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ABSTRACT

In this paper, the authors examine how well the Hodrick-Prescott filter
(HP) and the band-pass filter recently proposed by Baxter and King (BK)
extract the business-cycle component of macroeconomic time series. The
authors assess these filters using two different definitions of the business-
cycle component. First, they define that component to be fluctuations last-
ing no fewer than six and no more than thirty-two quarters; this is the defi-
nition of business-cycle frequencies used by Baxter and King. Second, they
define the business-cycle component on the basis of a decomposition of the
series into permanent and transitory components. In both cases the conclu-
sions are the same. The filters perform adequately when the spectrum of
the original series has a peak at business-cycle frequencies. When the spec-
trum is dominated by low frequencies, the filters provide a distorted busi-
ness cycle. Since most macroeconomic series have the typical Granger
shape, the HP and BK filters perform poorly in terms of identifying the
business cycles of these series.
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RESUME

Dans la présente étude, les auteurs cherchent a évaluer I'efficacité avec
lagquelle le filtre de Hodrick-Prescott (HP) et le filtre passe-bande récem-
ment proposé par Baxter et King (BK) permettent d’isoler la composante
cyclique des séries macroéconomiques. lls utilisent deux définitions du
cycle économique pour comparer la performance de ces filtres. Selon la
premiere définition (celle que retiennent Baxter et King), la composante
cyclique correspond a des fluctuations d’une durée minimale de six trimes-
tres et maximale de trente-deux trimestres. L’autre définition du cycle con-
siste dans la décomposition de la série en deux composantes, l'une
permanente et I'autre transitoire. Les auteurs parviennent aux mémes con-
clusions peu importe la déefinition utilisée. Les filtres donnent des résultats
satisfaisants lorsque le spectre de la série initiale atteint un sommet au
voisinage des fréquences comprises entre six et trente-deux trimestres. Lor-
sque le spectre est dominé par les basses fréquences, le cycle économique
obtenu donne une image faussée de la réalité. Comme la forme spectrale
de la plupart des séries macroéconomiques ressemble a celle que Granger a
mise en lumiére, les filtres HP et BK réussissent mal a isoler la composante
cyclique de ces séries.
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1 INTRODUCTION

Identifying the business-cycle component of macroeconomic time series is
essential for applied business-cycle researchers. Since the influential paper
of Nelson and Plosser (1982), which suggested that macroeconomic time
series could be better characterized by stochastic trends than by linear
trends, methods for stochastic detrending have been developed. In particu-
lar, this has led to the increasing use of mechanical filters to identify per-
manent and cyclical components of a time series. The most popular filter-
based method is probably that proposed by Hodrick and Prescott (1981),
known as the HP filter. More recently, Baxter and King (1995) have pro-
posed a band-pass filter, the BK filter, whose purpose is to isolate certain
frequencies in the data. This filter has already been used in empirical
studies.!

The use of the HP filter has already been criticized. King and Rebelo
(1993) provide examples of how measures of persistence, variability, and
comovement are altered when the HP filter is applied to observed time
series and to series simulated with real business-cycle models. Harvey and
Jaeger (1993) and Cogley and Nason (1995a) show that spurious cyclicality
is induced when the HP filter is applied to the level of a random-walk
process. Osborn (1995) reports a similar result for a simple moving-average
detrending filter. The above results were obtained by comparing the cycli-
cal component obtained by applying the filters to the level of the series
with the component corresponding to the business-cycle frequencies of
time series in difference.

The objective of this paper is to examine how well the Hodrick-Pres-
cott (HP) and Baxter-King (BK) filters extract the business-cycle component
of macroeconomic series. In particular, we seek to characterize the condi-
tions necessary to obtain a good approximation of the cyclical component
with the HP and BK filters. Previous papers aimed at evaluating the per-
formance of the HP filter have focussed on specific processes and used

1. See Baxter (1994), King, Stock and Watson (1995), and Cecchetti and Kashyap (1995).
Other types of band-pass filters have also been proposed. For example, see Hasler et al.
(1994).
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unclear definitions of the business-cycle component. For example, one
might ask how well filters perform if macroeconomic time series are not
simply random walks but do, in fact, possess a business cycle. Our aim is
to obtain general results that can be applied to a large class of time-series
processes and to provide clear indications on the appropriateness of the
HP and BK filters in applied macroeconomic work. We also hope that our
findings will shed some light on the results obtained by previous studies.

To do this, we need to define the business-cycle component of
macroeconomic series. In the first part of this paper, we retain the defini-
tion of business cycles proposed by researchers at the National Bureau for
Economic Research and adopted by Baxter and King, which is based on the
method put forward by Burns and Mitchell (1946). These authors define
business cycles as fluctuations lasting no fewer than six and no more than
thirty-two quarters. An ideal filter should extract this specific range of peri-
odicities without altering the properties of the extracted component. To
assess the performance of the HP and BK filters on this basis, we compare
the spectra of unfiltered series at these frequencies with those of their fil-
tered counterparts for several processes.

Our main conclusion is as follows. The HP and BK filters do well in
terms of extracting the business-cycle frequencies of time series whose
spectra peak at those frequencies. Unfortunately, the peak of spectral den-
sity in most macroeconomic series is at lower frequencies. Indeed, it is well
known that macroeconomic series have the typical spectral shape identi-
fied by Granger (1966), with most of their power at low frequencies and
spectra that decrease sharply and monotonically at higher frequencies. For
such series, the HP and BK filters perform poorly in terms of extracting
business-cycle frequencies. The intuition behind this result is simple: much
of the power of typical macroeconomic time series at business-cycle fre-
guencies is concentrated in the band where the squared gain of both the
HP and BK filters differs from that of an ideal filter. Moreover, the shape of
the squared gain of those filters, when applied to typical macroeconomic
time series, induces a peak in the spectrum of the cyclical component that
is absent from the original series. When the HP and BK filters are applied,
they induce spurious dynamic properties and they extract a cyclical com-
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ponent that fails to capture a significant part of the variance contained in
business-cycle frequencies.

However, macroeconomic time series are often represented as an
unobserved permanent component containing a unit root and an unob-
served cyclical component. While the HP and BK filters do not provide a
good approximation of business-cycle frequencies for the series in level,
they might still provide a good approximation of an unobserved cyclical
component if this component were characterized by a peak in its spectrum
at business-cycle frequencies. We explore this possibility through a simula-
tion study. The data-generating process is a structural time-series model
composed of a random walk plus a cyclical component. Both components
are uncorrelated, and the cyclical component can have a peak in its spec-
trum at business-cycle frequencies. The filters perform adequately when
the spectrum of the original series (including the permanent and cyclical
components) has a peak at business-cycle frequencies. However, when the
series is dominated by low frequencies, the HP and BK filters provide a
distorted cyclical component. The series is dominated by low frequencies
when the permanent component is large relative to the cyclical component
or the cyclical component has its peak at zero frequencies. Since most
macroeconomic series have the typical Granger shape, the application of
these mechanical filters is likely to provide a distorted cyclical component.
Our result also holds for more general specifications of the permanent
component and for a specification containing a cyclical component corre-
lated with the permanent component.

These results help us understand the findings of King and Rebelo
(1993) for simulated series obtained with a real business-cycle model. It is
now well known that this model has few internal propagation mecha-
nisms.2 Indeed, the dynamic of output for this model corresponds almost
exactly to the dynamic of exogenous shocks. King and Rebelo report per-
sistence, volatilities and comovement of simulated series for cases where
the exogenous process is a first-order autoregressive process with coeffi-

2. See King, Plosser and Rebelo (1988), Cogley and Nason (1995b), and Rotemberg and
Woodford (1996) for a discussion of this point.
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cients of 0.9 and 1. For these processes, the spectral densities of output,
consumption and investment in level are dominated by low frequencies.
Applying the HP filter to these simulated series provides distorted cyclical
properties. The same argument explains the findings of Harvey and Jaeger
(1993) and Cogley and Nason (1995a) for a random-walk process.

The paper is organized as follows. In Section 2, we present the HP
and BK filters and briefly discuss the existing literature on the HP filter. In
Section 3, we examine how well the HP and BK filters extract frequencies
corresponding to fluctuations of between six and thirty-two quarters. In
Section 4, we present a simulation study to assess how well these filters
retrieve the cyclical component of a time series composed of a random
walk and a transitory component. In Section 5 we compare the cyclical
component resulting from the application of the HP and BK filters with
those obtained with the detrending methods proposed by Watson (1986)
and Cochrane (1994) for U.S. output. We then present our conclusions and
propose alternative methods to identify the business-cycle component.



2 THE HP AND BK FILTERS

2.1 The HP filter

The HP filter decomposes a time series Yy, into an additive cyclical compo-
nent (y¢) and a growth component (y2):

Ye = Y Ty¢-

Applying the HP filter involves minimizing the variance of the cyclical
component y{ subject to a penalty for the variation in the second differ-
ence of the growth component y§g,

T

{ygH g = argmin 3 [(v,=y))* + AL(y8 1 —¥9) - (vE -y D12,
t=1

where A, the smoothness parameter, penalizes the variability in the growth
component. The larger the value of A, the smoother the growth compo-
nent. As A approaches infinity, the growth component corresponds to a
linear time trend. For quarterly data, Hodrick and Prescott propose to set
A = 1600. King and Rebelo (1993) show that the HP filter can render sta-
tionary any integrated process of up to the fourth order.

A number of authors have studied the HP filter’s basic properties.
As shown by Harvey and Jaeger (1993) and King and Rebelo (1993), the
infinite-sample version of the HP filter can be rationalized as the optimal
linear filter of the trend component for the following process:®

Yt = e T &

where €, is an NID(0, 05) irregular component and the trend component,
H;, is defined by

T
3. That is, the filter that minimizes the mean square error MSE = (1/T) z (¢ —v¢ 2,
where ytc is the true cyclical component and yf is its estimate. t=1



M = He_g+Beoq

Bt = Bt_1+Zt,

with ¢; ONI D(O,oz) . B is the slope of the process and (; is independent of
the irregular component. Note that this trend component is integrated of
order two, i.e., stationary in second differences.

The use of the HP filter to identify the cyclical component of most

macroeconomic time series cannot be justified on the basis of optimal filter-
ing arguments because of likely problems with the following associated
assumptions:

1.

No correlation between transitory and trend components. This implies
that the growth and cyclical components of a time series are
generated by distinct economic forces; this is often incompatible with
business-cycle models (see Singleton 1988 for a discussion).

The process vy, is integrated of order two. This is often incompatible
with priors on macroeconomic time series. For example, it is usually
assumed that real GDP is integrated of order one or stationary
around a breaking trend.

The transitory component is white noise. This is also questionable. For
example, it is unlikely that the stationary component of output is
strictly white noise. King and Rebelo (1993) show that this condition
can be replaced by the following assumption: an identical dynamic
mechanism propagates changes in the trend component and innovations
to the cyclical component. However, this condition is also very
restrictive.

The parameter controlling the smoothness of the trend component, A, is
appropriate. Note that A corresponds to the ratio of the variance of
the irregular component to that of the trend component. Economic
theory provides little or no guidance as to what this ratio should be.
While attempts have been made to estimate this parameter using
maximume-likelihood methods (see Harvey and Jaeger 1993 or C6té
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and Hostland 1994), it appears difficult to estimate A with
reasonable precision.

Moreover, for the finite-sample version of the HP filter, the user
should not be interested in data points near the beginning or the end of the
sample. This is simply a consequence of the fact that the HP filter, a two-
sided filter, changes its nature and becomes more like a one-sided filter as it
approaches the beginning or the end of a time series. Indeed, after study-
ing the properties of the HP filter at those extremities, Baxter and King
(1995) recommend that three years of data be dropped at both ends of a
time series when the HP filter is applied to quarterly or annual data.*

Despite these shortcomings, Singleton (1988) shows that the HP fil-
ter can still be a good approximation of a high-pass filter when it is applied
to stationary time series. Here we need to introduce some elements of spec-
tral analysis. A zero-mean stationary process has a Cramer representation
as follows:

yt = fﬂai‘”tdz(oo),

where dz(w) is a complex value of orthogonal increments, i is the imagi-
nary number (./(-1)) and w is frequency measured in radians, i.e.
—TI< W< T (see Priestley 1981, Chapter 4). In turn, filtered time series can
be expressed as

ytf - fna(w)eiwtdz(w) ,
with

K
a(@) =y ae ", (1)

h=-k

4. Thisis clearly a problem for policy makers hoping to use the HP filter to estimate cur-
rent potential output. This is discussed in Laxton and Tetlow (1992) and van Norden
(1995).
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Equation 1 is the frequency response (Fourier transform) of the filter. That
is, a(w) indicates the extent to which ytf responds to y, at frequency w
and can be regarded as the weight attached to the periodic component
ei“’tdz(m). In the case of symmetric filters, the Fourier transform is also
called the gain of the filter.

An ideal high-pass filter would remove low frequencies or long-
cycle components and allow high frequencies or short-cycle components to
pass through, so that o (w) = 0 for |w| < w”, where @’ has some predeter-
mined value, and a(w) = 1 for |0 >®". Chart 1 shows the squared gain
of the HP filter. We see that the squared gain is 0 at zero frequency and is
close to 1 from around frequency 1/10 and higher. Thus, the HP filter
appears to be a good approximation of a high-pass filter, in that it removes
low frequencies and passes through higher frequencies.

Chart 1: Squared gain of the HP filter
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A major problem is that most macroeconomic time series are either
integrated or highly persistent processes, so that they are better character-
ized in small samples as non-stationary processes rather than stationary. In
their study of the implications of applying the HP filter to integrated or
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highly persistent time series, Cogley and Nason (1995a) argue that the HP
filter is equivalent to a two-step linear filter that initially first-differences
the data to make them stationary and then smooths the differenced data
with the resulting asymmetric filter. The filter tends to amplify cycles at
business-cycle frequencies in the detrended data and to dampen long-run
and short-run fluctuations. Cogley and Nason conclude that the filter can
generate business-cycle periodicity even if none is present in the data. Har-
vey and Jaeger (1993) make the same point.®> To better understand this
result, consider the following I(1) process

(1_|—)yt = Et, (2)

where g, is zero-mean and stationary. King and Rebelo (1993) show that
the HP cyclical filter can be rewritten as (1 —L)*H(L). We define |[HP(w)|?
as the squared gain corresponding to the HP cyclical filter, where HP(w) is
the Fourier transform of (1-L)4H(L) at frequency w. When the HP filter
is applied to the level of the series y,, the spectrum of the cyclical compo-
nent is defined as

fye(w) = HP(w)[?[1—exp(-iw)2fg(w),

where (1-exp(—iw)) is the Fourier transform of (1-L) and f (w) is the
spectrum of g, which is well defined since ¢, is a stationary process. Obvi-
ously, |1—exp(-iw)|=2 is not defined for w = 0. The expression
11— exp(-iw)|2f.(w) is often called the pseudo-spectrum of y, (see
Gouriéroux and Monfort 1995).

Cogley and Nason (1995a) and Harvey and Jaeger (1993) calculate
the squared gain of the HP cyclical component for (1—L)y, . In this case,
the squared gain is equal to (1-L)3H(L), given that

5. Classic examples of filter-induced cyclicality in the context of stationary time series
are Slustsky (1937) and Howrey (1968). These examples are discussed in Chapter 11 of Sar-
gent (1987).
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(L-L)4H(L)y, = (1_|_)3|-|(|_)(1_|_)yt. By the Fourier transform, the
squared gain corresponding to the filter applied to (1-L)y, is
IHP(w)|2|1—exp(-iw)|=2. The dashed line in Chart 2 represents this
squared gain. These authors conclude that applying the HP filter to the
level of a random walk produces detrended series that have the character-
istics of a business cycle. When this squared gain is compared with the
ideal squared gain for the series in difference, we can see that the filter
amplifies business-cycle frequencies and produces spurious dynamics.

Now suppose that €; in equation 2 is a white-noise process with
variance equal to 2, so that the spectrum of ¢, is equal to 1 at each fre-
guency. We choose this example because the squared gain calculated by
Cogley and Nason corresponds to the cyclical component extracted by the
HP filter in this specific case. Chart 2 presents the pseudo-spectrum of y,
and the spectrum of the cyclical component identified by the HP filter for
business-cycle frequencies. We can see that the effect of the HP filter is
quite different depending on whether we are interested in retrieving the
component corresponding to business-cycle frequencies for the level of the
series y, or for the series in difference (1—L)yt.6 Indeed, if the perform-
ance of the HP filter is to be judged by how well it extracts a specified
range of periodicities, which is the first of the six objectives set by Baxter
and King (1995) for their band-pass filter, the spectrum of the extracted
component should be compared with the spectrum (or pseudo-spectrum)
of the series in level. The conclusion then differs from that of Cogley and
Nason (1995a) and Harvey and Jaeger (1993). We still find that the spec-
trum of the cyclical component identified by the HP filter has a peak corre-
sponding to a period of 30 quarters that is absent from the spectrum of the
original series. However, we also find that the filter actually dampens busi-
ness-cycle fluctuations so that business-cycle frequencies become relatively
less important. Thus, the conclusion depends on the definition of the busi-
ness-cycle component. Moreover, the conclusions of Cogley and Nason
(1995a) and of Harvey and Jaeger (1993) may not hold for the cyclical com-

6. The fact that we are interested in extracting business-cycle frequencies from the level
of integrated series may appear problematic. Note that we could also consider an AR(1)
process with a coefficient of 0.95 and obtain the same result.
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ponent of processes other than random walks. We consider these points in
Sections 3 and 4 respectively.

CHART 2: Spectrum of y, with and without HP-filtering
(at frequencies between six and thirty-two quarters)
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2.2 The BK filter

While an ideal high-pass filter removes low frequencies from the data, an
ideal band-pass filter removes both low and high frequencies. Baxter and
King (1995) propose a finite moving-average approximation of an ideal
band-pass filter based on Burns and Mitchell’s (1946) definition of a busi-
ness cycle. The BK filter is designed to pass through components of time
series with fluctuations between six and thirty-two quarters while remov-
ing higher and lower frequencies.

When applied to quarterly data, the band-pass filter proposed by
Baxter and King takes the form of a 24-quarter moving average,
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12
y: = z anYi_p = a(L)yy,
h=-12

where L is the lag operator. The weights a,, can be derived from the inverse
Fourier transform of the frequency-response function (see Priestley 1981,
274). Baxter and King adjust the band-pass filter by imposing a constraint
that the gain is 0 at zero frequency. This constraint implies that the sum of
the moving-average coefficients must be 0. When using the BK filter, 12
guarters are sacrificed at the beginning and the end of the time series, seri-
ously limiting its usefulness for analysing contemporaneous data.

To study some time and frequency domain properties of the BK fil-
ter, assume the following data-generating process for y; :

yt = (1_L)_r8t’ (3)

where r determines the order of integration of y, and ¢, is a zero-mean
stationary process. Baxter and King show that their filter can be factorized
as

a(L) = (1-L)%a(L),

so that it is able to render stationary any time series containing up to two
unit roots.
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CHART 3a: Autocorrelations corresponding to the BK filter
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Chart 3a shows the autocorrelation functions for the BK-filtered ver-
sion of a white-noise process and a random-walk process. In both cases, the
cyclical component identified by the BK filter possesses strong positive
autocorrelations at shorter horizons. The result for the random walk is sim-
ilar to what Cogley and Nason (1995a) find for the HP filter (shown in
Chart 3b). However, in contrast to the HP filter, the cyclical component
identified by the BK filter displays strong dynamics for a white-noise proc-
ess. This result precludes using the autocorrelation functions resulting
from this band-pass filter to evaluate the internal dynamic propagation
mechanism of business-cycle models.

The spectrum of the cyclical component obtained by applying the
BK filter is

() = [BK(w)2F,(w),

where |BK(w)|? is the squared gain of the BK filter and fy(w) is the spec-
trum of y,. The squared gain [BK(w)|? is equal to |a(w)|?, where a(w)
denotes the Fourier transform of a(L) at frequency w. The pseudo-spec-
trum of y, is equal to

fy(w) = 11— exp(—iw)|" f (w) = 2—2r(sin2(w/2))'rfs(w)

for w# 0 (see Priestley 1981, 597), where f (w) is the spectrum of the proc-
ess €;, which is well defined since & is stationary.

Chart 4a presents the squared gain of the BK filter and compares it
with the squared gain of the ideal filter. The BK filter is designed to remove
low and high frequencies from the data. This is basically what is obtained.
The filter passes through most components with fluctuations of between
six and thirty-two quarters (respectively /3 and 1/ 16), while removing
components at higher and lower frequencies. However, the BK filter does
not correspond exactly to the ideal band-pass filter (also shown on the
graph) because it is a finite approximation of an infinite moving-average
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filter. In particular, at lower and higher frequencies we observe a compres-
sion effect, so that the squared gain is less than 1.

CHART 4a: Squared gain of the BK filter
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As in Section 2.1, we now assume that r=1 and that ¢, is white noise
with variance equal to 27t in equation 3. The spectrum of &, is then equal
to 1 at all frequencies, and the cyclical component obtained with the BK fil-
ter corresponds exactly to the squared gain for the BK filter calculated by
Cogley and Nason (1995a) and by Harvey and Jaeger (1993) for the HP fil-
ter:

IBK(w)]?|1—exp(-iw)|=2 = BK(w)|?272 (sin? (w/2) )™

Chart 4b presents the pseudo-spectrum of y, and the spectrum of the cycli-
cal component identified by the BK filter at business-cycle frequencies. The
conclusion once again depends on whether we are interested in retrieving
the component corresponding to business-cycle frequencies for the level of
series y, or for the series in difference (1—-L)y; . In the latter case, as noted
by Cogley and Nason and by Harvey and Jaeger for the HP filter, the BK
filter greatly amplifies business-cycle frequencies and creates spurious
cycles compared with the ideal squared gain for the series in difference.
For example, it amplifies by a factor of ten the variance of cycles with a
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periodicity of around 20 quarters (1/10). Also, as in the case of the HP fil-
ter, business-cycle frequencies of the BK-filtered series are less important
than those of the original series in level, and the cyclical component identi-
fied by the BK filter has a peak corresponding to a period of 20 quarters
(compared with 30 quarters in the case of the HP filter) that is absent from
the spectrum of the level of the series y;, .

CHART 4b: Squared gain of the BK filter
(Case of a random-walk process)
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3 ABILITY OF THE FILTERS TO EXTRACT CYCLICAL
PERIODICITIES

In this section, we examine how well the BK and HP filters capture the
cyclical component of macroeconomic time series. Baxter and King’s (1995)
first objective is to adequately extract a specified range of periodicities
without altering the properties of this extracted component. We use the
same criteria to assess the performance of the HP and BK filters. We show
that when the peak of the spectral-density function of these series lies
within business-cycle frequencies, these filters provide a good approxima-
tion of the corresponding cyclical component. If the peak is located at zero
frequency, so that the bulk of the variance is located in low frequencies,
those filters cannot identify the cyclical component adequately.

To show this, we consider the following data-generating process

(DGP),

Y = OYi—1t @Yo &, (4)

where @, + @, <1. A second-order autoregressive process is useful for our
purpose because its spectrum may have a peak at business-cycle frequen-
cies or at zero frequency. The spectrum of this process is equal to

2
O¢

f (w) =
y(©@) 1+ @f +@3—2¢,(1-@,) cosw— 2¢,C0820

and the location of its peak is given by
—0:2 1, (w)?((2sinw)[@, (1~ @,) + 4@, cosw]) .
Thus, fy(w) has a peak at frequencies other than zero for

—0(1-9,)

<1. (5)
4,

9, <0 and‘
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Therefore, fy(w) has its peak at w = cos‘l(—cpl(l—cpz)/ 4@,) (see Priestley
1981). For other parameter values, the spectrum has a trough at non-zero
frequencies if @, >0 and |@(1-@,)/ 4, <1.

Charts 5 and 6 show the spectra of autoregressive processes and the
spectrum of the cyclical component identified with the HP and BK filters.
When the peak is located at zero frequency (i.e., most of the power of the
series is located at low frequencies), the spectrum of the cyclical compo-
nent resulting from the application of both filters is very different from that
of the original series, especially at lower frequencies (Chart 5). In particu-
lar, the HP and BK filters induce a peak at business-cycle frequencies that is
absent from the original series, and they fail to capture a significant part of
the variance contained in the business-cycle frequencies. On the other
hand, when the peak is located at business-cycle frequencies, the spectrum
of the cyclical component identified by HP- and BK-filtering matches fairly
well the true spectrum at these frequencies (Chart 6). This result is robust
for different sets of parameters ¢, and @,. Note that the BK filter does not
perform as well as the HP filter at frequencies corresponding to cycles of
around six to eight quarters. Indeed, the BK filter amplifies cycles of
around eight quarters but compresses those of around six quarters. This
results from the shape of the squared gain of the BK filter at those frequen-
cies (see Chart 4a). The absence of a peak at business-cycle frequencies
does not imply that macroeconomic series lack business cycles (see Sargent
1987 for a discussion). In fact, while most macroeconomic series feature the
typical Granger shape, the growth rate of these series is often characterized
by a peak at business-cycle frequencies. King and Watson (1996) call this
“the typical spectral shape of growth rates.”
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CHART 5: Series with the typical Granger shape
(AR(2) coefficients: 1.26 -0.31)
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CHART 6: Series with a peak at business-cycle frequencies
(AR(2) coefficients: 1.26 -0.78)

0.08

0.07 / 4

0.06-
0.05
0.04
0.03

0.02r
unfiltered

=7 HP-filtered

0.01

o= I : L . . }
(0) 0.1 0.15 0.2 0.25 0.3 5
(33 quarters) fraction of pi (6 quarte?53



20

To examine this question in more detail, we perform the following
exercise. First, we establish a DGP by choosing 6 = (¢,, ¢,) for the second-
order autoregressive process of equation 4. Second, we extract the corre-
sponding cyclical component with the HP or BK filter. Third, we search
among second-order autoregressive processes for the parameters ¢, and
@, that minimize the distance, at business-cycle frequencies, between the
spectrum of this process and the spectrum of the HP- or BK-filtered true
second-order autoregressive processes. The problem is the following:

- 2
0 = argmi nJ’wl (Sy1(0;64) —S;(00;0))2dod,
w

where wl = /16, w2 = /3, Syf(w;eo) is the spectrum of the filtered
DGP (where 6, is the vector of true values for the parameters ¢, and @,),
and Sy(w;e) is the spectrum of the evaluated autoregressive process. Thus,
in the case where the HP and BK filters adequately extract the range of
periodicities corresponding to fluctuations of between six and thirty-two
guarters (respectively, w = /3 and w = 1/16), 6 will be equal to the
true vector 6,. Otherwise, the filter will extract a cyclical component corre-
sponding to a second-order autoregressive process differing from the true
one.

Table 1 presents our results for a DGP where the autoregressive
parameter of order one is set at 1.20 while the parameter of order two is
allowed to vary. Using the restrictions implied by equation 5, the peak of
the spectrum lies within business-cycle frequencies when @, <-0.43. We
report results for the HP filter only, but the results with the BK filter are
almost identical.” The results of this exercise corroborate those obtained
from visual inspection. The second-order autoregressive process that mini-
mizes the distance between its spectrum at business-cycle frequencies and
that of the business-cycle component identified by the HP and BK filters
for the true process is very different from the true second-order autoregres-
sive process when the peak of the DGP is located at zero frequency. When

7. These results are robust to the use of alternative values for 90 , 5o that the restrictions
are respected.
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the peak is located at business-cycle frequencies, the resulting second-
order autoregressive process is close to the true second-order autoregres-

sive process.

TABLE 1: Fitted values for the HP filter

DGP (6,) HP (9)

0% o ¢ ¢
1.20 -0.25 -0.09 0.72
1.20 -0.30 0.12 0.40
1.20 -0.35 0.48 -0.15
1.20 -0.40 0.87 -0.20
1.20 -0.45 1.09 -0.41
1.20 -0.50 1.16 -0.50
1.20 -0.55 1.19 -0.56
1.20 -0.60 1.20 -0.61
1.20 -0.65 1.20 -0.66
1.20 -0.70 1.20 -0.70
1.20 -0.75 1.20 -0.75
1.20 -0.80 1.20 -0.80

The spectrum of the level of macroeconomic time series typically
resembles that of the unfiltered series shown on Chart 5. The spectrum’s
peak is located at zero frequency and the bulk of its variance is located in
the low frequencies. This is known as the typical Granger shape. Charts 7,
8, 9 and 10 display the estimated spectra of U.S. real GDP, real consump-
tion, consumer price inflation and the unemployment rate, as well as the
spectra of the filtered counterparts to these series.® It is clear that the filters
perform badly in terms of capturing business-cycle frequencies in these

cases.

8. We use a parametric estimator of the spectrum. An autoregressive process was fitted

and the order of that process was determined on the basis of the Akaike criteria.
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The intuition behind this result is simple. Charts 1 and 4a (Section 2)
show that the gains of the HP and BK filters at low business-cycle frequen-
cies are significantly smaller than that of the ideal filter. Indeed, the
squared gain of the BK filter is 0.34 at frequencies corresponding to 32-
guarter cycles, while that of the HP filter is 0.49. In the case of the HP filter,
the squared gain does not reach 0.95 before frequency T/ 8 (cycles of 16
quarters). The problem is that much of the power of typical macroeco-
nomic time series at business-cycle frequencies is concentrated in the band
where the squared gains of the HP and BK filters differ from that of an
ideal filter. Also, the shape of the squared gain of those filters, when
applied to typical macroeconomic time series, induces a peak in the spec-
trum of the cyclical component that is absent from the original series. In
short, applying the HP and BK filters to series dominated by low frequen-
cies results in the extraction of a cyclical component that fails to capture a
significant part of the variance contained in business-cycle frequencies of
the original series and that induces spurious dynamic properties.

One might argue that macroeconomic time series are actually com-
posed of a permanent component and a cyclical component, so that the
peak of the spectrum of the series would be at zero frequency while the
peak of the spectrum of the cyclical component would be at business-cycle
frequencies. For example, the permanent component could be driven by a
random-walk technological process with drift, while transitory monetary
or fiscal policy shocks, among others, could generate the cyclical compo-
nent with a peak in its spectrum at business-cycle frequencies. If this were
true, then the HP and BK filters might be able to adequately capture the
cyclical component. We examine this issue in the next section.
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CHART 7: Spectrum of the logarithm of U.S. real GDP
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CHART 9: Spectrum of U.S. consumer price inflation
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CHART 10: Spectrum of U.S. unemployment rate
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4 A SIMULATION STUDY

Consider the following DGP:

Yt = He+ Gy, ©)
where
My = M1 T &
Ct = QrCi_1 ¥ @Cr o+ N,
and

e, ONID(0,67), n, ONID(0, 07).

Equation 6 defines y, as the sum of a permanent component, |, which in
this case corresponds to a random walk, and a cyclical component, c, 2 The
dynamics of the cyclical component are specified as a second-order autore-
gressive process, so that the peak of the spectrum could be at zero fre-
quency or at business-cycle frequencies. We assume that ¢, and u, are
uncorrelated.

Data are generated from equation 6 with @, set at 1.2 and different
values assigned to @, to control the location of the peak in the spectrum of
the cyclical component. We also vary the standard-error ratio for the dis-
turbances o,/ o, to change the relative importance of each component. We
follow the standard practice of assigning the value 1600 to A, the HP filter
smoothness parameter. We also follow Baxter and King’s suggestion of
dropping 12 observations at the beginning and at the end of the sample.
The resulting series contains 150 observations, a standard size for quarterly
macroeconomic data. The number of replications is 500.

9. This is Watson’s (1986) specification for U.S. real GDP.
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The performance of the HP and BK filters is assessed by comparing
the autocorrelation function of the cyclical component of the true process
with that obtained from the filtered data. We also calculate the correlation
between the true cyclical component and the filtered cyclical component
and report their relative standard deviations (6./0,). Table 2 presents the
results for the HP filter and Table 3 those for the BK filter.

Table 2 shows that the HP filter performs particularly poorly when
there is an important permanent component. Indeed, for high o./o,
ratios, in most cases the correlation between the true and the filtered com-
ponents is not significantly different from zero. The estimated autocorrela-
tion function is invariant to the change in the cyclical component in these
cases (the values of the true autocorrelation functions are given in paren-
theses in the tables). When the ratio 0./ 0, is equal to 0.5 or 1 and the peak
of the cyclical component is located at zero frequency (¢, <-0.43), the
dynamic properties of the true and the filtered cyclical components are sig-
nificantly different, as indicated by the estimated parameter values. In gen-
eral, the HP filter adequately characterizes the series dynamics when the
peak of the spectrum is at business-cycle frequencies and the ratio o,/ o,
is small. However, even when the ratio of standard deviations is equal to
0.01 (i.e., the permanent component is almost absent), the filter performs
poorly when the peak of the spectrum of the cyclical component is at zero
frequency. Indeed, for @, = —0.25, the dynamic properties of the filtered
component differ significantly from those of the true cyclical component;
moreover, the correlation is only equal to 0.66, and the standard deviation
of the filtered cyclical component is half that of the true cyclical compo-
nent.

It is interesting to note that the HP filter does relatively well when
the ratio 0./ 0 is equal to 1, 0.5, or 0.01 and the spectrum of the original
series has a peak at zero frequency and at business-cycle frequencies (i.e.,
the latter frequencies contain a significant part of the variance of the
series). This is reflected in Chart 11, which shows the spectrum for the case
where o,/0, =1and ¢, =-0.75. Consequently, the following conditions
are required to adequately identify the cyclical component with the HP fil-
ter: the spectrum of the original series must have a peak located at busi-
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ness-cycle frequencies, which must account for an important part of the
variance of the series. If the variance of the series is dominated by low fre-
guencies, which is the case for most macroeconomic series in levels, the HP
filter does a poor job of extracting the cyclical component.

CHART 11: Spectrum for o./0, =1and ¢, =-0.75
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The results for the BK filter are similar to those for the HP filter,
although the dynamic properties of the filtered cyclical component seem to
be invariant (or almost invariant) to the true process. For example, when
o./0, = 0.01, ¢, = 0, and @, = 0, which corresponds to the case where
the cyclical component is white noise and dominates the permanent com-
ponent, the filtered cyclical component is a highly autocorrelated process.
Thus, the BK filter would appear to be of limited value as a way to identify
with any confidence the cyclical dynamics of a macroeconomic time series.
As noted previously, this result precludes the use of the BK filter to assess
the internal dynamic properties of a business-cycle model, since the filter
produces a series with dynamic properties that are almost invariant to the
true process.
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TABLE 2: Simulation results for the HP filter

DGP Estimated values
Autocorrelations _ .
0./ 0 9 ?, n 5 3 Correlation 6./ 0,
10 0 0 .71[0] .46[0] .26[0] .08 12.96
(.59,.80)  (.30,.60) (.08,.43) | (-.07,.21) |(10.57,15.90
10 12 -25 J1[.96]  .47[.90] .27[.84] .08 4.19
(.61,.80) (.31,.61) (.08,.44) | (-.11,.28) | (2.77,6.01)
10 12 -40 .71[.86]  .46[.63] .26[.41] A3 6.34
(.60,.80) (.30,.60) (.08,.44) | (-.12,.36) | (4.82,8.07)
10 12 -55 JL1L.77]  .46[.38] .26[.03] 14 6.93
(.60,.80) (.29,.60) (.06,.43) | (-.08,.33) | (5.36,8.70)
10 12 -75 J71[.69]  .46[.27] .25[-.19] 15 6.37
(.60,.78)  (.30,.59) (.07,.41) | (-.01,31) | (4.79,7.95)
5 0 0 .69[0] .45[0] .26[0] 15 6.50
(.58,.78)  (.30,.58) (.09,.41) (.02,.27) | (5.28,7.85)
5 12 -25 71[.96]  .46[.90] .26[.84] .16 2.11
(.61,.80) (.32,.61) (.08,.43) | (-.01,.36) | (1.43,3.04)
5 1.2 -40 .72[.86]  .46[.63] .25[.41] .23 3.26
(.61,.80) (.31,.60) (.08,.42) | (-.01,45) | (2.47,4.15)
5 1.2 -55 J1L77]  .46[.38] .24[.03] 24 3.60
(.61,.80) (.30,.59) (.06,.41) (.01,.44) | (2.83,4.52)
5 12 -75 .70[.69]  .43[.27] .20[-.19] .29 3.30
(.61,.79)  (.26,.57) (.00,.38) | (.11,.44) | (2.53,4.17)
1 0 0 43[0] .28[0] .20[0] .59 1.61
(.27,57) (11,42) (-.02,31) | (.49,.70) | (1.41,1.85)
1 1.2 -25 .76[.96]  .51[.90] .29[.84] .51 .66
(.67,.83) (.37,.62) (.11,.44) | (.33,.68) (.44,.91)
1 12 -40 .75[.86]  .44[.63] 16[.41] 71 1.02
(.67,.81) (.28,55) (-.03,.33) | (.56,.82) | (.83,1.22)
1 12 -55 J2[.77]  .34[.38] .01[.03] .76 1.15
(.66,.78) (.21,47) (-17,19) | (.56,.82) | (.83,1.22)
1 12 -75 .68[.69]  .15[.27] -.27[-.19] .83 1.16
(.63,.72) (.04,27) (-44,10) | (.75,.89) | (1.04,1.29)
.5 0 0 .16[0] .10[0] .04[0] .82 1.16
(.01,.32) (-.04,0.24) (-.10,.18) | (.75,.88) | (1.07,1.27)
.5 12 -25 .79[.96]  .53[.90] .30[.84] .61 .55
(.71,.85) (.38,.65) (.11,.46) (.41,.79) (.37,.76)
.5 12 -40 77[.86]  .43[.63] 13[.41] .84 .87
(.69,.81) (.29,.54) (-.05,.29) | (.73,.92) (.74,.99)
.5 12 -55 72[.77]  .28[.38] -.10[.03] .89 .98
(.67,.78) (.17,39) (-.25,.06) | (.83,.94) | (.89,1.07)
.5 12 -75 .67[.69] .07[.27] -.42[-.19] .94 1.02
(.63,.71) (-.03,.18) (-.57,-.27)| (.90,.96) | (.97,1.08)
01 0 0 -.08[0] -.06[0] -.06[0] .98 97
(-.21,.06) (-.21,.06) (-.19,.06) | (.96,.99) (.94,.99)
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TABLE 2: (Continued)

DGP Estimated values
Autocorrelations . A
0./ 0, o 9 1 5 3 Correlation 6./0,
01| 1.2 -25 .80[.96]  .54[.90] .30[.84] .66 .51
(.72,.86) (.38,.67) (.11,.48) (.45,.83) (.34,.69)
01| 1.2 -40 .78[.86]  .43[.63] 12[.41] .90 .81
(.72,.83) (.30,.55) (-.05,.28) | (.82,.96) (.71,.90)
01| 1.2 -55 J3[.77]  .26[.38] -.14[.03] .96 .92
(.67,.77) (.15,37) (-.30,.01) | (.91,.99) (.86,.96)
01| 12 -75 .67[.69] .02[.27] -.50[-.19] .99 .97
(.62,.71) (-.08,.13) (-.61,-.35)| (.97,1.0) (.95,.99)
TABLE 3: Simulation results for the BK filter
DGP Estimated values
Autocorrelations ) A
o/0 | @ ? I 5 3 correlation 6,/0,
10 0 0 .90[0] .65[0] .33[0] .03 11.55
(.87,.93) (.52,.75) (.13,.51) | (-.11,.16) | (9.05,14.38
10 12 -25 90[.96]  .65[.90] .34[.84] .08 3.71
(.87,.93) (.55,.74) (.17,.49) | (-.18,.32) | (2.34,5.45)
10 1.2 -40 .90[.86] .64[.63] .33[.41] A1 5.67
(.87,.93) (.54,.73) (.16,.48) | (-.16,.36) | (4.19,7.18)
10 1.2 -55 90[.77]  .64[.38] .33[.03] A2 6.23
(.87,.93)  (.58,.73) (.14,.48) | (-.12,.33) | (4.71,7.93)
10 1.2 -75 90[.69] .63[.27] .31[-.19] .16 5.69
(.86,.92) (.52,.73) (.13,.48) | (-.04,.36) | (4,37,7.16)
5 0 0 .90[0] .64[0] .33[0] .05 5.80
(.87,.90)  (.58,.73) (.14,.49) | (-.09,.20) | (4.54,7.16)
5 1.2 -25 .90[.96]  .65[.90] .34[.84] A7 1.94
(.87,.93) (.54,.73) (.16,.49) | (-.05,.38) | (1.25,2.74)
5 12 -40 .90[.86]  .64[.63] .32[.41] .23 2.93
(.87,.93) (.53,.74) (.14,.49) | (-.08,47) | (2.15,3.76)
5 1.2 -55 .89[.77]  .62[.38] .30[.03] .26 3.19
(.87,.92) (.52,.72) (.12,.46) (.03,.46) | (2.45,3.98)
5 12 -75 .88[.69]  .60[.27] .26[-.19] .28 2.97
(.85,.92) (.47,.70) (.06,.44) (.09,.45) | (2.24,3.77)
1 0 0 .89[0] .61[0] .27[0] 19 1.21
(.85,.92) (.48,.71) (.06,.45) (.05,.32) | (.96,1.43)
1 12 -25 .90[.96]  .65[.90] .34[.84] .53 .60
(.87,.93)  (.58,.74) (.15,.50) (.36,.71) (.39,.84)
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TABLE 3: (Continued)

DGP Estimated values
Autocorrelations ]

0./C o 9 1 5 3 correlation 6./0,

1 1.2 -.40 .88[.86] .58[.63] .22[.41] .70 .95
(.85,.91) (.47,.68) (.03,.39) (.55,.81) (.78,1.12)

1 1.2 -.55 .85[.77] .48[.38] .05[.03] 73 1.06
(.81,.89) (.36,.60) (-.15,.24) | (.61,.83) (.89,1.23)

1 1.2 -.75 .79[.69] 27[.27] -.26[-.19] .79 1.08
(.75,.83) (.14,.40) (-.45,-.06) | (.69,.87) (.96,1.20)

5 0 0 .86[0] .50[0] .10[0] .36 a7
(.81,.89) (.35,.63) (-.12,.30) | (.25,.47) (.63,.91)

5 1.2 -.25 .90[.96] .65[.90] .34[.84] .63 51
(.87,.93) (.55,.74) (.16,.50) (.45,.78) (.34,.71)

5 1.2 -.40 .88[.86] .56[.63] A17[.41) .81 .81
(.84,.91) (.43,.66) (-.02,.34) | (.71,.88) (.67,.93)

5 1.2 -.55 .83[.77] 41[.38] -.06[.03] .85 91
(.80,.87) (.30,.53) (-.24,12) | (.78,91) | (.81,1.01)

5 1.2 -.75 .76[.69] 17[.27] -.42[-.19] .89 .96
(.72,.79) (.06,.29) (-.57,-.25)| (83,.93) (.89,1.03)

.01 0 0 .79[0] .29[0] -.22[0] .55 51
(.75,.83) (.16,.42) (-.40,-.03) | (.48,.63) (.43,.58)

.01 1.2 -.25 .91[.96] .66[.90] .35[.84] .68 48
(.88,.93) (.57,.74) (.20,.50) (.52,.82) (.32,.64)

.01 1.2 -.40 .87[.86] .54[.63] 15[.41] .86 .76
(.84,.90) (.44,.64) (-.03,.31) | (.79,.92) (.65,.86)

.01 1.2 -.55 .83[.77] .39[.38] -.11[.03] .90 .86
(.79,.86) (.27,.49)  (-.29,.06) | (.85,.94) (.78,.92)

.01 1.2 -.75 .74[.69] 13[.27] -.48[-.19] .93 92
(.71,.78) (.03,.23) (-.61,-.34) | (.89,.96) (.86,.97)

The results of our simulation study are clear regarding the perform-

ance of the HP and BK filters when they are applied to decompositions
between permanent and cyclical components that are more general than
equation 6. For instance, the trend component can be an I(1) process with
transient dynamic (e.g., €, = d(L)Z,).1° Also, the cyclical component can
be correlated with the permanent component. For example, the decompo-

10. Lippi and Reichlin (1994) argue that modelling the trend component in real GNP as a
random walk is inconsistent with the standard view concerning the diffusion process of
technological shocks. Blanchard and Quah (1989) and King et al. (1991) used a multivari-
ate representation to obtain a trend component with an impulse function whose short-run
impact was smaller than its long-run impact. Accordingly, the effect of the permanent

shock gradually increased to its long-run impact.
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sition proposed by Beveridge and Nelson (1981) implies permanent and
transitory components that are perfectly correlated. However, to reproduce
the typical Granger shape, any decomposition must have an important
permanent component relative to the cyclical component or else a cyclical
component dominated by low frequencies. In both cases, the HP and BK
filters provide a distorted cyclical component.t!

11. The results of complementary simulations with different processes are available on
request. For brevity these are not discussed here.
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3) COMPARISON WITH OTHER APPROACHES

In this section, we compare the cyclical component obtained using the HP
and BK filters with those of other approaches. Watson (1986) proposes an
unobserved stochastic trend decomposition into permanent and cyclical
components. His model for U.S. real GDP corresponds to equation 6 in the
previous section.

We investigated whether the HP or BK filter is able to capture the
cyclical component of the above DGP. Using Kuttner’s (1994) estimates (¢,
= 1.44, ¢, =- 047, 0; =0.0052, and 67 = 0.0069),*? we simulated data on
the basis of this DGP, filtered it, and compared the dynamic properties and
the correlation of the true and the filtered components. The results are
shown in Table 4. Both the HP and BK filters produce cyclical components
with dynamic properties significantly different from the true one. Notably,
the cyclical components identified by both filters are much less persistent
than the true one. Also, the correlation is rather small. These results are not
surprising, given that the spectrum of the cyclical component has its peak
at zero frequency and the bulk of the variance is located at low frequencies.

TABLE 4: Simulation results with and without HP- and BK-filtering

Autocorrelations
Correlation
1 2 3
Theoretical values 0.98 0.94 0.89 —
BK filter 0.92 0.70 0.42 0.47
(0.89-0.94) | (0.60-0.78) | (0.25-0.56) | (0.30-0.67)
HP filter 0.84 0.61 0.38 0.56
(0.78-0.89) | (0.48-0.73) | (0.20-0.54) | (0.35-0.76)

Cochrane (1994) proposes a simple detrending method for output
based on the permanent-income hypothesis. This implies (for a constant
real interest rate) that consumption is a random walk with drift that is

12. We chose Kuttner’s estimates because he uses a larger sample than Watson. The use of
Watson'’s estimates would not change our conclusions, however.
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cointegrated with total income. Thus, any fluctuations in GDP with
unchanged consumption must be transitory. Cochrane uses these assump-
tions to decompose U.S. real GDP into permanent and transitory compo-
nents. Chart 12 presents the spectra for U.S. real GDP, for the same series
with HP-filtering, and for Cochrane’s cyclical component.

Using Cochrane’s measure for comparison, the HP cyclical compo-
nent greatly amplifies business-cycle frequencies. Also, while the peak of
the spectrum of the HP-filtered cyclical component is located at business-
cycle frequencies, the peak of Cochrane’s measure is at zero frequency. The
correlation between the two cyclical components is 0.57. To the extent that
Cochrane’s method provides a good approximation of the cyclical compo-
nent of U.S. real GDP, the HP-filtered measure appears inadequate.

CHART 12: Spectrum of U.S. real GDP
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6 CONCLUSIONS

This paper shows that two mechanical filters, the HP and BK filters, do rel-
atively well when applied to series with peaks in their spectra at business-
cycle frequencies. However, most macroeconomic time series have the typ-
ical Granger shape; in other words, most of their power lies at low frequen-
cies and their spectra decrease monotonically at higher frequencies.
Consequently, the conditions required to obtain a good approximation of
the cyclical component with the HP and BK filters are rarely met in
practice.

What are the alternatives for a business-cycle researcher interested
in measuring the cyclical properties of macroeconomic series? For evaluat-
ing business-cycle models, researchers are often interested only in the sec-
ond moments of the cyclical component. In that case, there is no need to
extract a cyclical series. King and Watson (1996) show how to obtain corre-
lations and cross-autocorrelations without filtering the observed and simu-
lated series. The strategy involves calculating these moments from the
estimated spectral-density matrix for business-cycle frequencies. We can
obtain an estimator of the spectral-density matrix with a parametric esti-
mator, such as that used by King and Watson, or with a non-parametric
estimator. The cyclical component can also be obtained in a univariate or a
multivariate representation using the Beveridge-Nelson (1981) decomposi-
tion method. Economic theory also provides alternative methods of
detrending, such as Cochrane’s (1994) method, based on the permanent
income theory, or the Blanchard and Quah (1989) structural decomposition
method.!® The authors are currently investigating the properties of these
alternative methodologies.

13. Cogley (1996) compares the HP and BK filters with the univariate Beveridge-Nelson
decomposition and Cochrane’s method, using a real-business-cycle model with different
€X0genous processes.






37

REFERENCES

Baxter, Marianne. 1994. “Real Exchange Rates and Real Interest Differen-
tials: Have We Missed the Business-Cycle Relationship?”” Journal of
Monetary Economics 33(1):5-37.

Baxter, Marianne and Robert G. King. 1995. “Measuring Business Cycles:
Approximate Band-Pass Filters for Economic Time Series.” Working
Paper No. 5022. National Bureau of Economic Research, Cambridge,
MA.

Beveridge, Stephen and Charles R. Nelson. 1981. “A New Approach to
Decomposition of Economic Time Series into Permanent and Transi-
tory Components with Particular Attention to Measurement of the
'Business Cycle’.” Journal of Monetary Economics 7(2):151-74.

Blanchard, Olivier Jean and Danny Quah. 1989. “The Dynamic Effects of
Aggregate Demand and Supply Disturbances.” American Economic
Review 79(4):655-73.

Burns, Arthur F. and Wesley C. Mitchell. 1946. Measuring Business Cycles.
New York: National Bureau of Economic Research.

Cecchetti, Stephen G. and Anil K. Kashyap. 1995. “International Cycles.”
Working Paper No. 5310. National Bureau of Economic Research,
Cambridge, MA.

Cochrane, John H. 1994. “Permanent and Transitory Components of GNP
and Stock Prices.” Quarterly Journal of Economics 109(1):241-65.

Cogley, Timothy. 1996. “Evaluating Non-Structural Measures of the Busi-
ness Cycle.” Draft Paper. Federal Reserve Bank of San Francisco.

Cogley, Timothy and James M. Nason. 1995a. “Effects of the Hodrick-
Prescott Filter on Trend and Difference Stationary Time Series:
Implications for Business Cycle Research.” Journal of Economic
Dynamics and Control 19(1-2):253-78.



38

Cogley, Timothy and James M. Nason. 1995b. “Output Dynamics in Real-
Business-Cycle Models.” American Economic Review 85(3):492-511.

C6té, Denise and Douglas Hostland. 1994. “Measuring Potential Output
and the NAIRU as Unobserved Variables in a Systems Framework.”
In Economic Behaviour and Policy Choice Under Price Stability, proceed-
ings of a conference held at the Bank of Canada, October 1993, 357-
418. Ottawa: Bank of Canada.

Gouriéroux, Christian and Alain Monfort. 1995. Séries Temporelles et
Modeéles Dynamiques. Collection "Economie et statistiques
avanceées." Paris: Economica.

Granger, C. W. J. 1966. “The Typical Spectral Shape of an Economic Varia-
ble.” Econometrica 34(1):150-61.

Harvey, A. C. and A. Jaeger. 1993. “Detrending, Stylized Facts and the
Business Cycle.” Journal of Applied Econometrics 8(3):231-47.

Hasler, John, Petter Lundvik, Torsten Persson and Paul Soderlind. 1994,
“The Swedish Business Cycle: Stylized Facts Over 130 Years.” In
Measuring and Interpreting Business Cycles, edited by Villy Berstrom
and Anders Vredin, 7-108. Oxford: Clarendon Press.

Hodrick, Robert J. and Edward C. Prescott. 1981. “Post-War U. S. Business
Cycles: An Empirical Investigation.” Discussion Paper No. 451.
Center for Mathematical Studies in Economics and Management
Science, Northwestern University, Evanston, IL.

Howrey, E. Phillip. 1968. “A Spectral Analysis of the Long-Swing Hypothe-
sis.” International Economic Review 1:228-52.

King, Robert G., Charles I. Plosser and Sergio T. Rebelo. 1988. “Production,
Growth, and Business Cycles: Il. New Directions.” Journal of Mone-
tary Economics 21(2-3):309-41.



39

King, Robert G., Charles I. Plosser, James H. Stock and Mark W. Watson.
1991. “Stochastic Trends and Economic Fluctuations.” American
Economic Review 81(4):819-40.

King, Robert G. and Sergio T. Rebelo. 1993. “Low Frequency Filtering and
Real Business Cycles.” Journal of Economic Dynamics and Control
17(1):207-31.

King, Robert G., James H. Stock and Mark W. Watson. 1995. “Temporal
Instability of the Unemployment-Inflation Relationship.”” Economic
Perspectives 19(3):2-12.

King, Robert G. and Mark W. Watson. 1996. “Money, Prices, Interest Rates
and the Business Cycle.” Review of Economics and Statistics 78(1):35-
53.

Kuttner, Kenneth N. 1994. “Estimating Potential Output as a Latent Varia-
ble.” Journal of Business and Economic Statistics 12(3):361-68.

Laxton, Douglas and Robert Tetlow. 1992. A Simple Multivariate Filter for
the Measurement of Potential Output. Technical Report No. 59.
Ottawa: Bank of Canada.

Lippi, Marco and Lucrezia Reichlin. 1994. “Diffusion of Technical Change
and the Decomposition of Output into Trend and Cycle.” Review of
Economic Studies 61:19-30.

Nelson, Charles R. and Heejoon Kang. 1981. “Spurious Periodicity in Inap-
propriately Detrended Time Series.” Econometrica 49(3):741-51.

Nelson, Charles R. and Charles I. Plosser. 1982. “Trends and Random
Walks in Macroeconomic Time Series: Some Evidence and Implica-
tions.” Journal of Monetary Economics 10(2):139-62.

Osborn, Denise R. 1995. “Moving Average Detrending and the Analysis of
Business Cycles.” Oxford Bulletin of Economics and Statistics
57(4):547-58.



40
Priestly, M. B. 1981. Spectral Analysis and Time Series. London: Academic
Press.

Quah, Danny. 1992. “The Relative Importance of Permanent and Transitory
Components: Identification and Some Theoretical Bounds.” Econo-
metrica 60(1):107-18.

Rotemberg, Julio J. and Michael Woodford. 1996. "Real-Business-Cycle
Models and the Forecastable Movements in Output, Hours, and
Consumption." American Economic Review 86(1):71-89.

Sargent, Thomas J. 1987. Macroeconomic Theory. Toronto: Academic Press.

Singleton, Kenneth J. 1988. “Econometric Issues in the Analysis of Equilib-
rium Business Cycle Models.” Journal of Monetary Economics
21(2-3):361-86.

Slutzky, Eugen. 1937. “The Summation of Random Causes as the Source of
Cyclic Processes.” Econometrica 5(2):105-46.

Van Norden, Simon. 1995. “Why Is It So Hard to Measure the Current Out-
put Gap?” Unpublished manuscript. Bank of Canada, Ottawa.

Watson, Mark W. 1986. “Univariate Detrending Methods with Stochastic
Trends.” Journal of Monetary Economics 18(1):49-75.

. 1993. “Measures of Fit for Calibrated Models.” Journal of Polit-
ical Economy 101(6):1011-41.



1996

78

77

76

75

74

1995

73

1994

72

71

70

69

68

67

66

1993

65

64

Bank of Canada Technical Reports

Do Mechanical Filters Provide a Good Approximation of Business Cycles?

A Semi-Structural Method to Estimate Potential Output:
Combining Economic Theory with a Time-Series Filter
The Bank of Canada’s New Quarterly Projection Model, Part 4

Excess Volatility and Speculative Bubbles in the Canadian Dollar:
Real or Imagined?

The Dynamic Model: QPM, The Bank of Canada’s
New Quarterly Projection Model, Part 3

The Electronic Purse: An Overview of Recent Developments
and Policy Issues

A Robust Method for Simulating Forward-Looking Models,
The Bank of Canada’s New Quarterly Projection Model, Part 2

The Steady-State Model: SSQPM, The Bank of Canada’s New
Quarterly Projection Model, Part 1

Wealth, Disposable Income and Consumption: Some
Evidence for Canada

The Implications of the FTA and NAFTA for Canada and Mexico

From Monetary Policy Instruments to Administered Interest Rates:

The Transmission Mechanism in Canada

The Microstructure of Financial Derivatives Markets:
Exchange-Traded versus Over-the-Counter

The Role of House Prices in Regional Inflation Disparities

Les sources des fluctuations des taux de change en Europe
et leurs implications pour I'union monétaire

Tests of Market Efficiency in the One-Week When-Issued Market
for Government of Canada Treasury Bills

Measurement Biases in the Canadian CPI

A. Guay and P. St-Amant

L. Butler

J. Murray, S. van Norden
and R. Vigfusson

D. Coletti, B. Hunt,
D. Rose and R. Tetlow

G. Stuber

J. Armstrong, R. Black,
D. Laxton and D. Rose

R. Black, D. Laxton,

D. Rose and R. Tetlow
R. T. Macklem

W. R. White

K. Clinton and

D. Howard

B. Gonzalez-Hermosillo
D. Maclean

A. DeSerres and
R. Lalonde

D. G. Pugh

A. Crawford

Copies of the above titles and a complete list of Bank of Canada technical reports are available from

PUBLICATIONS DISTRIBUTION, Bank of Canada, Ottawa, Ontario, Canada K1A 0G9

Tel: (613) 782-8248; fax: (613) 782-8874



