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Abstract 
Economists disagree about the factors driving the substantial increase in residual wage 
inequality in the United States over the past few decades. To identify changes in the returns to 
unobserved skills, we make a novel assumption about the dynamics of skills (especially among 
older workers) rather than about the stability of skill distributions across cohorts, as is standard. 
We show that this assumption is supported by data on test score dynamics for older workers 
in the Health and Retirement Study. Using survey data from the Panel Study of Income 
Dynamics and administrative data from the Internal Revenue Service and the Social Security 
Administration, we estimate that the returns to unobserved skills declined substantially since 
the mid-1980s despite a sizable increase in residual inequality. Instead, the variance of skills 
rose over this period due to increasing variability in idiosyncratic lifecycle skill growth. We 
extend our framework to consider occupational differences in returns to skill and multiple 
unobserved skills and show that returns to skill display similar patterns for workers employed 
in cognitive, routine and social occupations. 

Topics: Econometric and statistical methods; Labour markets 
JEL codes: C, C2, C23, J, J2, J24, J3, J31 

Résumé 
Les économistes ne s’entendent pas sur les facteurs qui sont à l’origine de l’augmentation 
importante des inégalités résiduelles de salaire observée aux États-Unis depuis les dernières 
décennies. Pour identifier les changements relativement au rendement des compétences non 
observées, nous faisons une hypothèse originale au sujet de la dynamique des compétences 
(en particulier chez les travailleurs âgés) plutôt qu’au sujet de la stabilité de la distribution des 
compétences entre les cohortes, comme c’est habituellement le cas. Nous montrons que cette 
hypothèse est appuyée par des données sur la dynamique des résultats de tests de travailleurs 
âgés, tirées de la Health and Retirement Study (une étude américaine sur la santé et la retraite). 
À partir des données d’enquête de la Panel Study of Income Dynamics (une étude par panel 
sur la dynamique des revenus) et de données administratives de deux agences fédérales 
américaines (l’Internal Revenue Service et la Social Security Administration), nous estimons que 
le rendement des compétences non observées a enregistré un recul considérable depuis le 
milieu des années 1980 en dépit d’une hausse appréciable des inégalités résiduelles. La 
variance des compétences a plutôt augmenté au cours de la période en raison d’une plus 
grande variabilité de la croissance idiosyncrasique des compétences durant le cycle de vie. 
Nous élargissons notre cadre pour prendre en considération l’effet des différences 
professionnelles sur le rendement des compétences ainsi que de nombreuses compétences 
non observées, et nous montrons que le rendement des compétences est semblable qu’un 
emploi exige des compétences cognitives, sociales ou autres. 

Sujets : Méthodes économétriques et statistiques; Marchés du travail 
Codes JEL : C, C2, C23, J, J2, J24, J3, J31 



1 Introduction

Wage inequality has risen considerably in the United States since the 1960s. The long-term increases in
wage differentials by education and experience are widely attributed to rising returns to skill (Bound and
Johnson, 1992; Katz and Murphy, 1992). In addition to these trends, wage inequality within narrowly
defined groups (e.g. by race, education, and age/experience) also rose substantially. Figure 1 reports these
trends for men based on data from the Panel Study of Income Dynamics (PSID) used in this study.1
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Figure 1: Between- and Within-Group Variances of Log Wages

Since the seminal work of Juhn, Murphy, and Pierce (1993), economists have often equated rising
within-group, or residual, inequality with an increase in the returns to ‘unobserved’ ability or skill (see,
e.g., Card and Lemieux, 1996; Katz and Autor, 1999; Acemoglu, 2002; Autor, Katz, and Kearney,
2008). This interpretation, along with the rising returns to ‘observable’ skills (i.e, education, experience),
motivated an enormous and still influential literature on skill-biased technical change (SBTC).2 More
recent task-based models of the labor market also explore the influence of automation and globalization
on wage and employment inequality between and within groups by altering the demand for both observed
and unobserved skills (e.g., Autor, Levy, and Murnane, 2003; Acemoglu and Autor, 2011; Acemoglu and
Restrepo, 2022; Acemoglu and Loebbing, 2022).

In an important challenge to the conventional view, Lemieux (2006) demonstrates that the rise in
residual inequality is at least partially explained by an increase in the variance of unmeasured skills
resulting from composition changes in the labor market, especially in the late-1980s and 1990s, as the

1In obtaining between- and within-group log wage variances, we condition log wages on potential experience, race/ethnicity,
and 7 educational attainment categories, separately by year and college vs. non-college status. See Section 3.1 for details.

2Many early theoretical studies aimed specifically to explain rising residual inequality and returns to unobserved ability/skill
(e.g., Galor and Tsiddon, 1997; Acemoglu, 1999; Caselli, 1999; Galor and Moav, 2000; Violante, 2002).
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workforce shifted increasingly to older and more educated workers who exhibit greater within-group
inequality. Lemieux (2006) and Gottschalk and Moffitt (2009) further argue that increasing measurement
error and short-term wage volatility have also contributed to rising residual inequality. Whether the rise in
residual inequality reflects an increase in returns to unobserved skills, growing unobserved skill inequality,
or increased wage volatility unrelated to skills (or measurement error) is critical to our understanding
of both the economic causes and welfare consequences of rising inequality. This paper provides a new
approach for disentangling the importance of these distinct economic forces.

Several recent studies have turned to richer data to incorporate additional measures of skills or
occupational tasks, directly estimating their effects on wages at different points in time. Using the 1979
and 1997 Cohorts of the National Longitudinal Surveys of Youth (NLSY), Castex and Dechter (2014)
estimate that the wage returns to cognitive achievement, as measured during adolescence by the Armed
Forces Qualifying Test (AFQT), declined substantially between the late-1980s and late-2000s in the United
States. Deming (2017) confirms this finding but further estimates that the returns to social skills have risen
across these two cohorts.3 Among others, Autor, Levy, and Murnane (2003) and Autor and Dorn (2013)
document a decline in demand for middle-skill workers caused by the automation of routine tasks, which
has led to a fall in the wages for workers in many middle-skill relative to low- and high-skill occupations,
dubbed ‘polarization’. Caines, Hoffmann, and Kambourov (2017) instead argue that occupational task
complexity has become a stronger determinant of wages in recent years, more so than routineness.

While efforts to better measure skills and job tasks have enriched our understanding of wage inequality,
much of the cross-sectional variation in wages remains unexplained in these studies. More importantly,
difficult measurement challenges have led to strong (often implicit) assumptions on the evolution of skills
over the lifecycle and across cohorts. For example, Castex and Dechter (2014) and Deming (2017)
examine the effects of pre-market skills on wages ignoring subsequent lifecycle skill accumulation that
may vary across workers and over time. Because the vast majority of studies taking a task-based approach
do not use individual-level data on skills or job tasks, they implicitly assume that worker skills and tasks
within each occupation are time-invariant and attribute all time variation in wages across occupations to
changes in the returns to skills/tasks.4

Studies of long-term changes in residual wage inequality or the returns to unobserved skills largely
rely on repeated samples of cross-section data, making it difficult to distinguish changes in skill returns

3Edin et al. (2022) estimate relatively stable returns to cognitive skills and rising returns to a measure of teamwork and
leadership skills in Sweden.

4Autor and Handel (2013) find that person-level job tasks vary systematically across demographic groups within occu-
pations, suggesting that worker skills and job tasks are likely to change within occupations as the workforce composition
changes. Comparing skill requirements by occupation across editions of the Dictionary of Occupational Titles (DOT) and
O*NET, Cavounidis et al. (2021) and Cortes, Jaimovich, and Siu (2023) document within-occupation changes in the skill/task
content/requirements of jobs in the U.S. Using data with individual-level measures of job tasks, Spitz-Oener (2006) shows
that most task changes in Germany over the 1980s and 1990s occurred within occupations.
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from changes in the distributions of skills. As we show, panel data are naturally more useful. Intuitively,
if heterogeneity in skills is important, then workers earning a high wage one one year should continue,
on average, to earn a high wage many years later (even after the influence of transitory wage shocks has
faded). As such, heterogeneity in unobserved skills implies that differences in wage residuals across
workers should be predictive of long-term future residual differences. Moreover, an increase in the return
to unobserved skills should lead to divergence in average log wage residuals across workers with different
initial wage residuals. This is not what we observe during the late-1980s and 1990s.

Categorizing workers based on their log wage residual quartile in three different base years (𝑏 = 1970,
1980, and 1990), Figure 2 reports their average residuals 6–20 years later (i.e., years 𝑡 = 𝑏 + 6, ..., 𝑏 + 20).
Consistent with an important role for unobserved skills, those with higher wage residuals in any given base
year also earn more, on average, up to 20 years later.5 As discussed further below, the sharp convergence
in lines over the late-1980s and 1990s suggests that the returns to skill fell over those years, despite modest
growth in residual inequality at the time. Returns appear to be more stable in earlier and later years.
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Figure 2: Average Predicted Log Wage Residuals by Baseline Residual Quartile

Notes:

We show that if unobserved skill growth is uncorrelated with sufficiently lagged skill levels and if
non-skill wage shocks exhibit limited persistence, then a simple instrumental variable (IV) strategy can
be used to estimate growth in skill returns over time. While endogenous skill investments may raise
concerns about the skill-growth assumption for young workers, it is much more natural for older workers
whose skill investments are likely to be negligible (Becker, 1964; Ben-Porath, 1967). Indeed, we show
that panel data on cognitive test scores for older men in the Health and Retirement Study (HRS) support

5Differences in levels across lines for any given quartile are due to differences in base year wage distributions.
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this assumption, as do several other specification tests. We also show that this assumption, along with the
assumption of limited persistence in non-skill wage shocks, can be relaxed; although, we can no longer
rely on a simple IV estimator and instead turn to more general moment-based approaches using the full
autocovariance structure for log wage residuals.6 Once the returns to skill have been estimated (from,
e.g., older workers), it is straightforward to estimate the distribution of unobserved skills, skill growth,
and non-skill shocks over time. Importantly, there is no need to observe independent measures of skills
or what workers do on their jobs, enabling application of our approach in widely available panel data sets.

Using PSID data on log hourly wages, we estimate the evolution of returns to unobserved skills
for American men from 1970 to 2012. Our main finding is that the returns to unobserved skills were
relatively stable from 1970 to the mid-1980s, then fell considerably through the late-1980s and 1990s,
stabilizing thereafter. The drop in estimated returns reflects the sharp convergence in predicted wage
residuals conditional on earlier differences as documented in Figure 2 and is robust to different estimation
strategies and assumptions about the dynamics of skills and non-skill wage shocks. The decline in skill
returns appears to be stronger for non-college workers, consistent with the recent literature on polarization
(Autor, Levy, and Murnane, 2003; Autor, Katz, and Kearney, 2008; Acemoglu and Autor, 2011; Autor
and Dorn, 2013).

The flip side of declining returns is that the variance of unobserved skill has risen substantially since
the early-1980s, driving the increase in residual wage inequality.7 Consistent with stability of AFQT
distributions among teenagers across NLSY cohorts (Altonji, Bharadwaj, and Lange, 2012), this increase
is not driven by growth in the variance of early-career skill levels across cohorts. Instead, we find that
the growing skill dispersion reflects an increase in the variance of idiosyncratic skill growth innovations,
consistent with the notion of growing economic turbulence studied by Ljungqvist and Sargent (1998). We
find little evidence of heterogeneity in systematic lifecycle skill growth, as studied by Lillard and Weiss
(1979), MaCurdy (1982), Baker and Solon (2003), Guvenen (2009), and Moffitt and Gottschalk (2012).

A growing literature highlights differences in pay across occupations and the potential for different
trends in the returns to heterogeneous skills (e.g., Autor, Levy, and Murnane, 2003; Acemoglu and Autor,
2011; Autor and Dorn, 2013; Deming, 2017). To explore these issues, we extend our analysis to consider
occupation-specific wage schedules over a multi-dimensional skill vector. We show that our IV estimator
identifies a weighted-average of returns across different (unobserved) skills and use occupation-stayers to

6The voluminous literature on earnings dynamics uses a similar moment-based estimation approach but focuses on a
different set of questions from ours: identifying the changing importance of permanent vs. transitory shocks in earnings and
the resulting implications for consumption and wealth inequality (e.g., Gottschalk and Moffitt, 1994; Blundell and Preston,
1998; Haider, 2001; Moffitt and Gottschalk, 2002; Meghir and Pistaferri, 2004; Bonhomme and Robin, 2010; Heathcote,
Storesletten, and Violante, 2010; Heathcote, Perri, and Violante, 2010; Moffitt and Gottschalk, 2012; Blundell, Graber, and
Mogstad, 2015).

7The widening skill growth distributions within education and experience groups are not accounted for in the composition
adjustments of Lemieux (2006).
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estimate the evolution of occupation-specific skill returns. Based on the PSID, we estimate very similar
long-run declines in the returns to skills within routine, cognitive, and social occupations.

Given recent concerns about differences in the dynamics of log earnings residuals between survey
and administrative data (see, e.g., Sabelhaus and Song, 2010), we reproduce key results using earnings
measures from W-2 forms (collected by the the Internal Revenue Service, IRS) linked with several panels
of the Survey of Income and Program Participation (SIPP). This analysis also indicates substantial long-
run declines in average returns to unobserved skills; however, it suggests weaker (though not statistically
different) declines in skill returns within cognitive relative to routine occupations since 1990.

This paper proceeds as follows. Section 2 describes our baseline assumptions used to identify and
estimate the returns to skill over time using panel data on wages, contrasting these assumptions with those
used in prior work (e.g. Juhn, Murphy, and Pierce, 1993; Lemieux, 2006; Castex and Dechter, 2014).
We also test our main assumption on unobserved skill dynamics using cognitive test scores in the HRS.
Section 3 describes the PSID data used for most of our empirical analysis and reports estimated returns
to unobserved skill in the U.S. since the late-1970s. Sections 4 discusses identification of unobserved
skill distributions, separately from the distributions of non-skill shocks, and provides estimates of these
distributions over time. We also decompose the variance of skills into contributions from heterogeneity
in initial skills and variation due to idiosyncratic lifecycle skill growth. Section 5 extends our analysis
to account for differences across occupations and multiple skills. Finally, we confirm our PSID-based
empirical findings with administrative data in Section 6 before concluding in Section 7.

2 Identifying and Estimating the Returns to Unobserved Skills

We consider the following specification for log wages motivated by the literature on unobserved skills
(e.g., Juhn, Murphy, and Pierce, 1993; Card and Lemieux, 1994; Chay and Lee, 2000; Lemieux, 2006):

ln𝑊𝑖,𝑡 = 𝑓𝑡 (𝒙𝑖,𝑡) + 𝑤𝑖,𝑡 (1)

𝑤𝑖,𝑡 = 𝜇𝑡𝜃𝑖,𝑡 + 𝜀𝑖,𝑡 , (2)

where 𝑊𝑖,𝑡 reflects wages for individual 𝑖 = 1, ..., 𝑁 in period 𝑡 = 𝑡, ..., 𝑡, 𝑓𝑡 (𝒙𝑖,𝑡) reflects the time-
varying influence of observed characteristics 𝒙𝑖,𝑡 (e.g. education, race, experience), and 𝑤𝑖,𝑡 is the log
wage “residual” satisfying E[𝜃𝑡 |𝒙𝑡] = E[𝜀𝑡 |𝒙𝑡] = 0.8 The residual 𝑤𝑖,𝑡 reflects the contributions of
unobserved skill (equivalently, worker productivity) 𝜃𝑖,𝑡 and idiosyncratic non-skill shocks 𝜀𝑖,𝑡 , which may

8Let 𝑥𝑡 be a random variable and its realization for individual 𝑖 be 𝑥𝑖,𝑡 . Denote its cross-sectional first and second moments
by E[𝑥𝑡 ], Var(𝑥𝑡 ), and Cov(𝑥𝑡 , 𝑥𝑡 ′ ).
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include measurement error.9 Note that average unobserved skill growth, which may vary by observable
characteristics, is subsumed in changes in 𝑓𝑡 (𝒙𝑖,𝑡).10 Individuals may come from different cohorts (i.e.
different years of labor market entry), which we discuss further below.

As emphasized by Juhn, Murphy, and Pierce (1993), the returns to unobserved skills, reflected in
𝜇𝑡 > 0, may evolve quite differently over time from the returns to observed measures of skills, reflected
in 𝑓𝑡 (·). Our analysis focuses on the log wage residual of equation (2) with the aim of identifying and
estimating the returns to unobserved skill over time.11 We also use the residual 𝑤𝑖,𝑡 to identify and estimate
the evolution of unobserved skill variation over time.

A few recent studies (e.g., Castex and Dechter, 2014; Deming, 2017) take advantage of skill measure-
ments, or test scores, to aid in identification of the returns to skill. To facilitate discussion of these studies
and to test our own assumptions, consider a (potentially) repeated skill measurement, 𝑇𝑖,𝑡 , in period 𝑡:

𝑇𝑖,𝑡 = 𝑔𝑡 (𝒙𝑖,𝑡) + 𝜏𝜃𝑖,𝑡 + 𝜂𝑖,𝑡 . (3)

This specification allows test scores to vary with both observed factors and unobserved skills.12 We
assume that unobserved skills have the same effect on scores for the same test regardless of when the test
is taken (i.e., 𝜏 is time-invariant). We also assume throughout our analysis that test measurement errors
are serially uncorrelated and are uncorrelated with other observed variables 𝒙𝑡 , unobserved skills 𝜃𝑡 , and
non-skill shocks 𝜀𝑡 .13 It is useful to define test score residuals, 𝑇𝑖,𝑡 ≡ 𝑇𝑖,𝑡 − 𝑔𝑡 (𝒙𝑖,𝑡) = 𝜏𝜃𝑖,𝑡 + 𝜂𝑖,𝑡 .

2.1 Prior Assumptions in the Literature

We briefly consider the strategies and assumptions previously employed in the literature on skill returns.

9Chay and Lee (2000), Card and Lemieux (1994), and Lemieux (2006) consider the same log wage residual decomposition;
however, they assume that the variances of skills within observable groups (e.g. education, experience, race) are time invariant.
Thus, their approaches only account for changes in the overall variance of unobserved skills due to changes in the composition
of workers across observable types. In estimating the importance of these composition changes, Lemieux (2006) ignores any
variation in the transitory component, 𝜀𝑖,𝑡 ; although, he also provides a separate analysis documenting increases in log wage
measurement error over time. Our use of panel data facilitates a more general analysis.

10The assumption of separability between 𝒙𝑖,𝑡 and 𝜃𝑖,𝑡 is both common and convenient, though not necessary. One can
condition the analysis that follows on 𝒙𝑖,𝑡 . Our empirical analysis separately studies non-college and college educated workers.

11Equations (1) and (2) imply wage levels that are non-linear in unobserved skill. As such, variation in 𝜇𝑡 over time is
inconsistent with perfect substitutability across workers of different skill levels, since this would imply log wages functions
that are additively separable in ‘prices’ and skills. Instead, this non-linearity is consistent with assignment and task-based
models of the labor market (see, e.g., Sattinger, 1993; Costinot and Vogel, 2010; Acemoglu and Autor, 2011). See Lochner,
Park, and Shin (2018) for assumptions on the production technology and distribution of skills and firm productivity that yield
wage functions given by equations (1) and (2) in a standard assignment model.

12Note that 𝑔 𝑗 ,𝑡 (·) may reflect differential measurement quality across groups or differences in skills across groups (e.g.,
total skills measured by the test may be given by �̃� 𝑗 ,𝑡 (𝒙𝑡 ) + 𝜃𝑡 , in which case 𝑔 𝑗 ,𝑡 (𝒙𝑡 ) = 𝜏𝑗 �̃� 𝑗 ,𝑡 (𝒙𝑡 )).

13Specifically, we assume that E[𝜂𝑡 |𝒙𝑡 ] = Cov(𝜂𝑡 , 𝜃𝑡 |𝒙𝑡 ) = 0 for all 𝑡, Cov(𝜂𝑡 , 𝜃𝑡 ′ ) = Cov(𝜂𝑡 , 𝜀𝑡 ′ ) = 0 for all 𝑡, 𝑡′, and
Cov(𝜂𝑡 , 𝜂𝑡 ′ ) = 0 for all 𝑡 ≠ 𝑡′.
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2.1.1 Juhn, Murphy, and Pierce (1993)

By equating the increase in residual inequality with an increase in skill returns, 𝜇𝑡 , Juhn, Murphy, and
Pierce (1993) assume that the cross-sectional distributions of unobserved skills and non-skill shocks
are time-invariant. To “test” this assumption, they compare growth in the variance of residuals when
following cohorts vs. experience groups over the period they examine (1963–1989). Unfortunately, this
comparison is not very informative about the evolution of skill distributions or returns over time. To see
why, let 𝑐 reflect a cohort’s year of labor market entry and assume for simplicity that Cov(𝜀𝑡 , 𝜃𝑡 |𝑐) = 0
and Var(𝜀𝑡 |𝑐) = Var(𝜀𝑡) for all 𝑡 ≥ 𝑐. Then,[

Var(𝑤𝑡+ℓ |𝑐) − Var(𝑤𝑡 |𝑐)︸                          ︷︷                          ︸
within-cohort

]
−

[
Var(𝑤𝑡+ℓ |𝑐 + ℓ) − Var(𝑤𝑡 |𝑐)︸                               ︷︷                               ︸

within-experience

]
= Var(𝑤𝑡+ℓ |𝑐) − Var(𝑤𝑡+ℓ |𝑐 + ℓ)

= 𝜇2
𝑡+ℓ [Var(𝜃𝑡+ℓ |𝑐) − Var(𝜃𝑡+ℓ |𝑐 + ℓ)] ,

which equals zero if the variance of skills (in period 𝑡 + ℓ) does not differ across cohorts.14 Notice that
Var(𝜃𝑡+ℓ |𝑐) = Var(𝜃𝑡+ℓ |𝑐 + ℓ) for all ℓ ≥ 0 implies that the variance of skills within each period is the
same across all cohorts, but it does not say anything about the evolution of skill variation or returns over
time. As discussed further in Appendix A.1, equal within-cohort and within-experience growth in the
variance of residuals is consistent with growth in skill returns, the variance of skill growth, or the variance
of non-skill wage shocks.15

2.1.2 Lemieux (2006)

Assuming that the variance of skills conditional on observed characteristics is time-invariant, Var(𝜃𝑡 |𝒙𝑡 =
𝒙) = 𝜎2(𝒙), ∀(𝑡, 𝒙), Lemieux (2006) shows that the variance of skills increased over time due to
compositional shifts in the labor market. To estimate changes in returns to unobserved skill over time, he
implicitly ignores time variation in Var(𝜀𝑡) and re-weights Var(𝑤𝑡 |𝒙𝑡) each year to account for composition
shifts in 𝒙𝑡 .16

Since Lemieux’s assumption is not related to the dynamics of skill, it can be tested using repeated

14This would arise if, for example, growth in the variance of skills accumulated via labor market experience was exactly
offset by growth in the variance of initial skills across cohorts.

15Empirically, Juhn, Murphy, and Pierce (1993) estimate very similar within-experience and within-cohort growth in log
wage variation between 1964 and 1989; yet, their results suggest 20–30% stronger within-cohort (relative to within-experience)
growth in log wage residual variation from 1970 to 1988. These results are, therefore, consistent with stronger growth in
unobserved skill variation over the lifecycle than across cohorts during the 1970s and 1980s, but they say little about changes
in the population-wide distribution of unobserved skill over this period.

16A separate analysis in Lemieux (2006) shows that measurement error in wages increased over time, at least in the widely
used March Current Population Survey (CPS).
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cross-section data with the same skill measurement over time. To see this, notice that equation (3) implies

Var(𝑇𝑡 |𝒙𝑡) = E[𝑇2
𝑡 |𝒙𝑡] = 𝜏2 Var(𝜃𝑡 |𝒙𝑡) + Var(𝜂𝑡 |𝒙𝑡).

Assuming the variance of test score measurement error, Var(𝜂𝑡 |𝒙𝑡), does not change over time, time-
invariance of Var(𝜃𝑡 |𝒙𝑡) implies that Var(𝑇𝑡 |𝒙𝑡) should also be constant over time.

Using data on men with 30–50 years of experience in the 1996–2018 HRS, we test whether the variance
of cognitive memory scores conditional on 𝒙𝑡 has changed over time by regressing the squared residual of
memory scores on indicators for race, educational attainment, experience, and year.17 If Var(𝜃𝑡 |𝒙𝑡 = 𝒙)
is time-invariant, then the coefficients on year indicators should all be equal. Our results, shown in
Appendix A.2, strongly reject time-invariance for highly experienced men in the HRS, indicating changes
in within-group skill inequality over time.

2.1.3 Castex and Dechter (2014) and Deming (2017)

A few recent studies incorporate direct skill measurements in estimating the returns to (traditionally
unobserved) skills over time (e.g., Castex and Dechter, 2014; Deming, 2017). Regressing log wages of
workers in their late-20s on adolescent skill measures for different cohorts, these studies identify changes
in the effects of adolescent skills on adult earnings (10–15 years later), confounded by any changes in
measurement reliability. Even ignoring idiosyncratic errors in skill measurements, these estimates do not
necessarily identify the evolution of returns to contemporaneous skills, 𝜇𝑡 , because they are confounded
by any cross-cohort changes in the relationship between adolescent skills and adult skills.

In our context, OLS regression of log wage residuals in year 𝑡 + ℓ on test residuals in year 𝑡 identifies

𝛽𝑡,𝑡+ℓ
𝑝
→ Cov(𝑤𝑡+ℓ, 𝑇𝑡)

Var(𝑇𝑡)
=

𝜇𝑡+ℓ
𝜏

[
1 + Cov(𝜃𝑡+ℓ − 𝜃𝑡 , 𝜃𝑡)

Var(𝜃𝑡)

]
︸                         ︷︷                         ︸

Skill Dynamics

[
𝜏2 Var(𝜃𝑡)

𝜏2 Var(𝜃𝑡) + Var(𝜂𝑡)

]
︸                        ︷︷                        ︸

Test Reliability Ratio (𝑅𝑡 )

,

where ℓ ≥ 0 reflects the years between wage measurement and the time tests were administered. Under
ideal conditions, this regression identifies returns to skill in any period 𝑡 + ℓ up to the test score scale:
𝜇𝑡+ℓ/𝜏. Unfortunately, the two terms in brackets complicate identification of skill return growth.

Following a single cohort over time (i.e., varying ℓ for fixed 𝑡) will confound systematic heterogeneity

17The cognitive memory measure is a combination of immediate and delayed recall with raw scores ranging from 0 to 20.
While the HRS contain other skill measures, they are either discrete (with very few values) or available for limited years. The
memory recall measure we use has a correlation of roughly 0.3 with other cognitive tests focused on math skills, roughly 0.25
with log wages, and 0.07 with log wage residuals. See Appendix F for details on these measures and our HRS data.
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in skill growth with changes in the returns to skill, as reflected in the “Skill Dynamics” term.18 Instead
of following the same cohort over time, Castex and Dechter (2014) compare estimates 𝛽𝑡,𝑡+ℓ and 𝛽𝑡′,𝑡′+ℓ

across the NLSY79 and NLSY97 cohorts where 𝑡 ≈ 1980 and 𝑡′ ≈ 1997, respectively. They use the
same cognitive test measure, AFQT, in both periods with wages reported roughly 10–15 years after the
tests were administered.19 Comparing across cohorts, the “Skill Dynamics” term may differ due to cohort
differences in the dynamics of skill accumulation between the year tests are taken (𝑡 and 𝑡′) and the year
wages are measured (𝑡 + ℓ and 𝑡′ + ℓ). If the variance of test score measurement error is time-invariant,
then the “Test Reliability Ratio”, 𝑅𝑡 , will be the same across cohorts if and only if Var(𝜃𝑡) = Var(𝜃𝑡′),
which then implies that the variance of test score residuals should also be the same across cohorts. For
ℓ ≥ 1, 𝛽𝑡′,𝑡′+ℓ/𝛽𝑡,𝑡+ℓ is unlikely to identify growth in unobserved skill returns, 𝜇𝑡′+ℓ/𝜇𝑡+ℓ, if (i) the process
for unobserved skill dynamics (over the first ℓ years after tests are measured) differs across cohorts or (ii)
“initial” skill distributions differ across cohorts.20

Given modest changes in the distribution of AFQT scores across cohorts (Altonji, Bharadwaj, and
Lange, 2012), the “Test Reliability Ratio” term is likely to be very similar across NLSY cohorts. By
contrast, there are good reasons to think that skill dynamics during early-adulthood have changed. For
example, Ashworth et al. (2021) document increases in work experience throughout high school and
college, coupled with a rise in time to college degree for the NLSY97 cohort. Additionally, Appendix B
documents substantial changes across NLSY cohorts in the types of occupational experience accumulated
over ages 17–26. Most notably, experience accumulated in sales positions nearly tripled, while experience
in manager and professional positions increased by 23% and 54%, respectively. Increases in management
and professional experience were particularly strong at the high end of the AFQT distribution, while
increases in sales and service experience were more uniform or concentrated at the low end.

Even ignoring these concerns, Castex and Dechter (2014) are only able to estimate changes in the
returns to skill across two snapshots in time, from the late-1980s to around 2010. These estimates, as well
as similar estimates for AFQT by Deming (2017), suggest that the returns to math and reading skills fell
by roughly half over this 20-year period. Our estimated returns to skill presented below imply a similar
drop, indicating that much of the decline occurred during the late-1980s and 1990s with relative stability
in the 2000s.

18See Murnane, Willett, and Levy (1995) and Cawley, Heckman, and Vytlacil (2001) for efforts to sort out the rising
importance of schooling vs. cognitive ability for earnings using the NLSY79.

19The NLSY79 (NLSY97) surveyed youth born 1957–1964 (1980–1984) administering a battery of tests to all respondents.
The AFQT tests measure math and reading skills and were administered in 1980 (NLSY79) and 1997 (NLSY97) for most
respondents in the two cohorts. In practice, the Armed Services Vocational Aptitude Battery (ASVAB) underlying the AFQT
was taken via pencil and paper in the NLSY79, while it was administered in computer-adaptive form for the NLSY97.

20If wages are observed during the same years skills are measured for both cohorts (i.e., ℓ = 0), then the “Skill Dynamics”
term equals one, and consistent estimation of growth in skill returns, 𝜇𝑡 ′/𝜇𝑡 , depends only on time-invariance of the test
reliability across cohorts.
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This discussion has assumed that the same skill measurement is used for both cohorts; otherwise,
cross-cohort comparisons of 𝛽𝑡,𝑡+ℓ and 𝛽𝑡′,𝑡′+ℓ would also be confounded by differences in the mapping
between skills and their measurement (i.e., differences in 𝜏 across tests). This is an additional challenge
faced by Deming (2017), who aims to estimate changes in the return to social skills across NLSY
cohorts. Unfortunately, he is forced to use different measures of social skills across cohorts, which
means that his results cannot distinguish between differences in the “strength” of those measures vs.
changes in skill returns, even if one is willing to assume that initial social skill distributions and their
accumulation through high school, college, and early work-years remained the same across NLSY cohorts
– a questionable assumption given the aforementioned cross-cohort increases in experience working in
service, professional, and management occupations.21

2.2 Identification using Panel Data on Wages

Previous efforts to estimate the returns to unobserved skills rely on assumptions about the stability of skill
distributions across cohorts. Using panel data, we introduce a very different approach based primarily on
an assumption about lifecycle skill dynamics. Central to our approach is the classical idea of Friedman
and Kuznets (1954) that earnings consist of a permanent component related to skills and a transitory
component reflecting short-run variation unrelated to skills. Although the transitory component, which
may include measurement error, can be serially correlated, the correlation between transitory components
far apart in time is likely to be negligible.22 We begin with the following assumption.

Assumption 1. For known 𝑘 ≥ 1 and for all 𝑡 − 𝑡′ ≥ 𝑘: (i) Cov(Δ𝜃𝑡 , 𝜃𝑡′) = 0; (ii) Cov(Δ𝜃𝑡 , 𝜀𝑡′) = 0; (iii)
Cov(𝜀𝑡 , 𝜃𝑡′) = 0; and (iv) Cov(𝜀𝑡 , 𝜀𝑡′) = 0.

Condition (i) assumes that skill growth is uncorrelated with sufficiently lagged skill levels. This allows
for both fully permanent and transitory skill innovations. Condition (ii) allows for non-skill shocks to
influence skill growth in the short-term but not in the long-term. For example, family illness or short-term
work disruptions (including transitory firm-level productivity disruptions) may impact skill growth in the
same year or even over the next 𝑘 − 1 years. Condition (iii) is satisfied if skill levels are uncorrelated with
non-skill shocks 𝑘 or more years later, while condition (iv) requires that non-skill shocks have limited

21Deming (2017) normalizes his available measures of social skills to have a standard deviation of one in both cohorts
before estimating 𝛽𝑡 ,𝑡+ℓ and 𝛽𝑡 ′ ,𝑡 ′+ℓ (for social skills); however, this does not eliminate bias coming from differences in 𝜏 across
measurements. See Appendix A.3 for details. Edin et al. (2022) take advantage of more consistent measures of cognitive
and social/leadership skills across cohorts in Sweden, estimating modest reductions in returns to cognitive skills and increases
in returns to social/leadership skills. While scores need not be re-normalized for each cohort, this analysis still relies on the
assumption that early-career skill dynamics are identical across cohorts, as well as stability in measurement reliability ratios
over time.

22Also see Carroll (1992) and Moffitt and Gottschalk (2011), who make similar assumptions ensuring that “long” autoco-
variances for log earnings residuals reflect a permanent component.
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persistence (e.g., they may follow an MA(𝑞) process where 𝑞 ≤ 𝑘 −1). We discuss all of these conditions
in greater detail below, empirically testing or relaxing those most central to identifying skill returns.

Our analysis assumes a sufficiently long panel with length satisfying 𝑡 − 𝑡 ≥ 𝑘 + 1. Let Δ reflect the
first-difference operator.

Proposition 1. Assumption 1 implies that for all 𝑡 − 𝑡′ ≥ 𝑘 + 1, the following instrumental variable (IV)
estimator identifies skill return growth rates:

Cov(Δ𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′)

=
Δ𝜇𝑡

𝜇𝑡−1
. (4)

For 𝑡 − 𝑡 ≥ 𝑘 + 1 and normalizing 𝜇𝑡∗ = 1 for some 𝑡∗ ≥ 𝑡 + 𝑘 , all other 𝜇𝑡+𝑘 , 𝜇𝑡+𝑘+1, ..., 𝜇𝑡 are identified.

Proof: For all 𝑡 − 𝑡′ ≥ 𝑘 ,

Cov(𝑤𝑡 , 𝑤𝑡′) = Cov(𝜇𝑡𝜃𝑡 + 𝜀𝑡 , 𝜇𝑡′𝜃𝑡′ + 𝜀𝑡′)
= 𝜇𝑡 Cov(𝜃𝑡 , 𝜇𝑡′𝜃𝑡′ + 𝜀𝑡′) + 𝜇𝑡′ Cov(𝜀𝑡 , 𝜃𝑡′) + Cov(𝜀𝑡 , 𝜀𝑡′)
= 𝜇𝑡 Cov(𝜃𝑡 , 𝜇𝑡′𝜃𝑡′ + 𝜀𝑡′) [Assum 1(iii)–(iv)]

= 𝜇𝑡 Cov(𝜃𝑡′+𝑘−1 + Δ𝜃𝑡′+𝑘 + Δ𝜃𝑡′+𝑘+1 + ... + Δ𝜃𝑡 , 𝜇𝑡′𝜃𝑡′ + 𝜀𝑡′)
= 𝜇𝑡 [𝜇𝑡′ Cov(𝜃𝑡′+𝑘−1, 𝜃𝑡′) + Cov(𝜃𝑡′+𝑘−1, 𝜀𝑡′)]︸                                                ︷︷                                                ︸

≡Ω𝑡′

[Assum 1(i)–(ii)]. (5)

Thus, for 𝑡 − 𝑡′ ≥ 𝑘 + 1,
Cov(Δ𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′)

=
Δ𝜇𝑡Ω𝑡′

𝜇𝑡−1Ω𝑡′
=

Δ𝜇𝑡

𝜇𝑡−1
.

□

Proposition 1 shows that Δ𝜇𝑡/𝜇𝑡−1 can be estimated by regressing Δ𝑤𝑖,𝑡 on 𝑤𝑖,𝑡−1 using sufficiently
lagged 𝑤𝑖,𝑡′ as an instrument. This IV approach is intuitive, since wage residuals can be thought of as
‘noisy’ measures of skill levels. To further this line of reasoning, follow the approach of Holtz-Eakin,
Newey, and Rosen (1988), using 𝜃𝑖,𝑡 = 𝜃𝑖,𝑡−1 + Δ𝜃𝑖,𝑡 and 𝜃𝑖,𝑡−1 = (𝑤𝑖,𝑡−1 − 𝜀𝑖,𝑡−1)/𝜇𝑡−1 to obtain an
expression for Δ𝑤𝑖,𝑡 in terms of 𝑤𝑖,𝑡−1:

Δ𝑤𝑖,𝑡 =

[
𝜇𝑡

(
𝑤𝑖,𝑡−1 − 𝜀𝑖,𝑡−1

𝜇𝑡−1
+ Δ𝜃𝑖,𝑡

)
+ 𝜀𝑖,𝑡

]
− 𝑤𝑖,𝑡−1 =

Δ𝜇𝑡

𝜇𝑡−1
𝑤𝑖,𝑡−1 +

(
𝜀𝑖,𝑡 −

𝜇𝑡

𝜇𝑡−1
𝜀𝑖,𝑡−1 + 𝜇𝑡Δ𝜃𝑖,𝑡

)
. (6)

This suggests that lagged residuals 𝑤𝑖,𝑡−1, much like a test score, might serve as a proxy for unobserved
skills. However, 𝑤𝑖,𝑡−1 = 𝜇𝑡−1𝜃𝑖,𝑡−1+𝜀𝑖,𝑡−1 is a ‘noisy’ measure of unobserved skill, so it is correlated with
the error 𝜀𝑖,𝑡−1, as well as 𝜀𝑖,𝑡 if Cov(𝜀𝑡 , 𝜀𝑡−1) ≠ 0. Simply regressing Δ𝑤𝑖,𝑡 on 𝑤𝑖,𝑡−1 would, therefore,
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produce a biased estimate of Δ𝜇𝑡/𝜇𝑡−1. To address this problem, lagged wage residuals from the distant
past (i.e. any 𝑤𝑖,𝑡′ for 𝑡′ ≤ 𝑡 − 𝑘 − 1) can be used as instrumental variables in 2SLS estimation, since they
are correlated with 𝑤𝑖,𝑡−1 (through unobserved skills) but uncorrelated with 𝜀𝑖,𝑡−1, 𝜀𝑖,𝑡 , and Δ𝜃𝑖,𝑡 (under
Assumption 1).

Future wage residuals are not valid instruments in equations (4) or (6), because skill growth has
lasting effects on future skills, generating a correlation between future wage residuals and Δ𝜃𝑖,𝑡 . This
correlation biases the IV estimator (for Δ𝜇𝑡/𝜇𝑡−1) and makes it challenging to estimate skill returns during
early sample periods. Appendix C.2 discusses conditions under which different cohorts may be used to
eliminate the bias, enabling estimation of skill returns over the full sample period. Given the lengthy
period covered by many panel data sets and stronger identification requirements for early skill returns, we
focus on identification and estimation for periods 𝑡 ≥ 𝑡 + 𝑘 .

The evolution of returns to skill are also directly related to predicted differences in wages across
workers given any prior differences. Strengthening Assumption 1 to mean independence, E[𝜀𝑡 |𝜃𝑡′ , 𝜀𝑡′] =
E[Δ𝜃𝑡 |𝜃𝑡′ , 𝜀𝑡′] = 0 for 𝑡 − 𝑡′ ≥ 𝑘 , implies that

E[𝑤𝑡 |𝑤𝑡′] = 𝜇𝑡

(
𝑤𝑡′ − E[𝜀𝑡′ |𝑤𝑡′]

𝜇𝑡′
+ E[𝜃𝑡′+𝑘 − 𝜃𝑡′ |𝑤𝑡′]

)
︸                                             ︷︷                                             ︸

≡Ψ𝑡′ (𝑤𝑡′ )

, for all 𝑡 ≥ 𝑡′ + 𝑘.

Because wages are increasing in skills and skills are persistent, workers with a high wage in one period
will also tend to have a high wage in the future, even after the influence of transitory non-skill shocks has
disappeared.23

More importantly for our purposes, for any given differences in year 𝑡′ residuals across workers,
long-term differences in expected future residuals, E[𝑤𝑡 |𝑤𝑡′], will increase (decrease) over time as the
returns to skill 𝜇𝑡 increase (decrease):

E[𝑤𝑡 |𝑤𝑡′ = 𝑤𝐻] − E[𝑤𝑡 |𝑤𝑡′ = 𝑤𝐿] = 𝜇𝑡
(
Ψ𝑡′ (𝑤𝐻) − Ψ𝑡′ (𝑤𝐿)

)
, for all 𝑡 ≥ 𝑡′ + 𝑘. (7)

Thus, the strong convergence in predicted future log wage residuals by prior residual quartiles over the
late 1980s and 1990s shown in Figure 2 indicates a sharp decline in the returns to skill over those years.

We now make several additional observations on identification of skill returns.

Transitory skill shocks. Proposition 1 also applies if 𝜀𝑖𝑡 shocks are considered a component of skills,
i.e., if 𝑤𝑖,𝑡 = 𝜇𝑡 (𝜃𝑖,𝑡 + 𝜀𝑖,𝑡).24 Whether transitory shocks are assumed to be related or unrelated to skills

23This discussion assumes that Ψ𝑡 ′ (𝑤𝑡 ′ ) is an increasing function, as observed empirically.
24In this case, Ω𝑡 ′ = 𝜇𝑡 ′ [Cov(𝜃𝑡 ′+𝑘−1, 𝜃𝑡 ′ ) + Cov(𝜃𝑡 ′+𝑘−1, 𝜀𝑡 ′ )].
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has no effect on identification or IV estimation of the returns to skill under Assumption 1. Conceptually,
it seems natural to think that transitory wage innovations have little to do with skills, so we continue with
residuals as defined in equation (2).

Serially correlated non-skill shocks. Our identification strategy has, thus far, relied on the assumption
that non-skill shocks, 𝜀𝑡 , become serially uncorrelated when observations are far enough apart. This is
not critical; although, identification is most transparent in this case. Appendix C.4 shows identification
of skill returns when the ‘transitory’ component 𝜀𝑡 contains an autoregressive component, such that the
serial correlation in non-skill shocks depreciates over time but never fully disappears. Section 3.6 shows
that estimates assuming 𝜀𝑡 contains an AR(1) component are quite similar to those obtained under our
baseline Assumption 1.

Time-invariant skills. If skills are heterogeneous but time-invariant (i.e., 𝜃𝑖,𝑡 = 𝜃𝑖 with Cov(𝜀𝑡 , 𝜃) = 0
for all 𝑡), then

Cov(𝑤𝑡 , 𝑤𝑡′) = 𝜇𝑡𝜇𝑡′ Var(𝜃), for all |𝑡 − 𝑡′| ≥ 𝑘 . (8)

In this case, Δ𝜇𝑡/𝜇𝑡−1 could be identified and estimated using the IV estimator in equation (4) with
sufficiently lagged or future log wage residuals (i.e., 𝑤𝑡′ satisfying 𝑡′ ≤ 𝑡 − 𝑘 − 1 or 𝑡′ ≥ 𝑡 + 𝑘) as
instruments. For panel length satisfying 𝑡 − 𝑡 ≥ 2𝑘 and a single normalization (e.g., 𝜇𝑡+𝑘 = 1), all
𝜇𝑡 , ..., 𝜇𝑡 would be identified along with Var(𝜃). Comparing IV estimates using past vs. future wage
residuals as instruments, our empirical analysis below provides strong evidence against fixed unobserved
skills over the lifecycle.

Conditioning on observable subgroups. Assumption 1 can be modified so that all conditions (and
results) hold for any observable subgroup, including specific cohort, age, or experience groups. For
example, it is natural to condition on older (or more experienced) workers for whom endogenous human
capital investments are likely to be negligible (Becker, 1964; Ben-Porath, 1967).25 Our empirical analysis
below pays particular attention to experienced workers, estimating returns to skill based on this subgroup.

25Appealing to Becker (1964) and Ben-Porath (1967), previous studies rely on the assumption of zero skill growth among
older workers to identify the evolution of additively separable (log) skill prices (e.g. Heckman, Lochner, and Taber, 1998;
Bowlus and Robinson, 2012) or the distribution of skill shocks (e.g. Huggett, Ventura, and Yaron, 2011). This assumption is
stronger than needed in our context, where condition (i) of Assumption 1 only rules out persistent unobserved heterogeneity
in skill growth among experienced workers. Heterogeneity in skill growth based on observable characteristics is accounted for
through 𝑓𝑡 (𝒙𝑡 ) in obtaining residuals.
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2.3 Testing our Assumption on Skill Dynamics

Even if endogenous skill investments become negligible as workers approach the end of their careers,
skill growth rates may still be correlated with past skill levels for older workers due to other factors (e.g.,
heterogeneous skill depreciation). We explore this possibility using the same skill measure and sample
of men with 30–50 years of experience in the 1996–2018 HRS data used earlier in Section 2.1.2.

We more formally test whether Cov(Δ2𝜃𝑡+2, 𝜃𝑡−ℓ) = 0 using the following moments:

E
[
(Δ2𝑇𝑡+2 − 𝜚𝑇𝑡)𝑇𝑡−ℓ

]
= 0, for ℓ ≥ 𝑘 , (9)

where Δ2 reflects the two-period time difference given our use of biennial data from the HRS. (These
moments are consistent with 2SLS regression of Δ2𝑇𝑡+2 on 𝑇𝑡 using 𝑇𝑡−ℓ as an instrument.) We test
whether Assumption 1(i) holds for various 𝑘 values. The first four columns of Table 1 test this assumption
for 𝑘 = 2 by testing whether 𝜚 = 0 when using instruments of lags ℓ ≥ 2. Columns 5 and 6 test the
assumption for 𝑘 = 4 and 𝑘 = 6, respectively, using only longer lags as instruments. Panel A of Table 1
reports GMM estimates of 𝜚 using residualized memory recall scores. Although we reject 𝜚 = 0 at the
5% significance level when instruments of lags ℓ ≤ 4 are used, the estimated 𝜚 values are quite small.
For perspective, if skills follow a simple autoregressive process (i.e., 𝜃𝑡 = 𝜌𝜃𝑡−1 + 𝜈𝑡 with Cov(𝜃𝑡 , 𝜈𝑡′) = 0
for all 𝑡′ ≥ 𝑡 + 1), then 𝜚 = 𝜌2 − 1. The reported estimates in columns 1–5 would all imply 𝜌 values of
0.97–1.02, very close to a random walk. The last column of Table 1 reports an estimated 𝜚 of 0.018 when
using lags ℓ = 6, 8. This estimate is not significantly different from zero and suggests that Assumption 1(i)
is satisfied for 𝑘 = 6. That is, skill growth rates Δ𝜃𝑡 are uncorrelated with skill levels (at least) 6 years
earlier, 𝜃𝑡−6.

Panel B of Table 1 reports estimates of 𝜚 when also including lagged log wage residuals, 𝑤𝑡−ℓ, as
additional instruments. In this case, 𝜚 = 0 implies that both conditions (i) and (ii) of Assumption 1 are
satisfied for the relevant 𝑘 . These estimates are nearly identical to those using only lagged memory test
score residuals as instruments in Panel A, indicating that condition (ii) is likely to be satisfied. Altogether,
the estimates reported in Table 1 suggest that, for older men at least, conditions (i) and (ii) of Assumption 1
are satisfied for 𝑘 = 6, while violations of those conditions are quite modest for 𝑘 as small as 2. We
conduct most of our analysis assuming that these conditions are satisfied for 𝑘 = 6; however, we reach
very similar conclusions when relaxing condition (i) in Section 3.5.
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Table 1: GMM estimates of 𝜚 in equation (9) using (𝑇𝑖,𝑡−ℓ, 𝑤𝑖,𝑡−ℓ) as instruments

ℓ = 2 ℓ = 2, 4 ℓ = 2, 4, 6 ℓ = 2, 4, 6, 8 ℓ = 4, 6, 8 ℓ = 6, 8

A. Instruments: 𝑇𝑖,𝑡−ℓ
Estimated 𝜚 0.045∗ -0.040∗ -0.029∗ -0.031∗ -0.057∗ 0.018

(0.020) (0.012) (0.011) (0.010) (0.014) (0.022)

Implied 𝜌 =
√︁

1 + 𝜚 1.022 0.980 0.985 0.984 0.971 1.009

B. Instruments: 𝑇𝑖,𝑡−ℓ , 𝑤𝑖,𝑡−ℓ
Estimated 𝜚 0.044∗ -0.040∗ -0.030∗ -0.031∗ -0.059∗ 0.018

(0.019) (0.011) (0.011) (0.010) (0.013) (0.022)

Implied 𝜌 =
√︁

1 + 𝜚 1.022 0.980 0.985 0.984 0.970 1.009
Notes: 𝑇𝑡 are residuals from regressions of word recall on experience, cohort, race, and
education dummies. 𝑤𝑡 are residuals from year-specific regressions on the same covariates.
Uses 1996–2018 HRS data for men ages 50–70 with 30–50 years of experience. Estimated
via two-step optimal GMM with cluster-robust weighting matrix. ∗ denotes significance at
0.05 level.

3 New Evidence on Returns to Unobserved Skill

Our primary objective is estimation of returns to unobserved skill over time. We mainly exploit data
from the PSID; however, we replicate key results using administrative data on earnings in Section 6. This
section briefly describes the PSID before turning to estimated returns to skill based on these data.

3.1 Panel Study of Income Dynamics (PSID)

The PSID is a longitudinal survey of a representative sample of individuals and families in the U.S.
beginning in 1968. The survey was conducted annually through 1997 and biennially since. We use data
collected from 1971 through 2013. Since earnings were collected for the year prior to each survey, our
analysis studies hourly wages from 1970 to 2012.

Our sample is based on male heads of households from the core (SRC) sample restricted to years
these men were ages 16–64, had potential experience of 1–40 years, reported positive wage and salary
income, had positive hours worked, and were not enrolled as students. Our sample is 92% white with an
average age of 39 years. Roughly half of our sample completed more than 12 years of schooling, which we
refer to as “college workers”. The wage measure used in our analysis divides annual earnings by annual
hours worked, trimming the top and bottom 1% of all wages within year and college/non-college status by
ten-year experience cells. The resulting sample contains 3,766 men and 44,547 person-year observations
– roughly 12 observations for each individual. See Appendix E for further details.

Our analysis focuses on log wage residuals 𝑤𝑖,𝑡 from equation (1) after controlling for differences
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in educational attainment, race, and experience. Specifically, we estimate 𝑓𝑡 (𝒙𝑖,𝑡) by year and college
vs. non-college status from separate linear regressions of log hourly wages on indicators for each year
of potential experience, race/ethnicity, and 7 educational attainment categories, along with interactions
between a cubic in experience and both race and education indicators.

3.2 Underlying Trends

Log wage inequality has increased substantially since 1970, with particularly strong increases in the early-
1980s and after 2000 (see Figure 1). The evolution of residual inequality closely mirrors this pattern,
explaining a larger share of the total variance than the between-group variance.

Consistent with an important role for unobserved skills, Figure 2 shows that those with higher wage
residuals in any given year also have higher wage residuals, on average, up to 20 years later.26 The sharp
convergence in log wage residuals (across quartiles of earlier residual levels) over the late-1980s and
1990s indicates that the returns to skill fell over that period (see equation (7)), despite modest growth in
residual inequality at the time.

Section 2.2 suggests that long autocovariances in wage residuals offer a more direct way to identify
changes in the returns to unobserved skill. Figure 3(a) reports Cov(𝑤𝑏, 𝑤𝑡) for 𝑡 = 𝑏 + 6, ..., 𝑏 + 20 with
each line reporting autocovariances for a different ‘base’ year 𝑏 and 15 subsequent years.27 For example,
the leftmost line beginning in 1976 reflects autocovariances for 𝑏 = 1970 and values of 𝑡 ranging from
1976–1990. If systematic differences in unobserved skill growth are negligible and 𝑡 − 𝑏 is large enough
such that transitory shocks are uncorrelated, then Cov(𝑤𝑏, 𝑤𝑡) = 𝜇𝑡Ω𝑏 (see equation (5)) and following
each line over 𝑡 is directly informative about the evolution of 𝜇𝑡 . (We discuss the shifts up or down across
lines below.) The sharply declining autocovariances over the late-1980s and 1990s (regardless of the base
year) suggest that the returns to unobserved skill fell over that period. The time trends for autocovariances
were much weaker during earlier and later years, consistent with more stable or even increasing returns.

If there are persistent differences in unobserved skill growth, then the residual covariances are more
difficult to interpret, since Cov(𝜃𝑏,Δ𝜃𝑡) will not generally equal zero as Assumption 1(i) requires. In this
case, it is useful to focus on more experienced workers for whom differences in unobserved skill growth
should be negligible (and idiosyncratic) due to diminished investment incentives (Becker, 1964; Ben-
Porath, 1967). Figure 3(b) reveals very similar autocovariance patterns to Figure 3(a) when restricting
the sample to men with 15–30 years of experience as of baseline 𝑏 years (21+ years of experience in years

26For comparison, Appendix Figure E-1 shows average log wage residuals for each quartile over time without conditioning
on prior residual levels.

27Appendix Figure E-2 shows that sample attrition due to non-response or aging/retirement does not affect the autocovariance
patterns documented here.
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Figure 3: Autocovariances for Log Wage Residuals

𝑡 ≥ 𝑏 + 6).28
As emphasized by the literature on ‘polarization’ in the U.S. labor market (Autor, Levy, and Murnane,

2003; Autor, Katz, and Kearney, 2008; Acemoglu and Autor, 2011; Autor and Dorn, 2013), wage
inequality has evolved differently for non-college and college-educated workers. Figure 4 shows that the
rise in residual inequality over the early-1980s was stronger among non-college workers, before falling
and then quickly stabilizing in the mid-1980s, while it continued to increase among college workers
throughout our sample period. It is natural to ask whether these different trends reflect differences in the
evolution of returns to skill by educational attainment, as is often implicitly assumed.

Figure 5 reports long autocovariances separately for non-college and college educated men. The
time patterns are qualitatively similar for both education groups with two noteworthy differences: First,
the autocovariance lines continue declining for non-college men throughout the early-2000s when they
flatten out for college men. This suggests that the returns to skill continued falling for non-college men
several years after they stabilized for college men. Second, the lines generally shift upward over time,
with particularly strong increases over the late-1990s and early-2000s for college men. As discussed in
Section 4, these shifts reflect rising skill dispersion, partially muted by declining skill returns.

3.3 2SLS Estimation of Skill Returns

In this subsection, we directly estimate growth rates in the returns to unobserved skill based on the IV
strategy described in Section 2.2. Because our data is only available every other year later in the sample

28Appendix Figure E-3 shows qualitatively similar, though flatter, autocovariance patterns for less-experienced men.
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Figure 4: Variance of Log Wage Residuals by Education

period, we slightly modify the 2SLS approach based on equation (6) to estimate two-year growth rates,
Δ2𝜇𝑡/𝜇𝑡−2, based on the following:

Δ2𝑤𝑖,𝑡 =

(
Δ2𝜇𝑡
𝜇𝑡−2

)
𝑤𝑖,𝑡−2 +

[
𝜇𝑡 (Δ𝜃𝑖,𝑡−1 + Δ𝜃𝑖,𝑡) + 𝜀𝑖,𝑡 −

𝜇𝑡

𝜇𝑡−2
𝜀𝑖,𝑡−2

]
. (10)

Under Assumption 1, we can obtain consistent estimates of Δ2𝜇𝑡/𝜇𝑡−2 by estimating equation (10) via
2SLS using lags 𝑤𝑖,𝑡′ for 𝑡′ ≤ 𝑡 − 𝑘 − 2 as instrumental variables.

Table 2 reports 2SLS estimates of skill return growth rates using equation (10) for years 𝑡 covering
1979–1995, assuming that skill return growth rates are constant within two- or three-year periods (i.e.
1979–1980, 1981–1983, ..., 1993–1995). Assuming 𝑘 = 6, we use (𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−9) as instruments. Table 3
reports 2SLS estimates for the later years of the PSID (𝑡 covering 1996–2012) when observations become
biennial.29 In all specifications, the instruments are ‘strong’ with very large first-stage 𝐹-statistics.

Panel A of Tables 2 and 3 reports estimates for the full sample of men in the PSID, while panels B
and C report separate estimates for non-college and college men. Consistent with the autocovariances
reported earlier, nearly all of these estimates are negative, with several statistically significant. Appendix
Tables E-1 and E-2 report analogous results for the subsample of men with 21–40 years of experience (in
year 𝑡) for whom we expect systematic heterogeneity in skill growth to be negligible. Figure 6 combines
these estimates to trace out the implied paths for 𝜇𝑡 from 1979–2012, normalizing 𝜇1985 = 1. Altogether,
these results suggest that the returns to unobserved skill declined by roughly half since the mid-1980s,
mirroring the substantial decline in returns to cognitive skills (between the NLSY79 and NLSY97 cohorts)

29Estimates in Table 3 assume two-year return growth rates are constant within each of the periods 1996–2000, 2002–2006,
and 2008–2012, and use (𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−9) as instruments for 1996–2000 and (𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−10) thereafter.
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Figure 5: Autocovariances for Log Wage Residuals by Education, All Experience levels

estimated by Castex and Dechter (2014). In Section 5, we consider the interpretation of these estimated
return series when there are multiple unobserved skills whose returns may evolve differently over time.
We also estimate similar return patterns for men working in different occupation types.

Appendix E.3 shows that analogous GMM estimates to those in Tables 2 and 3 are very similar.30
More importantly, we test the validity of our lagged instruments (using Hansen 𝐽-tests), since the model
is overidentified when using multiple instruments. We cannot reject exogeneity of our instruments at
conventional levels in any year, suggesting that Assumption 1 cannot be rejected (for 𝑘 = 6). By
contrast, we show that future residuals are invalid instruments (during most time periods), highlighting
the importance of accounting for idiosyncratic variation in lifecycle skill growth.

We have, thus far, used a very limited set of lagged residuals as instruments to keep the specifications
similar across years and to allow estimation of skill return growth rates back to 1979. Rather than report
several sets of 2SLS estimates with different instrument sets, we next employ minimum distance (MD)
estimation to take advantage of all long autocovariances available in the data.

30The GMM estimates exploit the same moments but use the optimal weighting matrix (allowing for heteroskedasticity and
serial correlation within individuals). As with those reported in Tables 2 and 3, these estimates require no assumptions about
the variance of individual skill innovations Δ𝜃𝑖,𝑡 (or non-skill shocks, 𝜀𝑖,𝑡 ) over time, across cohorts, or across experience
groups.
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Table 2: 2SLS estimates of Δ2𝜇𝑡/𝜇𝑡−2 for two- or three-year periods, 1979–1995

1979–1980 1981–1983 1984–1986 1987–1989 1990–1992 1993–1995
A. All men

Δ2𝜇𝑡/𝜇𝑡−2 -0.036 -0.044 -0.046 -0.081∗ -0.082∗ -0.067
(0.045) (0.038) (0.038) (0.034) (0.035) (0.035)

Observations 1,349 2,077 2,188 2,245 2,189 2,095
1st stage 𝐹-Statistic 163.09 191.61 114.85 209.42 227.13 286.96

B. Non-college men
Δ2𝜇𝑡/𝜇𝑡−2 -0.075 0.039 -0.035 -0.127∗ -0.062 -0.057

(0.061) (0.056) (0.060) (0.050) (0.058) (0.054)

Observations 740 1,080 997 965 897 851
1st stage 𝐹-Statistic 81.85 85.23 39.48 98.34 92.27 91.33

C. College men
Δ2𝜇𝑡/𝜇𝑡−2 -0.034 -0.123∗ -0.030 -0.028 -0.097∗ -0.074

(0.061) (0.048) (0.049) (0.047) (0.047) (0.046)

Observations 508 884 1,046 1,109 1,107 1,242
1st stage 𝐹-Statistic 100.95 115.03 123.38 97.29 122.42 208.04
Notes: Estimates from 2SLS regression of Δ2𝑤𝑖,𝑡 on 𝑤𝑖,𝑡−2 using instruments (𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−9).
∗ denotes significance at 0.05 level.
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Table 3: 2SLS estimates of Δ2𝜇𝑡/𝜇𝑡−2 for five-year periods, 1996–2012

1996–2000 2002–2006 2008–2012
A. All men

Δ2𝜇𝑡/𝜇𝑡−2 -0.075∗ -0.039 -0.050
(0.025) (0.028) (0.027)

Observations 2,122 2,129 1,968
1st stage 𝐹-Statistic 369.09 344.25 341.36

B. Non-college men
Δ2𝜇𝑡/𝜇𝑡−2 -0.087∗ -0.043 0.011

(0.043) (0.047) (0.075)

Observations 862 826 615
1st stage 𝐹-Statistic 121.44 142.56 104.92

C. College men
Δ2𝜇𝑡/𝜇𝑡−2 -0.070∗ -0.041 -0.065∗

(0.031) (0.034) (0.029)

Observations 1,252 1,293 1,141
1st stage 𝐹-Statistic 260.47 218.64 229.40
Notes: Estimates from 2SLS regression of Δ2𝑤𝑖,𝑡 on
𝑤𝑖,𝑡−2 using instruments (𝑤𝑡−8, 𝑤𝑡−9) for 1996–2000 and
(𝑤𝑡−8, 𝑤𝑡−10) for 2002–2006 and 2008–2012. ∗ denotes
significance at 0.05 level.
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Figure 6: 𝜇𝑡 Implied by 2SLS Estimates (𝜇1985 = 1)

3.4 Minimum Distance Estimation of Skill Returns using Long Autocovariances

We now explicitly incorporate cohorts, 𝑐, into our analysis. Assuming all conditions in Assumption 1
hold for each cohort, 𝜇𝑡 and Ω𝑐,𝑡′ are identified from long autocovariances as shown in equation (5).
Separately for non-college and college men, we estimate 𝜇𝑡 and Ω𝐶,𝑡′ for all (𝑡, 𝑡′) satisfying 𝑡 − 𝑡′ ≥ 6
for men with 21–40 years of experience in year 𝑡. Due to small sample sizes of single-year cohorts,
we consider 4 broad cohort groups denoted by 𝐶, where each cohort group consists of 10-year labor
market entry cohorts.31 Table 4 describes these cohort groups, parameters estimated, and autocovariances
used in estimation. Altogether, we exploit 157 covariances and use equally weighted MD to estimate 63
parameters (normalizing 𝜇1985 = 1) separately for non-college and college men. See Appendix D for
further details on our MD estimation.

Figure 7 reports MD estimates of 𝜇𝑡 , while Figure 8 reports estimated Ω𝐶,𝑡′ , both separately for
non-college and college men. (Shaded areas in these figures reflect 95% confidence intervals.) Like their
2SLS counterparts, MD estimates of 𝜇𝑡 indicate substantial declines (roughly 50–70%) in the returns to
skill over the late-1980s and 1990s. This contrasts sharply with the estimated rise in returns during the
late-1970s and early-1980s. While the additional autocovariances used in MD estimation (compared to
2SLS) improve precision, confidence intervals in Figure 7 still admit the possibility that skill returns were

31We estimate Ω𝐶,𝑡 ′ ≡ 𝜇𝑡 ′ Cov(𝜃𝑡 ′+𝑘−1, 𝜃𝑡 ′ |𝑐 ∈ 𝐶) + Cov(𝜃𝑡 ′+𝑘−1, 𝜀𝑡 ′ |𝑐 ∈ 𝐶) and make no effort to separately identify Ω𝑐,𝑡 ′

for each annual entry cohort. Given Assumption 1, this does not impose any assumptions on variation in Ω𝑐,𝑡 ′ across annual
cohorts even for cohorts 𝑐 within broader cohort groups 𝐶. Requiring that all single-year cohorts in each cohort group have
21–40 years of experience in each year of 𝑡, we exclude older (1936–1941) and younger (1982–1991) cohorts due to limited
variation in 𝑡.
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Table 4: Cohort grouping

Cohort Group 𝐶
Range Number

Cohort 𝑐 Year 𝑡′ Year 𝑡 Ω𝐶,𝑡 ′ 𝜇𝑡 Cov(𝑤𝑡 , 𝑤𝑡 ′ |𝐶)

1 1942 1951 1970 1976 1976 1982 7 7 28
2 1952 1961 1976 1986 1982 1992 11 11 66
3 1962 1971 1986 1996 1992 2002 11 8 42
4 1972 1981 1996 2006 2002 2012 6 6 21

Total 35 29 157
Notes: Since 𝜇𝑡 is not cohort-specific, the total number of 𝜇𝑡 parameters does not equal the
sum for each cohort due to overlap in years across cohorts.
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Figure 7: 𝜇𝑡 implied by MD estimates using long autocovariances, 21–40 years of experience

relatively stable prior to 1985. They also suggest that returns fell by at least 40% for non-college men
and 20% for college men. Estimated Ω𝐶,𝑡′ profiles in Figure 8 show a strong upward trend beginning
in the 1980s. Under (mild) additional assumptions, we show in Section 4 that the Ω𝐶,𝑡′ trends indicate
substantial growth in the variance of unobserved skills over time for the two most recent cohort groups.

3.5 Relaxing our Assumption on Skill Growth

An important assumption, thus far, is that skill growth is uncorrelated with sufficiently lagged skill levels.
In this subsection, we consider two alternative specifications for skill dynamics that violate condition (i)
of Assumption 1. To simplify the discussion, it is useful to slightly strengthen conditions (ii)–(iii) of
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Figure 8: Ω𝐶,𝑡′ implied by MD estimates using long autocovariances, 21–40 years of experience

Assumption 1 to Cov(𝜃𝑡 , 𝜀𝑡′) = 0 for all 𝑡, 𝑡′, while maintaining condition (iv) (i.e., limited persistence of
non-skill shocks). In this case, our IV estimator converges to

𝛾𝑡,𝑡′ ≡
Cov(Δ𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′)

=
Δ𝜇𝑡

𝜇𝑡−1
+ 𝜇𝑡

𝜇𝑡−1

Cov(Δ𝜃𝑡 , 𝜃𝑡′)
Cov(𝜃𝑡−1, 𝜃𝑡′)

, for 𝑡′ − 𝑡 ≥ 𝑘 or 𝑡 − 𝑡′ ≥ 𝑘 + 1, (11)

where Cov(Δ𝜃𝑡 , 𝜃𝑡′) ≠ 0 would bias these estimates of skill return growth.

3.5.1 Heterogeneity in Lifecycle Skill Growth

We begin by exploring the possibility that unobserved skill growth innovations are correlated over time
as in the heterogeneous income profile (HIP) models estimated in, e.g., Haider (2001), Baker and Solon
(2003), Guvenen (2009), and Moffitt and Gottschalk (2012). We consider a more flexible process
governing this skill growth heterogeneity, assuming

Δ𝜃𝑖,𝑡 = 𝜆𝑡 (𝑐𝑖)𝛿𝑖 + 𝜈𝑖,𝑡 , (12)

where 𝛿𝑖 is a mean zero individual-specific lifecycle growth rate factor, and the 𝜆𝑡 (𝑐) ≥ 0 terms allow
for variation in systematic skill growth across time and cohorts/experience.32 This skill process generally

32We assume Var(𝛿 |𝑐) > 0, allowing for the possibility that 𝜆𝑡 (𝑐) = 0 for all 𝑡 and 𝑐 in the absence of heterogeneity in
skill growth. Letting 𝜓𝑖 reflect the initial skill for an individual entering the labor market, the level of unobserved skill for
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violates condition (i) of Assumption 1 when 𝜆𝑡 (𝑐) > 0, where the bias for IV estimator 𝛾𝑡,𝑡′ depends on

Cov(Δ𝜃𝑡 , 𝜃𝑡′) = E
[

Cov(Δ𝜃𝑡 , 𝜃𝑡′ |𝑐)
]
= E

[
𝜆𝑡 (𝑐) Cov(𝛿, 𝜃𝑡′ |𝑐) + 1(𝑡′ > 𝑡) Var(𝜈𝑡 |𝑐)

]
,

the expectation is taken over cohorts, 𝑐, and 1(·) is the indicator function. This shows that 𝛾𝑡,𝑡′ estimates
will be biased downward only when workers with higher skill growth rates, 𝛿, have lower skill levels, 𝜃𝑡′ .
This is only likely to be a concern for young workers for whom initial skills may be negatively correlated
with incentives to acquire new skills. Hence, our focus on experienced workers makes it unlikely that
the estimated declines in skill returns over the late-1980s and 1990s are explained by systematic lifecycle
skill growth heterogeneity.

This model also offers testable predictions related to the year, 𝑡′, from which we take 𝑤𝑡′ as an
instrument. In the absence of HIP (i.e., 𝜆𝑡 = 0 for all 𝑡), IV estimates should not vary with the year
of lagged residuals (satisfying 𝑡′ ≤ 𝑡 − 𝑘 − 1) used as instruments nor with the year of future residuals
(satisfying 𝑡′ ≥ 𝑡+𝑘) used as instruments; although, estimates will be greater when using any future (rather
than any past) residuals as instruments if Var(𝜈𝑡) > 0. By contrast, HIP (i.e., 𝜆𝑡 > 0 for all 𝑡) implies that
IV estimates will generally vary with the year of lagged or future residuals used as instruments.

Tables 5 and 6 report GMM estimates of 𝛾𝑡,𝑡′ (using two-year differences) for all non-college and
college men, respectively, using moments E[(Δ2𝑤𝑡 − 𝛾𝑡,𝑡′𝑤𝑡−2)𝑤𝑡′] = 0 with different residual leads and
lags, 𝑤𝑡′ , as instruments. We highlight two patterns. First, we cannot reject equality of estimates when
using only lags of 𝑡 − 8 and 𝑡 − 12 as instruments (specification 1) or when using only leads of 𝑡 + 6
and 𝑡 + 10 (specification 2) as instruments. Second, we reject equality of estimates when using lags
(𝑡 − 8) and leads (𝑡 + 6) together as instruments (specification 3). Together, these results provide no
indication of systematic heterogeneity in unobserved skill growth. Absent this heterogeneity, the larger
𝛾𝑡,𝑡′ estimates obtained when using leads as instruments imply an important role for idiosyncratic skill
growth innovations (i.e., Var(𝜈𝑡) > 0).33 Finally, we note that GMM estimates using only sufficiently
lagged residuals as instruments (specification 1 of Tables 5 and 6) imply 𝜇𝑡 profiles that are very similar
to those shown in Figure 6.

As discussed earlier, human capital theory (Becker, 1964; Ben-Porath, 1967) predicts that optimal skill

individual 𝑖 from cohort 𝑐𝑖 in year 𝑡 can be written as

𝜃𝑖,𝑡 = 𝜓𝑖 + Λ𝑡 (𝑐𝑖)𝛿𝑖 +
𝑡−𝑐𝑖−1∑︁
𝑗=0

𝜈𝑖,𝑡− 𝑗 ,

where Λ𝑡 (𝑐) ≡
∑𝑡−𝑐−1

𝑗=0 𝜆𝑡− 𝑗 (𝑐) reflects the accumulated influence of skill growth heterogeneity.
33Exogeneity tests reported in Section 3.3 and Appendix E.3.2 also suggest that (i) estimated growth in returns does not vary

significantly with the year of (sufficiently) lagged wages and (ii) estimated skill return growth is significantly stronger when
using future rather than lagged residuals as instruments.
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Table 5: Multiple-Equation GMM Estimates: Non-College

Instrument for Each Equation of Δ2𝑤𝑖,𝑡 :
(1) (2) (3)

𝑤𝑖,𝑡−8 𝑤𝑖,𝑡−12 𝑤𝑖,𝑡+6 𝑤𝑖,𝑡+10 𝑤𝑖,𝑡−8 𝑤𝑖,𝑡+6

Coefficient on 𝑤𝑖,𝑡−2 for years
1972–1974 0.054 -0.013

(0.057) (0.075)

1975–1977 0.132 0.075
(0.095) (0.078)

1978–1980 0.081 0.107 -0.085 0.170
(0.096) (0.088) (0.054) (0.125)

1981–1983 0.017 -0.057 0.267 0.300∗ 0.084 0.143
(0.082) (0.096) (0.137) (0.126) (0.082) (0.085)

1984–1986 -0.074 0.001 0.114 0.137 0.032 0.089
(0.059) (0.065) (0.103) (0.093) (0.109) (0.092)

1987–1989 -0.199∗ -0.161 0.050 0.026 -0.185 0.010
(0.086) (0.135) (0.090) (0.100) (0.117) (0.071)

1990–1992 -0.069 -0.096 0.029 -0.075 -0.151∗ -0.045
(0.059) (0.080) (0.084) (0.079) (0.075) (0.078)

1993–1995 -0.076 -0.125 0.139 0.084 -0.057 0.047
(0.063) (0.085) (0.086) (0.128) (0.062) (0.089)

1996–2000 -0.079 -0.053 0.091 0.022 -0.056 0.052
(0.051) (0.056) (0.062) (0.072) (0.048) (0.051)

2002–2006 -0.043 -0.038 0.089 -0.052 -0.022 0.054
(0.058) (0.052) (0.135) (0.171) (0.065) (0.066)

2008–2012 -0.049 -0.038
(0.076) (0.079)

Observations 5,627 6,883 5,093
Wald 𝑝-value 0.945 0.756 0.044
Notes: ∗ denotes significance at 0.05 level.
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Table 6: Multiple-Equation GMM Estimates: College

Instrument for Each Equation of Δ2𝑤𝑖,𝑡 :
(1) (2) (3)

𝑤𝑖,𝑡−8 𝑤𝑖,𝑡−12 𝑤𝑖,𝑡+6 𝑤𝑖,𝑡+10 𝑤𝑖,𝑡−8 𝑤𝑖,𝑡+6

Coefficient on 𝑤𝑖,𝑡−2 for years
1972–1974 0.068 0.030

(0.076) (0.075)

1975–1977 0.225∗ 0.065
(0.091) (0.070)

1978–1980 0.036 0.078 0.016 -0.004
(0.077) (0.075) (0.083) (0.069)

1981–1983 -0.125 0.002 0.156 0.195 -0.128∗ 0.120
(0.080) (0.096) (0.088) (0.117) (0.061) (0.086)

1984–1986 0.032 0.158 0.240∗ 0.422∗ 0.018 0.174∗
(0.066) (0.084) (0.071) (0.112) (0.079) (0.074)

1987–1989 -0.004 -0.069 0.107∗ 0.106 -0.015 0.023
(0.058) (0.056) (0.046) (0.056) (0.066) (0.067)

1990–1992 -0.033 -0.119∗ 0.095 0.006 -0.095 0.069
(0.056) (0.058) (0.061) (0.069) (0.054) (0.055)

1993–1995 -0.030 -0.116 0.085 0.070 -0.071 0.069
(0.053) (0.073) (0.051) (0.060) (0.048) (0.051)

1996–2000 -0.080∗ -0.044 0.109∗ 0.087∗ -0.037 0.094∗
(0.035) (0.049) (0.046) (0.040) (0.034) (0.039)

2002–2006 -0.016 0.030 0.155 0.165 0.024 0.048
(0.034) (0.042) (0.084) (0.097) (0.037) (0.040)

2008–2012 -0.069∗ -0.030
(0.031) (0.036)

Observations 7,353 9,263 7,069
Wald 𝑝-value 0.080 0.354 0.007
Notes: ∗ denotes significance at 0.05 level.
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investment and accumulation become negligible as workers approach the end of their careers. Assuming
no systematic unobserved heterogeneity in skill growth among experienced workers (i.e. 𝜆𝑡 (𝑐) = 0 for all
workers with at least 21 years of experience) and Cov(𝜃𝑡 , 𝜀𝑡′) = 0 for all 𝑡, 𝑡′, baseline 𝜇𝑡 estimates (using
only experienced workers) reported in Figure 7 can be used to scale log wage residuals to estimate

Cov
(
Δ

(
𝑤𝑡

𝜇𝑡

)
,Δ

(
𝑤𝑡′

𝜇𝑡′

) ��𝑐) = 𝜆𝑡 (𝑐)𝜆𝑡′ (𝑐) Var(𝛿 |𝑐), for 𝑡 − 𝑡′ ≥ 𝑘 + 1, (13)

for less-experienced workers. Systematic heterogeneity in skill growth at younger ages should be reflected
in systematically positive covariances in scaled-residual growth. Yet, Figure 9 shows that for cohort groups
𝐶 ∈ {3, 4}, the covariances in equation (13) fluctuate around zero for all ages. Figure 10 further shows
that the distribution of all covariances (for workers with 1–20 years of experience in 𝑡) is centered around
zero. These covariances strongly suggest that systematic skill growth heterogeneity is negligible early in
the lifecycle for these cohorts. Related results for Cov(Δ(𝑤𝑡/𝜇𝑡), 𝑤𝑡′ |𝑐) = 𝜆𝑡 (𝑐)𝜇𝑡′ Cov(𝛿, 𝜃𝑡′ |𝑐) reported
in Appendix E.4 further support this conclusion.

Altogether, Tables 5 and 6 and Figures 9 and 10 support condition (i) of Assumption 1: skill growth
is uncorrelated with lagged skill levels throughout the careers of men in our sample.

3.5.2 AR(1) skill dynamics

We next consider an alternative model of skill dynamics characterized by a fixed effect, 𝜓𝑖, and an AR(1)
component, 𝜙𝑖,𝑡 :

𝜃𝑖,𝑡 = 𝜓𝑖 + 𝜙𝑖,𝑡 , where 𝜙𝑖,𝑡 = 𝜌𝑡𝜙𝑖,𝑡−1 + 𝜈𝑖,𝑡 . (14)

For 𝜌𝑡 < 1, this specification is consistent with heterogeneous depreciation of skills acquired in the
labor market generating mean-reversion to individual-specific baseline skill levels determined by 𝜓𝑖. Our
baseline specification implicitly assumes 𝜌𝑡 = 1 for all 𝑡.

When 𝜌𝑡 ≠ 1, the AR(1) skill component violates Assumption 1(i), since skill growth will be
correlated with all past skill levels. With this more general specification for skills, we assume that all
skill components are uncorrelated with non-skill shocks, while maintaining our assumption of limited
persistence in non-skill shocks.

Assumption 2. For all cohorts, 𝑐: (i) Cov(𝜓, 𝜙𝑡 |𝑐) = 0 for all 𝑡; (ii) Cov(𝜓, 𝜀𝑡′ |𝑐) = Cov(𝜙𝑡 , 𝜀𝑡′ |𝑐) = 0 for
all 𝑡, 𝑡′; (iii) Cov(𝜙𝑡′ , 𝜈𝑡 , |𝑐) = Cov(𝜈𝑡′ , 𝜈𝑡 , |𝑐) = 0 for all 𝑡−𝑡′ ≥ 1; (iv) for known 𝑘 ≥ 1, Cov(𝜀𝑡 , 𝜀𝑡′ |𝑐) = 0
for all 𝑡 − 𝑡′ ≥ 𝑘 .

We interpret 𝜙𝑖,𝑡 as skill, regardless of its persistence; however, it is possible to rewrite the problem
such that skills are time-invariant and non-skill shocks include an autoregressive component (along with
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Figure 9: Cov(Δ(𝑤𝑡/𝜇𝑡),Δ(𝑤𝑡′/𝜇𝑡′)) for Men by Cohort Group

Notes: Figure reports covariances for cohort groups 𝐶 ∈ {3, 4} where each line holds 𝑡′ fixed and varies
𝑡 ≥ 𝑡′ + 7.
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Figure 10: Distribution of Cov(Δ(𝑤𝑡/𝜇𝑡),Δ(𝑤𝑡′/𝜇𝑡′)) for all (𝑡, 𝑡′, 𝐶) for Low-Experience Men

Notes: Figure reports distribution of covariances based on (𝑡, 𝑡′) satisfying 𝑡 ≥ 𝑡′ + 7 for cohort groups
𝐶 ∈ {3, 4} when some individuals in these cohort groups had less than 21 years of experience in year 𝑡
(i.e., 𝑡 ≤ 1991 for 𝐶 = 3 or 𝑡 ≤ 2001 for 𝐶 = 4).

transitory shocks, 𝜀𝑡):

𝑤𝑖,𝑡 = 𝜇𝑡𝜓𝑖 + 𝜙𝑖,𝑡 + 𝜀𝑖,𝑡 , where 𝜙𝑖,𝑡 = �̃�𝑡𝜙𝑖,𝑡−1 + �̃�𝑖,𝑡 ,

letting 𝜙𝑖,𝑡 ≡ 𝜇𝑡𝜙𝑖,𝑡 , �̃�𝑡 ≡ 𝜌𝑡𝜇𝑡/𝜇𝑡−1, and �̃�𝑖,𝑡 ≡ 𝜇𝑡𝜈𝑖,𝑡 . This shows that the distinction between skill vs.
non-skill persistent shocks is not important from a statistical point of view nor for identification of 𝜇𝑡 .

Due to the correlation between skill growth and past skill levels, our IV estimator will generally produce
biased estimates for growth rates in skill returns when 𝜌𝑡 ≠ 1.34 However, we show in Appendix C.3 that
if Var(𝜓) > 0 the evolution of both 𝜌𝑡 and 𝜇𝑡 over time can still be identified under Assumption 2 and
other plausible conditions.

Identification breaks down when Var(𝜓) = 0. In this case, our IV estimator (using past residuals
as instruments) identifies (𝜌𝑡𝜇𝑡 − 𝜇𝑡−1)/𝜇𝑡−1, and it is not generally possible to separate growth in skill
returns from skill convergence without strong assumptions. This raises concerns that estimated declines
in skill returns over the late-1980s and 1990s (see Figure 7) could instead reflect particularly strong skill
convergence (i.e., 𝜌𝑡 < 1) over those years.

Our examination of skill growth using test scores in Section 2.3 suggests that 𝜌𝑡 ≈ 1 for experienced
workers in the HRS, covering the late-1990s and 2000s. We now use equally weighted MD estimation to

34The IV estimator converges to 𝛾𝑡 ,𝑡 ′ in (11), where Cov(Δ𝜃𝑡 , 𝜃𝑡 ′ ) = (𝜌𝑡 − 1) Cov(𝜙𝑡 , 𝜙𝑡 ′ ). The term Cov(𝜙𝑡 , 𝜙𝑡 ′ ) generally
depends on both 𝑡 and 𝑡′. For example, when 𝑡′ ≤ 𝑡 − 𝑘 − 1, Cov(𝜙𝑡 , 𝜙𝑡 ′ ) =

∏𝑡−1
𝑗=𝑡 ′+1 𝜌 𝑗 Var(𝜙𝑡 ′ ). The GMM estimates of

Tables 5 and 6 do not support this dependence of 𝛾𝑡 ,𝑡 ′ on 𝑡′.
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estimate the model with AR(1) skills as defined in equation (14) to account for the possibility that 𝜌𝑡 < 1
over the longer time period we examine in the PSID. We begin by assuming that 𝜌𝑡 = 𝜌 is time-invariant,
but also consider the case in which 𝜌𝑡 follows a cubic polynomial in time. We estimate 𝜌𝑡 , 𝜇𝑡 (normalizing
𝜇1985 = 1), Var(𝜈𝑡 |𝑐), and Var(𝜓 |𝑐) separately for non-college and college men. To improve precision and
facilitate estimation, we assume that Var(𝜓 |𝑐) is a cubic polynomial in entry cohort 𝑐 and that Var(𝜈𝑡 |𝑐)
is a cubic time trend multiplied by a quadratic experience trend. Long autocovariances for workers with
at least 21 years of experience are targeted.35

Our estimates suggest that unobserved skills (for experienced men) are not mean-reverting, at least
over most of the time period we examine. When assuming time-invariant 𝜌𝑡 = 𝜌, its estimated value
is 1.071 (0.001) for non-college men and 1.064 (0.001) for college men. Based on the more general
time-varying 𝜌𝑡 case, Figure 11 shows a modest increase in 𝜌𝑡 over the 1980s and early-1990s, falling
thereafter. There is no indication that 𝜌𝑡 drops over the late-1980s and 1990s, which might explain
our sharply falling IV estimated returns to skills over those years. Indeed, Figure 12 shows that the
estimated 𝜇𝑡 series (for both fixed and time-varying 𝜌𝑡) are very similar to baseline estimates reported
in Figure 7. Appendix Figure E-6 displays estimated Var(𝜓 |𝑐) for the time-varying 𝜌𝑡 case. These
estimates are generally consistent with Var(𝜓 |𝑐) > 0, with estimates significantly greater than zero over
labor-market-entry cohorts at the heart of our sample.
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Figure 11: 𝜌𝑡 implied by MD estimates allowing for time-varying AR(1) skill shocks, 21–40 years of
experience

35Specifically, we target Ĉov(𝑤𝑡 , 𝑤𝑡 ′ |𝐸 𝑗 ) for all 𝑡 − 𝑡′ ≥ 6 and ten-year experience groups, 𝐸 𝑗 (21–30 and 31–40 years of
experience in year 𝑡). There are 729 targeted autocovariances each for non-college and college men. See Appendix D for
additional details.
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Figure 12: 𝜇𝑡 implied by MD estimates allowing for time-varying vs. time-invariant AR(1) skill shocks,
21–40 years of experience

3.6 Persistent Non-Skill Shocks

Results, thus far, rely on limited persistence in non-skill shocks, 𝜀𝑡 . Condition (iv) of Assumption 1 is
convenient but not critical to our approach using wage dynamics to understand the evolution of skill returns.
In this subsection, we consider the case in which 𝜀𝑡 contains an autoregressive process. Specifically, we
assume that

𝜀𝑖,𝑡 = 𝜑𝑖,𝑡 + 𝜀𝑖,𝑡 , where 𝜑𝑖,𝑡 = 𝜌𝜑𝑖,𝑡−1 + 𝜈𝑖,𝑡 , (15)

and 𝜀𝑖,𝑡 has limited persistence.
With this more general process for non-skill shocks, we strengthen conditions (i)–(iii) of Assumption 1

slightly and maintain our baseline assumption on the limited persistence of transitory non-skill shocks.

Assumption 3. For any cohort 𝑐, (i) Cov(Δ𝜃𝑡 , 𝜃𝑡′ |𝑐) = 0 for all 𝑡 − 𝑡′ ≥ 1; (ii) Cov(𝜃𝑡 , 𝜑𝑡′ |𝑐) =

Cov(𝜃𝑡 , 𝜈𝑡′ |𝑐) = Cov(𝜃𝑡 , 𝜀𝑡′ |𝑐) = 0 for all 𝑡, 𝑡′; (iii) Cov(𝜑𝑡′ , 𝜈𝑡 |𝑐) = Cov(𝜈𝑡′ , 𝜈𝑡 |𝑐) = 0 for all 𝑡 − 𝑡′ ≥ 1,
Cov(𝜑𝑡 , 𝜀𝑡′ |𝑐) = Cov(𝜈𝑡 , 𝜀𝑡′ |𝑐) = 0 for all 𝑡, 𝑡′; and (iv) for known 𝑘 ≥ 1, Cov(𝜀𝑡 , 𝜀𝑡′ |𝑐) = 0 for all
𝑡 − 𝑡′ ≥ 𝑘 .

This assumes that skill growth is uncorrelated with past skills and that the evolution of skills is
unrelated to the process for non-skill shocks; although, the influence of non-skill shocks on wages never
fully disappears. Appendix C.4 establishes identification of skill returns, as well as 𝜌 and the variance of
initial skills and skill growth, under Assumption 3.36

36Indeed, we establish identification for 𝜑𝑡 ∼ ARMA(1, 𝑞) as sometimes used in the literature on earnings dynamics.
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As in the previous subsection, we turn to equally weighted MD using long residual autocovariances to
estimate this very general specification for wage residuals separately for non-college and college men.37
For 𝑘 = 6, Figure 13 compares the estimated 𝜇𝑡 sequence for our baseline specification (𝜀𝑡 = 𝜀𝑡) vs. the
specification that includes AR(1) non-skill shocks in equation (15). In both cases, the estimated paths for
𝜇𝑡 present the familiar pattern of rising returns in the early-1980s, followed by significant declines over the
late-1980s and 1990s. Importantly, the evolution of skill returns is largely unaffected by the introduction
of an autoregressive non-skill component.38
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Figure 13: Estimated 𝜇𝑡 with and without an AR(1) non-skill component

The literature on earnings dynamics estimates a similar structure for log earnings residuals to that of
this subsection; although, this literature has focused primarily on the relative importance of permanent
vs. transitory shocks while ignoring changes in the returns to unobserved skills.39 Haider (2001) and
Moffitt and Gottschalk (2012) are notable exceptions in that they also estimate the evolution of returns
to unobserved skills using the PSID.40 We show in Appendix E.6 that by restricting the autocovariance

37Specifically, we estimate 𝜇𝑡 (normalizing 𝜇1985 = 1), Var(Δ𝜃𝑡 |𝑐) (assuming a cubic time trend multiplied by a quadratic
experience trend), 𝜌, Var(𝜈𝑡 |𝑐) (assuming a year-specific constant multiplied by a quadratic experience trend), and Var(𝜓 |𝑐)
(assuming a cubic polynomial in entry cohort 𝑐). We target Ĉov(𝑤𝑡 , 𝑤𝑡 ′ |𝐸 𝑗 ) for all 𝑡 − 𝑡′ ≥ 6 and ten-year experience groups,
𝐸 𝑗 (1–10,..., 31–40 years of experience in year 𝑡). There are 855 targeted autocovariances each for non-college and college
men. See Appendix D for additional details.

38For both non-college and college men, we estimate 𝜌 ≈ 0.8.
39See, among others, Abowd and Card (1989); Blundell and Preston (1998); Meghir and Pistaferri (2004); Blundell,

Pistaferri, and Preston (2008); Heathcote, Perri, and Violante (2010). See MaCurdy (2007) for a review.
40Other studies exploit different panel data sets on earnings to estimate very similar models to Haider (2001) and Moffitt

and Gottschalk (2012). DeBacker et al. (2013) use U.S. tax return data from 1987 to 2009, while Baker and Solon (2003)
exploit Canadian tax return data from 1976 to 1992.
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structure for non-skill shocks and the distributions of skills (over time and across cohorts), these studies
estimate upward biased growth in skill returns, 𝜇𝑡 , over time.

4 Skill Distributions

We now consider identification and estimation of the variance of skills and non-skill shocks over time.
We further decompose the variance of skills into contributions from heterogeneity in initial skills and
variation due to idiosyncratic lifecycle skill growth.

To facilitate this analysis, we slightly strengthen conditions (i)–(iii) of Assumption 1 but maintain the
limited persistence of non-skill shocks (Assumption 1(iv)).

Assumption 4. (i) Cov(Δ𝜃𝑡 , 𝜃𝑡′) = 0 for all 𝑡 − 𝑡′ ≥ 1; (ii) Cov(𝜃𝑡 , 𝜀𝑡′) = 0 for all 𝑡, 𝑡′; and (iii) for known
𝑘 ≥ 1, Cov(𝜀𝑡 , 𝜀𝑡′) = 0 for all 𝑡 − 𝑡′ ≥ 𝑘 .

The first two conditions imply that skills follow a random walk and are uncorrelated with non-skill
shocks. This attributes all transitory wage innovations to the non-skill component. All three conditions
imply that Cov(𝑤𝑡 , 𝑤𝑡′) = 𝜇𝑡𝜇𝑡′ Var(𝜃𝑡′) for 𝑡−𝑡′ ≥ 𝑘 . As in Proposition 1, the IV estimator of equation (4)
can be used to identify 𝜇𝑡+𝑘 , ..., 𝜇𝑡 (with one normalization). Given this and panel length 𝑡 − 𝑡 ≥ 2𝑘 , the
variance of unobserved skills, Var(𝜃𝑡′) = Cov(𝑤𝑡 , 𝑤𝑡′)/𝜇𝑡𝜇𝑡′ , can be identified for all but the first and last
𝑘 periods. This variance is not identified for earlier periods (without additional assumptions), because
it cannot be separated from skill returns — only 𝜇𝑡Var(𝜃𝑡) can be identified for the first 𝑘 periods. The
unobserved skill variance cannot be identified for later periods, because it is impossible to distinguish
between the roles of unobserved skills and transitory non-skill shocks without observing (distant) future
wages.

Having identified the variance of unobserved skills over time, it is straightforward to then identify
variation in skill growth, Var(Δ𝜃𝑡) = Var(𝜃𝑡) − Var(𝜃𝑡−1), for 𝑡 = 𝑡 + 𝑘 + 1, ..., 𝑡 − 𝑘 , and the variance of
non-skill shocks, Var(𝜀𝑡) = Var(𝑤𝑡) − 𝜇2

𝑡 Var(𝜃𝑡), for all but the first and last 𝑘 periods. Proposition 3
in Appendix C.1 extends these identification results to the variances of unobserved skills, skill growth
innovations, and non-skill transitory shocks when these all vary by cohort.

Using future residuals as instruments. As discussed in Section 2.2, future wage residuals are not
generally valid instruments in equations (4) or (6) when skills vary over time. Under Assumption 4, it is
straightforward to show that IV regression using future wage residuals as instruments identifies:

Cov(Δ𝑤𝑡 , 𝑤𝑡′′)
Cov(𝑤𝑡−1, 𝑤𝑡′′)

=
Δ𝜇𝑡

𝜇𝑡−1
+ 𝜇𝑡

𝜇𝑡−1

Var(Δ𝜃𝑡)
Var(𝜃𝑡−1)

for 𝑡′′ ≥ 𝑡 + 𝑘. (16)
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Figure 14: Var(𝜃𝑡′ |𝐶) = Ω𝐶,𝑡′/𝜇𝑡′ implied by MD estimates using long autocovariances, 21–40 years of
experience

Since IV estimates using past residuals consistently estimateΔ𝜇𝑡/𝜇𝑡−1, the difference between IV estimates
obtained using future vs. past residuals as instruments can be used to identify the importance of skill
growth innovations (relative to variation in lagged skill levels).

IV estimates presented in Tables 5 and 6, as well as Appendix E.3, empirically show that using future
rather than lagged residuals as instruments nearly always produces higher estimated returns. Comparing
estimates using future vs. past residuals as instruments, we show in Appendix E.3 that the variance of
two-year skill growth relative to prior skill levels, Var(Δ𝜃𝑡−1+Δ𝜃𝑡 )

Var(𝜃𝑡−2) , ranges from 0.16 to 0.29 over our sample
period. Skills are not fixed and unchanging over the lifecycle.

Evolution of skill variation by cohort. Figure 14 reports Var(𝜃𝑡′ |𝐶) = Ω𝐶,𝑡′/𝜇𝑡′ obtained from es-
timates reported in Figures 7 and 8. This figure indicates that unobserved skill heterogeneity for the
1952–1961 birth cohorts was largely stable over the late-1970s and early-1980s. However, beginning in
the early-1990s, the variance of unobserved skills grew sharply for both non-college and college men
from the 1962–1971 and 1972–1981 birth cohorts.

Decomposing residual variation. We next explore the extent to which the long-term increase in residual
variation reported in Figure 4 is driven by increasing variability of non-skill wage shocks, Var(𝜀𝑡), vs.
growing dispersion in skills and their returns, Var(𝜇𝑡𝜃𝑡). Given our interest in understanding these trends
for all workers, we focus on our baseline model under Assumption 4, estimated separately by education
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(for all ages) using MD estimation. We have already estimated this model in Section 3.6, imposing
mild cohort- and time-based smoothness assumptions on the variance of initial skills and skill growth
innovations. Estimated 𝜇𝑡 profiles are shown as red dashed lines in Figure 13. Figure 15 decomposes
Var(𝑤𝑡) into its skill and non-skill components over time. The main trends in residual inequality are
driven by inequality in skills (multiplied by their returns) for both education groups; however, growth in
the variance of non-skill shocks contributes to rising residual inequality in the late-1980s and 1990s for
college men.
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Figure 15: Log wage residual variance decomposition

Decomposing skill variation. Given the importance of rising skill inequality since the mid-1980s, we
examine the extent to which changes in the distribution of initial skills vs. the distribution of skill growth
innovations contribute to this trend. Figure 16 decomposes the annual variance of skills into the variance
of initial skills, Var(𝜓), and the variance of skills accumulated since labor market entry, Var(𝜃𝑡 − 𝜓).
This figure reveals modest declines in initial skill inequality due to long-term secular declines in Var(𝜓 |𝑐)
across cohorts. The large rise in skill inequality is, therefore, driven by a strong increase in the variance
of skill growth innovations since the mid-1980s.

Summary. Altogether, our analysis suggests that rising residual inequality in the late-1970s and early-
1980s was driven primarily by increasing returns to unobserved skill for both non-college- and college-
educated men. Residual inequality among non-college men declined slightly in the late-1980s, balancing
two strong opposing forces: a sharp decline in skill returns, partially offset by a strong increase in skill
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Figure 16: Skill variance decomposition

dispersion. Meanwhile, college men continued to experience rising residual inequality throughout our
sample period. As with non-college men, a fall in their return to skill was offset by an increase in skill
inequality; however, this was accompanied by rising variability of non-skill shocks over the late-1980s
and early-1990s. For both education groups, the strong secular increase in skill dispersion beginning in
the 1980s was driven exclusively by increased volatility in skills rather than growing dispersion in skill
levels at labor market entry.

5 Occupations and Multiple Unobserved Skills

Thus far, we have focused on a single dimension of skill with a specification for log wage residuals,
equation (2) that is broadly consistent with traditional assignment models of the labor market with a
continuum of skill levels and jobs (Tinbergen, 1956; Sattinger, 1993; Costinot and Vogel, 2010).41 In
this framework, each worker is assigned to a different job based on a single-dimensional ranking of
worker productivity, i.e., skill. This section considers more general wage specifications in which skills
are rewarded differently by occupations. We also consider the interpretation of our IV estimator when
there are multiple skills earning different returns in the market. Throughout this analysis, we continue to
account for the fact that skills vary over time for individual workers. (See Sanders and Taber (2012) for a
survey of the literature on lifecycle wage dynamics in models with multiple skills and occupations.)

41See Lochner, Park, and Shin (2018) for a specification of production technology and skill and job productivity distributions
in a traditional assignment model that yields equation (2) as the equilibrium log wage function.
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5.1 Occupations

Motivated by task-based models of the labor market in which workers are assigned to a limited set of
different tasks or jobs (Autor, Levy, and Murnane, 2003; Acemoglu and Autor, 2011; Cortes, 2016;
Acemoglu and Restrepo, 2022; Acemoglu and Loebbing, 2022), we extend our analysis to consider
occupation-specific wage functions with

𝑤𝑖,𝑡 = 𝛾
𝑜𝑖,𝑡
𝑡 + 𝜇

𝑜𝑖,𝑡
𝑡 𝜃𝑖,𝑡 + 𝜀𝑖,𝑡 , (17)

where 𝑜𝑖,𝑡 denotes the occupation for worker 𝑖 in year 𝑡, and we normalize 𝜇𝑜𝑡 = 1 and 𝛾𝑜𝑡 = 0 for a
single occupation-year pair. Average wages may differ across occupations due to differences in wage
functions (i.e., (𝛾𝑜𝑡 , 𝜇𝑜𝑡 )) and in the average skill levels of workers in those occupations, with E[𝑤𝑡 |𝑜𝑡 =
𝑜] = 𝛾𝑜𝑡 + 𝜇𝑜𝑡 E[𝜃𝑡 |𝑜𝑡 = 𝑜]. For example, management occupations might provide a higher return to skill
and be filled by more-skilled workers relative to low-level clerical occupations. Although assignment and
task-based models generally assign all workers of a given skill level to a single task/job, workers with
identical skills may choose to work in different occupations due to search and information frictions or
heterogeneous preferences for job attributes (e.g., Papageorgiou, 2014; Taber and Vejlin, 2020; Guvenen
et al., 2020; Lise and Postel-Vinay, 2020; Roys and Taber, 2022; Adda and Dustmann, 2023).

Cortes (2016) considers a special case of equation (17), assuming time-invariant skill returns and skill
levels (i.e., 𝜇𝑜𝑡 = 𝜇𝑜 and 𝜃𝑖,𝑡 = 𝜃𝑖). We further note that equation (17) generalizes related specifications
commonly employed in studies of sectoral or firm differences in pay, which typically assume that skills
are fixed over time.42

Occupation-specific skill returns can be identified by strengthening Assumption 1 to condition on
recent occupation histories.

Assumption 5. For known 𝑘 ≥ 1 and for all 𝑡 − 𝑡′ ≥ 𝑘 + 1: (i) Cov(Δ𝜃𝑡 , 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = 0; (ii)
Cov(Δ𝜃𝑡 , 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = 0; (iii) Cov(𝜀𝑡 , 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = Cov(𝜀𝑡−1, 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = 0; and (iv)
Cov(𝜀𝑡 , 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = Cov(𝜀𝑡−1, 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = 0.

Assumption 5 requires that skill dynamics not depend on or influence occupation choices, much
as the literature on firm-specific returns assumes that job changes are exogenous (Abowd, Kramarz, and

42This specification is broadly consistent with the multi-sector assignment model of Gola (2021), where wage functions
vary with sector (e.g., manufacturing, services) rather than occupation. It is also related to that of Bonhomme, Lamadon, and
Manresa (2019), who allow 𝛾𝑜𝑡 and 𝜇𝑜𝑡 to differ across firms instead of occupations, assuming time-invariant worker skills
(i.e., 𝜃𝑖,𝑡 = 𝜃𝑖). Following the canonical Abowd, Kramarz, and Margolis (1999), the literature on pay differentials across firms
typically focuses on estimating differences in the intercept term across firms (i.e., 𝛾𝑜𝑡 = 𝛾𝑜), assuming no variation in returns
to time-invariant individual skills, (𝜇𝑜𝑡 = 𝜇 and 𝜃𝑖,𝑡 = 𝜃𝑖). However, several more recent studies estimate time-varying premia.
For example, Card, Heining, and Kline (2013) estimate firm premia separately by subperiods (i.e., rolling-window estimation),
while Lachowska et al. (2023) and Engbom, Moser, and Sauermann (2023) allow firm premia to vary freely over time.
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Margolis, 1999). This assumption is likely too strong for young workers simultaneously making early skill
investment and career decisions; however, it is more plausible for older workers for whom skill variation
is likely to be idiosyncratic and who face weaker incentives to search for a new occupation in response
to skill or non-skill wage innovations given their shorter career horizon, greater skill specialization, and
stronger (revealed) preferences for current job/occupation amenities (Cavounidis and Lang, 2020).43

As shown in Appendix C.6, 𝜇𝑜𝑡 can be identified for all occupations (in all but the first 𝑘 years) under
Assumption 5 using the following IV estimator (for 𝑡 − 𝑡′ ≥ 𝑘 + 1):

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′)

=
𝜇
𝑜𝑡
𝑡 − 𝜇

𝑜𝑡−1
𝑡−1

𝜇
𝑜𝑡−1
𝑡−1

. (18)

Since occupational mobility is low, especially among older workers, we highlight that occupation-specific
growth in skill returns can be identified from occupation stayers (from 𝑡−1 to 𝑡) alone. This is noteworthy,
because Assumption 5 is most credible for occupation-stayers who are largely representative of the
population given low rates of occupational switching (especially among experienced workers).44

While occupation-specific growth in skill returns can be identified from occupation stayers (from
𝑡 − 1 to 𝑡), occupation switchers must be incorporated to identify the relative returns to skill across
occupations, 𝜇𝑜𝑡 /𝜇𝑜

′
𝑡 , and the sequence of occupation-specific wage levels, 𝛾𝑜𝑡 . In addition to Assumption 5,

identification of 𝛾𝑜𝑡 requires E[Δ𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1] = 0 and E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1] = 0, which imply

E[Δ𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1] −
(
𝜇
𝑜𝑡
𝑡 − 𝜇

𝑜𝑡−1
𝑡−1

𝜇
𝑜𝑡−1
𝑡−1

)
E[𝑤𝑡−1 |𝑜𝑡 , 𝑜𝑡−1] = 𝛾

𝑜𝑡
𝑡 −

𝜇
𝑜𝑡
𝑡

𝜇
𝑜𝑡−1
𝑡−1

𝛾
𝑜𝑡−1
𝑡−1 .

Given small sample sizes for many occupation sequences (𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′), we rely on the stronger as-
sumptions E[Δ𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 and E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0, which allows us to
condition only on (𝑜𝑡 , 𝑜𝑡−1) in estimation of 𝜇𝑜𝑡 and 𝛾𝑜𝑡 . See Appendix C.6.

5.1.1 2SLS Estimation of Skill Return Growth for Occupation-Stayers

We use the PSID to estimate growth in skill returns for occupation-stayers in two broad and exclusive
occupation groups (cognitive and routine occupations) considered by Cortes (2016).45 We also estimate

43Gathmann and Schönberg (2010) show that older workers make fewer occupational changes and that those changes entail
smaller changes in occupational task content. Gervais et al. (2016) also document declining occupational mobility over the
lifecycle.

44Assumption 5 implies that estimated return growth for stayers in occupation 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 should not depend on earlier
occupation (𝑜𝑡 ′ ). Results reported in Appendix E.7 confirm this prediction.

45Cortes (2016) also considers manual occupations, but our sample contains too few observations to obtain precise results
for its associated parameters. Appendix E.7 provides details on occupation classifications in the PSID.
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skill returns for those who remain in occupations with high social skill requirements, based on the measure
of social skill intensity considered by Deming (2017).46 As Deming (2017) notes, there is considerable
overlap between cognitive occupations and social occupations – in our sample, 59% of worker-year
observations in cognitive occupations are also in social occupations and 76% of observations in social
occupations are also in cognitive occupations.

As with equation (10) earlier, we use 2SLS (with lagged residuals as instruments) to estimate two-year
growth rates in occupation-specific skill returns based on

Δ2𝑤𝑖,𝑡 =

(
𝛾
𝑜𝑖,𝑡
𝑡 −

[
𝜇
𝑜𝑖,𝑡
𝑡

𝜇
𝑜𝑖,𝑡−2
𝑡−1

]
𝛾
𝑜𝑖,𝑡−2
𝑡−2

)
+

[
𝜇
𝑜𝑖,𝑡
𝑡 − 𝜇

𝑜𝑖,𝑡−2
𝑡−2

𝜇
𝑜𝑖,𝑡−2
𝑡−1

]
𝑤𝑖,𝑡−2 +

(
𝜀𝑖,𝑡 −

[
𝜇
𝑜𝑖,𝑡
𝑡

𝜇
𝑜𝑖,𝑡−2
𝑡−2

]
𝜀𝑖,𝑡−2 + 𝜇

𝑜𝑖,𝑡
𝑡 Δ2𝜃𝑖,𝑡

)
︸                                        ︷︷                                        ︸

≡𝜉𝑖,𝑡

, (19)

estimated separately for stayers with 𝑜𝑖,𝑡 = 𝑜𝑖,𝑡−2 = 𝑜 for cognitive, routine, or social occupation groups.47
Figure 17 reports implied skill returns (relative to 𝜇𝑜1985) for all men who remain in cognitive, routine,

or social occupations. Panel (a) reports estimates based on workers of all experience levels, while
panel (b) reports estimates based on those with 21–40 years of experience. In both panels, we obtain
similar estimated return profiles for job stayers regardless of their occupation type, indicating strong
declines in the returns to skill in cognitive, routine, and social occupations. The estimated return profiles
also accord well with those estimated earlier for the full sample.

5.1.2 GMM Estimation of 𝛾𝑜𝑡 and 𝜇𝑜𝑡 for Cognitive and Routine Occupations

In order to estimate differences in the levels of skill returns across occupations and occupation-specific
average wage differences, we must also exploit occupational switchers. We use GMM to simultaneously
estimate 𝜇𝑜𝑡 and 𝛾𝑜𝑡 , now including all occupation stayers and switchers in our sample. Based on
equation (19), we exploit the following moments in the PSID: E[𝜉𝑡 |𝑜𝑡 , 𝑜𝑡−2] = 0 and E[𝑤𝑡′ 𝜉𝑡 |𝑜𝑡 , 𝑜𝑡−2] = 0,
where we use lagged residuals 𝑤𝑡′ from periods 𝑡 − 8 and 𝑡 − 9 (or 𝑡 − 10 in later years) as instruments.
See Appendix E.7 for details.

Given the substantial overlap between cognitive and social occupations (and similar skill return
profiles in Figure 17), we focus this analysis on the two mutually exclusive categories from Cortes (2016):
cognitive and routine occupations. Here, we normalize 𝜇𝑜𝑡 = 1 and 𝛾𝑜𝑡 = 1 for routine occupations
in 1985; however, no normalizations are needed for cognitive occupations. Figure 18(a) shows that

46We define social occupations as those that fall in the top third of the social skill intensity distribution in the pooled sample
of worker-year observations. See Appendix E.7.

47We use (𝑤𝑡−8, 𝑤𝑡−9) as instruments when both are available (in early survey years); otherwise, we use (𝑤𝑡−8, 𝑤𝑡−10) as
instruments. Our use of two-year differences relies on the natural modification of all assumptions to condition on (𝑜𝑡 , 𝑜𝑡−2, 𝑜𝑡 ′ ).
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Figure 17: 𝜇𝑜𝑡 /𝜇𝑜1985 implied by 2SLS estimates for cognitive, routine, and social occupation-stayers
between 𝑡 − 2 and 𝑡

estimated 𝜇𝑜𝑡 series both exhibit substantial declines over time, similar to the 2SLS estimates in Figure 17
and earlier estimates based on the full sample. We cannot reject that the two skill return series are equal
using a standard 𝐽-test (𝑝-value = 0.13). Despite sharp drops in the returns to skill in both occupations,
Figure 18(b) shows sizeable increases in 𝛾𝑜𝑡 – nearly 0.20 in cognitive occupations and about 0.12 in
routine occupations. Appendix Figure E-10 shows similar time patterns for 𝜇𝑜𝑡 and 𝛾𝑜𝑡 when using only
workers with 21–40 years of experience in year 𝑡.

Using the estimates reported in Figure 18 and average log wage residuals by occupation, we can
estimate the evolution of average skills by occupation over time from E[𝜃𝑡 |𝑜𝑡] =

(
E[𝑤𝑡 |𝑜𝑡] − 𝛾

𝑜𝑡
𝑡

)
/𝜇𝑜𝑡𝑡 .

Figure 19 shows the evolution of average log wage residuals and average skills for cognitive and routine
workers. During our sample period, average log wage residuals rose by about 0.05 for workers in cognitive
occupations, while they fell by a similar amount in routine occupations. Together with estimated 𝜇𝑜𝑡 and
𝛾𝑜𝑡 , these imply little long-term change in the average unobserved skills of workers in cognitive occupations
but roughly 20 log point declines in the average unobserved skills of workers in routine jobs. Notably,
these represent skill changes conditional on worker education and experience levels.

Appendix Figure E-9 shows that failing to account for changes in the returns to skill over time (i.e.,
assuming 𝜇𝑜𝑡 = 𝜇𝑜 for all 𝑡 as in Cortes (2016)) yields estimates that exhibit little long-term change in 𝛾𝑜𝑡

or average skills, E[𝜃𝑡 |𝑜𝑡], in both cognitive and routine occupations. Thus, accounting for the estimated
declines in skill returns has important implications for trends in occupation-specific skill levels.
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Figure 18: GMM estimates of 𝜇𝑜𝑡 and 𝛾𝑜𝑡 for cognitive and routine occupations
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Figure 19: Average log wage residual and skill for cognitive and routine occupations
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5.2 Multiple Unobserved Skills

A growing literature emphasizes the multi-dimensional nature of skills, suggesting that the returns to
some types of skills have risen while returns to others have fallen (Castex and Dechter, 2014; Deming,
2017; Edin et al., 2022). Motivated by these studies, we now consider wage functions that depend on
multiple unobserved skills, denoted by 𝜃𝑖, 𝑗 ,𝑡 for 𝑗 = 1, ..., 𝐽:

𝑤𝑖,𝑡 =

𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡𝜃𝑖, 𝑗 ,𝑡 + 𝜀𝑖,𝑡 , (20)

where 𝜇 𝑗 ,𝑡 reflects the market-level value of skill 𝑗 in year 𝑡.48
We now make use of a multi-dimensional version of Assumption 4 to show that our IV estimator

identifies a weighted-average growth rate across all skill returns. Specifically, we assume that growth in
each type of skill is uncorrelated with all past skill levels.49

Assumption 6. (i) Cov(Δ𝜃 𝑗 ,𝑡 , 𝜃 𝑗 ′,𝑡′) = 0 for all 𝑗 , 𝑗 ′, and 𝑡 − 𝑡′ ≥ 1; (ii) Cov(𝜃 𝑗 ,𝑡 , 𝜀𝑡′) = 0 for all 𝑗 , 𝑡, 𝑡′;
and (iii) Cov(𝜀𝑡 , 𝜀𝑡′) = 0 for all 𝑡 − 𝑡′ ≥ 𝑘 .

This assumption implies:

Cov(Δ𝑤𝑡 , 𝑤𝑡′) =
𝐽∑︁
𝑗=1

𝐽∑︁
𝑗 ′=1

Δ𝜇 𝑗 ,𝑡 𝜇 𝑗 ′,𝑡′ Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′), for 𝑡 − 𝑡′ ≥ 𝑘 + 1, (21)

where we highlight that the Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′) are within-period covariances across skills. Equation (21)
shows that when all (within-period) correlations between skills are non-negative, a positive (negative)
Cov(Δ𝑤𝑡 , 𝑤𝑡′) for 𝑡 − 𝑡′ ≥ 𝑘 + 1 implies that total returns 𝜇 𝑗 ,𝑡 are increasing (decreasing) for at least
one skill. Thus, Figures 3 and 5 suggest that the returns to at least one skill declined sharply over the
late-1980s and 1990s. Consistent with this conclusion, Castex and Dechter (2014) and Deming (2017)
estimate strong declines in returns to cognitive skill over this period.

As the next result shows, our IV estimator provides a useful summary measure of skill return growth
when there are many skills whose returns grow at different rates. For this result, it is useful to define

48Multi-dimensional assignment and search/matching models of the labor market can give rise to equilibrium log wage
functions of the form in equation (20) (e.g. Lindenlaub, 2017; Lise and Postel-Vinay, 2020; Lindenlaub and Postel-Vinay,
2023). These models can also yield more general log wage functions of the entire skill vector, in which case equation (20) can
be thought of as a linear approximation. Equation (20) is reminiscent of wage (rather than log wage) functions in Heckman
and Scheinkman (1987) when worker characteristics can be “unbundled”.

49A weaker assumption analogous to Assumption 1 (generalized to account for multiple skills) will also ensure that the IV
estimator identifies a weighted-average growth in returns. We impose the stronger conditions based on Assumption 4 here to
facilitate interpretation of the weights.
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𝜃𝑖,𝑡 ≡
𝐽∑
𝑗=1

𝜇 𝑗 ,𝑡𝜃𝑖, 𝑗 ,𝑡 , the total value of a worker’s skill vector in period 𝑡.

Proposition 2. If Assumption 6 holds, then for all 𝑡 − 𝑡′ ≥ 𝑘 + 1 the IV estimator identifies a weighted-
average growth rate across all skill returns:

Cov(Δ𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′)

=

𝐽∑︁
𝑗=1

𝜔 𝑗 ,𝑡′,𝑡−1

(
Δ𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1

)
, (22)

with weights for 𝑗 = 1, ..., 𝐽 given by 𝜔 𝑗 ,𝑡′,𝑡−1 = Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)𝜇 𝑗 ,𝑡−1/
𝐽∑

𝑗 ′=1
Cov(𝜃 𝑗 ′,𝑡′ , 𝜃𝑡′)𝜇 𝑗 ′,𝑡−1. If

Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′) ≥ 0,∀ 𝑗 , 𝑗 ′, then the weights 𝜔 𝑗 ,𝑡′,𝑡−1 ∈ [0, 1] for all 𝑗 .

When there are multiple skills, our IV estimator identifies the weighted-average growth rate across all
skill returns, where the weights, 𝜔 𝑗 ,𝑡′,𝑡−1, are larger for skills that are strongly related to wages (in 𝑡′) and
which have a high return (in 𝑡 − 1).50

The multi-skill problem effectively reduces to the single-skill problem when the relative productivity
of different skills is time-invariant: 𝜇 𝑗 ,𝑡/𝜇1,𝑡 = 𝜇 𝑗 for all 𝑗 and 𝑡. As such, the IV estimator identifies
growth rates for all skill returns during periods with fixed relative skill valuations.

Occupations as bundles of skills. A simple view of occupations, consistent with multi-dimensional
assignment models (e.g., Lindenlaub, 2017; Lindenlaub and Postel-Vinay, 2023), is that they represent
different combinations of skill-intensities, 𝛼𝑜

𝑗,𝑡
, leading to different wages by occupation:

𝑤𝑖.𝑡 =

𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡𝛼
𝑜𝑖,𝑡
𝑗 ,𝑡

𝜃𝑖, 𝑗 ,𝑡 + 𝜀𝑖,𝑡 . (23)

The returns to skill 𝑗 in occupation 𝑜 in year 𝑡, �̃�𝑜
𝑗,𝑡

= 𝜇 𝑗 ,𝑡𝛼
𝑜
𝑗,𝑡

, depend on the market-level value for that
skill, 𝜇 𝑗 ,𝑡 , and the occupation-specific skill intensity factor, 𝛼𝑜

𝑗,𝑡
.

Conditioning all covariances in Assumption 6 on occupation sequence (𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′), the IV estimator
applied to stayers in occupation 𝑜 (from 𝑡 − 1 to 𝑡) recovers a weighted average of skill-specific return
growth, Δ�̃�𝑜

𝑗,𝑡
/�̃�𝑜

𝑗,𝑡−1 = (Δ𝜇 𝑗 ,𝑡𝛼 𝑗 ,𝑡 + 𝜇 𝑗 ,𝑡−1Δ𝛼
𝑜
𝑗,𝑡
)/�̃�𝑜

𝑗,𝑡−1, in occupation 𝑜, where the returns to skills that
are more important for wages in occupation 𝑜 receive more weight.51 Notice that stability of occupation
skill intensities (i.e., 𝛼𝑜

𝑗,𝑡
= 𝛼𝑜

𝑗
), as assumed by much of the literature (e.g., Autor and Dorn, 2013;

50Appendix C.7 further shows that the weights are proportional to the extent to which total productivity in period 𝑡′ predicts
the rewards from skill 𝑗 in period 𝑡 − 1. Proposition 4 in Appendix C.7 shows that the IV estimator also reflects growth in a
weighted-average measure of skill returns.

51See Appendix C.7 for details on all results in this subsection.
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Figure 20: 𝜇𝑡 Implied by 2SLS Estimates for 3-Digit Occupation Stayers Between 𝑡 − 2 and 𝑡

Acemoglu and Autor, 2011; Böhm, 2020; Böhm, von Gaudecker, and Schran, 2024), would imply that
IV estimates using stayers in occupation 𝑜 identify weighted averages of Δ𝜇 𝑗 ,𝑡/𝜇 𝑗 ,𝑡−1, where the weights
continue to depend on occupation 𝑜 (e.g., IV estimates based on stayers in sales- or communication-based
occupations will largely reflect growth in the returns to social skills, while IV estimates based on stayers
in manufacturing jobs will primarily reflect growth in returns to manual skills). Altogether, IV estimators
applied to a diverse set of occupations will yield different skill return trends if either (i) relative skill
intensities evolve differently across occupations or (ii) returns to various skills evolve differently over time.
The similarity of IV estimated return series across occupation groups reported in Figure 17, therefore,
suggests relatively stable occupation skill intensities and similar declines in the returns to a broad range
of skills.52

Finally, we explore estimated returns for college vs. non-college men using a sample of all occupation-
stayers (from 𝑡 − 1 to 𝑡), regardless of occupation. For stable within-occupation skill intensities, this
identifies a weighted average of Δ𝜇 𝑗 ,𝑡/𝜇 𝑗 ,𝑡−1 where the weights depend on the share of stayers in each
occupation 𝑜. Figure 20 displays the implied skill return profiles (by education) for all 3-digit occupation
stayers. Both estimated return series are very similar to our baseline estimates for the full sample reported
in Figure 6.

52A few recent studies document within-occupation changes in the skill/task content/requirements of jobs (Spitz-Oener,
2006; Cavounidis et al., 2021; Cortes, Jaimovich, and Siu, 2023). Given the inherent challenges of such efforts, some of these
documented changes may reflect changes in the skill levels of workers within occupations over time rather than changes in
the actual tasks performed by workers. A separate challenge is that workers may perform different mixes of tasks within the
same occupation (Autor and Handel, 2013; Spitz-Oener, 2006). In our analysis, any such differences would be interpreted as
variation in worker skill bundles.
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5.3 Occupation-Specific Wage Functions with Multiple Skills

Several studies consider a more substantial role for occupations in multi-skill models of the labor market
(see, e.g., Gathmann and Schönberg, 2010; Yamaguchi, 2012, 2018; Böhm, 2020; Guvenen et al., 2020;
Roys and Taber, 2022; Böhm, von Gaudecker, and Schran, 2024).53 Motivated by this literature, we
interpret our IV estimator when wages depend on multiple unobserved skills that are rewarded differently
across occupations:

𝑤𝑖,𝑡 = 𝛾
𝑜𝑖,𝑡
𝑡 +

𝐽∑︁
𝑗=1

𝜇
𝑜𝑖,𝑡
𝑡 𝛼

𝑜𝑖,𝑡
𝑗 ,𝑡

𝜃𝑖, 𝑗 ,𝑡 + 𝜀𝑖,𝑡 . (24)

In this case, occupation- and skill-specific returns, �̃�𝑜
𝑗,𝑡

= 𝜇𝑜𝑡 𝛼
𝑜
𝑗,𝑡

, arise when occupations reward a worker’s
total productivity differently, where total productivity depends on the intensity of each skill used in that
occupation.54 We focus on estimating growth in occupation-specific returns to skills, 𝜇𝑜𝑡 ; however, wage
levels may also differ across occupations and over time, 𝛾𝑜𝑡 , due to, for example, compensating differences
or market frictions. Estimating changes in 𝛾𝑜𝑡 is challenging with multiple skills, so we leave that to future
work.

Conditioning covariances in Assumption 6 on occupation sequence (𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′), it is straightfor-
ward to show that for occupation-stayers, our IV estimator identifies:

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜, 𝑜𝑡′ = 𝑜′)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜, 𝑜𝑡′ = 𝑜′) =

Δ𝜇𝑜𝑡

𝜇𝑜
𝑡−1

+
𝜇𝑜𝑡

𝜇𝑜
𝑡−1

𝐽∑︁
𝑗=1

�̃�
𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1

(
Δ𝛼𝑜

𝑗,𝑡

𝛼𝑜
𝑗,𝑡−1

)
, (25)

where the weights on skill intensity growth, �̃�𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1, sum to one and are non-negative if all skills are
non-negatively correlated conditional on occupations (𝑜, 𝑜′). See Appendix C.8 for details.

If skill intensities do not vary over time within occupations (i.e., 𝛼𝑜
𝑗,𝑡

= 𝛼𝑜
𝑗
), then our IV estimator for

stayers identifies occupation-specific skill return growth, Δ𝜇𝑜𝑡 /𝜇𝑜𝑡−1, as in Section 5.1.55 More generally,
the IV estimator for stayers in occupation 𝑜 also reflects any growth in skill intensities within that
occupation. If log wage residuals are characterized by equation (24), the results in Figure 17 are consistent
with similar growth in all skill intensities within manual, routine, and social occupations, coupled with
similar declines in the returns to these skills within these occupations.

53The canonical Roy model (Roy, 1951) is a special case in which there are an equal number of occupations and skills with
each skill rewarded only in its “own” sector. See Heckman and Sedlacek (1985), Keane and Wolpin (1997), and Kambourov
and Manovskii (2009) for important empirical applications of this framework to occupational choice and wages.

54Equation (24) is analogous to wage functions in the skill-weights model of Lazear (2009); although, 𝑤𝑡 reflects log wage
(residuals) here rather than wages as in Lazear (2009).

55Appendix C.8 discusses our IV estimator applied to the sample of stayers in occupation 𝑜𝑡 = 𝑜𝑡−1 = 𝑜, regardless of past
occupation 𝑜𝑡 ′ , as well as for all stayers in any occupation 𝑜𝑡 = 𝑜𝑡−1.
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6 Returns Estimated from Administrative Earnings Data

Previous studies have documented different trends in income volatility when using administrative data
rather than the PSID (see, e.g., Sabelhaus and Song, 2010; DeBacker et al., 2013).56 We show in this
section that estimated patterns for skill returns are similar to those already presented when using earnings
records from IRS W-2 Forms (maintained by the Social Security Administration, SSA) linked with survey
data from the SIPP. These data include the full SSA history of wage and salary measures for all linked
respondents from 1951 to 2011.

Our analysis begins with a sample of US-born white men ages 16–64 who could be linked to any of
nine SIPP panels (i.e., panels from 1984–2008). We work with log wage residuals constructed as with
the PSID and restrict observations to years when individuals were no longer enrolled in school. We focus
mainly on results using Detailed Earnings Records (DER), which are uncapped and available from 1978
onward; however, we also take advantage of Summary Earnings Records (SER) available since 1951,
which report earnings capped at the FICA taxable maximum. See Appendix G for a detailed discussion
of these data and our sample. We highlight Appendix Figures G-2 and G-3, which show very similar
patterns to Figures 2 and 5 regarding convergence in predicted wage residuals given base-year residual
quartiles and sharp declines in residual autocovariances Cov(𝑤𝑡 , 𝑤𝑏) over years 𝑡 ≥ 𝑏 + 6 for fixed base
year 𝑏. Together, these indicate declines in the return to skills over the late-1980s and 1990s, consistent
with our PSID results.

We use our IV estimator in equation (4) to estimate growth rates for skill returns using 𝑤𝑡−7 as an
instrument (consistent with 𝑘 = 6). Since sample sizes are much larger than in the PSID, we limit
our sample to men with 32–40 years of experience to focus on years when wage growth is generally
negligible, yet before most men begin retiring.57 Figure 21 reports the implied 1984–2011 time series
for 𝜇𝑡 (normalizing 𝜇1985 = 1) when using only DER-based residual earnings. To identify 𝜇𝑡 over earlier
years, we combine DER- and SER-based residuals, using the latter only as lagged instruments. Both sets
of estimates are very similar to analogous PSID-based estimates reported in Figure 6.58

Occupational stayers. We next explore growth in skill returns for occupation-stayers as in Section 5.
Here, we must limit our sample to those observed in one of the SIPP panels during years 𝑡 − 1 and 𝑡,
since only the survey data contains occupation information. We estimate skill return growth for (i) those
remaining in the same occupation, (ii) those remaining in a cognitive occupation, and (iii) those remaining

56See Moffitt et al. (2022) for a useful effort to reconcile disparate findings across data sources.
57Preliminary results were similar for broader experience ranges like those used in the PSID.
58See Appendix Tables G-2 and G-3 for the estimates, standard errors, and sample sizes when using the SER and DER

earnings residuals as instruments.
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Figure 21: 𝜇𝑡 Implied by IV Estimates (instrument: 𝑤𝑡−7), Experience 32–40 in 𝑡 (SIPP/W-2)

in a routine occupation during years 𝑡 − 1 and 𝑡.59 Given the timing of SIPP panels and sample sizes, we
estimate annual skill return growth rates for two separate periods: 1991–1999 and 2002–2011. Table 7
reports these IV results using 𝑤𝑡−7 as instruments, again focusing on men with 32–40 years of experience.
The first two columns suggest that skill returns fell by about 2% per year over the 1990s and 2000s,
consistent with earlier estimates. The remaining columns suggest that skill returns were fairly stable for
cognitive occupations but declined by 3.7–4.9% per year for routine occupations. While we cannot reject
equality of skill return growth rates (within periods) across the two occupation groups,60 stronger declines
in routine occupations could be driven by forces related to routine-biased technical change (Autor and
Dorn, 2013).

7 Conclusions

Economists have devoted considerable effort to understand the underlying causes of rising residual wage
inequality over the past few decades. Most studies have relied on repeated cross-sectional data on wages
with a few recent studies incorporating additional measures of worker skills or job tasks. While these
efforts have yielded important insights and motivated robust theoretical literatures, they typically assume
that distributions of skills or early-career skill growth have remained stable across cohorts born decades

59Occupations are based on 24 categories created by the Census Bureau. As with the PSID, we consider routine and
cognitive occupation groupings. See Appendix G for details.

60The difference in return growth across occupation groups is 0.036 (SE=0.031) for 1991–1999 and 0.046 (SE=0.024) for
2002–2011.
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Table 7: 2SLS estimates of Δ𝜇𝑡/𝜇𝑡−1 for occupational stayers with Experience 32–40 in 𝑡 (SIPP/W-2)

Same occupation Cognitive occupations Routine occupations

1991–1999 2002–2011 1991–1999 2002–2011 1991–1999 2002–2011

Δ𝜇𝑡/𝜇𝑡−1 -0.021 -0.017 -0.013 0.009 -0.049∗ -0.037∗
(0.013) (0.011) (0.021) (0.016) (0.023) (0.018)

Observations 8,400 11,000 2,900 4,400 5,200 6,100
Notes: Reports coefficient estimates from 2SLS regression of Δ𝑤𝑡 on 𝑤𝑡−1 using 𝑤𝑡−7 as an
instrument. ∗ denotes significance at 0.05 level. The number of observations is rounded to the
nearest 100 due to confidentiality requirements.

apart.
This paper takes a very different approach, demonstrating that traditional panel data sets can be used

to separately identify changes in the returns to unobserved skill from changes in the distributions of
unobserved skill and in the distribution of transitory non-skill shocks. Based on transparent identifying
assumptions, we show that a simple IV strategy (that exploits panel date on log wage residuals) can be
used to estimate the returns to unobserved skill over time. We test and cannot reject key assumptions,
further showing that our main conclusions are robust to relaxing most assumptions. Once skill returns
have been identified, it is straightforward to identify and estimate the evolution of skill (and skill growth)
distributions as well as distributions of transitory non-skill shocks. Importantly, none of this requires
measures of the tasks workers perform nor direct measures of worker skill levels; although, future work
could incorporate such measures (when available) within our framework to relax various assumptions,
improve the precision of estimates, and/or identify the full complement of task- or skill-specific returns.

Using survey data on wages from the PSID and administrative earnings records from W2 forms,
we show that skill returns for American men were fairly stable or increasing in the 1970s and early-
1980s, but then fell sharply over the late-1980s and 1990s (especially among non-college men) before
stabilizing again. The decline in returns was offset by a strong increase in the variance of unobserved skills
beginning in the early-1980s, driven by rising skill volatility (rather than changes in the dispersion of skills
at labor market entry). We also estimate a moderate increase in the variance of transitory non-skill wage
innovations during the late-1980s and 1990s for college-educated men, contributing to growth in their
residual inequality over that period. These conclusions stand in stark contrast to prevailing views, which
attribute rising residual inequality primarily to rising skill returns, despite recent evidence by Castex and
Dechter (2014) suggesting that the returns to cognitive skill fell by half between the late-1980s and 2010
(consistent with our estimated declines in skill returns).

Given growing interest in the importance of tasks, occupations, and the multiplicity of skills for
recent trends in wage inequality, we extend our analysis to account for heterogeneous pricing of multiple
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unobserved skills across occupations. Our analysis of PSID data indicates that skill returns fell similarly
for men working in routine, cognitive, and social occupations. This finding is consistent with similar
changes (or stability) in the skill-intensities of these occupation types, coupled with similar declines in the
returns to heterogeneous skills used within those occupations. We find that the substantial decline in log
wage residuals among workers in routine relative to cognitive occupations can be attributed to (i) weaker
growth in wages paid to similarly skilled workers in routine relative to cognitive occupations, and (ii)
substantial (unobserved) skill deterioration among workers in routine relative to cognitive jobs. Our
estimates based on administrative W2 earnings records suggest that the returns to skill may have fallen
more for workers in routine relative to cognitive occupations; however, we cannot reject that the declines
in returns were equal (as estimated in the PSID). Whether skill and wage levels (as suggested by the
PSID) or the returns to skill (as suggested by W2 records) fell more strongly within routine occupations,
our findings are broadly consistent with some form of routine-biased technical change (Autor and Dorn,
2013).

At the most basic level, our conclusion that skill returns declined in the late-1980s and 1990s is a
reflection of the sharp drop in long-autocovariances for log wage residuals during that period (see Figures 3
and 5). These drops are broad-based, evident for young and old, non-college and college workers. They
are equally pronounced for occupation-stayers, suggesting that they are not simply explained by shifts
in the occupation structure or by an increase in occupational switching (Kambourov and Manovskii,
2008). We interpret these changes through the lens of the canonical wage function for unobserved skills
introduced by Juhn, Murphy, and Pierce (1993); however, we make no attempt to explain why unobserved
skill returns fell over a period when returns to education rose.61 Just as economic theories developed
to explain long-term growth in the returns to unobserved skills, motivated by earlier studies like Juhn,
Murphy, and Pierce (1993), we hope that our findings spur new thinking on this issue.

Equally important, our results suggest that more attention be devoted to understanding the dramatic
increase in unobserved skill volatility. This may simply reflect a different type of technological change
– one characterized by the frequent introduction of new tasks that displace others (e.g., Andolfatto and
Smith, 2001; Acemoglu and Restrepo, 2018). Defining workers’ skill levels by the most productive task(s)
they can perform, this type of technological change would generate growing volatility in skills over the
lifecycle (or economic turbulence as in Ljungqvist and Sargent (1998)), which could, in turn, reduce skill
returns (see, e.g., Lochner, Park, and Shin, 2018). Growing knowledge/task specialization in the workforce
is likely to further exacerbate these forces. An alternative explanation may be that more able workers are
simply more capable of learning and adapting to new tasks (Nelson and Phelps, 1966), which would imply

61Results in Juhn, Murphy, and Pierce (1993) raised an alternative challenge: why did the returns to unobserved skills rise
well the returns to education fell in the late-1970s.
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greater variation in lifecycle wage growth during periods of rapid innovation.62 Finally, if firms possess
imperfect information about workers’ skills, our estimated “skill distributions” would instead reflect the
distributions of beliefs about worker skills. Thus, our estimates may also reflect changes in firms’ abilities
to identify (and reward) workers’ skill levels over their careers (e.g., see Lemieux, MacLeod, and Parent,
2009; Jovanovic, 2014).

62See Section 3.2 of Hornstein, Krusell, and Violante (2005) for a survey of theory and evidence on this view of technological
change and skills.
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Böhm, Michael J., Hans-Martin von Gaudecker, and Felix Schran. 2024. “Occupation Growth, Skill
Prices, and Wage Inequality.” Journal of Labor Economics 42 (1):201–243.
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Appendix

A Prior Assumptions in the Literature

A.1 Juhn, Murphy, and Pierce (1993)

Let 𝑐 reflect the year an individual enters the labor market and 𝑒 = 𝑡 − 𝑐 labor market experience. Then,

Var(𝑤𝑡 |𝑐) = 𝜇2
𝑡 Var(𝜃𝑡 |𝑐) + Var(𝜀𝑡 |𝑐) = 𝜇2

𝑡

[
Var(𝜃𝑐 |𝑐) +

𝑡∑︁
𝜏=𝑐+1

Var(Δ𝜃𝜏 |𝑐)
]
+ Var(𝜀𝑡 |𝑐).

where the second equality holds by assuming Cov(Δ𝜃𝑡 , 𝜃𝑡′ |𝑐) = 0 for 𝑡 ≥ 𝑡′ + 1.
The period 𝑡 to 𝑡 + ℓ time difference for this variance for a given cohort can be written as follows:

Δ𝑐 (𝑡, ℓ) ≡ Var(𝑤𝑡+ℓ |𝑐) − Var(𝑤𝑡 |𝑐)

=

(
𝜇2
𝑡+ℓ − 𝜇2

𝑡

) [
Var(𝜃𝑐 |𝑐) +

𝑡∑︁
𝜏=𝑐+1

Var(Δ𝜃𝜏 |𝑐)
]
+ 𝜇2

𝑡+ℓ

𝑡+ℓ∑︁
𝜏=𝑡+1

Var(Δ𝜃𝜏 |𝑐) + [Var(𝜀𝑡+ℓ |𝑐) − Var(𝜀𝑡 |𝑐)] .

Next, consider the time difference for the residual variance following an experience group over time
(assuming 𝑐 + ℓ < 𝑡):

Δ𝑒 (𝑡, ℓ) ≡Var(𝑤𝑡+ℓ |𝑐 + ℓ) − Var(𝑤𝑡 |𝑐)

=

(
𝜇2
𝑡+ℓ − 𝜇2

𝑡

) [
Var(𝜃𝑐 |𝑐) +

𝑡∑︁
𝜏=𝑐+1

Var(Δ𝜃𝜏 |𝑐)
]

+ 𝜇2
𝑡+ℓ

[
Var(𝜃𝑐+ℓ |𝑐 + ℓ) +

𝑡+ℓ∑︁
𝜏=𝑐+ℓ+1

Var(Δ𝜃𝜏 |𝑐 + ℓ) − Var(𝜃𝑐 |𝑐) −
𝑡∑︁

𝜏=𝑐+1
Var(Δ𝜃𝜏 |𝑐)

]
+ [Var(𝜀𝑡+ℓ |𝑐 + ℓ) − Var(𝜀𝑡 |𝑐)] .

To simplify the comparison between cohort- and experienced-based growth in residual inequality,
assume that shocks only depend on time and not cohort/experience: Var(𝜀𝑡 |𝑐) = Var(𝜀𝑡) and Var(Δ𝜃𝑡 |𝑐) =
Var(Δ𝜃𝑡) for all 𝑐, 𝑡. In this case, we have (for 𝑐 + ℓ < 𝑡):

Δ𝑐 (𝑡, ℓ) =
(
𝜇2
𝑡+ℓ − 𝜇2

𝑡

) [
Var(𝜃𝑐 |𝑐) +

𝑡∑︁
𝜏=𝑐+1

Var(Δ𝜃𝜏)
]
+ 𝜇2

𝑡+ℓ

𝑡+ℓ∑︁
𝜏=𝑡+1

Var(Δ𝜃𝜏) + [Var(𝜀𝑡+ℓ) − Var(𝜀𝑡)] ,

(26)
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and

Δ𝑒 (𝑡, ℓ) − Δ𝑐 (𝑡, ℓ)

=𝜇2
𝑡+ℓ

[
Var(𝜃𝑐+ℓ |𝑐 + ℓ) − Var(𝜃𝑐 |𝑐) +

𝑡+ℓ∑︁
𝜏=𝑐+ℓ+1

Var(Δ𝜃𝜏) −
𝑡∑︁

𝜏=𝑐+1
Var(Δ𝜃𝜏) −

𝑡+ℓ∑︁
𝜏=𝑡+1

Var(Δ𝜃𝜏)
]

=𝜇2
𝑡+ℓ

[
Var(𝜃𝑐+ℓ |𝑐 + ℓ) − Var(𝜃𝑐 |𝑐) −

𝑐+ℓ∑︁
𝜏=𝑐+1

Var(Δ𝜃𝜏)
]

=𝜇2
𝑡+ℓ [Var(𝜃𝑐+ℓ |𝑐 + ℓ) − Var(𝜃𝑐+ℓ |𝑐)]

As discussed in Juhn, Murphy, and Pierce (1993), equation (26) shows that the change in variances
over time for a given cohort incorporates both time effects and experience effects. The experience effects
are reflected in the accumulation of permanent skill shocks from 𝑡 + 1 to 𝑡 + ℓ (second term), while the
time effects reflect changes in skill returns (first term) and in non-skill transitory shocks (third term). The
evolution of variances over time for a given experience group includes the same three effects plus a fourth
reflecting the difference the variance of skill levels between the cohorts as of the later time period. This is
important, since it suggests that similar time patterns for residual variances obtained by following cohorts
or experience groupings (i.e., Δ𝑒 (𝑡, ℓ) ≈ Δ𝑐 (𝑡, ℓ)) implies that there is little variation across cohorts in
early skill levels (i.e., Var(𝜃𝑐+ℓ |𝑐 + ℓ) ≈ Var(𝜃𝑐+ℓ |𝑐)). This would be the case if the variance of initial skill
levels were identical across cohorts (Var(𝜃𝑐+ℓ |𝑐 + ℓ) = Var(𝜃𝑐 |𝑐)) and if there were no early skill shocks
over the first ℓ + 1 years of working careers. Alternatively, growth in the variance of initial skills across
cohorts could offset growth in the variance of skills accumulated via labor market experience.

In the absence of initial cohort differences and early career skill shocks, changes in the variance
of residuals should be the same over time whether we follow cohorts or experience groups: Δ𝑒 (𝑡, ℓ) =

Δ𝑐 (𝑡, ℓ). Put another way, we should observe similar growth over time in the variance when following
cohorts or experience groups regardless of whether that growth is due to an increase in skill returns (i.e.,
the first term in equation (26)), the existence of skill growth shocks (i.e., the second term in equation
(26)), or growth in transitory non-skill shocks (i.e., the third term in equation (26)). Thus, comparing
growth in the variance of residuals for given cohorts or experience groups (as in Juhn, Murphy, and Pierce
(1993)) is not directly informative about changes in the returns to skill unless there are no skill shocks and
the variance of non-skill shocks is time-invariant. Stated differently, Δ𝑒 (𝑡, ℓ) = Δ𝑐 (𝑡, ℓ) > 0 is consistent
with growth in skill returns, permanent skill shocks, or growth in the variance of non-skill shocks.

Finally, if cohorts are initially identical (i.e., Var(𝜃𝑐 |𝑐) does not depend on 𝑐) and shocks depend only
on time, then the variance of residuals will grow less (or decrease more) over time when following an
experience group than when following a cohort if skill growth shocks are important early in the lifecycle
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(i.e., Var(Δ𝜃𝜏) > 0 for 𝜏 = 𝑐 + 1, ..., 𝑐 + ℓ).

A.2 Lemieux (2006)

We use data from the Health and Retirement Study (HRS), described in Appendix F, to test Lemieux
(2006)’s assumption. We first residualize the word recall scores by regressing them on indicators of
race, education, experience, and birth year. Next, we regress the squared residuals of test scores on
the indicators of race, education, experience, and calendar year, and jointly test whether the estimated
coefficients on year indicators are identical (or jointly equal to zero excluding the base year 1996).

Table A-1 reports the 𝑝-values of the Wald tests conducted on the full sample, and college- and non-
college subsamples. Since all 𝑝-values are smaller than 0.05, we reject the hypothesis that the variance
of unobserved skill stays constant over time at the 5% significance level.

Table A-1: Wald test 𝑝-values

Variables All Men Non-College College

Year 0.0000 0.0003 0.0000

A.3 Castex and Dechter (2014)

We consider regression log wage residuals in period 𝑡 + ℓ on lagged test score residuals, 𝑇𝑗 ,𝑡 , where we
explicitly allow for different test measurements denoted by 𝑗 . This yields

𝛽 𝑗 ,𝑡,𝑡+ℓ
𝑝
→

Cov(𝑤𝑡+ℓ, 𝑇𝑗 ,𝑡)
Var(𝑇𝑗 ,𝑡)

=
𝜇𝑡+ℓ
𝜏𝑗

[
1 + Cov(𝜃𝑡+ℓ − 𝜃𝑡 , 𝜃𝑡)

Var(𝜃𝑡)

]
︸                         ︷︷                         ︸

Skill Dynamics (𝑆𝐷𝑡 ,𝑡+ℓ )

[
𝜏2
𝑗

Var(𝜃𝑡)
𝜏2
𝑗

Var(𝜃𝑡) + Var(𝜂 𝑗 ,𝑡)

]
︸                          ︷︷                          ︸

Test Reliability Ratio (𝑅 𝑗 ,𝑡 )

,

The ratio of these estimators (using the same test measurement 𝑗) for two different cohorts observed in
years 𝑡 and 𝑡′, respectively, yields the following:

𝛽 𝑗 ,𝑡,𝑡+ℓ

𝛽 𝑗 ,𝑡′,𝑡′+ℓ

𝑝
→ 𝜇𝑡+ℓ

𝜇𝑡′+ℓ

[
𝑆𝐷𝑡,𝑡+ℓ
𝑆𝐷𝑡′,𝑡′+ℓ

] [
𝑅 𝑗 ,𝑡

𝑅 𝑗 ,𝑡′

]
Growth in skill returns is biased when skill dynamics or the reliability of measurements vary across
cohorts. If test measurement error is time-invariant, i.e., Var(𝜂 𝑗 ,𝑡) = 𝜎2

𝑗
, then the reliability ratios will

differ if and only if the variance of skills differs across the cohorts (i.e., Var(𝜃𝑡) ≠ Var(𝜃𝑡′)).

A3



Using different test measurements across cohorts. Notice that the ratio of estimators for two different
cohorts in 𝑡 and 𝑡′ using different measurements 𝑗 and 𝑗 ′ yields the following:

𝛽 𝑗 ,𝑡,𝑡+ℓ

𝛽 𝑗 ′,𝑡′,𝑡′+ℓ

𝑝
→ 𝜇𝑡+ℓ

𝜇𝑡′+ℓ

[
𝑆𝐷𝑡,𝑡+ℓ
𝑆𝐷𝑡′,𝑡′+ℓ

] [
𝑅 𝑗 ,𝑡

𝑅 𝑗 ,𝑡′

] [
𝜏𝑗 ′

𝜏𝑗

] [
𝑅 𝑗 ,𝑡′

𝑅 𝑗 ′,𝑡′

]
,

where additional bias arises due to differences in the test score measurement quality as determined by
𝜏𝑗/𝜏𝑗 ′ and the reliability ratio, 𝑅 𝑗 ,𝑡′/𝑅 𝑗 ′,𝑡′ .

Re-scaling different test measurements across cohorts. Deming (2017) scales measurements by their
standard deviations, 𝜎𝑇 𝑗

=

√︃
𝜏2
𝑗

Var(𝜃𝑡) + Var(𝜂 𝑗 ,𝑡), before regressing log wage residuals on test score
residuals. Denote these regression coefficients as

𝛽 𝑗 ,𝑡,𝑡+ℓ
𝑝
→

Cov(𝑤𝑡+ℓ, 𝑇𝑗 ,𝑡/𝜎𝑇 𝑗
)

Var(𝑇𝑗 ,𝑡/𝜎𝑇 𝑗
)

=
𝜇𝑡+ℓ
𝜏𝑗

𝑆𝐷𝑡,𝑡+ℓ𝑅 𝑗 ,𝑡𝜎𝑇 𝑗

=
𝜇𝑡+ℓ
𝜏𝑗

[
Cov(𝜃𝑡+ℓ, 𝜃𝑡)

Var(𝜃𝑡)

] [
𝜏2
𝑗

Var(𝜃𝑡)
𝜏2
𝑗

Var(𝜃𝑡) + Var(𝜂 𝑗 ,𝑡)

] √︃
𝜏2
𝑗

Var(𝜃𝑡) + Var(𝜂 𝑗 ,𝑡)

=
𝜇𝑡+ℓ
𝜏𝑗

[
Cov(𝜃𝑡+ℓ, 𝜃𝑡)

Var(𝜃𝑡)

] 
𝜏2
𝑗

Var(𝜃𝑡)√︃
𝜏2
𝑗

Var(𝜃𝑡) + Var(𝜂 𝑗 ,𝑡)


= 𝜇𝑡+ℓ 𝜏𝑗


Cov(𝜃𝑡+ℓ, 𝜃𝑡)√︃

𝜏2
𝑗

Var(𝜃𝑡) + Var(𝜂 𝑗 ,𝑡)

 .
Clearly, this re-scaling of measurements will not help eliminate any biases for 𝜇𝑡+ℓ/𝜇𝑡′+ℓ when taking the
ratio 𝛽 𝑗 ,𝑡,𝑡+ℓ/𝛽 𝑗 ′,𝑡′,𝑡′+ℓ.

No measurement error. In the absence of measurement error in test scores, we have

𝛽 𝑗 ,𝑡,𝑡+ℓ
𝑝
→ 𝜇𝑡+ℓ

𝜏𝑗
𝑆𝐷𝑡,𝑡+ℓ and 𝛽 𝑗 ,𝑡,𝑡+ℓ

𝑝
→ 𝜇𝑡+ℓ 𝑆𝐷𝑡,𝑡+ℓ

√︁
Var(𝜃𝑡),
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which implies

𝛽 𝑗 ,𝑡,𝑡+ℓ

𝛽 𝑗 ′,𝑡′,𝑡′+ℓ

𝑝
→ 𝜇𝑡+ℓ

𝜇𝑡′+ℓ

[
𝜏𝑗 ′

𝜏𝑗

] [
𝑆𝐷𝑡,𝑡+ℓ
𝑆𝐷𝑡′,𝑡′+ℓ

]
and

𝛽 𝑗 ,𝑡,𝑡+ℓ

𝛽 𝑗 ′,𝑡′,𝑡′+ℓ

𝑝
→ 𝜇𝑡+ℓ

𝜇𝑡′+ℓ

[
𝑆𝐷𝑡,𝑡+ℓ
𝑆𝐷𝑡′,𝑡′+ℓ

] [ √︁
Var(𝜃𝑡)√︁
Var(𝜃𝑡′)

]
.

This highlights that re-scaling does not help in addressing the challenge that without the same measure
over time, it is impossible to sort out changes in skill variation across cohorts from the “strength” of skill
measurements used for the different cohorts.

B Early Occupational Experiences in NLSY

We use the data provided by Castex and Dechter (2014) to calculate the fraction of years each individual
in the NLSY79 and NLSY97 worked in different occupations over ages 17–26. We restrict the sample
to male respondents who took the Armed Forces Vocational Aptitude Battery (ASVAB) tests between
ages 16 and 17.5, so the skill measurements are comparable. The AFQT test is based on four ASVAB
subtests: arithemtic reasoning, mathematics knowledge, word knowledge, and paragraph comprehension.
Occupations are coded based on the current (or most recent) job at the time of each interview.

Table B-1 reports the average fraction of years individuals reported working in 6 different occupation
categories over ages 17–26. Figure B-1 reports the fraction of years in different occupations separately
by AFQT quintile.

Table B-1: Average fraction of years (over ages 17–26) spent working in occupations

NLSY Cohort Clerical Farm labor Manager Professional Sales Service

NLSY79 0.088 0.401 0.043 0.068 0.042 0.154
NLSY97 0.099 0.369 0.053 0.105 0.112 0.162
Notes: Sample sizes are 1,200 in NLSY79 and 1,007 in NLSY97.
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Figure B-1: Average fraction of years (over ages 17–26) spent working in occupations by AFQT quintile
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C Identification Results

C.1 Identifying skill returns and distributions of skill and non-skill shocks by
cohort

In addition to establishing identification for 𝜇𝑡 over time, the following proposition establishes identi-
fication of the variances of unobserved skills, skill growth innovations, and non-skill transitory shocks
when these are all allowed to vary by cohort. To achieve the results, we refine Assumption 4 to ensure its
applicability to each cohort, 𝑐. For the completeness of the arguments, we present the revised condition.

Assumption 4′. Let 𝑐 be a cohort denoting the year of labor market entry. For all cohorts, 𝑐: (i)
Cov(Δ𝜃𝑡 , 𝜃𝑡′ |𝑐) = 0 for all 𝑡 − 𝑡′ ≥ 1; (ii) Cov(𝜃𝑡 , 𝜀𝑡′ |𝑐) = 0 for all 𝑡, 𝑡′; and (iii) for known 𝑘 ≥ 1,
Cov(𝜀𝑡 , 𝜀𝑡′ |𝑐) = 0 for all 𝑡 − 𝑡′ ≥ 𝑘 .

Proposition 3. Suppose 𝑡 − 𝑡 ≥ 2𝑘 for some 𝑘 ≥ 1, and Assumption 4′ holds. Then, (i) 𝜇𝑡 is identified
for all 𝑡 ≥ 𝑡 + 𝑘 up to a normalization 𝜇𝑡∗ = 1 for some period 𝑡∗ ≥ 𝑡 + 𝑘 , (ii) Var(𝜃𝑡 |𝑐) and Var(𝜀𝑡 |𝑐) are
identified for all (𝑐, 𝑡) such that 𝑡 + 𝑘 ≤ 𝑡 ≤ 𝑡 − 𝑘 and cohort 𝑐 is observed both in period 𝑡 and some later
period 𝑡′ ≥ 𝑡 + 𝑘 , and (iii) Var(Δ𝜃𝑡 |𝑐) is identified for all (𝑐, 𝑡) such that Var(𝜃𝑡 |𝑐) and Var(𝜃𝑡−1 |𝑐) are
identified.

Proof. (i) Identification of 𝜇𝑡 . Without loss of generality, let 𝑡∗ = 𝑡 + 𝑘 and 𝑡′ = 𝑡 so that 𝑡∗ − 𝑡′ ≥ 𝑘 and
𝜇𝑡∗ = 𝜇𝑘+𝑡 = 1. We first proceed with the following derivation:

Cov(𝑤𝑡∗ , 𝑤𝑡′ |𝑐) = 𝜇𝑡∗𝜇𝑡′ Cov(𝜃𝑡∗ , 𝜃𝑡′ |𝑐) [Assum 4′ (ii)–(iii)]

= 𝜇𝑡∗𝜇𝑡′ Cov(𝜃𝑡′ + Δ𝜃𝑡′+1 + · · · + Δ𝜃𝑡∗ , 𝜃𝑡′ |𝑐)
= 𝜇𝑡∗𝜇𝑡′ Var(𝜃𝑡′ |𝑐) [Assum 4′ (i)]. (27)

Using the IV estimation formula and the normalization 𝜇𝑡∗ = 1, we identify 𝜇𝑡∗+1:

Cov(𝑤𝑡∗+1, 𝑤𝑡′ |𝑐)
Cov(𝑤𝑡∗ , 𝑤𝑡′ |𝑐)

=
𝜇𝑡∗+1𝜇𝑡′ Var(𝜃𝑡′ |𝑐)
𝜇𝑡∗𝜇𝑡′ Var(𝜃𝑡′ |𝑐)

=
𝜇𝑡∗+1
𝜇𝑡∗

= 𝜇𝑡∗+1.

We identify 𝜇𝑡+𝑘 , . . . , 𝜇𝑡 by applying the above arguments recursively.
(ii) Identification of Var(𝜃𝑡 |𝑐) and Var(𝜀𝑡 |𝑐). For any (𝑡, 𝑡′) such that 𝑡′ − 𝑡 ≥ 𝑘 , we can rearrange
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equation (27) and get the following expression:

Var(𝜃𝑡 |𝑐) =
Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐)

𝜇𝑡′𝜇𝑡
.

Since 𝜇𝑡 is now known for 𝑡 ≥ 𝑡 + 𝑘 , we can identify Var(𝜃𝑡 |𝑐) for 𝑡 = 𝑡 + 𝑘, . . . , 𝑡 − 𝑘 by varying
(𝑡, 𝑡′) ∈ {(𝑡 + 𝑘, 𝑡 + 2𝑘), . . . , (𝑡 − 𝑘, 𝑡)}. For the same time periods, Var(𝜀𝑡 |𝑐) is identified using:

Var(𝜀𝑡 |𝑐) = Var(𝑤𝑡 |𝑐) − 𝜇2
𝑡 Var(𝜃𝑡 |𝑐).

(iii) Identification of Var(Δ𝜃𝑡 |𝑐). Assumption 4′(i) implies that

Var(Δ𝜃𝑡 |𝑐) = Var(𝜃𝑡 |𝑐) − Var(𝜃𝑡−1 |𝑐).

Therefore, Var(Δ𝜃𝑡 |𝑐) is identified for 𝑡 = 𝑡 + 𝑘 + 1, . . . , 𝑡 − 𝑘 since Var(𝜃𝑡 |𝑐) is already determined in the
previous step.

□

C.2 Identifying early skill returns, 𝜇𝑡
The bias for Δ𝜇𝑡/𝜇𝑡−1 when using future residuals as instruments (equation (16)) presents the key
identification challenge for 𝜇𝑡 in early sample periods. Here, we show that the identification results can
be extended to earlier years by utilizing additional cohort information.

Proposition 3′. Suppose that Assumption 4′ holds for two cohorts 𝑐 and 𝑐. Furthermore, the following
two conditions hold: (a) Var(𝜃𝑡−1 |𝑐) ≠ Var(𝜃𝑡−1 |𝑐) and (b) Var(Δ𝜃𝑡 |𝑐) = Var(Δ𝜃𝑡 |𝑐). Then, (i) 𝜇𝑡 is
identified for all 𝑡 up to a normalization for some period 𝑡∗, (ii) Var(𝜃𝑡 |𝑐) and Var(𝜀𝑡 |𝑐) are identified for
all (𝑐, 𝑡) such that 𝑡 ≤ 𝑡 − 𝑘 and cohort 𝑐 is observed both in period 𝑡 and some later period 𝑡′ ≥ 𝑡 + 𝑘 ,
and (iii) Var(Δ𝜃𝑡 |𝑐) is identified for for all (c,t) such that Var(𝜃𝑡 |𝑐) and Var(𝜃𝑡−1 |𝑐) are identified.

Proof. Assumption 4′ and conditions (a) and (b) imply that, for 𝑡′ ≥ 𝑡 + 𝑘 ,

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑐) − Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑐)

=
𝜇𝑡𝜇𝑡′

[
Var(𝜃𝑡−1 |𝑐) − Var(𝜃𝑡−1 |𝑐)

]
𝜇𝑡−1𝜇𝑡′

[
Var(𝜃𝑡−1 |𝑐) − Var(𝜃𝑡−1 |𝑐)

] =
𝜇𝑡

𝜇𝑡−1
, (28)

which identifies 𝜇𝑡/𝜇𝑡−1 for all 𝑡 ≤ 𝑡 − 𝑘 . We combine the identification result of 𝜇𝑡 in Proposition 3 with
this, and the recursive arguments establish the desired results. The remaining identification results follow
directly from the previous results in Proposition 3. □
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Condition (a) on cohorts is likely to hold quite generally. For example, differences in the variance of
initial skill levels would contribute to different variances later in life. Even if initial skill distributions
were identical across cohorts, the older cohort is likely to have accumulated more skill growth innovations
over its longer career. Condition (b) holds when the skill growth variance depends only on time (and
not experience) or when there is a non-monotonic experience trend in the variance of skill changes. For
example, young workers may experience greater variation in skill growth than middle age workers due
to differences in training or learning opportunities, while older workers may have a greater variance in
skill changes due to differences in health shocks or skill obsolescence. Indeed, Baker and Solon (2003)
and Blundell, Graber, and Mogstad (2015) estimate a U-shaped age profile for the variance of earnings
shocks.

C.3 Identification when skills have a permanent and AR(1) component

Here, we consider the case of Section 3.5.2 in which skills are characterized by a permanent component
𝜓𝑖 and persistent component 𝜙𝑖,𝑡 that follows an AR(1) process:

𝜃𝑖,𝑡 = 𝜓𝑖 + 𝜙𝑖,𝑡 ,

𝜙𝑖,𝑡 = 𝜌𝑡𝜙𝑖,𝑡−1 + 𝜈𝑖,𝑡 ,

where we exclude the possibility of 𝜌𝑡 = 1 because Assumption 1(i) holds in that case.
For 𝑡′ ≤ 𝑡 − 𝑘 − 1, Assumption 2 implies the following:

Cov(Δ𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′)

=
Δ𝜇𝑡

𝜇𝑡−1
+ 𝜇𝑡

𝜇𝑡−1

[ (𝜌𝑡 − 1) �̂�𝑡′+1,𝑡−1 Var(𝜙𝑡′)
Var(𝜓) + �̂�𝑡′+1,𝑡−1 Var(𝜙𝑡′)

]
,

where �̂�𝑡,𝑡′ ≡ ∏𝑡′
𝑗=𝑡 𝜌 𝑗 . Clearly, the IV estimator is not consistent when 𝜌𝑡 ≠ 1. For example, when

Var(𝜓) = 0, the term in brackets simplifies to 𝜌𝑡 − 1, which implies that the IV estimator converges to
𝜌𝑡𝜇𝑡/𝜇𝑡−1 − 1. However, identification of skill returns over time for the case 𝜌𝑡 ≠ 1 is still feasible as long
as Var(𝜓) > 0.

To show identification, it is convenient to re-write the log wage equation as follows:

𝑤𝑖,𝑡 = 𝜇𝑡𝜓𝑖 + 𝜙𝑖,𝑡 + 𝜀𝑖,𝑡 ,

𝜙𝑖,𝑡 = �̃�𝑡𝜙𝑖,𝑡−1 + �̃�𝑖,𝑡 ,

where 𝜙𝑖,𝑡 ≡ 𝜇𝑡𝜙𝑖,𝑡 , �̃�𝑡 ≡ 𝜌𝑡𝜇𝑡/𝜇𝑡−1, and �̃�𝑖,𝑡 ≡ 𝜇𝑡𝜈𝑖,𝑡 .
Notice that Assumption 2 and the AR(1) process modeled in Equation (14) imply the following
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orthogonality conditions in terms of the transformed variables:

Assumption 2′. For all cohorts, c: (i) Cov(𝜓, 𝜙𝑡 |𝑐) = 0 for all 𝑡; (ii) Cov(𝜓, 𝜀𝑡′ |𝑐) = Cov(𝜙𝑡 , 𝜀𝑡′ |𝑐) = 0 for
all 𝑡, 𝑡′; (iii) Cov(𝜙𝑡′ , �̃�𝑡 |𝑐) = Cov(�̃�𝑡′ , �̃�𝑡 |𝑐) = 0 for all 𝑡 − 𝑡′ ≥ 1; (iv) for known 𝑘 ≥ 1, Cov(𝜀𝑡 , 𝜀𝑡′ |𝑐) = 0
for all 𝑡 − 𝑡′ ≥ 𝑘 .

Identification of �̃�𝑡 . Under Assumption 2′, we can construct the following moment condition: for
𝑡′ ≤ 𝑡 − 𝑘 − 1,

Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐) = 𝜇𝑡′ (𝜇𝑡 − �̃�𝑡𝜇𝑡−1) Var(𝜓 |𝑐). (29)

Suppose that there exist two cohorts 𝑐 and 𝑐 such that Var(𝜓 |𝑐) > 0 and Var(𝜓 |𝑐) > 0. Taking the ratio
of (29) for cohort 𝑐 relative to 𝑐 yields

Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐)
Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐)

=
Var(𝜓 |𝑐)
Var(𝜓 |𝑐) .

Similarly, for 𝑡′′ ≤ 𝑡 − 𝑘 − 1,

Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐)
Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐)

=
Var(𝜓 |𝑐)
Var(𝜓 |𝑐)

Combining these two equations yields

Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐)
Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐)

=
Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐)
Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐)

,

which becomes

𝐴�̃�2
𝑡 + 𝐵�̃�𝑡 + 𝐶 = 0, (30)

where

𝐴 =Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐) Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐) − Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐) Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐),
𝐵 =Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐) + Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐) Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐)

− Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) Cov(𝑤𝑡′′ , 𝑤𝑡−1 |𝑐) − Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐) Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐),
𝐶 =Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) − Cov(𝑤𝑡′′ , 𝑤𝑡 |𝑐) Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐).
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We can investigate some cases that equation (30) has a unique solution. First, if 𝐴 = 0 and 𝐵 ≠ 0, then
the unique solution is

�̃�𝑡 = −𝐶
𝐵
.

Second, if 𝐴 ≠ 0 and 𝐵2 − 4𝐴𝐶 = 0, then the unique solutions becomes

�̃�𝑡 = − 𝐵

2𝐴
.

Notice that there exist other set of sufficient conditions, especially by constructing the additional moment
conditions using different cohorts or applying instruments from different time periods.

Identification of 𝜇𝑡 . From Equation (29), we have, for 𝑡 ≤ 𝑡′ − 𝑘 − 1,

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − �̃�𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑐) − �̃�𝑡′ Cov(𝑤𝑡−1, 𝑤𝑡′−1 |𝑐)

=
𝜇𝑡

𝜇𝑡−1
. (31)

Because �̃�𝑡 is identified for all 𝑡 ≥ 𝑡 + 𝑘 + 1, 𝜇𝑡/𝜇𝑡−1 is identified for all 𝑡 ≤ 𝑡 − 𝑘 − 1.
Equation (29) also implies that, for 𝑡′ ≤ 𝑡 − 𝑘 − 2,

Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − �̃�𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐)
Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐) − �̃�𝑡−1 Cov(𝑤𝑡′ , 𝑤𝑡−2 |𝑐)

=
𝜇𝑡 − �̃�𝑡𝜇𝑡−1

𝜇𝑡−1 − �̃�𝑡−1𝜇𝑡−2
=

𝜇𝑡−1
𝜇𝑡−2

(
𝜇𝑡
𝜇𝑡−1

− �̃�𝑡

)(
𝜇𝑡−1
𝜇𝑡−2

− �̃�𝑡−1

) . (32)

Because �̃�𝑡 is identified for all 𝑡 ≥ 𝑡 + 𝑘 +1 and 𝜇𝑡/𝜇𝑡−1 is identified for all 𝑡 ≤ 𝑡 − 𝑘 −1 based on Equation
(31), 𝜇𝑡/𝜇𝑡−1 for 𝑡 ≥ 𝑡 − 𝑘 is also identified from Equation (32) as long as 𝑡 − 𝑘 − 1 ≥ 𝑡 + 𝑘 + 1. Therefore,
𝜇𝑡 is identified for all 𝑡 (up to a normalization 𝜇𝑡∗ = 1) if 𝑡 − 𝑡 ≥ 2(𝑘 + 1).

Identification of 𝜌𝑡 . 𝜌𝑡 = �̃�𝑡𝜇𝑡−1/𝜇𝑡 is identified for 𝑡 ≥ 𝑡 + 𝑘 +1 because �̃�𝑡 is identified for 𝑡 ≥ 𝑡 + 𝑘 +1
and 𝜇𝑡 is identified for all 𝑡.

Identification of Var(𝜓 |𝑐). Equation (29) implies Var(𝜓 |𝑐) is identified for all cohorts observed in 𝑡′,
𝑡 − 1, and 𝑡 such that 𝑡′ ≤ 𝑡 − 𝑘 − 1.
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Identification of Var(𝜙𝑡 |𝑐). For 𝑡′ ≥ 𝑡 + 𝑘 ,

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) = 𝜇𝑡𝜇𝑡′

Var(𝜓 |𝑐) + ©«
𝑡′∑︁

𝑗=𝑡+1
𝜌 𝑗

ª®¬ Var(𝜙𝑡 |𝑐)
 .

Since 𝜌𝑡 is identified for 𝑡 ≥ 𝑡 + 𝑘 + 1, Var(𝜙𝑡 |𝑐) is identified for 𝑡 ≥ 𝑡 + 𝑘 .

Finally, we note that it is straightforward to identify the covariance structure for 𝜀𝑡 from “close”
autocovariances given identification of everything else.

C.4 Identification with 𝜀𝑖,𝑡 ∼ ARMA(1, 𝑞)

We demonstrate identification for the model in Sections 2.2 generalized so that the transitory component
𝜀𝑖,𝑡 include an ARMA(1,𝑞) process 𝜑𝑖,𝑡 :

𝜀𝑖,𝑡 = 𝜑𝑖,𝑡 + 𝜀𝑖,𝑡 (33)

𝜑𝑖,𝑡 = 𝜌𝑡𝜑𝑖,𝑡−1 +
min{𝑞,𝑡−𝑐𝑖−1}∑︁

𝑗=0
𝛽 𝑗𝜈𝑖,𝑡− 𝑗 , (34)

where 𝛽0 = 1. Similar to Assumption 3, we assume that 𝜈𝑖,𝑡 is an i.i.d. innovation term, not correlated
with any other variables including 𝜈𝑖,𝑡′ for 𝑡′ ≠ 𝑡 and 𝜑𝑖,𝑡′ for 𝑡 − 𝑡′ ≥ 1. Without loss of generality, we
assume that 𝑘 ≥ 𝑞. Otherwise, we can redefine 𝑘′ = max{𝑘, 𝑞} and use 𝑘′ instead of 𝑘 .

Identification of 𝜌𝑡 . For 𝑡′ ≥ 𝑡 + 𝑘 + 1, we have

Cov(𝜀𝑡 , 𝜀𝑡′ − 𝜌𝑡′𝜀𝑡′−1 |𝑐) = Cov ©«𝜑𝑡 + 𝜀𝑡 ,

min{𝑞,𝑡−𝑐−1}∑︁
𝑗=0

𝛽 𝑗𝜈𝑡′− 𝑗 + (𝜀𝑡′ − 𝜌𝑡′𝜀𝑡′−1)
���𝑐ª®¬ = 0,

and therefore

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐) = 𝜇𝑡 (𝜇𝑡′ − 𝜌𝑡′𝜇𝑡′−1) Var(𝜃𝑡 |𝑐). (35)

Taking the ratio of (35) for cohort 𝑐 relative to 𝑐 yields

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)
Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)

=
Var(𝜃𝑡 |𝑐)
Var(𝜃𝑡 |𝑐)

.
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Similarly, for 𝑡′′ ≥ 𝑡 + 𝑘 + 1,

Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐) − 𝜌𝑡′′ Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐)
Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐) − 𝜌𝑡′′ Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐)

=
Var(𝜃𝑡 |𝑐)
Var(𝜃𝑡 |𝑐)

.

Combining these two equations yields

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)
Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)

=
Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐) − 𝜌𝑡′′ Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐)
Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐) − 𝜌𝑡′′ Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐)

. (36)

Equation (36) can be written as

𝐴1𝜌𝑡′𝜌𝑡′′ + 𝐵1𝜌𝑡′ + 𝐶1𝜌𝑡′′ + 𝐷1 = 0, (37)

where

𝐴1 =Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐) − Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐),
𝐵1 =Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐) − Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐),
𝐶1 =Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐) − Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′−1 |𝑐),
𝐷1 =Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐) − Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) Cov(𝑤𝑡 , 𝑤𝑡′′ |𝑐).

By changing 𝑡, 𝑐, or 𝑐, we can also construct an equation

𝐴2𝜌𝑡′𝜌𝑡′′ + 𝐵2𝜌𝑡′ + 𝐶2𝜌𝑡′′ + 𝐷2 = 0, (38)

where 𝐴2, 𝐵2, 𝐶2, and 𝐷2 are defined in a similar way.
We investigate some cases that this system of equations (37)–(38) has a unique solution. When

𝐴1 = 𝐴2 = 0, it becomes a system of linear equations. If 𝐵1𝐶2 − 𝐵2𝐶1 ≠ 0, it has a unique solution(
𝜌𝑡′

𝜌𝑡′′

)
= −

(
𝐵1 𝐶1

𝐵2 𝐶2

)−1 (
𝐷1

𝐷2

)
.

When 𝐴1 ≠ 0 and 𝐴2 ≠ 0, it becomes a set of rectangular hyperbolas. We first rearrange the equations:(
𝜌𝑡′ +

𝐶1
𝐴1

) (
𝜌𝑡′′ +

𝐵1
𝐴1

)
=

𝐵1𝐶1 − 𝐴1𝐷1

𝐴2
1(

𝜌𝑡′ +
𝐶2
𝐴2

) (
𝜌𝑡′′ +

𝐵2
𝐴2

)
=

𝐵2𝐶2 − 𝐴2𝐷2

𝐴2
2

.
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If the constants on the right hand side have different signs and the graphs share only one asymptote,
it always has a unique solution. Therefore, we conclude that (𝜌𝑡′ , 𝜌𝑡′′) are jointly identified when (i)
(𝐵1𝐶1 − 𝐴1𝐷1) (𝐵2𝐶2 − 𝐴2𝐷2) < 0; and (ii-1) 𝐶1/𝐴1 = 𝐶2/𝐴2 and (𝐵1/𝐴1) ≠ (𝐵2/𝐴2) or (ii-2)
𝐶1/𝐴1 ≠ 𝐶2/𝐴2 and (𝐵1/𝐴1) = (𝐵2/𝐴2). Once we identify 𝜌𝑡′ for some 𝑡′, we can recover 𝜌𝑡† recursively
by constructing equation (37) with 𝑡† instead of 𝑡′′ or with different cohort if necessary. Then, we can
identify 𝜌𝑡 for all 𝑡 ≥ 𝑡 + 𝑘 + 1. Notice that these conditions are sufficient for identification. Additional
equations generated by varying 𝑡, 𝑐, or 𝑐 can provide a different set of sufficient conditions for identification.

Identification of 𝜇𝑡 . For 𝑡′ ≥ 𝑡+𝑘+1, suppose that there exists (𝑐, 𝑐) such that Var(𝜃𝑡−1 |𝑐) ≠ Var(𝜃𝑡−1 |𝑐)
and Var(Δ𝜃𝑡 |𝑐) = Var(Δ𝜃𝑡 |𝑐). Then, from Equation (35), we have[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)
]
−

[
Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)

][
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡−1, 𝑤𝑡′−1 |𝑐)

]
−

[
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡−1, 𝑤𝑡′−1 |𝑐)

]
=

𝜇𝑡 (𝜇𝑡′ − 𝜌𝑡′𝜇𝑡′−1)
[

Var(𝜃𝑡−1 |𝑐) − Var(𝜃𝑡−1 |𝑐)
]

𝜇𝑡−1(𝜇𝑡′ − 𝜌𝑡′𝜇𝑡′−1)
[

Var(𝜃𝑡−1 |𝑐) − Var(𝜃𝑡−1 |𝑐)
]

=
𝜇𝑡

𝜇𝑡−1
. (39)

Since 𝜌𝑡 is identified for all 𝑡 ≥ 𝑡 + 𝑘 + 1, 𝜇𝑡/𝜇𝑡−1 is identified for all 𝑡 ≤ 𝑡 − 𝑘 − 1.
Equation (35) also implies that, for 𝑡′ ≤ 𝑡 − 𝑘 − 2,

Cov(𝑤𝑡′ , 𝑤𝑡 |𝑐) − 𝜌𝑡 Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐)
Cov(𝑤𝑡′ , 𝑤𝑡−1 |𝑐) − 𝜌𝑡−1 Cov(𝑤𝑡′ , 𝑤𝑡−2 |𝑐)

=
𝜇𝑡 − 𝜌𝑡𝜇𝑡−1

𝜇𝑡−1 − 𝜌𝑡−1𝜇𝑡−2
=

𝜇𝑡−1
𝜇𝑡−2

(
𝜇𝑡
𝜇𝑡−1

− 𝜌𝑡

)(
𝜇𝑡−1
𝜇𝑡−2

− 𝜌𝑡−1

) (40)

Because 𝜌𝑡 is identified for all 𝑡 ≥ 𝑡 + 𝑘 +1 and 𝜇𝑡/𝜇𝑡−1 is identified for all 𝑡 ≤ 𝑡 − 𝑘 −1 based on Equation
(39), 𝜇𝑡/𝜇𝑡−1 for 𝑡 ≥ 𝑡 − 𝑘 is also identified from Equation (40) as long as 𝑡 − 𝑘 − 1 ≥ 𝑡 + 𝑘 + 1. Therefore,
𝜇𝑡 is identified for all 𝑡 (up to a normalization 𝜇𝑡∗ = 1) if 𝑡 − 𝑡 ≥ 2(𝑘 + 1).

Identification of Var(𝜃𝑡 |𝑐). For 𝑡′ ≥ 𝑡 + 𝑘 + 1, Equation (35) implies

Var(𝜃𝑡 |𝑐) =
Cov(𝑤𝑡 , 𝑤𝑡′ |𝑐) − 𝜌𝑡′ Cov(𝑤𝑡 , 𝑤𝑡′−1 |𝑐)

𝜇𝑡 (𝜇𝑡′ − 𝜌𝑡′𝜇𝑡′−1)
.

Because 𝜌𝑡 is identified for all 𝑡 ≥ 𝑡 + 𝑘 + 1 and 𝜇𝑡 is identified for all 𝑡, Var(𝜃𝑡 |𝑐) is identified for all
𝑡 ≤ 𝑡 − 𝑘 − 1.

Finally, we note that it is straightforward to identify {𝛽 𝑗 } and Var(𝜈𝑡 |𝑐) from “close” autocovariances
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given identification of everything else.

C.5 Identification with Heterogeneous Skill Growth Rates

We now demonstrate identification for the model in Section 3.5.1 with systematic heterogeneity in lifecycle
skill growth.

Letting 𝜓𝑖 reflect the initial skill for an individual entering the labor market, the skill growth process
(12) implies that the level of unobserved skill for individual 𝑖 from cohort 𝑐𝑖 in year 𝑡 can be written as

𝜃𝑖,𝑡 = 𝜓𝑖 + Λ𝑡 (𝑐𝑖)𝛿𝑖 +
𝑡−𝑐𝑖−1∑︁
𝑗=0

𝜈𝑖,𝑡− 𝑗 , (41)

where Λ𝑡 (𝑐) ≡
∑𝑡−𝑐−1

𝑗=0 𝜆𝑡− 𝑗 (𝑐) reflects the accumulated influence of skill growth heterogeneity.
To facilitate an identification analysis, assume that idiosyncratic skill growth shocks 𝜈𝑖,𝑡 are seri-

ally uncorrelated and uncorrelated with initial skills and systematic skill growth; however, we make no
assumptions about the correlation between heterogeneous skill growth rates and initial skill levels. Con-
sistent with the literature estimating HIP models, we strengthen conditions (ii) and (iii) of Assumption 1
to assume that non-skill shocks are uncorrelated with all skill-related components. Formally, we assume
the following, explicitly conditioning on cohorts.

Assumption 7. For all cohorts, 𝑐: (i) Cov(𝜓, 𝜈𝑡 |𝑐) = Cov(𝛿, 𝜈𝑡 |𝑐) = 0 for all 𝑡; (ii) Cov(𝜓, 𝜀𝑡′ |𝑐) =

Cov(𝛿, 𝜀𝑡′ |𝑐) = Cov(𝜈𝑡 , 𝜀𝑡′ |𝑐) = 0 for all 𝑡, 𝑡′; (iii) for known 𝑘 ≥ 1, Cov(𝜀𝑡 , 𝜀𝑡′ |𝑐) = 0 for all 𝑡 − 𝑡′ ≥ 𝑘 .

Assumption 7 implies that the covariance between skills in periods 𝑡 and 𝑡′ < 𝑡 can be written as

Cov(𝜃𝑡′ , 𝜃𝑡 |𝑐) =Var(𝜓 |𝑐) + Λ𝑡′ (𝑐)Λ𝑡 (𝑐) Var(𝛿 |𝑐) + [Λ𝑡′ (𝑐) + Λ𝑡 (𝑐)] Cov(𝜓, 𝛿 |𝑐) +
𝑡′−𝑐−1∑︁
𝑗=0

Var(𝜈𝑡− 𝑗 |𝑐).

In addition to Assumption 7, we assume that there exists 𝑒 such that 𝜆𝑡 (𝑐) = 0 for 𝑒 = 𝑡 − 𝑐 ≥ 𝑒.

Identification of 𝜇𝑡 . 𝜇𝑡 can be identified based on experienced workers with 𝜆𝑡 (𝑐) = 0 for which
Propositions 3 and 3′ can be applied. First, 𝜇𝑡/𝜇𝑡−1 for 𝑡 ≥ 𝑡 + (𝑘 + 1) is identified if there exists some
cohort 𝑐 such that (i) the cohort has experience 𝑒 = 𝑡 − 𝑐 ≥ 𝑒 in year 𝑡 and (ii) the cohort is observed in
years 𝑡′ ≤ 𝑡 − 𝑘 − 1, 𝑡 − 1, and 𝑡. Moreover, 𝜇𝑡/𝜇𝑡−1 for 𝑡 ≤ 𝑘 + 1 is identified if there exist two cohorts
𝑐 and 𝑐 such that (i) both cohorts have experience of at least 𝑒 in year 𝑡, (ii) both cohorts are observed in
years 𝑡 − 1, 𝑡, and some year 𝑡′ ≥ 𝑡 + 𝑘 , and (iii) Var(𝜃𝑡−1 |𝑐) ≠ Var(𝜃𝑡−1 |𝑐) and Var(𝜈𝑡 |𝑐) = Var(𝜈𝑡 |𝑐).
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Identification of 𝜆𝑡 (𝑐). By dividing the residual by 𝜇𝑡 , we get

𝑤𝑖,𝑡

𝜇𝑡
= 𝜃𝑖,𝑡 +

𝜀𝑖,𝑡

𝜇𝑡
,

and its first difference is

Δ

(
𝑤𝑖,𝑡

𝜇𝑡

)
= Δ𝜃𝑖,𝑡 + Δ

(
𝜀𝑖,𝑡

𝜇𝑡

)
= 𝜆𝑡 (𝑐𝑖)𝛿𝑖 + 𝜈𝑖,𝑡 + Δ

(
𝜀𝑖,𝑡

𝜇𝑡

)
.

For |𝑡′ − 𝑡 | ≥ 𝑘 + 1, Cov(Δ𝜀𝑡 ,Δ𝜀𝑡′ |𝑐) = 0 and

Cov
(
Δ

(
𝑤𝑡

𝜇𝑡

)
,Δ

(
𝑤𝑡′

𝜇𝑡′

) ���𝑐) =Cov(Δ𝜃𝑡 ,Δ𝜃𝑡′ |𝑐) = 𝜆𝑡 (𝑐)𝜆𝑡′ (𝑐) Var(𝛿 |𝑐).

Therefore, we can identify changes in 𝜆𝑡 (𝑐):

𝜆𝑡 (𝑐)
𝜆𝑡−1(𝑐)

=

Cov
(
Δ

(
𝑤𝑡

𝜇𝑡

)
,Δ

(
𝑤𝑡′
𝜇𝑡′

)
|𝑐
)

Cov
(
Δ

(
𝑤𝑡−1
𝜇𝑡−1

)
,Δ

(
𝑤𝑡′
𝜇𝑡′

)
|𝑐
) , ∀(𝑡, 𝑡′) such that 𝑡 − 𝑡′ ≥ 𝑘 + 2 or 𝑡′ − 𝑡 ≥ 𝑘 + 1.

Normalizing 𝜆𝑡∗ (𝑐) (𝑐) = 1 for some 𝑡∗(𝑐), all 𝜆𝑡 (𝑐)’s can be identified for which the covariances in (scaled)
residual wage changes are observed.

Identification of Var(𝛿 |𝑐). Once 𝜆𝑡 (𝑐)’s have been identified, Var(𝛿 |𝑐) is identified from

Var(𝛿 |𝑐) =
Cov

(
Δ

(
𝑤𝑡

𝜇𝑡

)
,Δ

(
𝑤𝑡′
𝜇𝑡′

)
|𝑐
)

𝜆𝑡 (𝑐)𝜆𝑡′ (𝑐)
.

Identification of Cov(𝜓, 𝛿 |𝑐). For 𝑡′ − 𝑡 ≥ 𝑘 + 1, Cov(𝜀𝑡 ,Δ𝜀𝑡′ |𝑐) = 0 and

Cov
(
𝑤𝑡

𝜇𝑡
,Δ

(
𝑤𝑡′

𝜇𝑡′

) ���𝑐) = Cov(𝜃𝑡 ,Δ𝜃𝑡′ |𝑐) = 𝜆𝑡′ (𝑐) Cov(𝜃𝑡 , 𝛿 |𝑐),

where

Cov(𝜃𝑡 , 𝛿 |𝑐) = Cov(𝜓, 𝛿 |𝑐) + Var(𝛿 |𝑐)
𝑡−𝑐−1∑︁
𝑗=0

𝜆𝑡− 𝑗 (𝑐). (42)

Therefore,

Cov(𝜓, 𝛿 |𝑐) =
Cov

(
𝑤𝑡

𝜇𝑡
,Δ

(
𝑤𝑡′
𝜇𝑡′

)
|𝑐
)

𝜆𝑡′ (𝑐)
− Var(𝛿 |𝑐)

𝑡−𝑐−1∑︁
𝑗=0

𝜆𝑡− 𝑗 (𝑐).
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Identification of Var(𝜃𝑡 |𝑐). For 𝑡′ − 𝑡 ≥ 𝑘 , write

𝜃𝑖,𝑡′ = 𝜃𝑖,𝑡 +
𝑡′−𝑡−1∑︁
𝑗=0

[
𝜆𝑡′− 𝑗 (𝑐𝑖)𝛿𝑖 + 𝜈𝑖,𝑡′− 𝑗

]
.

Then,

Cov
(
𝑤𝑡

𝜇𝑡
,
𝑤𝑡′

𝜇𝑡′

���𝑐) = Cov(𝜃𝑡 , 𝜃𝑡′ |𝑐) = Var(𝜃𝑡 |𝑐) + Cov(𝜃𝑡 , 𝛿 |𝑐)
𝑡′−𝑡−1∑︁
𝑗=0

𝜆𝑡′− 𝑗 (𝑐).

Therefore,

Var(𝜃𝑡 |𝑐) = Cov
(
𝑤𝑡

𝜇𝑡
,
𝑤𝑡′

𝜇𝑡′

���𝑐) − Cov(𝜃𝑡 , 𝛿 |𝑐)
𝑡′−𝑡−1∑︁
𝑗=0

𝜆𝑡′− 𝑗 (𝑐).

Identification of Var(𝜈𝑡 |𝑐). Note that

Var(𝜃𝑡 |𝑐) = Var(𝜃𝑡−1 |𝑐) + Var(𝛿 |𝑐)𝜆𝑡 (𝑐)2 + 2 Cov(𝜃𝑡−1, 𝛿 |𝑐)𝜆𝑡 (𝑐) + Var(𝜈𝑡 |𝑐),

from which Var(𝜈𝑡 |𝑐) is identified once all the other components have been identified.

Finally, we note that it is straightforward to identify {𝛽 𝑗 } and Var(𝜉𝑡 |𝑐) from “close” autocovariances
given identification of everything else.

C.6 Identification with Occupations

Identification of 𝜇𝑜𝑡 . With Assumption 5(iii)–(iv), the long autocovariance for log wage residuals for
𝑡 − 𝑡′ ≥ 𝑘 + 1 can be written as follows:

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) =𝜇𝑜𝑡𝑡
[
𝜇
𝑜𝑡′
𝑡′ Cov(𝜃𝑡 , 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) + Cov(𝜃𝑡 , 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′)

]
, (43)

Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) =𝜇𝑜𝑡−1
𝑡−1

[
𝜇
𝑜𝑡′
𝑡′ Cov(𝜃𝑡−1, 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) + Cov(𝜃𝑡−1, 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′)

]
. (44)

Moreover, Assumption 5(i)–(ii) imply Cov(𝜃𝑡 , 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) = Cov(𝜃𝑡−1, 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) and Cov(𝜃𝑡 , 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) =
Cov(𝜃𝑡−1, 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′), so equations (43) and (44) imply equation (18).

IV Estimator without Conditioning on 𝑜𝑡′ . Next, we show that 𝜇𝑜𝑡 is identified based on covariances
conditioned only on (𝑜𝑡 , 𝑜𝑡−1) when we assume E[Δ𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] =
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0 in addition to Assumption 5. Consider the long autocovariance (43) that is not conditioned on 𝑜𝑡′ :

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1) =E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) |𝑜𝑡 , 𝑜𝑡−1
]

+ Cov
(
E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] |𝑜𝑡 , 𝑜𝑡−1

)
. (45)

The second term in equation (45) is

Cov
(
E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] |𝑜𝑡 , 𝑜𝑡−1

)
=Cov

(
𝛾
𝑜𝑡
𝑡 + 𝜇

𝑜𝑡
𝑡 E[𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] |𝑜𝑡 , 𝑜𝑡−1

)
=𝜇

𝑜𝑡
𝑡 Cov

(
E[𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] |𝑜𝑡 , 𝑜𝑡−1

)
.

where we used the additional assumption E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0.
Thus, the long autocovariances (43) and (44) that are not conditioned on 𝑜𝑡′ are given by

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1) =𝜇𝑜𝑡𝑡 Ξ
𝑜𝑡 ,𝑜𝑡−1
𝑡 ,

Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1) =𝜇𝑜𝑡−1
𝑡−1 Ξ

𝑜𝑡 ,𝑜𝑡−1
𝑡−1 ,

where

Ξ
𝑜𝑡 ,𝑜𝑡−1
𝑡 ≡E

[
𝜇
𝑜𝑡′
𝑡′ Cov(𝜃𝑡 , 𝜃𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) + Cov(𝜃𝑡 , 𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′) |𝑜𝑡 , 𝑜𝑡−1

]
+ Cov

(
E[𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] |𝑜𝑡 , 𝑜𝑡−1

)
.

Assumption 5(i)–(ii) and E[Δ𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 imply Ξ
𝑜𝑡 ,𝑜𝑡−1
𝑡 = Ξ

𝑜𝑡 ,𝑜𝑡−1
𝑡−1 , so

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1)

=
𝜇
𝑜𝑡
𝑡 − 𝜇

𝑜𝑡−1
𝑡−1

𝜇
𝑜𝑡−1
𝑡−1

.

The IV estimator for stayers in an occupation (𝑜𝑡 = 𝑜𝑡−1 = 𝑜) identifies growth in returns to skill in that
occupation. Moreover, the IV estimator for occupational switchers (𝑜𝑡 ≠ 𝑜𝑡−1) identifies the differences
in the level of returns to skill across occupations, given a normalization 𝜇𝑜

∗
𝑡∗ = 1 for some (𝑡∗, 𝑜∗).

Identification of 𝛾𝑜𝑡 . Given 𝜇𝑜𝑡 , we show that 𝛾𝑜𝑡 is identified under the assumptions E[Δ𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1] =
E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1] = 0.
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Since 𝜇𝑜𝑡 is identified, we can use it to scale the average log wage residuals as follows:

E [𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1]
𝜇
𝑜𝑡
𝑡

=
𝛾
𝑜𝑡
𝑡

𝜇
𝑜𝑡
𝑡

+ E[𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1] .

Using E[Δ𝜃𝑡 |𝑜𝑡 , 𝑜𝑡−1] = 0, the average growth of scaled log wage residual is

E [𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1]
𝜇
𝑜𝑡
𝑡

− E [𝑤𝑡−1 |𝑜𝑡 , 𝑜𝑡−1]
𝜇
𝑜𝑡−1
𝑡−1

=
𝛾
𝑜𝑡
𝑡

𝜇
𝑜𝑡
𝑡

−
𝛾
𝑜𝑡−1
𝑡−1

𝜇
𝑜𝑡−1
𝑡−1

.

Therefore, with a normalization 𝛾𝑜
∗

𝑡∗ = 0 for some (𝑡∗, 𝑜∗), 𝛾𝑜∗𝑡 for 𝑡 ≠ 𝑡∗ is identified based on stayers in
occupation 𝑜∗. On the other hand, 𝛾𝑜𝑡 for 𝑜 ≠ 𝑜∗ is identified from occupation switchers.

C.7 Identification with Multiple Skills

Recall that we define 𝜃𝑖,𝑡 ≡
∑

𝑗 𝜇 𝑗 ,𝑡𝜃𝑖, 𝑗 ,𝑡 . Given Assumption 6, our IV estimator identifies the following:

Cov(Δ𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−1, 𝑤𝑡′)

=

𝐽∑
𝑗=1

Δ𝜇 𝑗 ,𝑡 Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)

𝐽∑
𝑗 ′=1

𝜇 𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃𝑡′)
, for 𝑡 − 𝑡′ ≥ 𝑘 + 1,

which implies Proposition 2.

Proof of Proposition 2. We consider skill return growth from period 𝑡0 to 𝑡, where the text assumes
𝑡0 = 𝑡 − 1. More generally, we require 𝑡′ + 𝑘 ≤ 𝑡0 ≤ 𝑡 − 1. Empirically, we use 𝑡0 = 𝑡 − 2 given the biennial
nature of the PSID in later years.
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Assumption 6 implies the following:

Cov(𝑤𝑡 − 𝑤𝑡0 , 𝑤𝑡′)
Cov(𝑤𝑡0 , 𝑤𝑡′)

=

𝐽∑
𝑗=1

(𝜇 𝑗 ,𝑡 − 𝜇 𝑗 ,𝑡0) Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)

𝐽∑
𝑗=1

𝜇 𝑗 ,𝑡0 Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)
(46)

=

𝐽∑
𝑗=1

(
𝜇 𝑗 ,𝑡−𝜇 𝑗 ,𝑡0

𝜇 𝑗 ,𝑡0

)
𝜇 𝑗 ,𝑡0 Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)

𝐽∑
𝑗=1

𝜇 𝑗 ,𝑡0 Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)

=

𝐽∑︁
𝑗=1

𝜔 𝑗 ,𝑡′,𝑡0

(
𝜇 𝑗 ,𝑡 − 𝜇 𝑗 ,𝑡0

�̃� 𝑗 ,𝑡0

)
where the weights,

𝜔 𝑗 ,𝑡′,𝑡0 ≡
Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)𝜇 𝑗 ,𝑡0

𝐽∑
𝑗 ′=1

Cov(𝜃 𝑗 ′,𝑡′ , 𝜃𝑡′)𝜇 𝑗 ′,𝑡0

.

Notice that Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′) ≥ 0,∀ 𝑗 , 𝑗 ′, implies that Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′) ≥ 0,∀ 𝑗 . Since 𝜇 𝑗 ,𝑡 ≥ 0,∀ 𝑗 , 𝑡, the
weights 𝜔 𝑗 ,𝑡′,𝑡0 ≥ 0 whenever Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′) ≥ 0,∀ 𝑗 , 𝑗 ′. Since the weights sum to one, non-negativity
of the weights further implies that none exceeds one.

□

We can re-write the weights in terms of linear projections:

𝜔 𝑗 ,𝑡′,𝑡0 =
𝐿 (𝜃 𝑗 ,𝑡′ |𝜃𝑡′)𝜇 𝑗 ,𝑡0

𝐽∑
𝑗 ′=1

𝐿 (𝜃 𝑗 ′,𝑡′ |𝜃𝑡′) �̃� 𝑗 ′,𝑡0

=
𝐿 (𝜃 𝑗 ,𝑡0 |𝜃𝑡′)𝜇 𝑗 ,𝑡0

𝐽∑
𝑗 ′=1

𝐿 (𝜃 𝑗 ′,𝑡0 |𝜃𝑡′) �̃� 𝑗 ′,𝑡0

=
𝐿 (𝜇 𝑗 ,𝑡0𝜃 𝑗 ,𝑡0 |𝜃𝑡′)

𝐽∑
𝑗 ′=1

𝐿 (𝜇 𝑗 ′,𝑡0𝜃 𝑗 ′,𝑡0 |𝜃𝑡′)

where 𝐿 (𝑎 |𝑏) = Cov(𝑎, 𝑏)𝑏/Var(𝑏) is the linear projection of 𝑎 onto 𝑏. The second equality follows
from condition (i) of Assumption 6, which implies that 𝐿 (𝜃 𝑗 ,𝑡 |𝜃𝑡′) = 𝐿 (𝜃 𝑗 ,𝑡′ |𝜃𝑡′) for all 𝑡 ≥ 𝑡′. Thus, the
weight on growth in returns to skill 𝑗 depends on the (linearly) predicted rewards from skill 𝑗 in period
𝑡0, 𝜇 𝑗 ,𝑡0𝜃 𝑗 ,𝑡0 , given total worker productivity in period 𝑡′, 𝜃𝑡′ .

Proposition 4. If Assumption 6 holds, then for all 𝑡 − 𝑡′ ≥ 𝑘 + 1, the IV estimator identifies growth in the

A20



weighted-average return to skills, 𝑚𝑡,𝑡′ =
𝐽∑
𝑗=1

𝜑 𝑗 ,𝑡′𝜇 𝑗 ,𝑡:

Cov(𝑤𝑡 − 𝑤𝑡0 , 𝑤𝑡′)
Cov(𝑤𝑡0 , 𝑤𝑡′)

=
𝑚𝑡,𝑡′ − 𝑚𝑡0,𝑡′

𝑚𝑡0,𝑡′

with weights

𝜑 𝑗 ,𝑡′ ≡
Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′)

𝐽∑
𝑗 ′=1

Cov(𝜃 𝑗 ′,𝑡′ , 𝜃𝑡′)
, for 𝑗 = 1, ..., 𝐽. (47)

If Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′) ≥ 0,∀ 𝑗 , 𝑗 ′, then the weights 𝜑 𝑗 ,𝑡′ ∈ [0, 1],∀ 𝑗 .

Proof of Proposition 4. Using the definitions of 𝑚𝑡,𝑡′ and 𝜑 𝑗 ,𝑡′ , growth in the weighted-average return to
skills can be written as

𝑚𝑡,𝑡′ − 𝑚𝑡0,𝑡′

𝑚𝑡0,𝑡′
=

𝐽∑
𝑗=1

𝜑 𝑗 ,𝑡′ (𝜇 𝑗 ,𝑡 − 𝜇 𝑗 ,𝑡0)

𝐽∑
𝑗=1

𝜑 𝑗 ,𝑡′𝜇 𝑗 ,𝑡0

=

𝐽∑
𝑗=1

Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′) (𝜇 𝑗 ,𝑡 − 𝜇 𝑗 ,𝑡0)

𝐽∑
𝑗 ′=1

Cov(𝜃 𝑗 ′,𝑡′ , 𝜃𝑡′)𝜇 𝑗 ′,𝑡0

=
Cov(𝑤𝑡 − 𝑤𝑡0 , 𝑤𝑡′)

Cov(𝑤𝑡0 , 𝑤𝑡′)
,

where the last equality reflects equation (46).
Notice that Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′) ≥ 0,∀ 𝑗 , 𝑗 ′, implies that Cov(𝜃 𝑗 ,𝑡′ , 𝜃𝑡′) ≥ 0,∀ 𝑗 . So the weights 𝜑 𝑗 ,𝑡′ ≥ 0.

Since the weights sum to one, non-negativity of the weights further implies that none exceeds one.
□

Following the argument above, we can also write these weights in terms of linear projections:

𝜑 𝑗 ,𝑡′ ≡
𝐿 (𝜃 𝑗 ,𝑡′ |𝜃𝑡′)

𝐽∑
𝑗 ′=1

𝐿 (𝜃 𝑗 ′,𝑡′ |𝜃𝑡′)
.

Condition (i) of Assumption 6 implies that 𝐿 (𝜃 𝑗 ,𝑡 |𝜃𝑡′) = 𝐿 (𝜃 𝑗 ,𝑡′ |𝜃𝑡′),∀𝑡 ≥ 𝑡′, so the weights are propor-
tional to the predicted level of skill 𝑗 in periods 𝑡 ≥ 𝑡′ conditional on total worker productivity in period
𝑡′, 𝜃𝑡′ .

C.7.1 Occupations as Bundles of Skills

We now consider the case in which log wage residuals are given by equation (23), where we define
�̃�𝑜
𝑗,𝑡

≡ 𝜇 𝑗 ,𝑡𝛼
𝑜
𝑗,𝑡

and 𝜃
𝑜𝑖,𝑡
𝑖,𝑡 ≡ ∑𝐽

𝑗=1 �̃�
𝑜𝑖,𝑡
𝑗 ,𝑡

𝜃𝑖, 𝑗 ,𝑡 .
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Focusing on occupation stayers, we make the following assumption to accommodate multiple skills
and occupations.

Assumption 8. (i) Cov(Δ𝜃 𝑗 ,𝑡 , 𝜃 𝑗 ′,𝑡′ |𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′) = 0 for all 𝑗 , 𝑗 ′, and 𝑡 − 𝑡′ ≥ 1; for known 𝑘 ≥ 1
and for all 𝑡 − 𝑡′ ≥ 𝑘 + 1: (ii) Cov(𝜃 𝑗 ,𝑡 , 𝜀𝑡′ |𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′) = Cov(𝜃 𝑗 ,𝑡−1, 𝜀𝑡′ |𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′) = 0 for all 𝑗;
(iii) Cov(𝜀𝑡 , 𝜃 𝑗 ,𝑡′ |𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′) = Cov(𝜀𝑡−1, 𝜃 𝑗 ,𝑡′ |𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′) = 0 for all 𝑗; and (iv) Cov(𝜀𝑡 , 𝜀𝑡′ |𝑜𝑡 =
𝑜𝑡−1, 𝑜𝑡′) = Cov(𝜀𝑡−1, 𝜀𝑡′ |𝑜𝑡 = 𝑜𝑡−1, 𝑜𝑡′) = 0.

IV Estimator Conditional on 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 and 𝑜𝑡′ = 𝑜′. Given Assumption 8, our IV estimator
conditional on 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 and 𝑜𝑡′ = 𝑜′ identifies the following for 𝑡 − 𝑡′ ≥ 𝑘 + 1:63

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜, 𝑜′)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜, 𝑜′)

=

𝐽∑
𝑗=1

Δ�̃�𝑜
𝑗,𝑡

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜′

𝑡′ |𝑜, 𝑜′)

𝐽∑
𝑗 ′=1

�̃�𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)

=

𝐽∑
𝑗=1

(
Δ�̃�𝑜

𝑗,𝑡

�̃�𝑜
𝑗,𝑡−1

)
�̃�𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)

𝐽∑
𝑗 ′=1

�̃�𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)

=

𝐽∑︁
𝑗=1

𝜐
𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1

(
Δ�̃�𝑜

𝑗,𝑡

�̃�𝑜
𝑗,𝑡−1

)
=

𝐽∑︁
𝑗=1

𝜐
𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1

(
Δ𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1
+

𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1

Δ𝛼𝑜
𝑗,𝑡

𝛼𝑜
𝑗,𝑡−1

)
,

where

𝜐
𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1 ≡
�̃�𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)
𝐽∑

𝑗 ′=1
�̃�𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)
.

Therefore, if Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜′

𝑡′ |𝑜, 𝑜′) ≥ 0 for all 𝑗 and (𝑜, 𝑜′), the IV estimator for all occupational stay-
ers reflects weighted average of the growth rate of skill-specific returns in occupation 𝑜. Notice that
Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′ |𝑜, 𝑜′) ≥ 0,∀ 𝑗 , 𝑗 ′, implies that Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′) ≥ 0,∀ 𝑗 .

63To simplify notation, we let Cov(𝑥, 𝑦 |𝑜, 𝑜′) represent Cov(𝑥, 𝑦 |𝑜𝑡 = 𝑜𝑡−1 = 𝑜, 𝑜𝑡 ′ = 𝑜′), Cov(𝑥, 𝑦 |𝑜) represent
Cov(𝑥, 𝑦 |𝑜𝑡 = 𝑜𝑡−1 = 𝑜), and E[𝑥 |𝑜] represent E[𝑥 |𝑜𝑡 = 𝑜𝑡−1 = 𝑜].
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IV Estimator for Stayers in Occupation 𝑜. Next, we show the IV estimator formula based on co-
variances conditioned only on 𝑜𝑡 = 𝑜𝑡−1 = 𝑜. Consider the long residual autocovariance that is not
conditioned on 𝑜𝑡′ :

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜) = E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜, 𝑜𝑡′) |𝑜
]
+ Cov

(
E[𝑤𝑡 |𝑜, 𝑜𝑡′],E[𝑤𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)
. (48)

With Assumption 8, the first term in equation (48) is

E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜, 𝑜𝑡′) |𝑜
]
=

𝐽∑︁
𝑗=1

�̃�𝑜𝑗,𝑡 E
[

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′)

��𝑜] .
With additional assumptions E[𝜃 𝑗 ,𝑡−𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 for all 𝑗 and E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] =
0, the second term in equation (48) is

Cov
(
E[𝑤𝑡 |𝑜, 𝑜𝑡′],E[𝑤𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)
=

𝐽∑︁
𝑗=1

�̃�𝑜𝑗,𝑡 Cov
(
E[𝜃 𝑗 ,𝑡′ |𝑜, 𝑜𝑡′],E[𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)
.

Therefore,

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜) =
𝐽∑︁
𝑗=1

�̃�𝑜𝑗,𝑡

{
E

[
Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′)

��𝑜] + Cov
(
E[𝜃 𝑗 ,𝑡′ |𝑜, 𝑜𝑡′],E[𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)}
=

𝐽∑︁
𝑗=1

�̃�𝑜𝑗,𝑡 Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜).

Altogether, Assumption 8, E[𝜃 𝑗 ,𝑡 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜃 𝑗 ,𝑡−1 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 for all 𝑗 , and
E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 imply that the IV estimator conditional
on 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 is

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜)

=

𝐽∑
𝑗=1

Δ�̃�𝑜
𝑗,𝑡

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜)

𝐽∑
𝑗 ′=1

�̃�𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜)

=

𝐽∑︁
𝑗=1

�̃�𝑜𝑗,𝑡′,𝑡−1

(
Δ�̃�𝑜

𝑗,𝑡

�̃�𝑜
𝑗,𝑡−1

)
=

𝐽∑︁
𝑗=1

�̃�𝑜𝑗,𝑡′,𝑡−1

(
Δ𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1
+

𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1

Δ𝛼𝑜
𝑗,𝑡

𝛼𝑜
𝑗,𝑡−1

)
,
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where

�̃�𝑜𝑗,𝑡′,𝑡−1 ≡
�̃�𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜)

𝐽∑
𝑗 ′=1

�̃�𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜)

.

If Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜) ≥ 0 for all 𝑗 and 𝑜, the IV estimator for stayers in occupation 𝑜 reflects a weighted

average of the growth rate of skill-specific returns.

IV Estimator for All Occupation Stayers. Finally, consider the IV estimator for all occupation stayers
(i.e., 𝑜𝑡 = 𝑜𝑡−1), regardless of occupation. The log wage residual autocovariance for occupational stayers
is

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1) =E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1)
��𝑜𝑡 = 𝑜𝑡−1

]
+ Cov

(
E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1]

��𝑜𝑡 = 𝑜𝑡−1
)
.

The first term is

E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1)
��𝑜𝑡 = 𝑜𝑡−1

]
=

𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡 E
[
𝛼
𝑜𝑡
𝑗 ,𝑡

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜𝑡 , 𝑜𝑡−1) |𝑜𝑡 = 𝑜𝑡−1

]
.

Assuming E[𝜃 𝑗 ,𝑡 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1] = 0 for all 𝑗 and E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1] = E[𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1] = 0, the second term is

Cov
(
E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1]

��𝑜𝑡 = 𝑜𝑡−1
)

=E
[

E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1]
(
E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1] − E[𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1]

) ��𝑜𝑡 = 𝑜𝑡−1

]
=

𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡 E
[
𝛼
𝑜𝑡
𝑗 ,𝑡

E
[
𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1

] (
E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 , 𝑜𝑡−1] − E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 = 𝑜𝑡−1]

) ��𝑜𝑡 = 𝑜𝑡−1

]
=

𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡 Cov
(
𝛼
𝑜𝑡
𝑗 ,𝑡

E
[
𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1

]
,E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 , 𝑜𝑡−1]

��𝑜𝑡 = 𝑜𝑡−1

)
.
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Altogether,

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1) =
𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡

{
E[𝛼𝑜𝑡

𝑗 ,𝑡
Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 , 𝑜𝑡−1) |𝑜𝑡 = 𝑜𝑡−1]

+ Cov
(
𝛼
𝑜𝑡
𝑗 ,𝑡

E[𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1],E[𝜃
𝑜𝑡′
𝑡′ |𝑜𝑡 , 𝑜𝑡−1]

��𝑜𝑡 = 𝑜𝑡−1
)}

=

𝐽∑︁
𝑗=1

𝜇 𝑗 ,𝑡 Cov(𝛼𝑜𝑡
𝑗 ,𝑡
𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1).

Therefore, Assumption 8, E[𝜃 𝑗 ,𝑡 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1] = E[𝜃 𝑗 ,𝑡−1 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1] = 0 for all 𝑗 , and
E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1] = E[𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1] = 0 imply that the IV estimator for all stayers is

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

=

∑𝐽
𝑗=1 𝜇 𝑗 ,𝑡 Cov(𝛼𝑜𝑡

𝑗 ,𝑡
𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)∑𝐽

𝑗 ′=1 𝜇 𝑗 ′,𝑡−1 Cov(𝛼𝑜𝑡−1
𝑗 ′,𝑡−1𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

− 1

=

𝐽∑︁
𝑗=1

�̂� 𝑗 ,𝑡′,𝑡−1
©«

𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1

Cov(𝛼𝑜𝑡
𝑗 ,𝑡
𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

Cov(𝛼𝑜𝑡−1
𝑗 ,𝑡−1𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

− 1ª®¬
=

𝐽∑︁
𝑗=1

�̂� 𝑗 ,𝑡′,𝑡−1
©«
Δ𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1
+

𝜇 𝑗 ,𝑡

𝜇 𝑗 ,𝑡−1

Cov(Δ𝛼𝑜𝑡
𝑗 ,𝑡
𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

Cov(𝛼𝑜𝑡−1
𝑗 ,𝑡−1𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

ª®¬ ,
where

�̂� 𝑗 ,𝑡′,𝑡−1 ≡
𝜇 𝑗 ,𝑡−1 Cov(𝛼𝑜𝑡−1

𝑗 ,𝑡−1𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)∑𝐽

𝑗 ′=1 𝜇 𝑗 ′,𝑡−1 Cov(𝛼𝑜𝑡−1
𝑗 ′,𝑡−1𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

.

The weights are positive if and only if

Cov(𝛼𝑜𝑡−1
𝑗 ,𝑡−1𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1) =E

[
𝛼
𝑜𝑡−1
𝑗 ,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 , 𝑜𝑡−1) |𝑜𝑡 = 𝑜𝑡−1

]
+ Cov

(
𝛼
𝑜𝑡−1
𝑗 ,𝑡−1 E[𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1],E[𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 , 𝑜𝑡−1] |𝑜𝑡 = 𝑜𝑡−1

)
≥ 0.

The first term is positive if Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜) ≥ 0 for all ( 𝑗 , 𝑜), which is the condition

for positive weights among stayers in occupation 𝑜 as shown above. The second term is zero when
E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜] does not vary with 𝑜.
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C.8 Identification with Occupation-Specific Wage Functions and Multiple Skills

We now consider the case in which log wage residuals are given by equation (24), where we now define
�̃�𝑜
𝑗,𝑡

≡ 𝜇𝑜𝑡 𝛼
𝑜
𝑗,𝑡

and 𝜃
𝑜𝑖,𝑡
𝑖,𝑡 ≡ ∑𝐽

𝑗=1 �̃�
𝑜𝑖,𝑡
𝑗 ,𝑡

𝜃𝑖, 𝑗 ,𝑡 .

Identification of 𝜇𝑜𝑡 . With Assumption 8, the long autocovariance of log wage residuals for stayers in
occupation 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 and 𝑜𝑡′ = 𝑜′ can be written as follows for 𝑡 − 𝑡′ ≥ 𝑘 + 1:

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜, 𝑜′) =𝜇𝑜𝑡
𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′), (49)

Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜, 𝑜′) =𝜇𝑜𝑡−1

𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′). (50)

Together, equations (49) and (50) imply

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜, 𝑜′)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜, 𝑜′)

=
𝜇𝑜𝑡

𝜇𝑜
𝑡−1

∑𝐽
𝑗=1 𝛼

𝑜
𝑗,𝑡

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜′

𝑡′ |𝑜, 𝑜′)∑𝐽
𝑗 ′=1 𝛼

𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)
− 1 =

Δ𝜇𝑜𝑡

𝜇𝑜
𝑡−1

+
𝜇𝑜𝑡

𝜇𝑜
𝑡−1

©«
𝐽∑︁
𝑗=1

�̃�
𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1

Δ𝛼𝑜
𝑗,𝑡

𝛼𝑜
𝑗,𝑡−1

ª®¬ ,
where

�̃�
𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1 ≡
𝛼𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)∑𝐽
𝑗 ′=1 𝛼

𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜′

𝑡′ |𝑜, 𝑜′)
.

Occupation-specific returns, 𝜇𝑜𝑡 , are identified based on stayers in occupation 𝑜 if 𝛼𝑜
𝑗,𝑡

does not change

over time. Furthermore, Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′ |𝑜, 𝑜′) ≥ 0,∀ 𝑗 , 𝑗 ′, implies that Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜′

𝑡′ |𝑜, 𝑜′) ≥ 0,∀ 𝑗 , in
which case the weights �̃�𝑜,𝑜′

𝑗 ,𝑡′,𝑡−1 are non-negative.

IV Estimator for Stayers in Occupation 𝑜. Next, we show that 𝜇𝑜𝑡 is identified based on covari-
ances conditioned only on 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 when we assume E[𝜃 𝑗 ,𝑡 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜃 𝑗 ,𝑡−1 −
𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 for all 𝑗 and E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡−1 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 in
addition to Assumption 8.

Consider the long autocovariance that is not conditioned on 𝑜𝑡′ , i.e., equation (48). Given Assumption 8
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and equation (49), the first term in equation (48) is

E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜, 𝑜𝑡′) |𝑜
]
=𝜇𝑜𝑡 E


𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′)

��𝑜 .
The second term in equation (48) is

Cov
(
E[𝑤𝑡 |𝑜, 𝑜𝑡′],E[𝑤𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)
=Cov ©«𝛾𝑜𝑡 + 𝜇𝑜𝑡

𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡 E[𝜃 𝑗 ,𝑡 |𝑜, 𝑜𝑡′],E[𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′]

���𝑜ª®¬
=𝜇𝑜𝑡

𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡 Cov

(
E[𝜃 𝑗 ,𝑡′ |𝑜, 𝑜𝑡′],E[𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)
,

using additional assumptions E[𝜃 𝑗 ,𝑡 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 and E[𝜀𝑡 |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = E[𝜀𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] =
0.

Therefore, the long autocovariances in equations (49) and (50) that are not conditioned on 𝑜𝑡′ are
given by

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜) =𝜇𝑜𝑡
𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜),

Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜) =𝜇𝑜𝑡−1

𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜),

where we use the law of total covariance:

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜) = E

[
Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′)

��𝑜] + Cov
(
E[𝜃 𝑗 ,𝑡′ |𝑜, 𝑜𝑡′],E[𝜃

𝑜𝑡′
𝑡′ |𝑜, 𝑜𝑡′] |𝑜

)
.

Combining the two equations gives

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜)

=
Δ𝜇𝑜𝑡

𝜇𝑜
𝑡−1

+
𝜇𝑜𝑡

𝜇𝑜
𝑡−1

©«
𝐽∑︁
𝑗=1

𝜄𝑜𝑗,𝑡′,𝑡−1

Δ𝛼𝑜
𝑗,𝑡

𝛼𝑜
𝑗,𝑡−1

ª®¬ ,
where

𝜄𝑜𝑗,𝑡′,𝑡−1 ≡
𝛼𝑜
𝑗,𝑡−1 Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜)∑𝐽

𝑗 ′=1 𝛼
𝑜
𝑗 ′,𝑡−1 Cov(𝜃 𝑗 ′,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜)

.
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If Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜) ≥ 0 for all 𝑗 , then these weights are non-negative.

IV Estimator for All Occupation Stayers. Finally, consider the IV estimator for all occupational
stayers (i.e., 𝑜𝑡 = 𝑜𝑡−1), regardless of occupation. We show that if 𝛾𝑜𝑡 = 0, then this estimator identifies a
weighted average of occupation-specific skill returns.

The log wage residual autocovariance for occupational stayers is

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1) =E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1)
��𝑜𝑡 = 𝑜𝑡−1

]
+ Cov

(
E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1]

��𝑜𝑡 = 𝑜𝑡−1
)
.

Under Assumption 8, the first term is

E
[

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1)
��𝑜𝑡 = 𝑜𝑡−1

]
= E

𝜇𝑜𝑡𝑡
𝐽∑︁
𝑗=1

𝛼
𝑜𝑡
𝑗 ,𝑡

Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′

���𝑜𝑡 , 𝑜𝑡−1) |𝑜𝑡 = 𝑜𝑡−1

 .
If 𝛾𝑜𝑡 = 0 and E[𝜃 𝑗 ,𝑡 − 𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1, 𝑜𝑡′] = 0 for all 𝑗 , the second term is

Cov
(
E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1],E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1]

��𝑜𝑡 = 𝑜𝑡−1
)

=E
[

E[𝑤𝑡 |𝑜𝑡 , 𝑜𝑡−1]
(
E[𝑤𝑡′ |𝑜𝑡 , 𝑜𝑡−1] − E[𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1]

) ��𝑜𝑡 = 𝑜𝑡−1

]
=E

𝜇𝑜𝑡𝑡
𝐽∑︁
𝑗=1

𝛼
𝑜𝑡
𝑗 ,𝑡

E
[
𝜃 𝑗 ,𝑡′ |𝑜𝑡 , 𝑜𝑡−1

] (
E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 , 𝑜𝑡−1] − E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 = 𝑜𝑡−1]

)���𝑜𝑡 = 𝑜𝑡−1


Therefore, the long autocovariances for occupational stayers are

Cov(𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1) =
∑︁
𝑜

Pr(𝑜𝑡 = 𝑜𝑡−1 = 𝑜 |𝑜𝑡 = 𝑜𝑡−1)𝜇𝑜𝑡 Ψ𝑜
𝑡′,𝑡 ,

Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1) =
∑︁
𝑜

Pr(𝑜𝑡 = 𝑜𝑡−1 = 𝑜 |𝑜𝑡 = 𝑜𝑡−1)𝜇𝑜𝑡−1Ψ
𝑜
𝑡′,𝑡−1,

where Pr(𝑜𝑡 = 𝑜𝑡−1 = 𝑜 |𝑜𝑡 = 𝑜𝑡−1) denotes the share of stayers in occupation 𝑜 among all occupation
stayers and

Ψ𝑜
𝑡′,𝑡 ≡

𝐽∑︁
𝑗=1

𝛼𝑜
𝑗,𝑡

{
Cov(𝜃 𝑗 ,𝑡′ , 𝜃

𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜) + E[𝜃 𝑗 ,𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜]

(
E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜] − E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 = 𝑜𝑡−1]

)}
.
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The term Cov(𝜃 𝑗 ,𝑡′ , 𝜃
𝑜𝑡′
𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜) is positive if Cov(𝜃 𝑗 ,𝑡′ , 𝜃 𝑗 ′,𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜) ≥ 0 for all 𝑗 ′, while

the second term is zero when E[𝜃𝑜𝑡′𝑡′ |𝑜𝑡 = 𝑜𝑡−1 = 𝑜] does not vary with 𝑜.
The two long residual autocovariances imply

Cov(Δ𝑤𝑡 , 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1)
Cov(𝑤𝑡−1, 𝑤𝑡′ |𝑜𝑡 = 𝑜𝑡−1)

=
∑︁
𝑜

𝜁𝑜𝑡′,𝑡−1

(
Δ𝜇𝑜𝑡

𝜇𝑜
𝑡−1

+
𝜇𝑜𝑡

𝜇𝑜
𝑡−1

Ψ𝑜
𝑡′,𝑡 − Ψ𝑜

𝑡′,𝑡−1

Ψ𝑜
𝑡′,𝑡−1

)
,

where

𝜁𝑜𝑡′,𝑡−1 ≡
Pr(𝑜𝑡 = 𝑜𝑡−1 = 𝑜 |𝑜𝑡 = 𝑜𝑡−1)Ψ𝑜

𝑡′,𝑡−1𝜇
𝑜
𝑡−1∑

𝑜′ Pr(𝑜𝑡 = 𝑜𝑡−1 = 𝑜′|𝑜𝑡 = 𝑜𝑡−1)Ψ𝑜′
𝑡′,𝑡−1𝜇

𝑜′
𝑡−1

.

The weights are non-negative if and only if Ψ𝑜
𝑡′,𝑡−1 ≥ 0 for all 𝑜.

If 𝛼𝑜
𝑗,𝑡

= 𝛼𝑜
𝑗,𝑡−1, then Ψ𝑜

𝑡′,𝑡 = Ψ𝑜
𝑡′,𝑡−1 and the IV estimator identifies a weighted average of Δ𝜇𝑜𝑡 /𝜇𝑜𝑡−1

across occupations.

D MD Estimation and Standard Errors

D.1 MD Estimation

For a given parameter vector 𝚲, we can compute theoretical counterparts for Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝑐), where
𝑠 ∈ {Non-college, College} indicates non-college and college status, implied by any specific model and
compare them with the sample covariances. Since some cohort (or, equivalently, experience 𝑒 = 𝑡 − 𝑐)
cells have few observations when calculating residual covariances, we generally partition the cohort set
into ten-year cohort groups (e.g., 𝐶1, 𝐶2, 𝐶3, and 𝐶4 corresponding to cohorts born 1942–1951, 1952–
1961, 1962–1971, and 1972–1981, respectively) or the experience set into 10-year experience groups 𝐸1,
𝐸2, 𝐸3, and 𝐸4, corresponding to 1–10, 11–20, 21–30, and 31–40 years, respectively, aggregating within
these cohort or experience groups.

In the case of cohort grouping in Section 3.4, the minimum distance estimator �̂� solves

min
𝚲

∑︁
(𝑠, 𝑗 ,𝑡,𝑡′)∈Γ

{
Ĉov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐶 𝑗 ) − Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐶 𝑗 ,𝚲)

}2
,

where Γ is described in Table 4; Ĉov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐶 𝑗 ) is the sample covariance for residuals in years 𝑡 and
𝑡′ conditional on education group 𝑠 and cohort group 𝐶 𝑗 ; and Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐶 𝑗 ,𝚲) is the corresponding
theoretical covariance given parameter vector 𝚲.
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In the case of experience grouping in Section 3.5.2, the minimum distance estimator �̂� solves

min
𝚲

∑︁
(𝑠, 𝑗 ,𝑡,𝑡′)∈Γ

{
Ĉov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐸 𝑗 ) − Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐸 𝑗 ,𝚲)

}2
,

where Γ = {𝑠, 𝑗 , 𝑡, 𝑡′|1970 ≤ 𝑡′ ≤ 𝑡 ≤ 2012, 𝑡 − 𝑡′ ≥ 6, 𝑠 ∈ {Non-college, College}, 𝑗 ∈ {3, 4}};
Ĉov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐸 𝑗 ) is the sample covariance for residuals in years 𝑡 and 𝑡′ conditional on education group
𝑠 and experience group 𝐸 𝑗 ; and Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐸 𝑗 ,𝚲) is the corresponding theoretical covariance given
parameter vector 𝚲. In Sections 3.6 and 4, we also include covariance moments for less-experienced
workers, 𝐸1 and 𝐸2, covering the same time periods.

D.2 Standard Errors

Consider the case of experience-based moments, and let 𝑚 = 1, 2, . . . , 𝑀 be the index of all moments. Let
𝑑𝑖,𝑚 be the indicator of whether individual 𝑖 contributes to the𝑚𝑡ℎ moment Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐸 𝑗 ). That is, both
𝑤𝑖,𝑡 and 𝑤𝑖,𝑡′ are non-missing and 𝑠𝑖,𝑡 = 𝑠𝑖,𝑡′ = 𝑠 and 𝑒𝑖,𝑡 ∈ 𝐸 𝑗 . Also let 𝑝𝑚 (𝚲) = Cov(𝑤𝑡 , 𝑤𝑡′ |𝑠, 𝐸 𝑗 ,𝚲).
Then, we can write

ℎ𝑚 (𝒛𝑖,𝚲) = 𝑑𝑖,𝑚
[
𝑤𝑖,𝑡𝑤𝑖,𝑡′ − 𝑝𝑚 (𝚲)

]
,

where 𝒛𝑖 includes𝑤𝑖,𝑡 𝑑𝑖,𝑚 for all 𝑡 and𝑚 for individual 𝑖. Let 𝒉(𝒛,𝚲) = [ℎ1(𝒛,𝚲) ℎ2(𝒛,𝚲) . . . ℎ𝑀 (𝒛,𝚲)]⊤.
Then the following moment condition holds for the true parameter 𝚲0:

E[𝒉(𝒛,𝚲0)] = 0.

The minimum distance estimator �̂� is equivalent to the GMM estimator that solves

min
𝚲

[
1
𝑁

𝑁∑︁
𝑖=1

𝒉(𝒛𝑖,𝚲)
]⊤

𝑾

[
1
𝑁

𝑁∑︁
𝑖=1

𝒉(𝒛𝑖,𝚲)
]
,

where 𝑾 = diag( 𝑁2

𝑁2
1
, 𝑁

2

𝑁2
2
, . . . , 𝑁2

𝑁2
𝑀

) and 𝑁𝑚 =
∑𝑁

𝑖=1 𝑑𝑖,𝑚.

The GMM estimator �̂� is asymptotically normal with a variance matrix

𝑽 = (𝑯⊤𝑾𝑯)−1(𝑯⊤𝑾Ω𝑾𝑯) (𝑯⊤𝑾𝑯)−1,

where 𝑯 is the Jacobian of the vector of moments, E[𝜕𝒉(𝒛,𝚲0)/𝜕𝚲⊤], and 𝛀 = E[𝒉(𝒛,𝚲0)𝒉(𝒛,𝚲0)⊤].
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Both expectations are replaced by sample averages and evaluated at the estimated parameter:

�̂� =
1
𝑁

𝑁∑︁
𝑖=1

𝜕𝒉(𝒛𝑖, �̂�)
𝜕𝚲⊤ = 𝑾− 1

2
𝜕 𝒑(�̂�)
𝜕𝚲⊤ ,

�̂� =
1
𝑁

𝑁∑︁
𝑖=1

𝒉(𝒛𝑖, �̂�)𝒉(𝒛𝑖, �̂�)⊤,

where 𝑾− 1
2 = diag( 𝑁1

𝑁
,
𝑁2
𝑁
, . . . ,

𝑁𝑀

𝑁
).
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E PSID Data Details and Additional Results

E.1 Data Description

The PSID is a longitudinal survey of a representative sample of individuals and families in the U.S.
beginning in 1968. The survey was conducted annually through 1997 and biennially since. We use data
collected from 1971 through 2013. Since earnings were collected for the year prior to each survey, our
analysis studies hourly wages from 1970 to 2012.

Our sample is restricted to male heads of households from the core (SRC) sample and excludes those
from any PSID oversamples (SEO, Latino) as well as those with zero individual weights.64 We use
earnings (total wage and salary earnings, excluding farm and business income) from any year these men
were ages 16–64, had potential experience of 1–40 years, had positive wage and salary income, had
positive hours worked, and were not enrolled as a student.

Our sample is composed of 92% whites, 6% blacks, and 1% hispanics with an average age of 39 years
old. We create seven education categories based on current years of completed schooling: 1-5 years, 6-8
years, 9-11 years, 12 years, 13-15 years, 16 years, and 17 or more years. College workers are defined
as those with more than 12 years of schooling. In our sample, 13% of respondents finished less than
12 years of schooling, 35% had exactly 12 years of completed schooling, 21% completed some college
(13-15 years), 21% completed college (16 years), and 10% had more than 16 years of schooling.

The wage measure we use divides annual earnings by annual hours worked, trimming the top and
bottom 1% of all wages within year and college/non-college status by ten-year experience cells. The
resulting sample contains 3,766 men and 44,547 person-year observations.

Figure E-1 shows the widening of the residual distribution over time, reporting average log wage
residuals within each quartile. Consistent with Figure 1, the distribution widened most during the early
1980s and then again after 2000.

To examine whether attrition affects the residual autocovariances reported in Figure 3, Figure E-2
shows the autocovariances, Cov(𝑤𝑏, 𝑤𝑡) for 6 ≤ 𝑡 − 𝑏 ≤ 16, where the samples for each line (representing
different base years, 𝑏) are restricted to those individuals observed in the base year as well as at least one
of the last two years used for that line (i.e. 𝑡 − 𝑏 = 15 or 16 in early years or 𝑡 − 𝑏 = 14 or 16 in later
years with biannual surveys). Comparing Figures 3 and E-2, the autocovariance patterns are quite similar,
indicating little effect of sample attrition (due to non-response or retirement) on the key moments used in
our analysis.

Figure E-3 shows the residual autocovariances for individuals with 1–14 years of experience in the

64The earnings questions we use are asked only of household heads. We also restrict our sample to those who were heads
of household and not students during the survey year of the observation of interest as well as two years earlier. Our sampling
scheme is very similar to that of Moffitt and Gottschalk (2012).
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Figure E-1: Average Log Wage Residuals by Quartile

base years. Regardless of the base year, the autocovariances are typically declining from late 1980s
through the 1990s as in Figures 3(a) (full sample) and 3(b) (men with 15–30 years experience) in the text.
The lines also shift upwards over time, consistent with rising skill variances.
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Figure E-2: Log Wage Residual Autocovariances (‘Balanced’ Sample)
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Figure E-3: Autocovariances for Log Wage Residuals (1–14 Years of Experience)
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E.2 2SLS Estimates of Skill Returns by Education (PSID)

Table E-1: 2SLS estimates of Δ2𝜇𝑡/𝜇𝑡−2 for men with 21–40 years experience, 1979–1995

1979–1980 1981–1983 1984–1986 1987–1989 1990–1992 1993–1995
A. All men

Δ2𝜇𝑡/𝜇𝑡−2 -0.052 -0.088∗ -0.031 -0.100∗ -0.036 -0.104∗
(0.050) (0.043) (0.050) (0.046) (0.044) (0.045)

Observations 928 1,323 1,244 1,211 1,244 1,300
1st stage 𝐹-Statistic 117.23 132.19 66.26 130.53 132.83 201.62

B. Non-college men
Δ2𝜇𝑡/𝜇𝑡−2 -0.108 0.009 -0.019 -0.101 -0.051 -0.105

(0.061) (0.062) (0.072) (0.070) (0.066) (0.065)

Observations 552 777 678 609 555 542
1st stage 𝐹-Statistic 66.06 59.12 24.04 55.22 65.32 72.32

C. College men
Δ2𝜇𝑡/𝜇𝑡−2 -0.031 -0.166∗∗ -0.003 -0.088 -0.024 -0.104

(0.068) (0.053) (0.074) (0.060) (0.059) (0.060)

Observations 314 491 509 524 594 758
1st stage 𝐹-Statistic 73.87 90.56 99.30 71.46 66.14 142.24
Notes: Estimates from 2SLS regression of 𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−2 on 𝑤𝑖,𝑡−2 using instruments (𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−9).
Experience restrictions based on year 𝑡. ∗ denotes significance at 0.05 level.
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Table E-2: 2SLS estimates of Δ2𝜇𝑡/𝜇𝑡−2 for men with 21–40 years experience, 1996–2012

1996–2000 2002–2006 2008–2012
A. All men

Δ2𝜇𝑡/𝜇𝑡−2 -0.084∗ -0.040 -0.058
(0.030) (0.032) (0.031)

Observations 1,427 1,591 1,493
1st stage 𝐹-Statistic 295.75 281.91 267.83

B. Non-college men
Δ2𝜇𝑡/𝜇𝑡−2 -0.073 -0.064 0.011

(0.053) (0.046) (0.082)

Observations 589 624 481
1st stage 𝐹-Statistic 96.00 126.69 114.93

C. College men
Δ2𝜇𝑡/𝜇𝑡−2 -0.094∗∗ -0.040 -0.074∗

(0.036) (0.042) (0.032)

Observations 834 960 866
1st stage 𝐹-Statistic 212.60 169.90 163.07
Notes: Estimates from 2SLS regression of 𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−2 on
𝑤𝑖,𝑡−2 using instruments (𝑤𝑡−8, 𝑤𝑡−9) for 1996–2000 and
(𝑤𝑡−8, 𝑤𝑡−10) for 2002–2006 and 2008–2012. Experience
restrictions based on year 𝑡. ∗ denotes significance at 0.05
level.
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E.3 GMM Estimates of Skill Returns, Over-Identification Tests, and Variance of
Skill Growth

In this appendix, we report GMM estimates for the returns to skill using the same model and moments (i.e.
lagged residuals serve as instruments) as with our 2SLS approach in Section 3.3 along with 𝐽-statistics
to test for overidentification. We also report analogous GMM estimates that use both past and future
wage residuals as instruments, reporting 𝐽-statistics to test the validity of the latter. Finally, we combine
estimates using past vs. future residuals as instruments to estimate the variance of skill growth relative to
lagged skill levels.

To begin, rewrite the two-period wage growth equation (10) as follows:

Δ2𝑤𝑖,𝑡 =

(
Δ2𝜇𝑡
𝜇𝑡−2

)
𝑤𝑖,𝑡−2 + 𝑢𝑖,𝑡 , (51)

where 𝑢𝑖,𝑡 ≡ 𝜀𝑖,𝑡 − 𝜇𝑡
𝜇𝑡−2

𝜀𝑖,𝑡−2 + 𝜇𝑡Δ2𝜃𝑖,𝑡 .
Serially uncorrelated skill shocks implies the following moment condition:

E[𝑤𝑡′𝑢𝑡] = 0, for 𝑡′ ≤ 𝑡 − 2 − 𝑘. (52)

Under the stronger assumption that Var(Δ𝜃𝑡) = 0,∀𝑡, the following additional moment condition holds:

E[𝑤𝑡′′𝑢𝑡] = 0, for 𝑡′′ ≥ 𝑡 + 𝑘. (53)

Equation (53) will not hold when Var(Δ2𝜃𝑡) > 0, and the IV estimate using future residuals as instruments
is asymptotically biased with probability limit

Cov(Δ2𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−2, 𝑤𝑡′)

=
Δ2𝜇𝑡
𝜇𝑡−2

+ 𝜇𝑡

𝜇𝑡−2

Var(Δ2𝜃𝑡)
Var(𝜃𝑡−2)

>
Δ2𝜇𝑡
𝜇𝑡−2

, for 𝑡′ ≥ 𝑡 + 𝑘.

The difference between estimates using future and past residuals as instruments identifies the magni-
tude of the skill shock variance relative to the skill variance: for 𝑡′ ≤ 𝑡 − 2 − 𝑘 and 𝑡′′ ≥ 𝑡 + 𝑘 ,

Var(Δ2𝜃𝑡)
Var(𝜃𝑡−2)

=

[
Cov(Δ2𝑤𝑡 , 𝑤𝑡′′)
Cov(𝑤𝑡−2, 𝑤𝑡′′)

− Cov(Δ2𝑤𝑡 , 𝑤𝑡′)
Cov(𝑤𝑡−2, 𝑤𝑡′)

] [
1 + Cov(Δ2𝑤𝑡 , 𝑤𝑡′)

Cov(𝑤𝑡−2, 𝑤𝑡′)

]−1
. (54)

E.3.1 Overidentification Tests

We begin by testing the moments in equation (53) using Hansen’s 𝐽-test, assuming 𝑘 = 6 and using the
two nearest valid instruments. This amounts to using 𝑤𝑖,𝑡−8 and 𝑤𝑖,𝑡−9 (or 𝑤𝑖,𝑡−10) for equation (52) and
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the first two available out of 𝑤𝑖,𝑡+6, 𝑤𝑖,𝑡+7, 𝑤𝑖,𝑡+8, 𝑤𝑖,𝑡+9 for (53).
Table E-3 reports the two-step optimal GMM estimates (allowing for heteroskedasticity and serial

correlation within individual) for the coefficient on 𝑤𝑖,𝑡−2 along with Hansen’s 𝐽-statistics when estimating
the wage growth equation (51). Panel A reports estimates when moments from both equations (52) and
(53) are used (i.e., lags and leads), while Panel B reports estimates when only the moment condition from
equation (52) is used (i.e., lags only). The sample is restricted to be the same in both panels.65

Comparing the 𝐽-statistics in Panels A and B in Table E-3, we can test the validity of using leads as
instruments (i.e. moments in equation (53)). Since the differences are greater than 5.991 (critical value
for 𝜒2

2 at significance level 0.05) except for 1979–1980 and 2002–2004, we reject the ‘leads’ moments in
equation (53) at 5% significance level for 1981–2000. (See Panel C for 𝑝-values of these tests.) Moreover,
all 𝐽-statistics in Panel B are smaller than 3.841 (critical value for 𝜒2

1 at significance level 0.05), implying
that we cannot reject the lags as instruments (i.e. moments in equation (52)) at the 5% level. Altogether,
these results suggest that the lagged residuals are valid instruments, while the leads are not (in most years).

Finally, note that the estimates using both leads and lags as instruments are always greater than their
counterparts using only lags. This reflects the positive bias induced from using leads when there are
idiosyncratic skill growth shocks.

65Because use of both leads and lags requires observations that are as many as 19 years apart, this restriction reduces the
sample size substantially relative to that used in our baseline 2SLS analysis (see Tables 2 and 3). Panel A of Table E-4 below
reports GMM estimates when this sample selection is not imposed. Those results are directly comparable and quite similar to
those in Tables 2 and 3.
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Table E-3: GMM Estimates of Skill Return Growth using Leads and Lags as Instruments (Balanced
Samples)

1979–80 1981–83 1984–86 1987–89 1990–92 1993–95 1996–2000 2002–04

A. 2 Nearest Valid Lags and 2 Nearest (Potentially Valid) Leads as Instruments
Coeff. on 𝑤𝑖,𝑡−2 -0.019 0.088∗ 0.053 0.007 -0.030 0.026 0.008 0.022

(0.053) (0.044) (0.046) (0.034) (0.038) (0.035) (0.0235) (0.035)
Observations 818 1,251 1,325 1,356 1,313 1,311 1,375 777
𝐽-Statistic 4.400 10.392 11.743 9.579 9.461 6.991 8.922 1.646

B. 2 Nearest Valid Lags as Instruments
Coeff. on 𝑤𝑖,𝑡−2 -0.070 -0.010 -0.065 -0.057 -0.103∗ -0.025 -0.041 -0.003

(0.056) (0.053) (0.055) (0.040) (0.046) (0.039) (0.029) (0.0389)
Observations 818 1,251 1,325 1,356 1,313 1,311 1,375 777
𝐽-Statistic 0.009 0.187 0.632 0.869 0.064 0.238 0.107 0.016

C. 𝑝-Values for 𝐽-Tests of the Validity of Leads as Instruments
Leads 0.111 0.006 0.004 0.013 0.009 0.034 0.012 0.443
Lags 0.924 0.665 0.427 0.351 0.800 0.626 0.744 0.899

Notes: GMM estimates for a regression of (𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−2) on 𝑤𝑖,𝑡−2. Panel A uses as instruments the 2 nearest
available lags from (𝑤𝑡−8, 𝑤𝑡−9, 𝑤𝑡−10) and 2 nearest available leads from (𝑤𝑡+6, ..., 𝑤𝑡+9). Panel B uses only
the 2 lags as instruments. Panel C reports 𝑝-values based on a comparison of 𝐽-statistics from Panels A and B.
∗ denotes significance at 0.05 level.

E.3.2 Inferring Relative Magnitude of Skill Shocks

Table E-4 reports GMM estimates using only lags or leads as instruments where all available observations
are used (i.e., samples are not restricted to be the same across specifications). Panel A reports estimates
when only the moments in equation (52) are used (i.e., 2 nearest valid lags). These results are analogous to
the 2SLS estimates in Tables 2 and 3, using the same samples. Comparing estimates across the tables, we
see that they are quite similar. Panel B reports GMM estimates when only the moments in equation (53)
are used (i.e., 2 nearest potentially valid leads), also based on all available observations. Finally, we
compare the estimates in Panels A and B using equation (54) to estimate the relative importance of skill
growth shocks. These estimates are reported in Panel C. The variance of (two-year) skill growth relative
to the variance of prior skill levels ranges from 0.16 to 0.29 over our entire sample period.
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Table E-4: GMM Estimates of Skill Return Growth using Leads vs. Lags as Instruments and Relative
Skill Shock Variance (Unbalanced Samples)

1979–80 1981–83 1984–86 1987–89 1990–92 1993–95 1996–2000 2002–04

A. 2 Nearest Valid Lags as Instruments
Coeff. on 𝑤𝑖,𝑡−2 -0.033 -0.045 -0.044 -0.084∗ -0.083∗ -0.067 -0.076∗ -0.090∗

(0.045) (0.038) (0.038) (0.033) (0.035) (0.035) (0.025) (0.035)
Observations 1,349 2,077 2,188 2,245 2,189 2,095 2,122 1,377

B. 2 Nearest (Potentially Valid) Leads as Instruments
Coeff. on 𝑤𝑖,𝑡−2 0.165∗ 0.229∗ 0.193∗ 0.099∗ 0.067 0.087∗ 0.073∗ 0.115∗

(0.059) (0.053) (0.047) (0.042) (0.043) (0.038) (0.028) (0.039)
Observations 1,500 2,229 2,159 2,100 2,042 1,994 2,178 1,249

C. Estimated Shock Variances Relative to Skill Variances
Var(Δ2𝜃𝑡 )/Var(𝜃𝑡−2) .204 0.287 0.248 0.200 0.163 0.166 0.161 0.225

Notes: GMM estimates for a regression of (𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−2) on 𝑤𝑖,𝑡−2. Panel A uses 2 nearest available lags as
instruments from (𝑤𝑡−8, 𝑤𝑡−9, 𝑤𝑡−10). Panel B uses 2 nearest available leads as instruments from (𝑤𝑡+6, ..., 𝑤𝑡+9).
Panel C reports estimates of skill growth shock variance relative to skill variance based on equation (54).
∗ denotes significance at 0.05 level.

E.4 Testing HIP based on growth in log wage residuals

This appendix shows results for Cov(Δ(𝑤𝑡/𝜇𝑡), 𝑤𝑡′) in PSID.
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Figure E-4: Cov(Δ(𝑤𝑡/𝜇𝑡), 𝑤𝑡′) for each 𝑡, 𝑡′ by Cohort Group
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Figure E-5: Distribution of Cov(Δ(𝑤𝑡/𝜇𝑡), 𝑤𝑡′) for all (𝑡, 𝑡′, 𝐶) for for Low-Experience Men
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E.5 Additional estimates for model with AR(1) skill dynamics

Figure E-6 reports estimated Var(𝜓 |𝑐) when allowing for time-varying AR(1) skill shocks as discussed
in Section 3.5.2. See the text for additional details on the specification.
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Figure E-6: Var(𝜓 |𝑐) implied by MD estimates allowing for time-varying AR(1) skill shocks, 21–40
years of experience

E.6 Comparison with specifications used in literature on earnings dynamics

As noted in the text, the literature on earnings dynamics estimates similar models; although, it rarely
considers the returns to unobserved skills. Haider (2001) and Moffitt and Gottschalk (2012) are notable
exceptions. Since their estimates suggest qualitatively different patterns for the returns to skill over time,
this appendix explores whether those can be explained by seemingly modest differences in specifications.

As with most of the earnings dynamics literature, Haider (2001) and Moffitt and Gottschalk (2012)
assume 𝜀𝑡 ∼ ARMA(1, 1), which is very similar, though not identical, to our specification in equation (15)
with 𝑘 = 2. We prefer the latter given our desire to maintain a completely flexible (time-varying)
autocorrelation structure for transitory shocks, 𝜀𝑡 . Regardless, the two specifications yield very similar
estimated 𝜇𝑡 series when using the same long autocovariances (i.e., Cov(𝑤𝑡 , 𝑤𝑡′) for |𝑡 − 𝑡′| ≥ 6) in MD
estimation, as can be seen from comparing the estimated returns given by the blue lines with circles in
Figure E-7 and the returns reported in Figure 13. The former assumes 𝜀𝑡 ∼ ARMA(1, 1), while the latter
assumes 𝜀𝑡 contains an AR(1) component, 𝜑𝑡 , and transitory component (with 𝑘 = 6), 𝜀𝑡 , as described by
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equation (15).66 Figure E-7 also reproduces estimates from our baseline specification, which assumes that
𝜀𝑡 only contains a transitory component (with 𝑘 = 6). Altogether, these estimates indicate that accounting
for persistent non-skill shocks has little effect on estimated returns to skills over time.

The red dashed lines in Figure E-7 show that estimating the 𝜀𝑡 ∼ ARMA(1, 1) specification using
all autocovariances, as in Haider (2001) and Moffitt and Gottschalk (2012) and the earnings dynamics
literature more generally, yields quite different 𝜇𝑡 patterns for college men. This suggests that accounting
for a flexible short-term autocorrelation structure – accommodated by using only long autocovariances
– has important implications for skill returns among college men. (Failing to allow for time variation
in the short-term autocorrelation structure for 𝜀𝑡 is primarily responsible for the different patterns.) The
remaining two estimated 𝜇𝑡 series in Figure E-7 impose additional assumptions about skills made by
Haider (2001) and Moffitt and Gottschalk (2012): time-invariance of non-skill growth innovations and
cohort-invariance of initial skill variation. Neither of these assumptions has major implications for our
estimated 𝜇𝑡 series for non-college or college men.

Since Haider (2001) and Moffitt and Gottschalk (2012) estimate their models for all men (rather than
by education), we reproduce our analysis pooling all non-college and college men. The estimated 𝜇𝑡 series
is reported in Figure E-8. In this case, we find that their assumptions imposing stability of initial skill
distributions and of the distribution of skill growth innovations produce upward biased estimates in skill
return growth beginning in the mid-1990s. Restrictions on the short-term autocorrelation structure for
non-skill shocks have relatively modest effects on their estimated 𝜇𝑡 series, similar to patterns observed
for the non-college sample.

E.7 Estimation with Multiple Occupations in PSID

In creating occupation codes for our sample period, we combine retrospective (1968–1980) and original
(1981–2013) measures, which creates a break in occupational mobility trends (in 1981) due to lower
measurement error in the retrospective measures (Kambourov and Manovskii, 2008). The 3-digit codes
are based on the 1970 Census classification prior to 2002, while they are based on the 2000 Census
classification afterwards. Therefore, we do not measure occupation changes between years 2000 and
2002.67 We create 1- and 2-digit codes from the first and first two digits of the 3-digit codes, respectively.

We use the 3-digit codes to create 3 broad and exclusive occupation categories (cognitive, routine,
and manual) considered by Cortes (2016). Given small sample sizes for manual occupations in the PSID,
our analysis focuses on cognitive and routine occupations.

66Formally, we specify ARMA(1,1) non-skill shocks as 𝜀𝑖,𝑡 = 𝜈𝑖,𝑡 for 𝑡 = 𝑐𝑖 + 1 and 𝜀𝑖,𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝜈𝑖,𝑡 + 𝛽1𝜈𝑖,𝑡−1for
𝑡 > 𝑐𝑖 + 1, with Cov(𝜈𝑡 , 𝜈𝑡 ′ ) = 0 for all 𝑡 ≠ 𝑡′.

67Since we pool observations across several years (assuming constant growth of skill returns within each pooled sample)
for 2SLS estimation, the change in skill return between 2000 and 2002 reflects an extrapolation from adjacent years.
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Figure E-7: Estimated 𝜇𝑡 under Different Restrictions: Non-College and College

We also estimate skill returns for those who stay in occupations with high social skill requirements, as
measured by data from the Occupational Information Network (O*NET). The O*NET is a survey of U.S.
workers that asks about the abilities, skills, knowledge, and work activities required in an occupation.
Following Deming (2017), we measure an occupation’s social skill intensity as the average of the four
items in the 1998 O*NET module on “social skills” (coordination, negotiation, persuasion, and social
perceptiveness). The social skill intensity measures are then assigned to individuals in the PSID sample
based on their current 3-digit occupation in each year. We define social occupations as occupations that fall
in the top third of the social skill intensity distribution in the pooled sample of worker-year observations.
As noted by Deming (2017), cognitive occupations are also very likely to be social occupations. Among
worker-year observations in cognitive occupations, around 59% are in social occupations. Conversely,
around 76% of observations in social occupations are also in cognitive occupations.

E.7.1 GMM Estimation using Occupation Stayers and Switchers

We estimate occupation-specific 𝛾𝑜𝑡 and 𝜇𝑜𝑡 for routine and cognitive occupations (normalizing 𝛾𝑜1985 = 0
and 𝜇𝑜1985 = 1 for routine occupations) using optimal two-step GMM. Because we use the PSID data, we
use the following moments based on equation (19):

E
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Figure E-8: Estimated 𝜇𝑡 under Different Restrictions: All Men

where 𝒛𝑖,𝑡 = (1, 𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−9)⊤ (or (1, 𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−10)⊤ in later sample years). We use linear splines for 𝛾𝑜𝑡
and 𝜇𝑜𝑡 , each with 14 knots in 𝑡, restricting to moment conditions with at least 20 observations (9 switcher
moments are dropped). Altogether, there are 54 parameters with 303 moment conditions.

We also estimate the model imposing equal skill returns, 𝜇routine
𝑡 = 𝜇

cognitive
𝑡 = 𝜇𝑡 for all 𝑡. The

estimated 𝜇𝑡 and 𝛾𝑜𝑡 series are nearly identical to their counterparts reported in Figure 18, while the
𝐽-statistic comparing the unrestricted and restricted criterion functions equals 20.08 and is distributed
𝜒2

14 under the null hypothesis of equal skill returns. Thus, we cannot reject the null of identical returns at
conventional levels (𝑝-value = 0.128).

For comparison with Cortes (2016), Figure E-9 reports estimates of 𝛾𝑜𝑡 and E[𝜃𝑡 |𝑜𝑡] when imposing
time-invariant 𝜇𝑜𝑡 = 𝜇𝑜. Estimated time profiles for 𝛾𝑜𝑡 and E[𝜃𝑡 |𝑜𝑡] are notably flatter than their
counterparts allowing for variation in skill returns (see Figures 18(b) and 19(b)).

Finally, we use the same estimation strategy, restricting the sample to men who had 21–40 years of
experience in year 𝑡. Due to fewer observations, this reduces the number of moments used in estimation
to 261. These results are reported in Figures E-10 and E-11.

E.7.2 2SLS Estimated Returns for Occupational Stayers

Tables E-5 and E-6 report 2SLS estimates (and standard errors) for skill return growth underlying
Figures 17 and 20 in the main text. First-stage 𝐹-statistics for the instruments are also reported.

Figure E-12 reports 2SLS estimates based on occupation-stayers in years 𝑡 − 2 to 𝑡 based on different
occupation classifications.68 In all cases, 𝑤𝑖,𝑡−8 and 𝑤𝑖,𝑡−9 (or 𝑤𝑖,𝑡−10) residuals are used as instruments.

68These estimates are based on the same subperiods as reported in Tables E-5 and E-6. The 3-category occupation estimates
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Figure E-9: GMM estimates imposing time-invariant 𝜇𝑜𝑡

Notes: Imposing 𝜇routine = 1, 𝜇cognitive is estimated to be 0.946 (SE=0.026).
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Figure E-10: GMM estimates of 𝜇𝑜𝑡 and 𝛾𝑜𝑡 , 21–40 years of experience in 𝑡
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Figure E-11: Average log wage residual and skill by occupation, 21–40 years of experience in 𝑡

Estimated skill return patterns are very similar regardless of how narrowly we define occupations.
As noted in the text, estimated return growth for stayers in occupation 𝑜𝑡 = 𝑜𝑡−1 = 𝑜 should not depend

on earlier occupation (𝑜𝑡′) under Assumption 5. Estimates reported in Figures E-13 and E-14 indicate
very similar estimated skill return profiles for occupation stayers with 𝑜𝑡′ = 𝑜 vs. 𝑜𝑡′ ≠ 𝑜.

reflect those remaining within occupations classified as either cognitive, routine, or manual based on Cortes (2016).
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Table E-5: 2SLS Estimates for Occupational Stayers, 1979–1995

1979–1980 1981–1983 1984–1986 1987–1989 1990–1992 1993–1995

A. Non-College Men
Δ2𝜇𝑡/𝜇𝑡−2 -0.045 0.024 -0.090 -0.171∗ -0.081 -0.115

(0.060) (0.064) (0.060) (0.053) (0.059) (0.075)

Observations 509 598 548 519 511 423
1st stage 𝐹-Statistic 62.246 66.535 95.190 54.104 65.388 65.562

B. College Men
Δ2𝜇𝑡/𝜇𝑡−2 -0.104 -0.116 -0.083 -0.046 -0.157∗ -0.063

(0.058) (0.065) (0.058) (0.055) (0.046) (0.064)

Observations 369 511 591 694 665 731
1st stage 𝐹-Statistic 88.830 76.805 86.170 55.780 95.572 132.245

C. Cognitive Occupations
Δ2𝜇𝑡/𝜇𝑡−2 -0.084 -0.075 -0.107∗ -0.097 -0.136∗ -0.102

(0.071) (0.062) (0.053) (0.050) (0.043) (0.056)

Observations 506 776 869 905 895 914
1st stage 𝐹-Statistic 92.258 75.839 37.259 74.934 123.756 144.648

D. Routine Occupations
Δ2𝜇𝑡/𝜇𝑡−2 0.020 -0.059 -0.129∗ -0.073 -0.084 -0.107

(0.070) (0.049) (0.047) (0.048) (0.065) (0.056)

Observations 648 915 908 929 899 801
1st stage 𝐹-Statistic 81.071 85.482 85.385 108.442 71.017 101.606

E. Social Occupations
Δ2𝜇𝑡/𝜇𝑡−2 0.062 -0.067 -0.108 -0.083 -0.202∗ -0.048

(0.097) (0.069) (0.068) (0.068) (0.054) (0.085)

Observations 374 525 573 594 598 589
1st stage 𝐹-Statistic 55.417 81.778 85.375 48.250 78.289 72.354
Notes: Estimates from 2SLS regression of Δ2𝑤𝑖,𝑡 on 𝑤𝑖,𝑡−2 using instruments (𝑤𝑖,𝑡−8, 𝑤𝑖,𝑡−9).
∗ denotes significance at 0.05 level.
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Table E-6: 2SLS Estimates for Occupational Stayers, 1996–2012

1996–2000 2002–2006 2008–2012

A. Non-College Men
Δ2𝜇𝑡/𝜇𝑡−2 -0.088 0.017 0.032

(0.051) (0.079) (0.082)

Observations 407 252 325
1st stage 𝐹-Statistic 68.156 30.257 105.090

B. College Men
Δ2𝜇𝑡/𝜇𝑡−2 -0.070 0.006 -0.035

(0.045) (0.049) (0.042)

Observations 706 443 662
1st stage 𝐹-Statistic 155.501 99.896 133.535

C. Cognitive Occupations
Δ2𝜇𝑡/𝜇𝑡−2 -0.110∗ -0.002 -0.097∗

(0.038) (0.052) (0.041)

Observations 882 836 794
1st stage 𝐹-Statistic 153.995 127.048 127.603

D. Routine Occuaptions
Δ2𝜇𝑡/𝜇𝑡−2 -0.068 -0.018 -0.078

(0.049) (0.039) (0.054)

Observations 810 801 707
1st stage 𝐹-Statistic 112.638 145.430 124.283

E. Social Occupations
Δ2𝜇𝑡/𝜇𝑡−2 -0.122∗ -0.010 -0.038

(0.049) (0.043) (0.042)

Observations 580 606 587
1st stage 𝐹-Statistic 94.614 123.053 93.845
Notes: Estimates from 2SLS regression of Δ2𝑤𝑖,𝑡 on
𝑤𝑖,𝑡−2 using instruments (𝑤𝑡−8, 𝑤𝑡−9) for 1996–2000 and
(𝑤𝑡−8, 𝑤𝑡−10) for 2002–2006 and 2008–2012. ∗ denotes
significance at 0.05 level.
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(b) Constant Occupation between 𝑡 − 2 and 𝑡:
21–40 Years of Experience
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(d) Constant Occupation between 𝑡 − 2 and 𝑡: College

Figure E-12: 𝜇𝑡 Implied by 2SLS Estimates for Occupational Stayers from 𝑡 − 2 to 𝑡
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Figure E-13: 𝜇𝑜𝑡 /𝜇𝑜1985 implied by 2SLS estimates for occupation-stayers: All experience levels
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Figure E-14: 𝜇𝑜𝑡 /𝜇𝑜1985 implied by 2SLS estimates for occupation-stayers: 21–40 years of experience
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F HRS Data and Results

F.1 Data Description

We use data from the Health and Retirement Study (HRS), a national U.S. panel survey of individuals
over age 50 and their spouses.69 We use data from six cohorts incorporated over time, beginning with the
first cohort surveyed in 1992. (New cohorts of individuals were added in 1998, 2004, 2010, and 2016.)70
The survey has been fielded every two years since 1992, and it provides information about demographics,
income, and cognition, making it ideal data for the purpose of our study. Because one of the cognitive
tests (word recall) in 1992 and 1994 differs from that of later years, we use data collected from 1996 to
2018.71

The HRS records the respondent’s and spouse’s wage rates if they are working at the time of the
interview. We use the hourly wage rate, deflating nominal values to 1996 dollars using the Consumer
Price Index.72 The HRS also provides various cognitive functioning measures. We use word recall
in our analysis, but report below on its correlation with two other measures available in several years:
serial 7’s and quantitative reasoning. Table F-1 provides a brief summary of these measures. The word
recall test evaluates the memory of the respondents by reading a list of 10 words and asking them to
recall immediately (immediate recall) and after a delay of about 5 minutes (delayed recall). We sum
the number of words the respondent recalled in the two tasks and obtain a score of 21 different values.
The serial 7’s test asks the respondent to subtract 7 from the previous number, starting with 100 for five
trials. This test score is the number of trials that the respondent answered correctly, and it has 6 different
values. Quantitative reasoning consists of three simple arithmetic questions assessing the numeracy of
the respondent. We construct a test score based on the answers and the resulting score ranges from 0 to
4. Additional details about these measures are provided below.

Our sample is restricted to age-eligible (i.e. born in eligible years when first interviewed) men. We
use observations when men are ages 50–70 if their potential labor market experience is between 30 and

69More precisely, the sample does include some individuals age 50. For example, someone from the original cohort (born in
1931-1941) who was born late in 1941 may have been age 50 at the date of their first interview in 1992 if they were interviewed
earlier in the calendar year.

70The HRS sample was built up over time. The initial cohort consisted of persons born between 1931 and 1941 (aged 51 to
61 at first interview in 1992). The Asset and Health Dynamics Among the Oldest Old (AHEAD) cohort, born before 1924,
was added in 1993. Given the ages of respondents from this cohort (over 70 by 1994), it is excluded from our analysis. In
1998, two new cohorts were enrolled: the Children of the Depression (CODA) cohort, born 1924 to 1930, and the War Baby
(WB) cohort, born 1942 to 1947. Early Baby Boomer (EBB, born 1948 to 1953) cohort was added in 2004, Mid Baby Boomer
(MBB, born 1954 to 1959) cohort was added in 2010, and Late Baby Boomer (LBB, born 1960 to 1965) cohort was added in
2016. In addition to respondents from eligible birth years, the survey interviewed the spouses of married respondents or the
partner of a respondent, regardless of age.

71The word recall test contained a list of 20 words in 1992 and 1994, while it was reduced to 10 words in later years.
72https://www.bls.gov/cpi/research-series/home.htm#CPI-U-RS20Data
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Table F-1: Summary of Cognitive Measures

Meant to measure Number of values Available years

Word recall Memory 21 (0–20) 1996–2018
Serial 7’s Numeracy 6 (0–5) 1996–2018

Quantitative reasoning Numeracy 5 (0–4) 2002–2018

50 years.73 In estimation, we use non-imputed wages and cognitive measures only. The sample contains
10,151 individuals and 43,096 person-year observations.

Our sample consists of 70% white, 16% black, 11% Hispanic, and 4% other races with an average
age of 60 years. We create five education categories based on years of completed schooling: 0-11 years
(less than high school graduate), 12 years (high school graduate), 13-15 years (some college), 16 years
(college graduate), and 17 or more years (above college). In our sample, 15% had less than 12 years
of schooling, 30% had 12 years of schooling, 25% had some college, 15% completed college, and 15%
had more than 16 years of schooling. Table F-2 shows the mean and the standard deviation of cognitive
scores, the log hourly wage, and the log wage residual, along with correlations between these variables.
The correlations between test scores range from nearly 0.29 to 0.48. All three test scores exhibit similar
positive correlations with log wages and log wage residuals. Most relevant to our analysis, word recall
has a correlation of 0.21 with log wages and 0.07 with the log wage residual.

Table F-2: Mean, standard deviation (S.D.), and correlations between cognitive scores and log wage
residuals

Num. of obs. Mean S.D. Correlations
WR S7 QR 𝑤

Word recall (WR) 39,222 10.33 3.15 1.00
Serial 7’s (S7) 39,865 3.91 1.46 0.29 1.00
Quantitative reasoning (QR) 17,828 2.03 1.26 0.33 0.48 1.00
Log wage residual (𝑤) 23,027 0.00 0.75 0.07 0.05 0.08 1.00
Log wage (ln𝑊) 23,042 2.45 0.84 0.21 0.20 0.27 0.89

F.2 Detailed Description of Cognitive Measures

Word recall. The HRS contains two separate tasks to assess respondent’s memory: immediate word
recall and delayed word recall. During the interview, the interviewer read a list of 10 nouns to the

73We use age recorded at the end of the interview (sometimes interviews occur over multiple dates). Potential experience is
defined as age minus 6 minus years of schooling.
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respondent and asked the respondent to recall as many words as possible from the list in any order. After
approximately 5 minutes of answering other survey questions, the respondent was asked to recall the
nouns previously presented. We construct a single measure which is the sum of the number of nouns that
the respondent recalled in the two tasks. This measure ranges from 0 to 20.

Serial 7’s. This test asks the respondent to subtract 7 from the prior number, beginning with 100 for
five trials. Correct subtractions are based on the prior number given, so that even if one subtraction is
incorrect subsequent trials are evaluated on the given (perhaps wrong) answer. This test score ranges
from 0 to 5.

Quantitative reasoning. In the 2002 wave of HRS, three questions were added to the core survey to
assess respondents’ numerical ability:

1. “Next I would like to ask you some questions which assess how people use numbers in everyday life.
If the chance of getting a disease is 10 percent, how many people out of 1,000 would be expected
to get the disease?”

2. “If 5 people all have the winning numbers in the lottery and the prize is two million dollars, how
much will each of them get?”

3. “Let’s say you have $200 in a savings account. The account earns ten percent interest per year.
How much would you have in the account at the end of two years?”

We construct a single measure called quantitative reasoning using the answers from these three
questions. For each of the first two questions, the respondent earns 1 point if the answer is correct and
0 otherwise. For the last question, the respondent earns 2 points if the answer is correct; 1 point if the
respondent used 10% as a simple interest rate rather than a compound interest rate (i.e., answered 240
instead of 242); otherwise, he earns 0 points. The quantitative reasoning measure is the sum of points
earned on all three questions, ranging from 0 to 4.
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G Survey of Income and Program Participation (SIPP) linked with
W-2 Forms

This appendix describes data from Internal Revenue Service (IRS)/Social Security Administration (SSA)
W-2 Forms linked with the Survey of Income and Program Participation (SIPP), referred to as the Gold
Standard File (GSF) by the Census Bureau (U.S. Census Bureau, 2018). These data include the full
SSA history of annual earnings (i.e., wage and salary) for all linked respondents from 1951 to 2011.74
Because we use annual earnings from administrative records, annual hours of work and hourly wages are
not available.

Our analysis is based on 16–69 year-old, US-born white men who could be linked to any of nine SIPP
panels (1984, 1990, 1991, 1992, 1993, 1996, 2001, 2004, and 2008). The highest level of education
achieved at the time of survey (asked only once in each panel) is available in 5 categories: no high school
degree, high school degree, some college, college degree, and graduate degree. We map these categories
to 10, 12, 14, 16, and 18 years of completed schooling in order to calculate potential experience (age -
years of education - 6). Since some individuals were still young and unlikely to have completed their
schooling at the time of survey, we exclude those who were under 30 years old or were enrolled in school
when their education level was measured.

We focus mainly on results using Detailed Earnings Records (DER), which are uncapped and available
from 1978 onward; however, we also take advantage of Summary Earnings Records (SER) available since
1951, which report earnings capped at the FICA taxable maximum. We work with log earnings residuals
constructed as with the PSID and restrict observations to years when individuals were no longer enrolled
in school. We trim the top and bottom 1% of DER-based earnings within year and college/non-college
status by five-year experience cells, and residualize log DER-based earnings by regressing on experience
indicators and interactions between education indicators and a third order polynomial in experience,
separately by year and college/non-college status. Log SER-based earnings – used only as instruments in
our analysis – are residualized by subtracting median values conditional on year, education, and five-year
experience cells.

Based on a worker’s primary job (i.e., the job with the highest earnings), the Census Bureau classified
workers into 24 occupation categories each survey wave. Table G-1 reports these occupation codes, along
with our 3-category grouping of occupations (cognitive, manual, and routine). Since respondents can
report different occupations in each of 3 survey waves each year, we define occupation stayers between
two years as those who reported any occupation in both years.

74This analysis was first performed using the SIPP Synthetic Beta (SSB), while final results were obtained by Census Bureau
staff using the SIPP Completed Gold Standard Files. See Reeder, Stanley, and Vilhuber (2018) and Benedetto, Stanley, and
Totty (2018) for additional details on the data.
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Table G-1: SIPP/W-2 Occupation Codes and 3-Category Grouping

Code Occupation 3-Category Grouping

1 Management

Cognitive

2 Business and financial operations
3 Computer and mathematical
4 Architecture and engineering
5 Life, physical, and social science
6 Community and social service
7 Legal
8 Education, training, and libraries
9 Arts, design, entertainment, sports, and media

10 Healthcare practitioner and technical

11 Healthcare support

Manual
12 Protective service
13 Food prep and service
14 Building and grounds cleaning and maintenance
15 Personal care and service

16 Sales Routine17 Office and administrative support

18 Farming, fishing, and forestry Not classified

19 Construction and extraction

Routine
20 Installation, maintenance, and repairs
21 Production
22 Transportation
23 Material moving

24 Military Not classified
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Figure G-1 reports log earnings inequality, along with between-group and within-group (residual)
inequality, based on DER wage measures in the SIPP/W-2. The general trends are qualitatively similar
to those for the PSID reported in Figure 1; although, the variance of total log earnings inequality and
residual inequality is notably higher than their counterparts for log wages in the PSID.

Figure G-2 shows E
[
𝑤𝑡 |𝑤𝑏 ∈ 𝑄

𝑗

𝑏

]
for different 𝑡 years where 𝑄

𝑗

𝑏
reflects quartile 𝑗 in ‘base’ year 𝑏,

while Figure G-3 shows residual autocovariances Cov(𝑤𝑡 , 𝑤𝑏) over years 𝑡 ≥ 𝑏 + 6 for fixed base year
𝑏. Both figures are based on samples of non-college and college men with 21–25 years of experience in
each base year, 𝑏. Together, these indicate declines in the return to skills over the late-1980s and 1990s,
consistent with our PSID-based results.

Tables G-2 and G-3 report 2SLS estimates of skill return growth rates using SER- and DER-based
lagged log earnings residuals (𝑤𝑡−7), respectively, as instruments. (See Figure 21 in the paper.) Corre-
sponding standard errors and sample sizes are also reported.
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Figure G-1: Between- and within-group variances of log earnings, ages 16–64 with 5–40 years of
experience (SIPP/W-2)
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Figure G-2: Average predicted log earnings residuals by baseline residual quartile, 21–25 years of
experience in base year (SIPP/W-2)
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Figure G-3: Autocovariances for log earnings residuals, 21–25 years of experience in base year (SIPP/W-
2)
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Table G-2: 2SLS estimates of Δ𝜇𝑡/𝜇𝑡−1 (instrument: 𝑤𝑡−7 SER earnings), 32–40 years of experience in
year 𝑡 (SIPP/W-2)

Year Non-College College

Estimate Standard Error Observations Estimate Standard Error Observations

1979 0.024 0.059 3,600 0.122 0.075 1,900
1980 -0.037 0.043 3,700 0.047 0.063 2,100
1981 0.053 0.051 3,800 -0.135 0.077 2,200
1982 0.077 0.045 3,800 0.015 0.063 2,400
1983 -0.044 0.043 3,700 -0.002 0.059 2,500
1984 -0.024 0.041 3,700 0.010 0.069 2,600
1985 -0.068 0.039 3,600 -0.024 0.058 2,700
1986 -0.039 0.040 3,600 0.010 0.050 2,900
1987 -0.139 0.037 3,700 -0.041 0.032 3,000
1988 -0.043 0.038 3,800 -0.101 0.030 3,100
1989 0.020 0.033 3,800 -0.043 0.043 3,100
1990 -0.078 0.033 3,800 -0.009 0.044 3,200
Notes: Reports coefficient estimates from 2SLS regression of Δ𝑤𝑡 on 𝑤𝑡−1 using 𝑤𝑡−7 as an
instrument. The number of observations is rounded to the nearest 100 due to confidentiality.
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Table G-3: 2SLS estimates of Δ𝜇𝑡/𝜇𝑡−1 (instrument: 𝑤𝑡−7 DER earnings), 32–40 years of experience in
year 𝑡 (SIPP/W-2)

Year Non-College College

Estimate Standard Error Observations Estimate Standard Error Observations

1985 -0.060 0.029 3,800 -0.026 0.032 2,900
1986 -0.072 0.030 3,800 -0.101 0.026 3,100
1987 -0.074 0.030 3,900 -0.049 0.027 3,200
1988 -0.055 0.037 4,000 -0.084 0.028 3,400
1989 0.016 0.030 3,900 -0.025 0.028 3,400
1990 -0.065 0.029 4,000 0.012 0.030 3,500
1991 0.010 0.032 4,000 -0.009 0.028 3,600
1992 -0.061 0.026 4,100 -0.096 0.025 3,800
1993 -0.073 0.023 4,100 -0.040 0.024 3,900
1994 -0.025 0.025 4,200 -0.055 0.027 4,200
1995 0.012 0.036 4,300 -0.045 0.023 4,400
1996 -0.018 0.028 4,300 -0.094 0.022 4,700
1997 -0.058 0.024 4,400 -0.020 0.021 5,000
1998 -0.088 0.019 4,400 -0.073 0.020 5,500
1999 -0.057 0.023 4,400 -0.084 0.020 6,000
2000 -0.107 0.028 4,400 -0.048 0.022 6,600
2001 -0.102 0.029 4,400 -0.039 0.018 7,100
2002 -0.045 0.029 4,300 -0.034 0.021 7,700
2003 -0.085 0.028 4,400 -0.045 0.018 8,300
2004 -0.010 0.029 4,800 -0.019 0.016 8,900
2005 -0.052 0.024 5,000 -0.064 0.015 9,400
2006 -0.002 0.024 5,100 -0.011 0.014 9,800
2007 -0.031 0.023 5,400 -0.023 0.015 10,000
2008 -0.011 0.022 5,600 -0.014 0.015 10,500
2009 0.006 0.024 5,700 -0.042 0.015 10,500
2010 -0.001 0.024 5,700 0.004 0.014 10,000
2011 -0.048 0.023 5,700 0.003 0.013 9,900
Notes: Reports coefficient estimates from 2SLS regression of Δ𝑤𝑡 on 𝑤𝑡−1 using 𝑤𝑡−7 as an
instrument. The number of observations is rounded to the nearest 100 due to confidentiality.
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