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ABSTRACT

In this report, we describe methods for solving economic models when
expectations are presumed to have at least some element of consistency
with the predictions of the model itself. We present analytical results that
establish the convergence properties of alternative solution procedures for
linear models with unique solutions. Only one method is guaranteed to
converge, whereas most widely used methods, including the popular Fair-
Taylor approach, do not have this property. This method, which we have
implemented for simulation of the Bank of Canada’s models of the
Canadian economy, involves solving simultaneously the full problem,

“stacked” to represent each endogenous variable at each time point with a
separate equation, using a Newton algorithm.

We discuss briefly the extension of our convergence results to
applications with non-linear models, but the strong analytical conclusions
for linear systems do not necessarily carry over to non-linear systems.

We illustrate the analytical discussion and provide some evidence
on comparative solution times and on the robustness of the procedures,

using simulations of a simple, linear model of a hypothetical economy and
of two much larger, non-linear models of the Canadian economy
developed at the Bank of Canada. The examples show that the robustness
of our procedure does carry over to applications with working, non-linear
economic models. They also suggest that the limitations of iterative
methods are of practical importance to economic modellers.
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RÉSUMÉ

Dans le présent rapport, les auteurs décrivent des méthodes de résolution
des modèles économiques sous l’hypothèse que les anticipations ont un
élément de cohérence avec les prédictions du modèle en cause lui-même.
Ils présentent des résultats, obtenus par la voie analytique, qui établissent
les propriétés de convergence que revêtent certaines méthodes appliquées
aux modèles linéaires à solution unique. Toutefois, la propriété de
convergence n’est garantie que dans le cas d’une seule méthode, tandis
qu’elle ne l’est pas dans celui des méthodes les plus couramment utilisées,
comme celle de Fair et Taylor. La méthode en question est celle qui a été
mise à contribution dans la simulation des modèles de l’économie
canadienne mis au point à la Banque du Canada; elle implique la
résolution simultanée, à l’aide d’un algorithme de Newton, d’un système
d’équations où chacune des variables endogènes est représentée par une
équation distincte à chaque période de temps.

Les auteurs traitent brièvement de l’extension de l’analyse des
propriétés de convergence à des modèles non linéaires, mais les résultats
analytiques ne s’appliquent pas nécessairement à ce type de modèle.

Pour illustrer les résultats analytiques, fournir des mesures
comparatives du temps nécessaire à la solution des modèles et des
témoignages au sujet du degré de solidité des méthodes évaluées, les
auteurs présentent des simulations d’un modèle linéaire simple d’une
économie fictive et de deux modèles non linéaires beaucoup plus grands
de l’économie canadienne mis au point à la Banque du Canada. Ces
exemples montrent que leur méthode demeure robuste lorsqu’elle est
appliquée à des modèles économiques non linéaires. Ces exemples laissent
aussi supposer que les limites des méthodes itératives revêtent une
importance pratique pour les constructeurs de modèles économiques.
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1 INTRODUCTION

In this report, we document the properties of alternative numerical solu-
tion procedures for economic models with forward-looking behaviour and
some degree of model consistency in expectations of future values of
endogenous variables. In particular, we describe the advantages of a proce-
dure, which we call the Integrated Dynamic Simulator (IDS), that we have
implemented for solving the Bank of Canada’s new Quarterly Projection
Model (QPM).1

In IDS, time-dependent equations are “stacked” such that each
endogenous variable at each time point is represented by an independent
equation. Time is effectively removed from the problem by “integrating” it
into the stacked structure. The entire resulting system is solved simultane-
ously using a Newton procedure.

More precisely, then, we label our procedure IDS-N, to distinguish it
from other approaches to solving the stacked problem. The stacking incor-
porated in IDS-N eliminates what is known as type II iterations in the
method of Fair and Taylor (1983) and substitutes a second-order method
based on derivatives.

We show that IDS-N has a strong advantage over other suggested
procedures. In the case of a linear system with a unique solution, conver-
gence to that solution is theoretically guaranteed under IDS-N, where it is
not with other methods commonly used. In the case of non-linear systems,

we can offer no conclusions that hold universally, but the advantages of
IDS-N do carry over to solutions started in the region of the true values.
Moreover, we offer some evidence, based on our experience with using
this procedure to solve QPM (which is highly non-linear), that IDS-N is
quite robust in practice.

The idea of stacking equations to form a single system is by no
means original. Indeed, many of the papers that consider alternative

1. See Poloz, Rose and Tetlow (1994) for a summary of the model and its use. Details on
the underlying theory are provided in Black, Laxton, Rose and Tetlow (1994).
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solution methods describe stacked systems and possible first-order
methods for solving them.2 However, most of the practical focus has been
on finding ways to break the problem down into a number of smaller sub-
problems that can be solved separately and then linked in some iterative
scheme. There has been virtually no attention to the possibility of solving
the entire system simultaneously using a second-order method.3

Because of the stacking to remove time from the problem, the IDS
method generates matrices that expand rapidly with the length of time that
must be simulated, as well as with the size of the model. This is one reason
why second-order methods have not been considered practicable in the
past.4

For the type of model used regularly in policy analysis at institu-
tions like the Bank of Canada, this point is of great importance. To simulate
QPM, for example, we regularly generate problems with more than 30 000
pseudo-equations. The IDS-N method gains the advantage of robustness at
the cost of increasing substantially the scale of the core matrix inversion
problem.

Dealing routinely with such large-scale problems has become feasi-
ble only recently with advances in computing technology and depends
critically on the availability of efficient methods for inverting sparse matri-
ces. Even with these methods, solving QPM for 100 quarters requires about
34 megabytes of memory, most of which is for inverting the core matrix.5

The report also contains some examples documenting the relative
performance of the Fair-Taylor (FT) and IDS-N methods under different

2. See, for example, Hall (1985), Fisher and Hughes Hallett (1988), Holly and Hughes
Hallett (1989), Fisher (1992) and Press, Teukolsky, Vetterling and Flannery (1992).

3. Hall (1985) illustrates an iterative, Gauss-Seidel procedure to solve a stacked system.
However, Hall’s application involves a model with just one forward-looking variable in
two equations and a quite short simulation period (10 quarters).

4. This view is expressed in Fisher, Holly and Hughes Hallett (1986), for example.

5. We use the Harwell MA30 routines in our implementation. See J. K. Reid (1977) for
further information.



3

conditions.6 Where conditions are especially favourable, FT may produce
answers in less time. However, our examples show that the speed of IDS-N
is relatively independent of the conditions of the problem, whereas the
speed of FT deteriorates sharply as conditions become less favourable.
Moreover, we report several examples where FT cannot find the solution,

but where IDS-N has no difficulty in doing so. It is in this sense that IDS-N
is robust. We have found it to be very reliable in regular use under widely
varying conditions.

The paper is organized as follows. In Section 2, we describe the
problem we consider and the general nature of solution procedures that
have been suggested. A number of solution procedures are described in
Section 3 in greater detail, and some closed-form results concerning the
convergence properties of these methods in the linear case are derived in
Section 4. Section 5 contains some summary remarks about linear systems
and an overview of extension to non-linear systems. In Section 6, we
describe a simple linear model of an economy and use it to illustrate the
main analytical points of Section 4. We also describe our experience in
using alternative solution procedures for two much larger models of the
Canadian economy. Section 7 concludes the report.

6. We apply the FT label to a variety of methods that use iterative methods which do not
treat forward expectations as endogenous variables at each stage of the solution. The spe-
cific suggestion of Fair and Taylor (1983) is one example, perhaps the most widely known,
of such a procedure. Our examples use a version of FT that applies a Newton procedure
for “inner-loop” calculations. In the terminology we establish in Section 3, we use an FT-N
algorithm in our comparisons.
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2 THE RATIONAL EXPECTATIONS PROBLEM

The starting point for the analytical discussion is a model including for-
ward expectations given by

(1)

where  is an  vector of endogenous variables at time ,  is a vector
of exogenous variables at time ,  denotes an expectation conditional
on the model and information available through time , and the distur-
bance terms  are independent scalar random variables with zero means
and finite variances. This model is a rational expectations model in the
sense that  is the forecast of  obtained by solution of the
model conditional on information available through time period . The
expectation is formed in period , or the start of period , and could, in
principle, take account of the values of exogenous variables in period .
However, in our representation of the problem in discrete time, the ran-
dom disturbances, and hence the solution of the endogenous variables for
period , are not known when the expectation is formed. Note that a model
involving lags or leads of more than one period can be written in the form
of equation (1) by introducing additional variables.

Without loss of generality, we can assume that the derivative of
with respect to endogenous variable  is non-zero. Using this assumption,

the model can be rewritten as

(2)

In the linear case, model (2) can be written as

(3)

where the  matrices ,  and  do not depend on ,  or
, and  has been normalized to have a unit main diagonal.

f i yt yt 1–
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t Et 1–
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Et 1– yt 1+ yt 1+

t 1–

t t
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t

f i

i

yit gi yt yt 1–
Et 1–

yt 1+
xt uit, , , ,( ) i, 1 … n., ,= =

B0yt B1yt 1– A1Et 1– yt 1+ Cxt ut+ ,+ +=
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6

Blanchard and Kahn (1980) and Buiter (1984) provide closed-form
solutions for some examples of model (3) and discuss conditions for the
uniqueness and stability of the solutions.

 A large number of methods have been used to solve model (2).
They generally involve a reformulation of the problem as a two-point
boundary-value problem, which necessitates the provision of a terminal
condition. We describe a classification scheme for these methods in the
next section.7 We focus on what are called extended-path methods, to use
the terminology of Fair and Taylor (1983), for imposing the terminal condi-
tion. Extended-path methods involve computing a solution for a finite
number of time periods beyond the last point for which the solution is to
be reported. The computation horizon is extended until the impact on the
solution of further extensions is small relative to some convergence toler-
ance over the entire period of interest.

7. Our classification scheme uses many of the elements of the presentation in Fisher
(1992).
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3 SOLUTION METHODS

Eight methods for solution of model (2), as well as two variants on these
methods, are described in this section. The convergence properties of these
methods are considered in Section 4.

Each method fits into the same basic iterative framework, which can
be described as follows. Suppose that it is necessary to solve a rational
expectations model for  time periods. To begin, it is necessary to choose
an initial value of , the number of time periods for which expecta-
tions must be computed to obtain a solution within a prescribed tolerance.
There are then four steps involved in the iterative framework:

(i) Choose a value, , for the terminal condition, .

(ii) Solve model (2)  for  time period , subject to
the rational expectations constraints ,

, and the terminal condition from step (i). Let
 denote the  vectors of endogenous

variable values corresponding to the solution at time .8

For the first pass, repeat steps (i) and (ii), replacing  by  to
obtain an initial comparison for step (iii).

(iii) Compare  and  for . If any of the
differences between these vectors is greater than the prescribed
tolerance, increase  by one and repeat steps (i), (ii) and (iii).
Otherwise, let , denote the converged values
and go to step (iv).

(iv) Solve the model equations using  in place of  for
.

8. The set of equations in (ii) is what we refer to as the “stacked” model. It consists of (2)
repeated for times , with  being replaced by  and  by

. Obviously, as (2) itself represents a system of  equations, the stacked model is a
system of  equations.

T

k T 1+≥

hk 1+ Ek 1– yk 1+ hk 1+=

r, r 1 2 … k, , ,=

Er 1– yr 1+ yr 1+=

r 1 2 … k 1–, , ,=

er k( ) r, 1 2 … k, , , ,= n 1×
r

t 1 2 … k, , ,= Et 1– yt 1+ yt 1+ Ek 1– yk 1+
hk 1+ n

nk

k k 1+

er k 1+( ) er k( ) r 1 2 … T 1+, , ,=

k

er, r 1 2 … T 1+, , ,=

er Er 2– yr

r 2 3 … T 1+, , ,=
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One repetition of step (ii) results in a type II solution. One repetition
of steps (i), (ii) and (iii) is called a type III iteration by Fair and Taylor.

For our purposes, it is the different methods for obtaining type II
solutions that distinguish alternative approaches to solving the rational
expectations problem. Two general approaches to calculation of type II
solutions are examined. They are (a) direct application of an algorithm to
the complete set of simultaneous equations in (ii), and (b) iterative proce-
dures involving calculation of a sequence of solutions for endogenous var-
iables conditional on various values for forward expectations. In what
follows, we refer to these as type (a) and type (b) methods.

Any algorithm that can be applied to a system of simultaneous
equations can be applied to the stacked model. Such algorithms include
the Jacobi (J), Gauss-Seidel (GS) and Successive Over-Relaxation (SOR)
procedures, as well as the Newton algorithm (N). These algorithms pro-
vide four type (a) methods for calculation of type II solutions and hence
four methods for solution of a rational expectations model. We refer to
these as IDS-J, IDS-GS, IDS-SOR and IDS-N.

As far as we know, Hall (1985) is the only example of an attempt to
treat the problem as we do – as a single, large matrix inversion problem.
Citing, among other things, the lack of robustness of Fair-Taylor methods,

Hall proposes that GS be applied to the complete system of equations –
IDS-GS in our classification scheme.

Calculation of the solution of model (2) for  time periods using a
type (b) method involves additional iterations that can be defined in two
parts as follows.

(b1) To start iteration , set the forward expectations  to
 for . Then, compute a new solution for

the endogenous variables, conditional on these expectations, using
an algorithm for the solution of simultaneous equations. Denote the
solution by , for .

k

i 1+ Er 1– yr 1+

er 1+ i k,( ) r 1 2 … k 1–, , ,=

yr i 1 k,+( ) r 1 2 … k, , ,=
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(b2) If  and  do not differ by more than a pre-
scribed tolerance for , declare convergence. Other-
wise, set  to  for ,

increase  by one and repeat step (b1).

One repetition of (b1) is called an “inner-loop” iteration and one
repetition of (b1) and (b2) is called an “outer-loop” iteration. The new solu-
tion for the endogenous variables calculated in step (b1) can be obtained in
one of two ways. First, an algorithm for the solution of simultaneous equa-
tions (J, GS, SOR or N) can be applied to the equations for each time period
separately. In this case, lagged endogenous variables are replaced by

 during solution of the equations for time period  at itera-
tion . Alternatively, the algorithm can be applied to the stacked model,
but with forward expectations held fixed at the previous outer-loop solu-
tion values.

In this report, only type (b) methods that involve a separate solution
process for each time period at step (b2), using the same algorithm, will be
considered. The first example of a type (b) method is the procedure pro-
posed by Fair and Taylor (1983). The FT method involves separate inner-
loop solution processes for each time period. They suggest use of the
Gauss-Seidel algorithm. The implementation of the FT method in the
TROLL software (Hollinger 1988), which we use for the computing in the
examples reported in Section 6, employs the Newton algorithm to obtain
inner-loop solutions. Four type (b) methods involving separate inner-loop
solution processes using the same algorithm for each time period – FT-J,
FT-GS, FT-SOR and FT-N – will be examined here.

Two variations on type (b) methods will also be discussed. First,
since outer-loop damping is available in TROLL, it is a variation of consid-
erable practical interest. At step (b2),  is replaced by the linear
combination  for .

Our second variant is a method described by Fisher (1992, 54). At
step (b2), the vectors  are obtained by
solving for expectations using the Newton algorithm. The solution is

er 1+ i k,( ) yr 1+ i 1+ k,( )
r 1 2 … k 1–, , ,=

er 1+ i 1 k,+( ) yr 1+ i 1+ k,( ) r 1 2 … k 1–, , ,=

i

yr 1– i 1 k,+( ) r

i 1+

er 1+ i 1 k,+( )
γyr 1+ i 1 k,+( ) 1 γ–( )er 1+ i k,( )+ γ 0>

er 1+ i 1+ k,( ), r 1 2 … k 1–, , ,=
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computed for all time periods simultaneously, conditional on the current
best estimates of the endogenous variables. This procedure is a special case
of the “penalty function” method for solving non-linear rational
expectations models suggested by Holly and Zarrop (1983) in the context
of optimal control. It is also related to a method proposed by Don and
Gallo (1987) for modifying Newton iterations used for the solution of
models that do not include forward expectations.

Type (b) methods that feature incomplete inner-loop iterations have
received considerable attention in the literature. These methods, called
type (c) methods by Fisher and Hughes Hallett (1988), include as special
cases the type (b) methods we describe as well as first-order type (a) meth-
ods. However, IDS-N cannot be formulated as a type (c) method. We find it
clearer, therefore, to think of these methods as variants of type (a) and type
(b) procedures rather than as a distinct category.

There are a number of proposed solution procedures that may not
appear to fit into our classification scheme. For example, Lipton, Poterba,

Sachs and Summers (1982) suggest solving model (2) using a multiple-
shooting method based on the methods available for non-linear difference
equations (for example, Roberts and Shipman 1972). Given initial values
for the endogenous variables, the state-space form of the model is used to
integrate forward. The difference between the results of forward integra-
tion and a terminal condition is used to update the initial values. Fisher
and Hughes Hallett (1988) indicate that this method can be written in a
form such that it can be interpreted as a type (a) method.
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4 CONVERGENCE ANALYSIS FOR LINEAR SYSTEMS

In this section, the convergence properties of the type II solution methods
described above are analysed with reference to the linear model, model (3),
under the assumption that a unique solution exists. We begin with the
properties of type (a) methods and then turn to those of type (b) methods.9

Analysis of the convergence properties of type (a) methods is
straightforward. The stacked system corresponding to  time periods can
be written as

, (4)

where  is an  vector formed by stacking the vectors
, where the  matrix  has a block tridiagonal

structure reflecting the constraints ,

and where the  vector  incorporates disturbance terms as well as
terms involving exogenous variables and the terminal condition

.

Under our assumption that there is a unique solution, the matrix
is non-singular and has a unique inverse, and the solution is simply

. The IDS-N algorithm is guaranteed to reach this solution in one
iteration. The only problem is to compute the inverse matrix. While this
may not be a trivial numerical problem, there is no logical difficulty.

To analyse the convergence properties of the first-order type (a)
methods – IDS-J, IDS-GS and IDS-SOR – additional notation must be intro-
duced. In particular, we need the decomposition

, (5)

where  is the identity matrix of dimension  and the matrices
and  are lower triangular and upper triangular, respectively.

9.  See Fisher and Hughes Hallett (1988) for a similar analysis that focusses on type (b)
methods.

k

Bz v=

z nk 1×
yt, t 1 2 … k, , ,= nk nk× B

yt 1+ Et 1– yt 1+ , t 0 1 … k 1–, , ,= =

nk 1× v

Ek 1– yk 1+ hk 1+=

B

z B 1– v=

B Ink L– U–=

Ink nk nk× L

U
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Let  denote the best estimate of  after  iterations of a first-
order type (a) method. The general form of a first-order type (a) iteration is
given by

, (6)

where . Recursive application of equation (6) yields

. (7)

The spectral radius of a matrix is the modulus of its largest eigenvalue. As
is evident from equation (7), the recursive solution of equation (6) will con-
verge if and only if the spectral radius of  is less than unity.

For the algorithms IDS-J, IDS-GS and IDS-SOR, the matrix P is given
by ,  and , respectively, where the relaxation param-
eter  can be chosen. Consequently, for example, a type (a) algorithm that
uses IDS-J will converge if and only if the spectral radius of the matrix

(8)

is less than one. Similarly, type (a) algorithms that use IDS-GS or IDS-SOR
will converge if and only if the spectral radii of the matrices

(9)

and

(10)

are less than one, respectively.

It is important to note that the restrictions in equations (8), (9) and
(10) are not trivial. There will be a class of models where a solution exists
but where an iterative, first-order algorithm will fail to find it. Only IDS-N
is guaranteed to find the solution.

z i k,( ) z i

z i 1+ k,( ) P 1– Qz i k,( ) P 1– v+=

B P Q–=

z i k,( ) P 1– Q( )
i
z 0 k,( ) P 1– Q( )

m

m 0=

i 1–

∑
 
 
 

P 1– v+=

P 1– Q

Ink Ink L– Ink αL–( ) α⁄
α

GIDS J– Ink B–=

GIDS GS– Ink L–( ) 1– U=

GIDS SOR– Ink αL–( ) 1– αU 1 α–( )Ink+( )=
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Overall convergence of the FT-N, FT-J, FT-GS and FT-SOR solution
methods depends on the convergence of both inner-loop and outer-loop
iterations. We consider first the conditions required for inner-loop conver-
gence and then the conditions required for outer-loop convergence.

In the case of FT-N, inner-loop convergence is guaranteed. To ana-
lyse inner-loop convergence for the first-order type (b) methods, the
decomposition  is required. The matrices  and  are
lower- and upper-triangular, respectively. Let  denote the esti-
mate of  obtained after  iterations of a first-order procedure. It fol-
lows that

(11)

where  is the component of  corresponding to time period ,

 and  is given by ,  and  for the J, GS
and SOR algorithms, respectively. Convergence will be obtained for

, if and only if the spectral radius of the matrix
 is less than or equal to one.

Given inner-loop convergence, the conditions required for outer-
loop convergence of type (b) methods do not depend on the algorithm
used to compute inner-loop iterations. Converged inner-loop values must
satisfy the equation

, (12)

where the  vector  is formed by stacking the vectors
,  is an  vector that depends on exogenous

variables, disturbance terms and the terminal condition, ⊗ is the Kronecker
product operator, and the  matrices  and  are upper and lower
block triangular, respectively:

B0 In L0– U0–= L0 U0

yr
s( ) i k,( )

yr i k,( ) s

yr
s( ) i k,( ) P0

1– Q0 yr
s 1–( ) i k,( )=

P+ 0
1– A1er 1+ i k,( ) B1yr 1– i k,( ) vr+ +( ),

vr v r

B0 P0 Q0–= P0 In In L0– In αL0–( ) α⁄

yr i k,( ) r, 1 2 … k, , ,=

G0 P0
1– Q0=

z i k,( ) Ik B0
1–⊗( ) U* f i k,( ) L* z i k,( )+( ) ∆+=

nk 1× f i k,( )
er i k,( ), r 1 2 … k, , ,= ∆ nk 1×

nk nk× U* L*
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. (13)

Solving system (12) for  yields

. (14)

Recall that outer-loop iterations of a Fair-Taylor algorithm involve
updating expectations using new best estimates of endogenous variables.
That is,  is set to , and the updating equation for the outer
loop is then

. (15)

Repeated substitution yields

, (16)

where

. (17)

Thus, regardless of the algorithm used to solve the inner loop of a
type (b) method, outer-loop convergence will be achieved if and only if the
spectral radius of the matrix  is less than one.

If outer-loop damping is used, outer-loop convergence of a type (b)
method will depend on the spectral radius of the matrix

. (18)

U*

0 A1

0 0

… 0

A1… 0

… …

0 0

… A1

0 0

, L*

0 0

B1 0

0 0

… 0

0 B1

0 0

… 0

…B1 0

= =

z i k,( )

Ink Ik B0
1–⊗( )L*

–( )z i k,( ) Ik B0
1–⊗( ) U* f i k,( ) ∆+( )( )=

f i 1 k,+( ) z i k,( )

f i 1 k,+( ) Ink Ik B0
1–⊗( )L*

–( )
1–

Ik B0
1–⊗( ) U* f i k,( ) ∆+( )=

f i k,( ) SU*( )
i
f 0 k,( ) S SU*( )

m
∆

m 0=

i 1–

∑+=

S Ink Ik B0
1–⊗( )L*

–( )
1–

Ik B0
1–⊗( )=

SU*

Sγ 1 γ–( )Ink γSU*
+=
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Hughes-Hallett (1981) provides a proof that some  exists such that the
matrix  has spectral radius less than one if and only if all the eigenvalues
of the matrix  have real parts less than one.

Consider now the variant where updated estimates of expectation
terms are calculated at outer-loop iterations through application of
Newton’s algorithm to all equations simultaneously, holding the current
best estimates of the endogenous variables fixed.10

At step (b2),  is calculated, for the linear case, as the solu-
tion to

. (19)

Algebraic manipulation of (14) and (19) leads to

, (20)

where

(21)

and where matrix pseudo-inverses are calculated when matrix inverses
cannot be obtained owing to singularity. In this case, outer-loop iterations
will converge if and only if the spectral radius of  is less than one.

10. See Fisher (1992, 54). This is a special case of the penalty function method of Holly
and Zarrop (1983).

γ 0>
Sγ

SU*

f i 1 k,+( )

Ik B⊗ 0 Ik B1⊗( )– L*( )z i k,( ) Ik A1⊗( )U* f i 1 k,+( ) ∆+=

U* f i 1+ k,( ) ∆+ ZU* f i k,( ) Z∆+=

Z Ik A1⊗( ) 1– Ik B⊗ 0 Ik B1⊗– L*( )=

× Ink Ik B0
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5 THEORETICAL CONCLUSIONS AND EXTENSIONS
TO NON-LINEAR SYSTEMS

The convergence results presented here can be summarized as follows.
Type II convergence of IDS-N, a type (a) method in our classification
scheme, is guaranteed if a unique solution exists. Convergence is not guar-
anteed for the other seven type II solution methods considered – IDS-J,
IDS-GS, IDS-SOR, FT-N, FT-J, FT-GS and FT-SOR. We have provided neces-
sary and sufficient conditions for each of these methods to converge on the
solution. These conditions can always be written as a requirement that the
spectral radius of one or more matrices be less than one.

Convergence of the three type (a) methods that do not use the
Newton algorithm – IDS-J, IDS-GS and IDS-SOR – is determined by the
spectral radius of a single matrix, which differs from one method to the
next.

Convergence of FT-N also depends on the spectral radius of a single
matrix, which differs from the matrices involved in convergence results for
the IDS methods. Convergence of the other type (b) methods considered –
FT-J, FT-GS and FT-SOR – will not be achieved unless the matrix involved
in FT-N convergence has spectral radius less than one. In addition, conver-
gence of FT-J, FT-GS and FT-SOR depends on the spectral radius of a sec-
ond matrix, which differs from one method to the next.

Variations on these methods involving more complicated schemes
for updating estimates of expectations terms have qualitatively similar
convergence properties.

The importance of the type II convergence results described here for
any particular application involving a linear rational expectations model
will obviously depend on model characteristics. There is little we can say,

in general, as to how important the limitations of the iterative methods are.
However, in Section 6 we offer some examples that demonstrate that these
limitations cannot be dismissed as curiosities.
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In the non-linear case, both local and global convergence results that
can be applied to type (a) methods are provided by Rheinboldt (1974).
However, these results are not very powerful. The global results apply
only to special cases, and application of the local results is limited by a
requirement that starting values be “close enough” to the solution. The
importance of starting values for convergence of iterative solution tech-
niques for non-linear systems is well known. See, for example, Ralston
(1965) or Dodes (1978).

We know of no general method that can be used to determine
whether an application of IDS-N to a particular model using a given start-
ing point will lead to a region of solution space in which the local conver-
gence conditions apply. Similarly, the eigenvalues required to analyse the
convergence properties of the other type II solution methods must be com-
puted using a linearized version of the model and consequently depend on
the particular iterative solution path as well as on the properties of the lin-
ear approximation of the model at the true solution values.

It is important to stress that the conditions for convergence of itera-
tive type II methods established for linear systems apply in the non-linear
case in the neighbourhood of the true solution values. There can be no
guarantee that an iterative method will converge, even from arbitrarily
good starting values. In addition, there is a path-dependency problem –
the convergence properties will depend on the nature of the linear approx-
imation to the non-linear model. Obviously, if the convergence conditions
for a linear system are satisfied at all points along an iterative solution
path, convergence will be achieved.11 Unfortunately, no results are availa-
ble, as far as we know, to indicate whether a particular combination of
model, method and starting point will generate such a path.

Although the superior convergence properties of IDS-N for linear
models suggest that this method should be preferred in the non-linear case

11. This is not a necessary condition – not meeting the convergence requirements in the
linear approximation at a particular point in the sequence does not necessarily imply that
those requirements will not be satisfied at subsequent points. Presumably, however, there
must be some point in a sequence past which these sufficient conditions must hold.
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as well, empirical evaluation is necessary. We now turn to some examples
of the properties of alternative solution procedures applied to some mod-
els of economic systems.
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6 EXAMPLES

In this section, we compare results from IDS-N with those from FT-N
applied to three economic models. We have established (in Section 4) that
the properties of outer-loop convergence are independent of the method
used to obtain inner-loop convergence. For linear models, therefore, if
FT-N fails to converge, then so will any other variant of the FT class. We
return to this issue in subsection 6.4.

6.1 A simple linear model

This example takes the form of a simple linear model, which has a unique
solution and is stable according to the Blanchard-Kahn (1980) conditions.
We show that FT-N may not converge at all or may converge very slowly,

depending on the value of a particular parameter. IDS-N will converge in
one iteration at a speed that is not a function of the parameter value.

In addition to the issue of whether convergence is obtained, there is
a question concerning the accuracy of the solution. A typical scheme is to
compare the last two iterations and, if they are close under some metric, to
declare convergence. We find that with FT methods this can be misleading,

since convergence is often declared when the latest iteration is still some
distance from the true solution, considerably more than the supposed
tolerance.12 For this linear example, we report the number of iterations
required for FT to converge (within the stated tolerance) to the true
solution. We discuss this issue in greater detail in subsection 6.3.

The example economy is represented in a four-equation model com-
posed of an output equation, an inflation equation (Phillips curve), a mon-
etary reaction function (designed to assure control of inflation around a
fixed target rate) and a Fisher equation linking nominal interest rates to
real interest rates and inflation. The equations are

12. Of course, the same problem can arise, at least in principle, for solutions of non-linear
models with IDS methods, especially iterative IDS methods. Our experience suggests that
this is not a practical problem for IDS-N, an observation consistent with the super-linear
convergence property of Newton methods.
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(output) , (22)

(Phillips curve) , (23)

(monetary reaction function) , (24)

(Fisher equation) , (25)

where  is the deviation of actual output from potential output,  is the
real interest rate,  is a disturbance term,  is the inflation rate,  is the
nominal interest rate and  is some positive parameter. This is a standard
model augmented with a monetary authority whose current interest rate
settings are based on the expected value of inflation next period. We have
simplified the Fisher equation slightly, using the actual rather than the
expected rate of inflation, to limit the problem to its simplest form, where
the model has but one forward-looking variable appearing in only one
equation.

Although this model is intended to provide a numerical example,

not a realistic model of an economy, the structure and parameters do reflect
some key properties of realistically calibrated models. It is similar, for
example, to the model used in Laxton, Rose and Tetlow (1993). One simpli-
fication here is that the effect of the policy variable is assumed to be
contemporaneous, whereas Laxton, Rose and Tetlow emphasize the impor-
tance of lags in the control process.

Table 1 reports the convergence properties of the outer-loop
iterations of FT-N applied to this model for a simulation range of 50
periods and different values of . In all cases described in the table, the
Blanchard-Kahn conditions are satisfied and a unique solution exists. As is
apparent, the greater is the effect of interest rates on aggregate demand, the
slower is FT-N to converge; and for a range of values for which a solution
does in fact exist, FT-N will fail to converge to that solution. It is worth
noting, moreover, that the value of  used in the realistically calibrated
model in Laxton, Rose and Tetlow (1993) falls in the range where FT-N fails
to converge in these experiments.
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The IDS-N procedure solves this problem in one iteration,

regardless of the value of .

6.2 A dynamic, multisector model

This example is one involving a multisector, overlapping generations
model of a small, open economy, calibrated to reflect the Canadian data, as
described in Macklem (1993). The model has 109 equations. Although the
model is non-linear, a linear approximation around its steady state satisfies
the Blanchard-Kahn conditions. The model can be simulated without diffi-
culty using IDS-N. However, it cannot be simulated reliably using FT-N.
To obtain his reported results using FT-N, Macklem relaxed the outer-loop
convergence criterion considerably relative to the usual setting. Although
his reported solutions are close enough to the correct values over the hori-
zon reported that the research conclusions are not seriously affected, our
reworking of the problem suggests that Macklem’s dynamic simulations
generally diverge and are, hence, formally inconsistent with the reported
long-run results from the steady-state version of the model. This finding
appears to be robust to damping.13

a. This is the modulus of the largest eigenvalue of the matrix SU*, as defined in the dis-
cussion of equations (12)–(17) in Section 4. FT-N will converge if and only if this value
is less than one.

b. We report the number of outer-loop iterations required before the absolute difference
between the computed solution and the true solution is less than 0.001 for any variable
at any time.

13. In discussions with the authors, Macklem also confirmed that his FT-N solutions had
long-lasting “nuisance” cycles that disappeared when the model was solved using IDS-N.
This led to the discovery of a small coding error that had been obscured by the “noise” in
the FT-N solution but which emerged clearly in the IDS-N results.

Table 1
Convergence properties of FT-N for the simple linear model

Value of 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Largest
eigenvaluea 0.5 0.55 0.65 0.75 0.8 0.9 >1.0 >1.0

Number of
iterationsb 2 4 25 49 96 257

α

α

∞ ∞
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6.3 A relatively large model – QPM

The staff at the Bank of Canada have recently begun using a new computer
simulation model of the Canadian economy for projections and policy
analysis. That model is called QPM from Quarterly Projection Model (see
Poloz, Rose and Tetlow 1994, for an overview of the model and its proper-
ties; see Black, Laxton, Rose and Tetlow 1994, for a discussion of the steady
state of QPM; and see Coletti, Hunt, Rose and Tetlow 1994, for a more
detailed discussion of some of the model’s dynamic properties).

Two important features of this model are forward-looking behav-
iour by agents and dynamic stability around an explicit steady state with
fully consistent stocks and flows. The model is also highly non-linear. It
was predicted, during the model’s developmental phase, that FT-N was
likely to be inadequate in a production environment. Simulation times
were long and convergence was often not obtained when no good (eco-
nomic) reason could be found. The prediction turned out to be correct – the
current, production version of QPM cannot be simulated reliably using the
FT algorithm.

With IDS-N, QPM is routinely solved in a production environment.
While QPM is of moderate size by the standards of applied macro models –
it has about 320 equations – the stacked IDS version of the model contains
over 32 000 equations.14 Nevertheless, the simulation times are usually
under half an hour on a Sun SPARC 10, model 52, computer, at least for
solutions of shocks around an established control solution.

As an example of the type of problem that we faced using the FT-N
algorithm, consider a shock to aggregate demand in QPM (similar to a per-
turbation to  in equation 22 of the simple linear model). It turns out that
for very small shocks, of order 0.1 per cent, say, both FT-N and IDS-N con-
verge. With convergence criteria, for each variable at each time point, of the
form

14. This is the size of the model when QPM is simulated over 25 years (100 quarters). This
is the length of an average simulation – it gives the stocks time to approach their steady-
state levels – but frequently even longer simulations are required, which generates much
larger systems. In test runs, we have solved problems twice this size.

ε
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(26)

for FT-N, where  is the kth iteration for variable x at some time point,
268 type II iterations are required to obtain convergence.15 However, this
does not produce a solution that is accurate within 0.1 per cent. To obtain
that degree of accuracy, 306 iterations are required. After 268 iterations,

where convergence is declared under criterion (26), the maximum error is
twice as large as the supposed convergence tolerance. The solution is not
changing by enough to fail the test, but it has not reached the desired
region of the true solution.

IDS-N is also much faster than FT-N in this application.16 The total
simulation time is about one hour for FT-N, for declared convergence
under criterion (26), compared with about 35 minutes with IDS-N.17 Fur-
thermore, to obtain even this standard of convergence, it is necessary to
use an advantageous damping factor of 0.7 with FT-N; if the damping fac-
tor is greater than 0.8 or less than 0.4, FT-N diverges, even for this very
small shock. With other values for the damping factor, FT-N converges for
this shock, but takes longer than reported above.

FT-N does not converge for larger shocks. For example, when the
above experiment was repeated using a 1 per cent shock, which is still not

15. This is a standard convergence criterion. It is a mix of relative and absolute criteria.
The 5 in the denominator is used to prevent division-by-zero problems – it makes the con-
vergence criterion approximate an absolute criterion for small values of  and a relative
criterion for large values. This is the form used in the TROLL software (Hollinger 1988).

16. The times reported here were generated using an implementation of IDS-N developed
at the Bank of Canada as a C program that sets up the stacked problem and calls the
Newton simulator of Portable TROLL to provide the solution. Recently, the IDS-N algo-
rithm has been integrated into TROLL itself, in what is called a “stacked time” procedure,
which has greatly reduced simulation times. For example, a 100-period solution of QPM
under our previous system solved in roughly 90 minutes. This has been cut to 30 minutes
with the new TROLL implementation.

17. Recall, moreover, that for equivalent accuracy in the solution, further iterations with
FT-N would be required.

x k 1+( ) x k( )
–

max x k 1+( ) x k( ),( ) 5+
----------------------------------------------------------- 0.001<

x k( )
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large by any means, FT-N did not converge under any damping setting.
IDS-N converged in the same amount of time as for the small shock.18

6.4 What do the examples show?

We have shown that FT-N fails to converge in some cases that are of
practical interest. In Section 4, we established that, for linear systems, FT-N
inner-loop convergence is guaranteed and that outer-loop convergence
properties are independent of the method used to obtain inner-loop
convergence. For linear systems, it therefore follows that if FT-N fails to
converge, then so will all other variants of the FT method. It is clearly the
iterative procedure applied at the outer loop that causes the problem in
such cases. This argument applies without qualification to our linear
example. Although we do not have parallel analytical results for non-linear
systems, we consider it most unlikely that other variants of the FT
procedure would converge, where FT-N does not, in our non-linear
examples.

We cannot claim that this establishes that IDS-N dominates all other
methods. Indeed, there is an ongoing debate on whether Newton-based
methods are superior for solving economic models to Gauss-Seidel
methods, for example. See Don and Gallo (1987) and Hughes Hallett and
Fisher (1990) for two different views on this subject. An IDS-GS application
could, in principle, converge faster than IDS-N, perhaps even in cases
where FT-N fails. Although there is no guarantee that IDS-GS will con-
verge on the solution, it could be faster if it does.

While we cannot rule out the possibility that special characteristics
of particular economic models could make the superior robustness

18. It is worth noting that, for IDS-N, the choice of a convergence tolerance and the size of
a shock are relatively unimportant because of the super-linear nature of Newton methods.
When a simulation of QPM converges under IDS-N, the solution is typically not affected
by tightening the convergence tolerance. Moreover, the time required is typically unaf-
fected by either the tolerance or the size of the shock. This should not be taken to apply
absolutely. The model is non-linear and there could be failure if the shock was large
enough. In practice, we have not found this to be a problem. For example, for testing pur-
poses we occasionally simulate, without difficulty, shocks amounting to 10 per cent of
aggregate demand.
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property of the Newton method redundant, our examples illustrate some
of the risks of alternative iterative methods and the problems that can
occur. Moreover, we would speculate that the high intertemporal
simultaneity in economic models with forward-looking behaviour and
expectations makes the robustness of the Newton method more than
simply a nice feature to have. It is our view that this robustness will prove
important in facilitating progress in research and development of policy
simulation models.
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7 CONCLUDING REMARKS

We have documented the convergence properties of a number of methods
for solving linear models with rational expectations. In particular, we have
shown that none of these methods, including the popular Fair-Taylor
approach, is guaranteed to converge on the true solution, with the excep-
tion of what we have called the IDS-N procedure.

In IDS, each variable at each time point is treated as a different
variable. In effect, time is removed from the problem by stacking the
equations for each variable at each time point into what is potentially a
very large matrix. In IDS-N, the complete stacked system is solved with a
Newton method that exploits analytical derivatives. We have shown that
this procedure is very robust; however, this advantage comes at the cost of
increasing the scale of the matrix that must be inverted in simulating a
model. With small models, this need not be of any special practical
concern. However, the size of the matrix expands very rapidly with the
size of the model and the number of time periods that must be simulated.

For work with the QPM model, we deal regularly with simulations
that require over 30 megabytes of memory, primarily for the matrix inver-
sion. For this procedure to be practicable, efficient sparse-matrix inversion
procedures are essential. Moreover, the method would not be as attractive
if insufficient core memory was available to hold the full problem. If the
problem must be solved with swapping to disk during the inversion, per-
formance deteriorates substantially. On the other hand, IDS can be used on
pieces of the problem, with an iterative procedure providing the overlap.19

19. In work with the Federal Reserve Board’s multicountry model, Faust and Tryon (1994)
solve individual country blocks and then iterate across blocks to obtain full convergence.
This work uses the FT algorithm. Staff at the International Monetary Fund have informed
us that IDS-N solves individual country blocks of their multicountry model, Multimod,
about 24 times faster than FT-N, but that FT-N appears faster on the complete model. They
have therefore implemented a procedure where IDS-N is used to solve the individual
country blocks, and an iterative process is applied across the blocks. We have not been
able to find any parallel results for solving QPM. Application of IDS-N to the complete
problem seems to be the fastest method. This is understandable, since there is a high level
of simultaneity within a country model, whereas the limited links between countries in a
multicountry application may define an efficient partition of the full problem.
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Although efficient sparse-matrix inversion procedures have been
available for some time, the IDS-N idea has become feasible only recently,

with advances in computer technology and the decline in the price of
large-scale memory. Iterative procedures, like FT, require much less
memory to run. However, it is important to understand that they are not
guaranteed to solve even linear models for which a solution does exist. We
think that this may have inhibited progress in developing policy
simulation models. The QPM model of the Canadian economy, a highly
non-linear model with forward-looking behaviour, is solved routinely with
IDS-N. Based on our experience, the model simply could not be used if we
were restricted to Fair-Taylor procedures.

Of course, this conclusion for QPM may not carry over to other
models. It is certainly possible that in particular cases an iterative proce-
dure would converge and that, owing to the large overhead of a Newton
procedure, would run faster. However, we would argue that there is great
danger in a methodology that can appear to indicate a modelling problem
when there is none, or worse, that may encourage researchers to discard, as
uninteresting, parameterizations of their models that result in slow solu-
tions or systematic simulation failures, when such parameterizations may,

in fact, be suggested by the data.



31

REFERENCES

Black, R., D. Laxton, D. Rose and R. Tetlow. 1994. The Steady-State Model:

SSQPM. The Bank of Canada’s New Quarterly Projection Model,
Part 1. Technical Report No. 72. Ottawa: Bank of Canada.

Blanchard, O. J. and C. M. Kahn. 1980. “The Solution of Linear Difference
Models Under Rational Expectations.” Econometrica 48 (July):
1305–11.

Buiter, W. H. 1984. “Saddlepoint Problems in Continuous Time Rational
Expectations Models: A General Method and Some Macroeconomic
Examples.” Econometrica 52 (May): 665–80.

Coletti, D., B. Hunt, D. Rose and R. Tetlow. 1994. “Some Dynamic
Properties of QPM.” Paper prepared for a presentation on the Bank
of Canada’s new Quarterly Projection Model at the meetings of the
Canadian Economics Association, University of Calgary, Calgary,

Alberta.

Dodes, I. A. 1978. Numerical Analysis For Computer Science. New York:
North Holland.

Don, F. J. H. and G. M. Gallo. 1987. “Solving Large Sparse Systems of
Equations in Econometric Models.” Journal of Forecasting 6: 167–80.

Fair, R. C. and J. B. Taylor. 1983. “Solution and Maximum Likelihood
Estimation of Dynamic Nonlinear Rational Expectations Models.”
Econometrica 51 (July): 1169–85.

Faust, J. and R. Tryon. 1994. “A Distributed Block Approach to Solving
Near-Block-Diagonal Systems with an Application to a Large
Macroeconometric Model.” Board of Governors of the Federal
Reserve System, Washington. Unpublished manuscript.

Fisher, P. 1992. Rational Expectations in Macroeconomic Models. Dordrecht
(The Netherlands): Kluwer Academic Publishers.



32

Fisher, P. G. and A. J. Hughes Hallett. 1988. “Efficient Solution Techniques
for Linear and Non-linear Rational Expectations Models.” Journal of

Economic Dynamics and Control 12: 635–57.

Fisher, P. G., S. Holly and A. J. Hughes Hallett. 1986. “Efficient Solution
Techniques for Dynamic Non-Linear Rational Expectations
Models.” Journal of Economic Dynamics and Control 10: 139–45.

Hall, S. G. 1985. “On the Solution of Large Economic Models with
Consistent Expectations.” Bulletin of Economic Research 37 (May):
157–61.

Hollinger, P. 1988. TROLL Program: Forward-Looking Simulator. Needham
(MA): Intex Solutions.

Holly, S. and A. Hughes Hallett. 1989. Optimal Control, Expectations and

Uncertainty. Cambridge (Eng.): Cambridge University Press.

Holly, S. and M. B. Zarrop. 1983. “On Optimality and Time-Consistency
When Expectations Are Rational.” European Economic Review 20
(January): 23–40.

Hughes-Hallett, A. J. 1981. “Some Extensions and Comparisons in the
Theory of Gauss-Seidel Iterative Techniques for Solving Large
Equation Systems.” In Proceedings of the 1979 Econometric Society

Meeting: Essays in Honour of Stefan Valvanis, edited by
E. G. Charatsis. Amsterdam: North-Holland.

Hughes Hallett, A. J. and P. G. Fisher. 1990. “On Economic Structures and
Model Solution Methods: Or Should Econometricians Use Newton
Methods for Model Solution?” Oxford Bulletin of Economics and

Statistics 52 (August): 317–30.

Laxton, D., D. Rose and R. Tetlow. 1993. Monetary Policy, Uncertainty and the

Presumption of Linearity. Technical Report No. 63. Ottawa: Bank of
Canada.



33

Lipton, D., J. Poterba, J. Sachs and L. Summers. 1982. “Multiple Shooting in
Rational Expectations Models.” Econometrica 50 (September):
1329–33.

Macklem, R. T. 1993. “Terms-of-Trade Shocks, Real Exchange Rate Adjust-
ment, and Sectoral and Aggregate Dynamics.” In The Exchange Rate

and the Economy: Proceedings of a Conference Held at the Bank of Canada,

22–23 June 1992. Ottawa: Bank of Canada.

Poloz, S., D. Rose and R. Tetlow. 1994. “The Bank of Canada’s New
Quarterly Projection Model (QPM): An Introduction.” Bank of

Canada Review (Autumn): 23–38.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. 1992.
Numerical Recipes in C: The Art of Scientific Computing. 2nd ed.
Cambridge (MA): Cambridge University Press.

Ralston, A. 1965. A First Course In Numerical Analysis. New York:
McGraw-Hill.

Reid, J. K. 1977. “Sparse Matrices.” In The State of the Art in Numerical

Analysis, edited by D. Jacobs, 85–146. London: Academic Press.

Rheinboldt, W. C. 1974. Methods for Solving Systems of Nonlinear Equations.
Philadelphia: Society for Industrial and Applied Mathematics.

Roberts, S. M. and J. S. Shipman. 1972. Two-Point Boundary Value Problems:

Shooting Methods. New York: American Elsevier Publishing Co.




