination methods, the nonparametric combined forecast based on (1

, (12)

where  are given by (2). The ANN combined forecast is

based on the following regression expression:

, (13)

where

. (14)

To estimate the parameters  and  in equation (13), the

following sum of squared deviations between the output and the network is minimized:

. (15)

Equation (15) is estimated using back-propagation, which updates the parameter values un

achieve the pre-specified convergence level. The combined forecast based on ANN is thus

. (16)

In the estimation of the weights and ANN parameters in regression models (1), (8), (10), and

and for each combined forecast, we use the first 100 observations on and 3 individual fore

to estimate unknown parameters, and then produce the one-step-ahead combined forecas

. We next update our data set by adding the one-step-ahead combined forecast and

dropping the first observation, while keeping the sample size constant at 100. We then re-es

the parameters and produce the one-step-ahead forecast . This recursive updating a

step-ahead, out-of-sample forecasting procedure is repeated until the one-step-ahead, out

sample forecast  is produced.

Furthermore, in the estimation of the weight function in our nonparametric combined forecas

must choose the kernel function and window width, or smoothing parameter (h). The kernel

function is chosen as the standard Gaussian density function,  whic

continuously differentiable of any order. The choice of the smoothing parameter is set at

, which satisfies . Our experiments show tha

the nonparametric kernel estimator is sensitive to the choice ofh in that different values ofh

generate different standard deviations for the sampling distribution of the nonparametric

ŷt β̂1 T 1+( ) f T 1+
1 β̂2 T 1+( ) f T 1+

2 β̂3 T 1+( ) f T 1+
3

+ +=

β̂1 T 1+( ) β̂2 T 1+( ), andβ̂3 T 1+( ),

yt α0 Σ+ k 1=
3 αkG f tγk( ) νt+=

G f tγk( ) 1 γ0 k, γ1 k, f t
1 γ2 k, f t

2 γ3 k, f t
3

+ + +( )–[ ]exp+( )
1–

=

αk{ }k 0=
3 γ0 k, γ1 k, γ2 k, γ3 k,, , ,{ }k 1=

3

SSD Σ= t 1=
T

yt α0 Σ+ k 1=
3 αkG f tγk( )( )–[ ]

2

ŷT 1+ α̂0 Σk 1=
3 α̂kG f T 1+ γ̂k( )+=

y

ŷ100 1+

ŷ100 2+

ŷ100 S+

K x( ) 1

2π
---------- x

2

2
-----– 

  ,exp=

h T
0.6–

= h 0 T 1+( )h ∞, and T 1+( )h1 2δ+→,→
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estimator. Whether the above admissible smoothing parameter represents the achievable o

rate of convergence is unknown to us. However, statistically, a smallh tends to correspond to a

small bias in  and a largeh to a small variance.1 It is thus clear that further research is

required concerning the optimal choice of the smoothing parameterh. This research is beyond the

scope of this paper, and hence it is not pursued in this study.

Suppose we have three different individual forecasts, , which are generated a

(17)

where each forecast,  is equal to the true realized value  plus a one-st

ahead forecast error, which consists of a systematic bias equal to one, and the non-system

error . We use (5), (6), and (7) to generate theyt. The results, however, are not highly sensitiv

to this choice, and thus we present only the results using the AR(1) process (5). To examin

effects of forecast errors on the performance of alternative methods used to combine forecas

consider the five cases described below.

Case 1: It is assumed that the one-step-ahead forecast errors are free of serial correlation a

no covariance exists between them. Their respective variances are assumed to be constan

different, throughout the sample: , , and

, respectively.

1. This trade-off leads to a possible choice ofh by , where

and

.

Unfortunately, we cannot obtain the analytical expression for .

β̂ T 1+( )

argminhCV h( )

CV h( ) yt β̂1 t( )– β̂2 t( )– …– β̂m t( )–[ ]
2

t 1=

T

∑=

β̂1 t( )

:̇

β̂m t( )

Σ j 1=
T

Kt j, f j f j' 
 

1–
Σt 1=

T
Kt j, f tyt=

argminhCV h( )

f t
1

f t
2
, and f t

3,

f t
1

1 yt et
1

+ +=

f t
2

1 yt et
2

+ +=

f t
3

1 yt et
3
,+ +=

f t
i

i, 1 2, and 3,,= yt

et
i

var et
1( ) σ1 0.5= = var et

2( ) σ2 1= =

var et
3( ) σ3 2= =
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Case 2: The forecast errors are still assumed to be free of serial correlation and to have ze

covariance, and we have again throughout the sample, but we assume

the forecast errors of are heteroscedastic. In particular, fort = 1, ... , 100, and it begins

to increase linearly until it achieves a value of 15 att = 150.

Case 3: We allow for the possibility of time-varying variances and covariance among the fore

errors. We have , and the covariance is set to zero at

, but  begin to change, respectively, to 3 and 4 aftert = 100.  grows

linearly from 1 att = 101 to 5 att = 120, and it decreases linearly to 1 att = 150.

To generate varying correlated individual forecast errors, let  fori = 1, 2, 3. Then, in

vector form, the forecast errors in equation (17) can be written as

.

Thus, the covariance of  can be obtained as

(18)

where  We consider a version of  as follows:

where  fort = 1, 2, . . . 100, but fromt = 101,  and  begin to

change linearly, respectively, by reaching 8 and 1 fort = 101, . . . ,120, and decreasing linearly to

0.4 and 0.05 att = 150.

σ1 0.5 andσ2, 1= =

f t
3 σ3 2=

σ1 0.5 σ2, 1 andσ3, 2= = =

t 1 ... , 100,= σ1andσ2 σ3

ut
i

1 et
i

+=

Ut

ut
1

ut
2

ut
3

1

1

1

et
1

et
2

et
3

+= =

Ut

ΣUt
Cov

ut
1

ut
2

ut
3

Cov

et
1

et
2

et

σ1t
2 σ12t σ13t

σ12t σ2t
2 σ23t

σ13t σ32t σ3t
2

= = =

σit
2

E et
i( )

2
( ) σijt

2
, E et

i
et

j( ) i j = 1, 2, 3.,= = Σt

Σt

σ1t σ12t σ13t

σ12t σ2t 0

σ13t 0 σ3t

=

σ12t 0 andσ13t, 0= = σ12t σ13t
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To generate , we transform the three-dimensional standard normal random var

by

. (19)

By solving the equation we can obtain the solutions of

as follows:

, and (20)

. (21)

Therefore, we have , where .

Case 4: We allow for serial correlation in the forecast errors, while the variances are constan

covariances are set to zero. The data-generating process (DGP) of each individual forecast

given by its transition density function:

. (22)

The original values of the DGP are drawn directly from their marginal densities, which are t

standard normal densities. The sample interval is fixed att-s = 1.

Case 5: We allow for both serial correlation and covariances. We transform the three-dimens

variable byS(equation 19) such that the forecast errors have the same covariance as in Case

with serially correlated forecast errors.

et
1

et
2

andet
3, ,

Nt

S

S1t S12t S13t

0 S22t 0

0 0 S33t

=

ΣUt
Cov StNt( )=

S11t S12t S13t S22t andS33t, , , ,

S11t σ1
2 σ12t

σ22
--------- 

  2
–

σ13t

σ33t
--------- 

  2
–=

1
2
---

S12t,
σ12t

σ22
---------=

S13t

σ13t

σ33t
--------- S22t, σ22 S33t, σ33t= = =

et StNt= et et
1

et
2

et
3

′
=

f s x t y,;,( ) 1

2π 1 e
2 t s–( )–

–( )
-------------------------------------------- y xe

t s–( )–
–( )

2

2 1 e
2 t s–( )–

–( )
------------------------------------

 
 
 

exp=
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3.2 Results

Table 1 reports MSEs for each of the combining methods, each of the individual forecasts, an

five different cases reflecting the different forms of the forecast-error structures. The true D

an AR(1). The sample size for the forecasting exercise is set toS= 50 in all cases.2

Several noteworthy features emerge from these results. First, in Cases 1 and 2, where the

are assumed to be uncorrelated, it is clear that the ANN combining method yields the lowe

MSEs, but only in the constant-variance case can we claim that the MSE is significantly low

than the alternative methods. Of the linear combining methods, the NRLS approach margin

yields the lowest errors.

Second, when forecast errors across models are correlated (Cases 3 and 5), the nonparam

combining method dominates, although we cannot claim that its MSEs are significantly low

than all alternatives at the usual significance levels (this is deduced by examining the stand

errors). The performance of the ANN combining methodology is noticeably worse when cro

correlations are introduced, likely reflecting the difficulty in training the network to recognize

pattern of correlation present.

Third, taking a simple average of the individual forecasts does poorly when the forecast erro

uncorrelated. Recall that in Case 1 the individual forecasts are uncorrelated, and in additio

systematic bias of 1.0 for , and , the prediction errors have , and

, for all t. Thus the expected MSE of the SA is  = 1.5833. The

MSE of the simple average of , and in Table 1 is very close to the expected MSE, w

in general, MSEs of  are somewhat below or above their expected Case 1 MS

1.250, 2.000, and 5.000, respectively. Note that in Cases 2 and 3 the MSEs of individual fore

are also very close to their respective values of

and

.

All other forms of combined forecasts usually outperform the individual forecasts.

2. Results forS = 20 andS = 100 are not presented, but are available from the authors. They
qualitatively similar to those forS= 50.
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When serial correlation is introduced in Cases 4 and 5, it is apparent that the non-linear me

continue to dominate, although the ANN again does relatively poorly when cross-correlation

introduced. Serial correlation in forecasting models can be quite common in the forecasting

economic time series, thus these two cases are probably the most realistic for the applied

researcher. Our main finding suggests that the choice of forecast-combining technique app

depend upon whether forecast errors across models are correlated. If they are, the NPTV m

should be used; otherwise, an ANN combined forecast would prove to be superior.

4. Empirical Application

The variable forecasted in this paper is the growth rate of real GDP in Canada in 1992 dollars

data are available from 1947Q1 to 2000Q1 and can be obtained from Statistics Canada’s

CANSIM database. The forecasts of the growth rates of real GDP are obtained using the s

random walk model, single exponential smoothing model, and AR(1) model. The quarterly

growth rate is computed as .

Data from the first quarter of 1947 to the last quarter of 1972 are used to estimate the para

of the simple random walk model, single exponential smoothing model, and AR(1) model. W

then produce the one-step-ahead, out-of-sample individual forecasts for the first quarter of

Next we update our data set, while keeping the sample size constant, by adding the first qua

1973 and dropping the first quarter from 1947. We then re-estimate the individual models a

produce one-step-ahead, out-of-sample forecasts for the second quarter of 1973. This recu

updating and one-step-ahead, out-of-sample forecasting procedure is repeated until one-s

ahead, out-of-sample individual forecasts of GDP are produced for each quarter from the fi

quarter of 1973 to the first quarter of 2000. These constitute the individual out-of-sample fore

that are used to combine forecasts in the empirical study.

The next step is to divide the individual out-of-sample forecasts into two subsamples: 1973

1997Q1 (100 observations) and 1997Q2 to 2000Q1 (12 observations). We use the data fro

first subsample to estimate weight functions for every combined forecast to obtain one-step

ahead, out-of-sample combined forecasts for the second quarter of 1997. Then we update

information set by one quarter to obtain new weight functions and new one-step-ahead, ou

sample combined forecasts for the third quarter of 1997. This procedure is recursively repe

until we have obtained combined one-step-ahead, out-of-sample forecasts for each of our 

combining models for the period 1997Q2 to 2000Q1. To evaluate the performance of the

nonparametric combining method, we need to specify the smoothing parameter, . It is ch

yt∆ 100
yt

yt 1–
----------- 

 log×=

h
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according to , whereT = 100 and  is a positive constant, and

. We choose .

Table 2 reports the MSEs for each of the individual forecasts and each combined forecast 

out-of-sample period 1997Q2 to 2000Q1. Canada experienced relatively constant and robu

growth over this period. Based on the MSE, the combined forecasts are more accurate than

the individual forecasts included in the combination, except for the performance of the WLS

combined forecast, which is noticeably worse than the other combining methods. The non-

combined forecasts are superior, with the ANN-combined forecast dominating. The perform

of the nonparametric combined forecast depends on the value of the smoothing parameter

stated earlier ( values are in parentheses). The range of its MSE is roughly 0.17 to 0.19, wh

slightly lower than the linearly combined forecasts.

5. Conclusion

This paper has evaluated, via a simulation study, the performance of different forecast-comb

methods. This type of study was previously conducted by Diebold and Pauly (1987), but th

focused on linear forecast-combination methods only and restricted their attention to individ

independent forecast errors. Donaldson and Kamstra (1996) have since proposed a non-lin

ANN combining method, and we propose here a nonparametric, kernel-regression combin

method, comparing both to the traditional linear methods.

Our results demonstrate that non-linear combined forecasts outperform linear combined for

in all cases considered, even when serial correlation and heteroscedasticity are introduced

forecast errors. When forecast errors are dependent across models, the NPTV procedure t

propose appears to dominate; when no such dependence exists, the ANN approach is sup

However, the improved performance in some cases is not statistically significant at the usu

significance levels, indicating that applied forecasters should use their judgment to determi

whether the costs of the additional complexity of the non-linear combined forecasts outweig

benefits of improved forecast accuracy. As computer software increasingly incorporates

additional non-linear estimation features, non-linear combination methods are likely to prov

more popular.

h T
λ–

= λ
λ 1 1 2δ+( )⁄ for 1 3⁄ δ 1≤<,> λ 0.6 0.7,=

λ
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Notes: SA = simple average, OLS = ordinary least squares, NRLS = non-negative restricted least squares, ERLS = equality r
least squares, WLSP = weighted least squares with polynomial weights, NPTV = nonparametric time-varying, ANN = ar
neural network. Case 1 = constant variance, no covariance, no serial correlation; Case 2 = non-constant variance, no cova
serial correlation; Case 3 = non-constant variance, positive covariance, no serial correlation; Case 4 = constant varian
covariance, serial correlation; Case 5 = constant variance, positive covariance, serial correlation. 1000 replications pe
Sample sizeS= 50 for each replication. Standard errors in parentheses. Lowest MSEs are italicized.

Table 1: Mean-squared errors

Forecast-combining
methods

Disturbance structure

Case 1 Case 2 Case 3 Case 4 Case 5

Linear combinations

SA 1.625
(0.256)

11.08
(2.859)

5.840
(1.287)

1.336
(0.255)

5.985
(1.565)

OLS 0.575
(0.106)

0.823
(0.467)

2.058
(0.517)

0.839
(0.214)

2.076
(0.557)

NRLS 0.572
(0.104)

0.793
(0.474)

2.007
(0.486)

0.835
(0.208)

2.016
(0.514)

ERLS 1.250
(0.153)

1.553
(0.511)

6.936
(1.406)

1.372
(0.270)

6.932
(1.492)

WLSP 1.026
(0.272)

1.291
(0.505)

1.721
(0.620)

2.458
(2.027)

9.049
(6.696)

Non-linear combinations

NPTV 0.579
(0.108)

0.681
(0.201)

1.426
(0.317)

0.841
(0.215)

1.499
(0.343)

ANN 0.213
(0.056)

0.434
(0.257)

2.219
(0.404)

0.303
(0.068)

2.227
(0.569)

Individual forecasts

1.277
(0.167)

1.277
(0.167)

10.07
(2.029)

1.978
(0.504)

10.06
(1.95)

2.095
(0.341)

2.095
(0.341)

17.27
(3.575)

2.021
(0.515)

17.05
(4.14)

5.028
(0.962)

89.75
(23.868)

11.55
(2.531)

1.983
(0.456)

11.20
(3.78)

f t
1

f t
2

f t
3
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Note: λ in parentheses.

Table 2: Mean-squared errors of combined Canadian GDP forecasts

Forecast-combining method
Mean-squared errors

(S = 12 quarters)

Linear combinations

SA 0.246

OLS 0.276

NRLS 0.267

ERLS 0.276

WLSP 1.735

Non-linear combinations

NPTV 0.179 (0.60)
0.170 (0.70)

ANN 0.005

Individual forecasts

Random walk 2.764

Exponential smoothing 1.252

AR(1) 2.986
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