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Abstract 

Proportional reduction is a common cartel practice in which cartel members reduce their 
output proportionately. We develop a method to quantify this reduction relative to a 
benchmark market equilibrium scenario and relate the reduction to the traditional conduct 
parameter. Our measure is continuous, allowing us to have an intuitive interpretation as 
the “degree of collusion” and nesting the earlier models in the existing literature. 
Furthermore, our methodology addresses Corts’ (1999) critique by estimating time-
varying degree of collusion from a short panel of firm-level observations, exploiting 
firms’ ex post heterogeneity. We illustrate the method using the Joint Executive 
Committee railroad cartel data. 

 

Bank topics: Econometric and statistical methods; Market structure and pricing  
JEL codes: D22, L41, C36 

Résumé 

La réduction proportionnelle de la production est une pratique courante des cartels. Nous 
élaborons une méthode de calcul qui quantifie ces réductions en fonction d’un point 
d’équilibre de référence établi à partir de scénarios et faisons un lien avec un paramètre 
traditionnel de conduite. La mesure que nous obtenons est continue et peut être 
intuitivement interprétée comme une mesure du degré de collusion. Elle s’insère dans les 
modèles proposés par d’autres auteurs. En outre, avec cette approche, et à l’aide de 
données de panel court provenant d’entreprises, nous répondons à la critique de Cort 
(1999) en estimant le degré de collusion variable dans le temps et en exploitant 
l’hétérogénéité a posteriori des firmes. Pour illustrer le fonctionnement de notre méthode, 
nous utilisons les données du comité conjoint de direction du cartel du chemin de fer.  

 

Sujets : Méthodes économétriques et statistiques ; Structure de marché et fixation des 
prix  
Codes JEL : D22, L41, C36 
 

 
 



Non-Technical Summary 

Measuring market power and assessing industry conduct remain among the major challenges in 
empirical industrial organization. These questions have important implications for welfare analysis 
and antitrust regulation. The earlier literature on collusion, which is often referred to as conjectural 
variation literature, typically assumes that cartels maximize joint industry profit. Under this 
assumption it is possible to derive an estimable equation with a parameter that takes three distinct 
values corresponding to three different modes of competition: perfect competition (the most 
competitive), Cournot competition, and monopoly (the least competitive). The estimated parameter 
then indicates which mode of competition is likely to be supported with the data. As pointed out by 
Corts (1999), however, this methodology has some fundamental issues: (1) the estimated value might 
be different from all three values, which results in internal inconsistency, and (2) the method must 
assume that the degree of collusion is the same over time, which is very unlikely in practice.  

To address these limitations of the traditional methodology in the literature, we develop a new method 
to quantify the degree of collusion. Instead of assuming that cartel members maximize joint profit, we 
assume that they proportionally reduce their output from benchmark outcome when engaged in 
collusion. This assumption is called “proportional reduction,” which is formally introduced by 
Schmalensee (1987). Even though the assumption seems to be restrictive, there are many cartels that 
use proportional reduction in practice. Section 2 of the paper supports our assumption and documents 
many examples that use proportional reduction or some variation in practice, including a famous 
worldwide Vitamin cartel and some cartels found in Austria, Finland, Germany, Japan and Norway.  

We then formally introduce our model in Section 3 and show that our method allows us to have a 
continuous and time-varying measure of degree of collusion, which overcomes the aforementioned 
critique by Corts (1999). The main reason why we can overcome the issues in the earlier literature is 
explicitly exploiting firm-level data, while the existing literature does not fully utilize this variation. 
The paper provides a thorough discussion of identification and extendibility of our method. Monte 
Carlo simulations in Section 4 demonstrate validity of our method. 

To illustrate our method, we use well-documented data on the Joint Executive Committee – a legal 
railroad cartel in the U.S. in 1880–1886. Since our approach is based on a structural model, we provide 
identification conditions within the proposed parametric structure. We begin our analysis by showing 
that the firms observed in this data were indeed engaged in Cournot competition by conducting a non-
parametric test developed by Cavajal et al. (2013). The test results show that at least 90 percent of data 
is consistent with Cournot competition, which enables us to apply our method. Our final estimation 
results show that, even not knowing when a cartel occurred, our methodology can detect most of the 
periods when firms colluded and reduced their output by about 30 percent compared with the static 
Cournot equilibrium output.  



1 Introduction

Measuring market power and assessing industry conduct remain among the major chal-
lenges in empirical industrial organization. These questions have important implications
for welfare analysis and antitrust regulation. A wide variety of empirical models have been
developed to measure the degree of competition in markets where reliable cost data are not
available. The problem frequently boils down to estimating a “conduct parameter” that
summarizes the level of competition in an industry. Typically, an econometrician specifies
a supply relation where the conduct parameter takes on distinct values nesting perfect
competition (Bertrand), Cournot, and perfect cartel (Monopoly) models. Estimated
parameter values are then interpreted as the degree of collusiveness. In reality, however,
the estimated parameter values are often significantly different from the values describing
either of the conduct regimes, making it harder to interpret.1

A problem that is more serious than the internal inconsistency between a theoretical
model and its empirical implications is raised by Corts (1999), who shows that the estimated
parameter values may fail to measure market power because of dynamic considerations
of the firms. When firms are efficiently colluding, changes in the economic environment
may affect the degree of collusion (e.g., cartel sustainability as described in Rotemberg
and Saloner, 1986), suggesting that the conduct parameter would change over time and
would be an endogenous variable. Thus, across-time variation in the demand and supply
conditions may fail to identify the industry conduct.

In this study, we propose an alternative way to evaluate the industry conduct that
overcomes many of the aforementioned problems in the literature. The key to our method
is an assumption on the way collusion is implemented. Instead of assuming that the
objective function of a cartel is known, e.g., joint profit maximization, we assume that firms
employ proportional reduction (PR) collusive technology (as discussed in Schmalensee,
1987). Under the PR assumption, cartel members reduce their outputs proportionately
relative to a benchmark market equilibrium output. We provide empirical evidence in
support of our assumption in the next section.

Our method has several advantages over the traditional conduct parameter approach.
First, our parameter takes values on a continuous interval, having a simple interpretation
as the percentage reduction in the output relative to a well-defined benchmark competitive
equilibrium outcome. Second, we show that firms’ heterogeneity provides useful variation,
which can be used to estimate time-varying degree of collusion from a relatively short
panel of firm-level observations. This source of identification is present even when firms
are symmetric ex ante, i.e., before realizations of iid innovations to their costs. The ability
to estimate a time-varying degree of collusion is important to address Corts’ critique.
Finally, while illustration of the method in this paper is provided using a very simple
static framework, the method is extendable to more complex settings with dynamically
optimizing agents and more flexible forms of the demand and cost functions. Therefore
while strong in itself, our assumption about collusive technology can help to accommodate
a wide variety of complex strategic interactions and can be used when a researcher prefers
to stay agnostic about the objective function of a cartel.

1In such cases, the industry competitiveness is evaluated in terms of the number of firms playing a
particular equilibrium. This interpretation of the conjectural variation parameter is sometimes referenced
as the“as-if” interpretation. For example, an industry with N firms is as competitive as if it were Cournot
equilibrium with K players.
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To illustrate our method, we use the data from the Joint Executive Committee railroad
cartel, which is thoroughly and extensively studied by Porter (1983) and Ellison (1994).
This cartel is well documented, as the cartel was formed in 1879, which is prior to the
passage of the Sherman Act in 1880. Thus, the data contain monthly-level information on
whether or not the firms successfully colluded, as well as standard firm-level information
on quantity – shipment volumes for grain and flour in this context – and prices. Assuming
that the firms used PR collusive technology when they colluded and the proportion was
constant over the sample periods, we find that, in collusive periods, the firms reduced their
output by about 30% compared with the static Cournot equilibrium output. We further
estimate the parameters assuming that we do not know whether the firms successfully
colluded or not. Our estimated parameters detect the non-collusive periods quite well,
which validates our methodology.

The rest of the paper is organized as follows. First, we provide theoretical and empirical
evidence in support of our key assumption as well as discuss related literature. Section
3 begins with an illustrative example and then describes a general framework with a
linear demand and constant marginal cost functions. Then we discuss alternative cost
specifications as well as testable implications of the model. Discussion of caveats and
possible extensions of our framework are presented in Section 4. Section 5 evaluates
finite-sample properties of our model with a known data-generating process using Monte
Carlo simulations. We illustrate an application of our method using the well-known data
of the Joint Executive Committee railroad cartel in 1880–1886 in Section 6. Section 7
concludes.

2 Related Literature

The main focus of this paper is PR collusive technology and thus we begin by discussing
the plausibility of PR from both theoretical and empirical points of view. We then relate
our methodology to the traditional conjectural variation literature.

2.1 Proportional Reduction

To the best of our knowledge, Schmalensee (1987) is the first paper that explicitly defines
PR in the literature, listing four distinct collusive technologies: (1) full collusion with side
payments, (2) market division, (3) market sharing, and (4) proportional reduction. The
most profitable one is full collusion with side payments, where only the most efficient firms
produce. This type of collusion is unrealistic from the legal aspect and the remaining three
ways of colluding do not require side payments.2 Collusion implemented through market
division occurs when each firm is assigned to a part of the market and charges its optimal
monopoly price in this segment. The possibility of arbitrage makes such a technology
difficult to implement in practice. Market sharing collusive technology involves assigning
production quotas. For example, the quotas may be chosen to equate the critical discount
factor among the cartel members, which would maximize sustainability of the cartel.
Such arrangements generally would require solving a non-trivial bargaining problem,

2Without side payments, collusion would imply positive production levels even for the least efficient
firms, making the maximization of joint industry profit unfeasible.
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particularly when the firms are imperfectly informed about their rivals’ costs. The last
type is proportional reduction, which can be viewed a special case of market sharing.
The simplicity of PR’s implementation, compared to that of market sharing, makes it
attractive for firms. Another advantage of PR is that frequently used concentration
measures (e.g., HHI or Cn) would be observationally equivalent to a competitive outcome,
as the distribution of market shares does not change between competitive and collusive
regimes. Therefore, from the perspective of firms considering forming a cartel, PR has
this very appealing feature.

From a microeconomic theoretical point of view, PR is a very natural assumption when
assuming symmetric firms, which is common in the theoretical literature. It is hard to
see why symmetric players that maximize joint industry profit would reduce their output
non-proportionally.3 In the case of asymmetric firms, the assumption becomes binding, as
PR may not maximize total industry profit.

In the empirical literature, the classification of cartels is slightly different from
Schmalensee (1987). For example, a recent paper by Hyytinen et al. (2017) catego-
rizes cartels into (1) price-based cartels, and (2) allocation-based cartels, the latter of
which includes proportional reduction. The latter type is more prevalent in practice,
and Marshall and Marx (2008) study 20 major industrial-product cartel decisions of the
European Commission between 2000 and 2005 in an attempt to follow up on a remarkable
but underdeveloped theme in Stigler (1964), that is, the prevalence of market share
allocations among explicit cartels. Marshall and Marx (2008) argue that “a market share
allocation may be a superior choice as long as compliance with the agreement can be
monitored” (p.1). Moreover, they claim that with a limited information exchange and
a market share allocation, the firms could be able to eliminate all punishment periods
associated with tacit collusion.4 The authors also provide empirical evidence on the use
of reversion to pre-collusive play as a punishment for deviations from collusion. This has
been explicitly mentioned in Congressional testimony involving dyestuffs manufacturing
(p.12).

Furthermore, Hyytinen et al. (2017) and Fink et al. (2015) study Finnish and Austrian
cartels, respectively, and they find that allocation-based cartels are by far more popular
in manufacturing sectors. In particular, Hyytinen et al. (2017) study contracts of about
900 legal Finnish cartels and find that market allocation-based cartels are more popular
in manufacturing (73%), while price-based cartels are more popular in non-manufacturing
(78%). A similar conclusion follows from Fink et al. (2015), who study legal cartels in
Austria. The authors find that quota cartels were very common in the manufacturing
sector of Austria. Given these findings, our method appears to be more applicable to
manufacturing rather than to a service sector.

Establishing the fact that the market share allocation is indeed one of the most
common cartel formats, a natural question one may ask next is the following: Among
these market share allocations, do we indeed observe PR in practice? Our answer is yes.
Before listing several examples, it is important to discuss implementation of PR, as it

3Symmetry and joint profit maximization are standard assumptions in the literature, in which case
existing methods of identifying the parameter of interest (e.g., Bresnahan, 1982, Lau, 1982) are directly
applicable within our framework.

4Note that unlike customer and geographic allocations, a market share allocation need not be invalidated
by changes in the economic environment.
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requires setting up a benchmark equilibrium with respect to which firms proportionally
reduce their outputs. In practice, there are two possibilities: the firms reduce output
proportionately based on (1) production capacity, or (2) the average market share from
the prior periods. We believe that in either case, our PR assumption would be justified.
Consider the former case. Kreps and Scheinkman (1983) show that a two-stage game, with
the quantity pre-commitment in the first stage and price competition in the second stage,
under some assumptions has a unique NE with the Cournot outcome. Hence, if firms
invest in their capacity assuming competition in the subsequent stages, collusion with
quotas proportional to the production capacity would be equivalent to our PR assumption.
Similarly, in a homogeneous product environment, quotas based on the average of market
shares from the prior periods should be proportional to the Cournot market shares.

In what follows, we summarize some empirical evidence in support of our assumption.
Harrington et al. (2014) attempt to better understand why and how firms that initially
agreed to participate in a cartel would subsequently choose to cheat. The authors find
that the most important source of disagreement lies in the market allocation, where the
most commonly documented method to allocate quotas is to use historical market shares.
For example, the organic peroxides cartel used sales from 1969–70 to set collusive quotas
for 1971. Cartels in the vitamins A and E markets in the early 1990s set market shares at
1988 levels and firms agreed to maintain these shares in response to market growth. For
the folic acid cartel, cartel member Roche negotiated with the Japanese cartel members
as a group and ultimately settled on market shares based on 1990 sales, which gave Roche
a share equal to 42%. The Japanese producers then allocated their 58% share amongst
themselves according to their 1990 market shares. The citric acid and zinc phosphate
cartels used the average of firms’ sales over the previous three years. The sorbates cartel
set the allocation for 1978 between Hoechst and the four Japanese producers based on
sales volumes in 1977 for each region of the world, and the Japanese producers allocated
their aggregate share according to 1973–77 sales. A similar situation occurred in the
German cement cartel, which established quotas based on historical market shares (p.11).
The authors conclude that “cartel formation often implies freezing the relative positions
of firms in that collusive market shares are set equal to the competitive market shares
at that time” (p.2). If growth in market demand is insufficient to utilize new capacity
expansion, then a market sharing agreement based on the historical market shares may
make the cartel unstable.

Roller and Steen (2006) study the Norwegian cement cartel in 1955–1968, which had
to decide on the total amount of cement sold domestically and on a sharing rule. The
latter in turn determines how the rent is allocated among the cartel members. The cartel
decided to reward domestic market shares based on the members’ share of total capacity.
As a result, cartel members raced to increase their sales quotas by building more capacity.
By refuting alternative explanations for the over-investment in production capacity, such
as (1) unrealistically high anticipation of increased future consumption and (2) import
deterrence, the authors conclude that the incentives created by the cartel’s sharing rule is
the most plausible explanation for the large capacity investments in Norway. The authors
mention similar examples of the market sharing arrangements in Germany in the 1920s
and 1930s and in Japan in the 1950s and 1960s. Another prominent example of a cartel
that divides the market share according to production capacity is the so-called Lysine
cartel in 1992–1995. The most recent examples of production-sharing rules are found in
the agricultural cooperatives that purchase whatever their members have been able to
produce and then decide how much to sell at home (e.g., Bergman, 1997, as cited in Roller
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and Steen, 2006).

Matsui (1989) provides empirical evidence on the Japanese “recession cartels.” When
the performance of an industry became worse off because of business fluctuations, the
government not only allowed firms to form a recession cartel but also suggested that
they should do so (p.451). Similar to the Norwegian cement cartel, the market sharing
rule allocated collusive shares in proportion to the production capacity. Observed excess
capacity is thus consistent with the incentives provided by the sharing mechanism. Indeed,
if firms have more than one control but agree to collude in only one of them, there is a
clear strategic reason to affect the market sharing arrangements by the choice of another
control. It is worth noting that the phenomena was described by several authors and is
sometimes called a “disadvantaged semi-collusion” (e.g., Fershtman and Gandal, 1994). Of
course, the over-investment makes sense if the firms anticipate that collusion will re-occur
regularly in the future, which is usually the case with the government-supported cartels.5

Of course, there are some cartels that use market share allocation, which might be
different from PR. We thoroughly discuss this possibility in Section 4.1 via numerical
simulations. Moreover, in this paper we do not differentiate between legal and tacit
cartels.6 However, there is a nice insight into the mechanics of implementation of PR-like
collusive technologies in Cave and Salant (1995). The authors discuss the institutional
arrangements under which governments may act as a collusion-facilitating device. They
study the choice of quotas by legal volume-restricting cartels and find that the same
voting institution has appeared in different countries at different points in time. Such an
institution appears helpful in resolving the fierce internal conflict over choosing the level of
collusion. The mechanics of the voting process involve assigning a scalar qi (e.g., capacity,
historical shares) to each firm and then choosing a common scale factor F , such that each
firm is allowed to produce in the interval [0;Fqi]. The authors specify conditions such
that there exists a unique voting equilibrium in which the ideal point (in terms of F ) of
the median indexed firm is weakly preferred to any other point by a majority of voters.
As a consequence, the total industry profit is not maximized as would be the case if (and
only if) the ideal point of the largest firm is chosen. This setup is consistent with our
PR assumption if the scalars chosen are equal to the Cournot equilibrium output levels.
Hence, we believe Cave and Salant (1995) provide additional theoretical motivation for
the underlying assumption in our method.

2.2 Alternative Approaches to Identifying Market Power

Our work is closely related to the early studies in conjectural variation literature by
Bresnahan (1982), Lau (1982), Porter (1983) and Ellison (1994). Ellison (1994) provides
a comprehensive empirical comparison of competing theories of collusion by Green and
Porter (1984) versus Rotemberg and Saloner (1986). In these (and many other) articles,
in order to derive an empirical specification for estimation a researcher has to assume
that the objective function of a cartel is known, e.g., joint profit maximization. In reality,
the objective function of a cartel is rarely known. It may be quite complex and depend

5Interestingly, a similar story applies to voluntary export restraints (VERs). Yano (1989) shows
that if a quota is expected to be imposed on foreign exporting firms, it intensifies the exporting firms’
competition in the pre-quota period.

6This is because we are agnostic about objective functions of the cartels.
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not only on the current and future states of the demand and supply conditions, but
also on the probability of disclosure (which, in turn, may be a function of the level of
collusion itself) and expected punishment by the antitrust authorities. Given feasible
(potentially implementable in the real world) equilibrium supporting strategies, not all
levels of collusion can be sustained, as described by Rotemberg and Saloner (1986).
Analysis of more complex settings, when the collusion occurs only along one of the
dimensions, e.g., price fixing with competition in quality or capacity, is provided in
Fershtman and Gandal (1994). Availability of reliable cost data facilitates estimation
of industry conduct considerably. For example, Genesove and Mullin (1998) conduct a
comprehensive comparison of various ways to estimate industry conduct and marginal
costs in the sugar industry. Wolfram (1999) also considers a model with time-varying
conduct parameters when direct measures of marginal costs are available. However, her
identification still relies on the time-series variation in the data because in a duopolistic
market the variation across firms is limited. A more structural way to address the Corts’
critique can be found in Puller (2009).

Assumption of PR in collusive periods facilitates identification of the degree of monop-
olization within a given model structure, including functional form assumptions on the
demand and cost functions. It is worth noting that, differently from the earlier conjectural
variation literature, we do not require assumptions about non-separability of demand
in some observable demand “rotators,” as in Bresnahan (1982) and Lau (1982). In this
sense, we can be flexible when choosing demand and cost specifications. We provide a
traditional identification argument based on the familiar rank conditions for linear demand
and constant (or linear in quantity) cost functions. We do not discuss non-parametric
identification in this study. A formal non-parametric identification argument based on
variation in exogenous demand and/or cost shifters and market size for similar models
can be found in Berry and Haile (2014). The closest paper on non-parametric identifi-
cation in homogeneous product markets is Cherchye et al. (2013). The authors provide
characterization of the Cournot, Perfect Competition, Perfect Collusion, and Conjectural
Variation models. The characterization is based on three conditions for consistency with
a corresponding model. Cherchye et al. (2013) discuss characterization of a conjectural
variations model in terms of the firms’ conjectures about the likely responses of their
rivals. Their Theorem 3.1. provides the necessary and sufficient conditions for the reduced
form price and individual quantity functions to be conjectural variation consistent. Our
framework is different in an important way because our monopolization parameter θ
measures the degree of output reduction actually implemented and not the hypothetical
beliefs about other firms’ responses, as in traditional conjectural variation models.7 This
difference is crucial, as discussed in Corts (1999) and Reiss and Wolak (2007), and is one
of the major flaws of the traditional literature on collusion.

There is a large and growing literature on identifying collusion in differentiated products
industries. Nevo (1998) discusses two typical approaches to identification of collusion.
The first, “menu approach,” is directly derived from theory and suggests estimating a
finite set of alternative models of firms’ conduct. Each of the models corresponds to a
matrix (sometimes called an “ownership matrix”) of zeros and ones, where zeros (ones)
switch off (on) corresponding elements in the matrix of cross-price derivatives. Each of
the matrices is consistent with an assumption about joint profit maximization for a given
subset of products. Discrimination between these alternatives is based on the model fit.

7We provide comparison of values for both measures in Table 1.
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The second approach has a weaker theoretical justification and replaces the ownership
matrix with a set of parameters (supposedly between zero and one) to estimate. The set
of conjectural variation parameters allows firms to internalize the effect of their control
variables on the market shares of their rivals in a continuous way. For example, instead
of making a binary decision of whether to internalize it or not, the firms decide to what
extent the cross-price elasticity in the first-order conditions matters for various competing
products. Identification of parameter within the ownership matrix may be hard because it
requires finding a large number of exogenous demand shifters uncorrelated with the shocks
in the firms’ first order conditions. For example, Ciliberto and Williams (2014) in their
study of collusion and multi-market contact in the airline industry use exogenous variation
in the number of airport gates leased to different firms as exogenous instruments.8 Our
approach can be extended to differentiated product markets, as we briefly discuss in
Section 4 and also in Appendix D. We intentionally abstract from such a complexity in
the main text in order to keep our presentation transparent.9 In practice, competition
authorities have time and resource constraints when making decisions, and we believe
that an easily implementable but reliable methodology that has microfoundation will be
helpful for them.

3 The Model

In this section, we outline our framework by presenting a model with linear demand
and constant marginal cost functions. Potential extensions of the model are discussed in
Section 4. We begin with an example to illustrate the idea of our methodology.

3.1 An Illustrative Example

Consider a homogeneous product market where two firms, A and B, compete in quantities
over two periods, 1 and 2. The demand and cost functions are given by

Pt(Q) = a− b(qA + qB) + dt,

Ci(q) = ciq,

where dt denotes an observed demand shifter at period t. Then, the Cournot outcome for
period t is given by

(qcA,t, q
c
B,t) =

(
1

3b
(a+ dt − 2cA + cB),

1

3b
(a+ dt + cA − 2cB)

)
.

Now consider a situation where two firms collude using PR technique, i.e., the firms
agree to reduce their outputs by the same percentage relative to the Cournot outcome.
Define θt as a reciprocal number of the production amount under PR relative to the
Cournot outcome. For example, if the firms reduce their output by 20% in period 1 and
0% in period 2, meaning that they produce 80% and 100% of the Cournot outcomes
in period 1 and 2, respectively, then θt must be θ1 = 1/(1 − 0.2) = 1/0.8 = 1.25 and

8The authors also permit time-varying conduct parameter.
9Application to a differentiated product setup would require additional assumptions on the demand

and cost functions.
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θ2 = 1/(1 − 0) = 1/1 = 1. Econometricians can observe (qobsA,1, q
obs
B,1) and (qobsA,2, q

obs
B,2) in

the data, though they cannot observe θt or cost parameters, (cA, cB). In this case, can
econometricians recover (θ1, θ2, cA, cB) from what they observe? The answer crucially
depends on whether the demand shifters vary across period, i.e., d1 6= d2 or d1 = d2. We
discuss these two cases below, assuming that the demand parameters are known in order
to keep our discussion transparent.

Case 1: The demand varies over time Suppose that the parameters take the
following values: a = 15, b = 1, d1 = 0, d2 = 9, cA = 1, and cB = 2. Then, the Cournot
outcomes are given by

(qcA,1, q
c
B,1) = (5, 4), and (qcA,2, q

c
B,2) = (8, 7).

First, consider a case where the degree of collusion changes over time, say θ1 = 1.25 and
θ2 = 1, i.e., two firms reduce their outputs by 20% relative to the Cournot quantity in
period 1, but these firms fail to collude in period 2, producing the Cournot quantity. In
this case, what econometricians can observe in the data are

(qobsA,1, q
obs
B,1) = (4, 3.2), and (qobsA,2, q

obs
B,2) = (8, 7).

The data, then, allow us to have four first-order conditions with four unknowns:

15− cA − 11.2θ1 = 0, 15− cB − 10.4θ1 = 0,

24− cA − 23θ2 = 0, 24− cB − 22θ2 = 0,

using the relationship qcj,t = θtq
obs
j,t . Solving this system of equations enables us to obtain

(cA, cB, θ1, θ2) = (1, 2, 1.25, 1), implying that the parameters can be recovered. Naturally,
the model allows us to identify time-invariant degree of collusion. Suppose that two
firms reduce their outputs by 20% relative to the Cournot outcome in both periods, i.e.,
θ1 = θ2 = 1.25. In this case, the data must look like

(qobsA,1, q
obs
B,1) = (4, 3.2), and (qobsA,2, q

obs
B,2) = (6.4, 5.6).

Again, our model gives four first-order conditions with four unknowns, which enables us
to recover the parameters of interest, (cA, cB, θ1, θ2) = (1, 2, 1.25, 1.25).

Case 2: The demand does not vary over time In order to see the importance of
the demand shifters, dt, assume that dt = 0 for both periods, yielding exactly the same
Cournot outcomes:

(qcA,1, q
c
B,1) = (5, 4), and (qcA,2, q

c
B,2) = (5, 4).

First, consider a case where the degree of collusion varies over time, θ1 = 1.25 and θ2 = 1.0.
In this case the data must be

(qobsA,1, q
obs
B,1) = (4, 3.2), and (qobsA,2, q

obs
B,2) = (5, 4),

which allows us to have the following four first-order conditions:

15− cA − 11.2θ1 = 0, 15− cB − 10.4θ1 = 0,

15− cA − 14θ2 = 0, 15− cB − 13θ2 = 0.
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This system of equations does not have a solution, which does not allow us to identify the
degree of collusion. The same conclusion holds for a case where the degree of collusion
does not change over time, i.e., θ1 = θ2. In this case, there are four parameters of interest,
(cA, cB, θ1, θ2), though there are essentially only two relevant first-order conditions, which
prevents us from recovering four parameters. Therefore, when the demand does not vary
over time, the model does not allow us to identify the degree of collusion, even it is
time-invariant.

There are two important observations to make about this numerical example: (1)
the importance of the demand shifters, and (2) the role played by heterogeneity in cost
functions. For the first point, these two cases demonstrate that the demand shifter is one
of the important sources for identification. Moreover, when demand shifters are available,
our methodology allows us to identify even the time-varying degree of collusion, which can
address the critique by Corts (1999). Then, these observations raise the question why the
model can identify time-varying θt when the demand shifters are available. Intuitively, in
a Cournot model with linear cost functions, when the demand changes, which corresponds
to the change in d in our model, the market share must be changed. In our example, the
market share for firm A is given by

sA,t =
a+ dt − 2cA + cB
2a+ 2dt − cA − cB

,

regardless of the degree of collusion. Assuming that the cost is known, only the change
in d leads to the change in market shares. This change in market share enables us to
identify θ; when observing the change in the market share in the data, deviating from the
model prediction, then it must be through the change in the degree of collusion. Case 2
confirms this intuition; with the absence of the demand shifters, the market share for firm
A is always constant. In case of θ1 = θ2, the market share for firm A is always 5/(5 + 4).
Similarly, in case of θ1 6= θ2, the market share for firm A in period 1 is 4/(4 + 3.2) and
the market share in period 2 is 5/(5 + 4), which is identical to 4/(4 + 3.2). This feature
prevents us from identifying the degree of collusion.

Second, the heterogeneity in cost functions plays a central role in this model. If two
firms have the same technology and produce the same output level, we do not have a
sufficient number of relevant first-order conditions. Thus, heterogeneous costs, resulting
in heterogeneous market share, are important. Note that although non-linearity in cost
functions seems to complicate the model and one might worry that such models do
not allow us to identify the degree of collusion, this is not the case. More complicated
functional forms create more heterogeneous responses to the change in the demand, which
enables us to identify the degree of collusion. This issue is also thoroughly discussed in
the next section.

3.2 Our Main Model

Consider a homogeneous product market with N firms competing in quantity over time,
t = 1, 2, . . . ,∞. Suppose each firm is characterized by a cost function denoted by Ci(qit, zit),
where qit is output and zit is a vector of cost shifters. Let the inverse demand function be
given by Pt = P (Qt, Yt), where Qt =

∑N
i=1 qit denotes total industry output and Yt is a

vector of demand shifters. The per-period reward function is given by

πit = P (Qt, Yt)qit − Ci(qit, zit). (1)
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The firms in the industry interact repeatedly and can be engaged in tacit collusion
agreements. Instead of making an assumption on the objective function of the cartel,
which is typically unknown to econometricians, we make the following assumption on the
way the collusion is implemented.

Assumption 1: In any collusive period, firms reduce their individual output proportionally
to the baseline Cournot quantities, i.e.,

qCit = θtq
PR
it , ∀i, t,

where qCit and qPRit denote one-period Cournot and collusive output levels under PR
respectively, and θt ≥ 1 is the inverse of the percentage reduction in output.

Assumption 1 implies that knowing θt allows us to compute the counterfactual Cournot
quantity by “inflating” observed output qPRit by a factor of θt. For example, suppose
that in the collusive period each firm reduces its output by 10% relative to the Cournot
quantity. Then, θt = 1

/
(1− 0.1) = 1.11. Under Assumption 1, the degree of collusion can

be summarized by the parameter θt. Hence, our ultimate objective is to estimate θt from
the observed data.

Before proceeding with how to recover θt, it is worth noting that we intentionally
abstain from developing a particular structural model of collusion, i.e., our model avoids
specifying the objective function of the cartel or the bargaining process, which we cannot
learn from the data. However, one can think of simple collusion supported by grim
trigger strategies with Cournot-Nash as the punishment phase. Lemma 1 in Appendix B
shows that PR technology is profitable for all firms in the neighborhood of the Cournot
equilibrium quantity. Therefore, it is straightforward to prove that there exists a common
discount factor β = min {β1, . . . , βN} , βi ∈ (0, 1) ∀i, such that the collusion is sustainable.

We now assume a linear inverse demand function P (Qt, Yt) = α0 + α1Qt + α2Yt + νdt
and suppose we observe (qPRit , zit, P

PR
t , Yt), i = 1, . . . , N ; t = 1, . . . , T , in the data. Under

Assumption 1, the following relationship must hold:

P (QC
t , Yt) = P (QC

t , Yt)− P (QPR
t , Yt) + P (QPR

t , Yt)

= α1 (θt − 1)QPR
t + P PR

t ,

where QPR
t =

∑
qPRit and P PR

t = P (QPR
t , Yt) are collusive total output and equilibrium

price respectively, and QC
t =

∑
qCit and P (QC

t , Yt) are unobserved (counterfactual) Cournot
total output and equilibrium price, respectively.

On the supply side, we assume a constant marginal cost function, i.e., ∂Ci(qit, zit)
/
∂qit =

β0i + zitβ + νsit, where zit is a vector of observed cost shifters in the data and νsit is unob-
served cost component. This assumption is for transparency and we can easily relax this
cost function to a more general class, which is discussed in Section 3.3. In a Cournot NE,
first-order conditions for firm i are given by

α1q
C
it + PC

t − β0i − zitβ − νsit = 0. (2)

Note that equation (2) would not hold with equality when evaluated at
(
qPRit , P PR

t

)
, as

there would be incentives to deviate from the collusive quantity by expanding the output.
However, we know the relationship between the collusive and competitive regimes and,
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therefore, can “restore” individual first-order conditions in terms of collusive values and
the parameter θt as follows:

α1θtq
PR
it + α1 (θt − 1)QPR

t + P PR
t − β0i − zitβ − νsit = 0. (3)

Even though one may attempt to identify both θt and α1 using just the supply relation (3),
we focus on identification of the conduct and cost function parameters and assume,
throughout the rest of the paper, that α1 can be consistently estimated using conventional
instrumental variable techniques.10

From equation (3) one can already see that variation in qPRit across firms, holding
QPR
t and P PR

t fixed within a cross-section, provides additional identification power. More
formally, identification of our parameter of interest relies on the availability of firm-level
exogenous cost shifters, which is summarized in the following Assumption 2.

Assumption 2: Data contains information on exogenous demand and firm-level cost
shifters, (Yt and z1t, . . . , zNt respectively), such that demand-side and cost-side innovations
satisfy

E [νsit|zit, z−it, Yt] = E
[
νdt |Zt, Yt

]
= 0,

where Zt =
∑

i zit and z−it are cost shifters for firms other than the firm i.

For example, if β0i = β0,∀i and we observe just one cost shifter satisfying Assumption 2
in the data, we can identify all parameters in the model given that T > 1.11 To see this,
rewrite equation (3) as

νsit = P PR
t − β0 − zitβ − α1Q

PR
t + θtα1(qPRit +QPR

t ),

and define X = (1NT , z,q, IT ⊗ xt) and Z = (1NT , z, IT ⊗ z−it) where

• 1NT and 1T are vectors of ones of sizes N × T and T respectively;
• z = (z11, · · · , zN1, · · · , z1,T , · · · , zNT )′;

• q =
(
α1Q

PR
1 , · · · , α1Q

PR
1 , · · · , α1Q

PR
T , · · · , α1Q

PR
T

)′
;

• IT is identity matrix of size T ;

• xt =
(
α1

(
qPR1t +QPR

t

)
, · · · , α1

(
qPRNt +QPR

t

) )′
;

• z−it =
(∑

j 6=1 zjt, · · · ,
∑

j 6=N zjt

)′
;

• ⊗ denotes Kronecker product.

The standard identification conditions for IV methods requires Z ′X to have a full column
rank. With just one period of data, it is clear that X does not have a full column rank,
given the first and third columns. Hence, separate identification of the constant term in
the marginal cost specification and the time-varying parameter θt requires data for at
least two time periods.12

More generally, there are two sources of variation that help to identify the degree of
output reduction. The first one is variation across asymmetric firms. The second one
is variation over time in the demand and supply conditions. Under the PR assumption,
asymptotics is in terms of N × T ∗, where T ∗ is the number of time periods with constant

10It is rather the degree of collusion that may change in response to a changing economic environment.
11The system would be over-identified if in addition we observe demand shifters.
12Of course, to estimate demand parameter α1, one would need longer time series.
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conduct parameter θt. Of course, to fully utilize this property a researcher should specify
observable cost shifters at the firm level. Regarding the non-parametric identification of
our parameter, we reference Cherchye et al. (2013), who provide necessary and sufficient
conditions for identification of alternative models of firms’ conduct, including traditional
conjectural variation models. While their approach can be applied in our settings, we
believe that our PR assumption is already sufficiently strong to make a non-parametric
identification argument unnecessary.

3.3 Functional Form Assumptions and Testable Implications

To make our exposition transparent, the previous subsection assumes the constant marginal
cost specification. As mentioned earlier, however, this assumption can be relaxed. In
this section we demonstrate a cost function specification that includes quadratic term
and show that our identification argument does not rely on the constant marginal cost
assumption. Furthermore, under two cost specifications, we further derive the testable
implications of our model regarding whether or not our PR assumption is supported in
the data.

In order to generalize our model, we begin by considering the firm i’s maximization
problem in a competitive regime where the per-period profit function is given by equation
(1). Assuming away any dynamic effects of the quantity choice, which is discussed in
Section 4 below, the first-order conditions for quantity choice are given by

FOC[qit] :
∂P (Qt, Yt)

∂Qt

qit + Pt −
∂Ci(qit, zit)

∂qit
= 0. (4)

When firms are in a collusive regime under PR, equation (4) can be written in terms of
observables (P PR

t , QPR
t , qPRit ) and the parameter θt as follows:

P PR
t +

[
P (θtQ

PR
t , Yt)− P (QPR

t , Yt)
]

+
∂P (θtQt, Yt)

∂Qt

θtqit −
∂Ci(θtqit, zit)

∂qit
= 0, (5)

where
[
P (θtQ

PR
t , Yt) − P (QPR

t , Yt)
]

represents a “collusive markup” over the Cournot

price level, i.e., the difference between the observed outcomes and hypothetical competitive
outcomes. This term measures price differences in the case of movement along the demand
curve from the observed output levels to competitive output levels.

3.3.1 Relaxing the constant marginal cost assumption

Consider the particular case of when the marginal cost function contains a linear-in-qit
term, i.e., when

∂Ci(qit, zit)

∂qit
= β0i + βqqit + zitβ + νdit.

In the earlier literature it is well known that this case substantially complicates estimation
of the conduct parameter (the problem description and potential solutions are discussed
in Bresnahan, 1982, Lau, 1982). One of the frequently employed solutions would be to
find exogenous variables affecting elasticity of the demand, i.e., in addition to the demand
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shifters, one would need to find some demand “rotators.” Interestingly, when assumption
1 holds, we can estimate parameters of the model without the demand rotators.

To see this point, consider equation (3), which now becomes

(α1 − βq)θtqPRit + α1 (θt − 1)QPR
t + P PR

t − β0 − zitβ − εit = 0. (6)

As before, we assume that the slope of the demand function α1 is estimated using the
demand relationship (or that appropriate moment conditions are included into the GMM
criterion function). Therefore, we can identify θt from the coefficient on QPR

t , while βq
is identified by the coefficient on qPRit . Note that now in order to disentangle βq and θ,

we need to have both estimates of ̂(α1 − βq)θt and ̂α1 (θt − 1), where the latter requires
variation in Qt. Moreover, as both (θt− 1) and QPR

t in the second term are time t specific,
our methodology must assume that θt must contain more than one time period. However,
we believe that this restriction is not binding in many cases. For example, while we have
weekly-level data, it is hard to imagine that θt changes every week, and thus we can
estimate θt for each month. In summary, the traditional conjectural variation literature in
presence of a linear-in-q term would require demand rotators, whereas our methodology
does not require such demand rotators but needs to assume that θt is fixed for, at least,
several periods.

3.3.2 Testable implications

Our approach relies on a strong behavioral assumption that firms proportionally reduce
their outputs from the static Cournot quantity. It is natural to ask whether there are
any testable implications of this assumption. Two recent studies address non-parametric
identification of Cournot and conjectural variation models. The first study is by Cherchye
et al. (2013), who require virtually no functional form restrictions except for twice
continuous differentiability of the reduced form price and individual quantity functions.
The authors provide a set of conditions that the reduced form functions must satisfy in
order to be consistent with a particular behavioral model (Cournot, conjectural variation,
etc.). The second study is by Carvajal et al. (2013), who use a revealed preference approach
to characterize the Cournot model. Interestingly, the characterization allows them to test
for constant level of collusion. The key assumption is monotone cost functions, i.e., there
cannot be any shifters of the costs over time with all variation coming from changes in
the demand conditions. The test is applied in the context of our application.

Even though these two recent non-parametric tests provide a nice opportunity to test
the data for consistency with PR (provided their underlying assumptions are satisfied), they
cannot be used to measure the degree of collusion. Besides, in practice, econometricians
would typically assume some particular demand and cost functions. Thus, in what follows
we focus on deriving testable implications within a given parametric structure, which can
be more easily implemented than the aforementioned non-parametric tests.

Consider the general form of the first-order conditions evaluated at the observed
realizations of variables given by equation (5). In this equation there are three elements
that are affected by the choice of functional forms for demand and costs:
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(i) Difference between the observed (collusive) price and the Cournot equilibrium price,

P (θtQt, Yt)− P (Qt, Yt).

(ii) Slope of the inverse demand at the Cournot equilibrium quantity,

∂P (θtQt, Yt)

∂Qt

.

(iii) Each firm’s marginal costs evaluated at hypothetical Cournot quantities,

∂Ci(θtqit, zit)

∂qit
.

In the paper we assume that inverse demand function can be estimated separately,
i.e., we do not rely only on the firms’ first-order conditions to recover the inverse demand
function and its slope.13 Therefore, elements (i) and (ii) in the list are not very likely to
confound identification of θ. At the same time, identification of the marginal cost function
and the parameter of interest do rely on the same set of first-order conditions. However,
since θ enters several additively separable functions, we potentially can test restrictions
on the coefficients. For example, if we are willing to assume PR and that the degree of
collusion is constant over time in the context of our duopoly model with linear demand,
we have two equations,

Pt + α1(θ − 1)q2t + α1(2θ − 1 + βq)q1t − . . . = 0,

Pt + α1(2θ − 1 + βq)q2t + α1(θ − 1)q1t − . . . = 0,

or

Pt + γ1q2t + γ2q1t − . . . = 0,

Pt + γ2q2t + γ1q1t − . . . = 0.

If marginal cost is not linear in q, i.e., βq = 0,

γ2 = α1(2θ − 1) =⇒ θ =
1

2

(
γ2

α1

+ 1

)
.

Also,

γ1 = α1(θ − 1) =⇒ θ =
γ1

α1

+ 1,

which implies
1

2

(
γ2

α1

+ 1

)
=
γ1

α1

+ 1 =⇒ γ2 = 2γ1 + α1.

Therefore, we can test for presence of confounding terms in the unknown marginal cost
function by testing coefficient restriction γ2 = 2γ1 + α1. Of course, such a test requires
long time series with constant level of collusion.

13An identification argument for derivatives, finite differences and function extensions can be found in
Matzkin (2012).
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What if firms reduce output non-proportionally as a result of some explicit or implicit
collusion, i.e., such that θi 6= θj? For example, in a duopoly with a linear demand system
we have two equations:

Pt + α1(θ2 − 1)q2t + α1(2θ1 − 1)q1t − . . . = 0,

Pt + α1(2θ2 − 1)q2t + α1(θ1 − 1)q1t − . . . = 0.

If we have enough time-series observations, we can estimate

Pt + γ1q2t + γ3q1t − . . . = 0,

Pt + γ2q2t + γ4q1t − . . . = 0,

and test the following restrictions whether γ1 = γ4 and γ2 = γ3. Interestingly, even in
cases where the marginal costs are linear in qi we still can test for PR because the system
of equations would be given by

Pt + α1(θ2 − 1)q2t + α1(2θ1 − 1 + βq)q1t − . . . = 0,

Pt + α1(2θ2 − 1 + βq)q2t + α1(θ1 − 1)q1t − . . . = 0.

Of course, the test would require strong assumptions that the level of collusion is constant
for long enough time periods because we no longer can rely on the degrees of freedom
coming from across-firm variation in the first-order conditions (we lose them to learn θi).

4 Discussions and Extensions

This section provides additional discussion of our framework. The first subsection discusses
the relationship between a general class of market sharing rules and PR. Although PR is
one particular type of market sharing, other types of market share allocation (e.g., the
ones maximizing cartel sustainability) might be employed by the firms. We explore the
relationship between alternative market sharing allocations using numerical examples.
Then we relate our PR parameter to the conduct parameter in the traditional conjectural
variation literature. Finally we discuss some extensions of our model: (1) incorporating
product differentiation; (2) modeling forward-looking decisions of the firms; and (3)
proposing a test for the changes in regimes.

4.1 Market Sharing and Proportional Reduction

As we discuss in the Introduction, Marshall and Marx (2008) provide a number of arguments
in favor of cartel organization based on market shares allocation. Unfortunately, it is hard
to find direct evidence of PR collusive technology. This is because alternative collusive
techniques may be difficult to distinguish if they result in output quotas allocations. For
example, it is relatively easy to discriminate between (1) profit maximization with side
payments, where only the most efficient firms produce; (2) market division, where each
seller sells to a geographically separate market; or (3) customer allocation, where each
seller sells to a given subset of buyers. PR and market sharing (MS) collusive technologies
may have different quota allocation rules. For example, firms may choose to maximize
total industry profit subject to maximum cartel sustainability, i.e., when all firms have
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common critical discount factor. This rule does not guarantee that the market shares of
individual firms remain constant relative to the Nash equilibrium.

In order to explore the relationship between output quotas implied by MS and PR
technologies, we simulate collusive and competitive scenarios with 3, 5, and 9 firms. In
calculating equilibrium under the MS collusive technology we assume that firms maximize
joint industry profit subject to maximum cartel sustainability. The latter, in turn, requires
critical discount factors to be equal across firms. We assume that firms face a linear
demand function, Pt = 100 − Qt, Qt =

∑N
i=1 qit, and constant marginal costs, ci > 0,

such that 1
N

∑N
i=1 ci = 5.0. Then we obtain Nash, Collusive, and Deviation profits for

the various number of firms and their costs asymmetries. In particular, to get optimal
collusive profits we solve

max
q1,...,qN

{
N∑
i=1

πi(q1, . . . , qN)

}
, s.t.

πdi − πci
πdi − πni

=
πdj − πcj
πdj − πnj

∀i, j,

where πdi , π
n
i , and πci are deviation, Nash, and collusive profit for firm i, respectively. This

exercise is similar in spirit to the contract curves in Schmalensee (1987) (figures 1 and 2
on p.355). Our results are summarized in Table 1 below.

Table 1: A Comparison between Market Sharing and Proportional Reduction

Identical Firms Small Differences Large Differences
N ci qCi qMi qCi /q

M
i ci qCi qMi qCi /q

M
i ci qCi qMi qCi /q

M
i

3
5 23.75 13.67 0.67 4 24.75 14.36 0.67 1 27.75 16.49 0.68
5 23.75 13.67 0.67 5 23.75 13.68 0.67 5 23.75 13.69 0.67
5 23.75 13.67 0.67 6 22.75 13.00 0.66 9 19.75 11.06 0.66

5

5 15.83 8.68 0.60 3 17.83 9.77 0.60 1 19.83 10.93 0.60
5 15.83 8.68 0.60 4 16.83 9.22 0.60 3 17.83 9.78 0.60
5 15.83 8.68 0.60 5 15.83 8.68 0.60 5 15.83 8.68 0.60
5 15.83 8.68 0.60 6 14.83 8.16 0.60 7 13.83 7.65 0.61
5 15.83 8.68 0.60 7 13.83 7.66 0.61 9 11.83 6.69 0.62

9

5 9.50 5.64 0.56 3 11.50 6.51 0.53 1 13.50 7.46 0.51
5 9.50 5.64 0.56 3 11.50 6.51 0.53 2 12.50 6.97 0.52
5 9.50 5.64 0.56 4 10.50 6.06 0.54 3 11.50 6.50 0.53
5 9.50 5.64 0.56 4 10.50 6.06 0.54 4 10.50 6.05 0.54
5 9.50 5.64 0.56 5 9.50 5.64 0.55 5 9.50 5.62 0.55
5 9.50 5.64 0.56 6 8.50 5.24 0.57 6 8.50 5.22 0.57
5 9.50 5.64 0.56 6 8.50 5.24 0.57 7 7.50 4.84 0.60
5 9.50 5.64 0.56 7 7.50 4.86 0.60 8 6.50 4.49 0.64
5 9.50 5.64 0.56 7 7.50 4.86 0.60 9 5.50 4.17 0.70

Note: Collusive quantities are computed under assumption that firms maximize total industry profit subject to constraint
that all firms have common critical discount factor. We assume linear demand function P = 100 − Q, and constant
marginal costs, s.t. 1

N

PN
i=1 ci = 5.0.

Each block corresponds to one simulation, and nine simulation results are demonstrated
in the table. For instance, the top-left block shows the simulation results for a case of
three firms, having the same marginal costs of five. The symbol qni denotes the quantities
produced in a Cournot-Nash equilibrium, whereas qci denotes the quantities produced
under the optimal MS. When all firms have the same marginal costs of five, the ratio of
qni /qci are the same across firms, 0.67, implying that MS yields the equivalent outcome
to that of PR. For each number of firms, we simulate three sets of costs: homogeneous,
heterogeneous but relatively similar, and very heterogeneous. As in the top-left, top-
middle and top-right blocks, if the number of firms is three, regardless of the degree of
heterogeneity, the optimal MS must be very similar to the outcome of PR.
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The main message from the simulation exercise is that for relatively similar firms
(with respect to their cost functions) PR may be a good approximation to MS collusive
technology. This is not surprising because if the firms are identical, all collusive technologies
would result in PR of output.

Another important observation is that similar firms have equal market shares under
both competitive and collusive regimes. Indeed, if several firms have very similar cost
functions it is conceivable that their competitive and collusive output levels are symmetric
as well. This provides an interesting extension to our framework to the cases where firms
can be divided into relatively homogeneous (with respect to cost functions) groups based
on their observed market shares. Then our monopolization parameter can be estimated
for each group of firms. By doing so one has to assume that firms having identical market
shares also face identical demand and cost functions. For example, in Table 1 firms 1&2,
3&4, 6&7, and 8&9 have the same market shares under competitive and (an alternative
to PR) MS collusive technology. Of course, estimating parameters for each group of the
firms puts additional requirements on the data or would require additional assumptions
about the time invariance of the parameters to exploit variation over time in observables.

One of the benefits of our method is that one does not have to assume that all firms
are colluding. The framework is easily applicable to an industry with a few dominant
players and a competitive fringe. As long as we are willing to make assumptions regarding
the identities of colluding and free-riding firms, the method can be directly applied (e.g.,
cheating firms would choose their output levels with θit = 1 if the baseline NE is Cournot).

4.2 Relation to the Conduct Parameter

It must be useful to compare our measure of market power to the conduct parameter from
the earlier literature (e.g., Bresnahan, 1982). Typically, the existing literature identifies
market power as a conduct parameter, λ, nesting three types of first-order conditions
within one equation,

qit
∂P

∂Q
λ+ Pt −mci = 0, (7)

where λ can take three distinct values, depending on the underlying scenario of industry
conduct. Moreover, assuming symmetric firms, i.e., qit = qjt ∀j, we have Qt = Nqit and,
under three different modes of competition, equation (7) can be rewritten as

Bertrand: λ = 0 Pt −mci = 0,

Cournot: λ = 1 qit
∂P

∂Q
+ Pt −mci = 0,

Perfect collusion: λ =
Qt

qit
= N Qt

∂P

∂Q
+ Pt −mci = 0.

In practice, estimation can be done using aggregate quantities. Summing equations (7)
over the firms and dividing by N yields the following equation that nests alternative
collusive regimes:

λ

N
Qt
∂P

∂Q
+ Pt −

1

N

∑
i

mci = 0. (8)
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On the other hand, a similar operation applied to our “restored” first-order condition
under PR assumption, which is given by equation (3), gives us[

θ +Nθ −N
N

]
QPR
t

∂P

∂Q
+ P PR

t − 1

N

∑
i

mci = 0. (9)

A comparison of equations (8) and (9), which are in an aggregate form, immediately
leads to two important observations. First, if we do not exploit firms’ heterogeneity and use
the variables aggregated at market-level, our methodology would face the same problem
as the traditional conjectural variation literature does. Because firms are symmetric and
individual first-order conditions do not provide additional information, our method would
need to deal with a known identification problem when marginal cost function contains
terms that are linear in Qt. In other words, estimation would require the availability of
demand rotators. Interestingly, non-parametric identification results from Cherchye et al.
(2013) would apply to this formulation.14

Second, a comparison of two equations enables us to find a relationship between
our model and the traditional conjectural variation model. As there is a one-to-one
relationship between our parameter and a traditional measure of industry conduct, Table
2 summarizes the values of our parameter θ for each theoretically admissible value of λ as
a function of the number of firms, N ; as mentioned earlier, in the traditional conjectural
variation model, Bertrand, Cournot and Monopoly models correspond to λ = 0, 1, and
N , respectively. Under the symmetric assumption, our model can also nest these three
models, which correspond to θ = N/(N + 1), 1, and 2N/(N + 1). When we consider
asymmetric firms, however, one can see the advantage of our measure; In the conjectural
variation literature, when estimated parameter is different from 0, 1, or N , the estimation
results cannot be straightforwardly interpreted. On the other hand, our θ is defined on
(the positive part of) a real line and has a straightforward interpretation as a reduction
percentage from the Cournot quantity. Therefore, our model can be seen as a natural
extension of the existing conjectural variation models.

Table 2: Traditional Measure of Industry Conduct vs θ

Conduct Parameter Proportional Reduction
Mode of Competition λ θ
Bertrand 0 N/(N+1)
Cournot 1 1
Monopoly N 2N/(N+1)

4.3 Some Extensions

Differentiated products So far we have considered homogeneous product markets.
Potentially, the method can be applied to differentiated product markets. At the same
time, it is not a straightforward extension. Under homogeneous products all firms face
the same price and proportional quantity reduction appears natural. In a differentiated

14Since we are using individual firm first-order conditions, we do not elaborate on traditional identifica-
tion strategies here.
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product industry both quantities and prices are different. So, should the firms reduce
output proportionally or should they instead raise prices proportionally?

If firms are similar with respect to both cost and demand parameters, then prices
and quantities would change proportionally. With asymmetric firms in a differentiated
product market, the difference in market shares between collusive and competitive regimes
depends not only on the firms’ cost functions but also on the degree of substitution or
complementarity between the products.

In Appendix D we provide an example of a differentiated product market where firms
maximize joint industry profits in a collusive regime. It is worth noting that application
of our method to a differentiated product industry requires additional assumptions on the
elasticity of the demand functions of individual firms and on the relationship between the
level of demand and costs.

Dynamics Another potential extension would be to use a more structural approach
and to model firms’ maximization problem as a dynamic game. For example, Assumption
1 can be used within the framework of Fershtman and Pakes (2000). However, this would
require explicit assumptions on the objective function of the colluding firms as well as
specifying punishment strategies, which is exactly what we want to avoid in this study.
As long as the baseline scenario (relative to which firms reduce their outputs) is given by
a static NE, it remains an NE of a dynamic game. Hence, our parameter estimates can
still be interpreted relative to a well-defined alternative conduct regime. An example of
a more structural approach, addressing the critique by Corts (1999) when the firms are
engaged in efficient collusion, is given in Puller (2009).

Testing for change in regimes If firms are colluding, with θt = θ fixed within all
periods in the observed data, the distribution of market shares would be identical to
the one under the baseline scenario (Cournot in our case). However, if the regime of
collusion changes at some point in time (e.g., as a result of price war), one can search
for such evidence by inspecting variation in the aggregate or individual outputs and the
distribution of market shares. One possible example would be to check if a concentration
measure (say, HHI or CN) is statistically different in periods before and after the time of
the potential change in the conduct regime with a similar test (e.g., difference in means)
used for the aggregate or individual levels of output. If the test rejects that the distribution
of market shares are different while the difference in the output levels is significant, this
would be consistent with a change in the degree of collusion. Alternatively, one can use
non-parametric tests developed by Cherchye et al. (2013) and Carvajal et al. (2013) to
test data for consistency with the conjectural variation model.15

Can Cournot dynamics be observationally equivalent to PR? Another impor-
tant issue to discuss is identification of cost structure and the monopolization parameter
θi. Since estimation of the cost function parameters requires assumptions about the firms’
conduct, it is not clear if exogenous variation in the demand and supply conditions can
replicate PR even in a competitive regime. For this to be true, in a Cournot NE, firms

15In the latter case the test is whether the degree of collusion is constant across firms, which would be
consistent with our assumption.
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must respond to exogenous variation in a proportional way. For example, consider a
change in the demand conditions Yt. Proportional change in output of each firm implies
that

∂qit
/
∂Yt

qit
=
∂qjt

/
∂Yt

qjt
⇒

∂qit
/
∂Yt

∂qjt
/
∂Yt

=
qit
qjt
, ∀i, j.

Through the implicit function theorem and Cournot first-order conditions, it is easy to
show that to replicate PR as a result of aggregate demand shocks one must impose very
strong restrictions on the underlying demand and cost functions. In particular, it is not
possible in the case of linear demand and constant marginal costs (unless the firms are
truly identical), while if the marginal costs are linear in quantity, the following would be
required,

2α1 − β(j)
q

2α1 − β(i)
q

=
qit
qjt
,∀i, j,

where β(i) and β(j) are cost parameters for firms i and j. Similar conclusions can be made
regarding the cost shocks. While it might be possible to reverse-engineer a model (and/or
competitive equilibrium concept) where firms do respond to some exogenous variation by
replicating PR collusive technology, we believe that for a very wide class of parametric
empirical specifications used for estimation this is not true.

5 Monte Carlo Simulations

In order to demonstrate the performance of our method and evaluate the properties of our
estimator, we conducted Monte Carlo simulations. The details of the simulation design
are as follows. Inverse demand and marginal cost functions are given by

Pt = α0 + α1Qt + α2Yt + νdt ,

mci(qit, zit) = β0 + β1zit + νsit.

To make our simulations realistic, we have chosen the following parameter values: demand-
side parameters are given by α0 = 500, α1 = −1.0, and α2 = 1.0, and supply side
parameters are given by β0i = 10.0 ∀i and β1 = 1.0. The observable demand shifter, Yt,
the unobservable demand innovation, νdt , the observed cost shifter, zit, and the unobserved

cost shock νsit are randomly drawn from normal distributions, Yt
iid∼ N(0, 100), νdt

iid∼ N(0, 1),

zit
iid∼ N(1, 4) and νsit

iid∼ N(0, 0.04), respectively. In every period, firms operated in one of
three randomly chosen regimes with θt ∈ {1.0, 1.2, 1.4}, where θ = 1.0 implies Cournot
NE. To see the effects of the number of firms, N , and time periods, T , a set of pairs of
(N, T ) is chosen from {10, 20, 30} × {10, 20, 30}.

We simulate a data set 10,000 times and each time estimate parameters of the model
using 2-step optimal GMM. The GMM criterion function is constructed using two sets
of moment restrictions implied by Assumption 2. In particular, demand-side moment
conditions are constructed by interacting νdt with (i) a constant, (ii) demand shifters, and
(iii) a sum of firm-level cost shifters. Supply-side moment conditions are obtained using
products of νsit with (zit, z−it, Yt) and dummy variables for each regime. The weighting
matrix is assumed to have a block-diagonal structure.
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Table 3: Monte Carlo Simulation for N = 10, 30 and T = 10, 30

Regime 1: True Parameter Value = 1.000

T=10 T=30

θ̄ Std. Dev. ASE θ̄ Std. Dev. ASE

N = 10 1.000 0.005 0.004 1.000 0.002 0.002

N = 30 1.000 0.002 0.002 1.000 0.001 0.001

Regime 2: True Parameter Value = 1.200

T=10 T=30

θ̄ Std. Dev. ASE θ̄ Std. Dev. ASE

N = 10 1.200 0.012 0.010 1.200 0.006 0.006

N = 30 1.200 0.008 0.007 1.200 0.005 0.004

Regime 3: True Parameter Value = 1.400

T=10 T=30

θ̄ Std. Dev. ASE θ̄ Std. Dev. ASE

N = 10 1.400 0.019 0.016 1.400 0.010 0.010

N = 30 1.400 0.015 0.012 1.400 0.008 0.008

Note: θ̄ =
Pns
s=1 θ̂s and “Std. Dev.” is defined as

q
1

ns−1

Pns
s=1(θ̂s − θ̄). ASE is the average of

standard errors for each simulation.

As our interest lies only in the estimates of the conduct parameter, Table 3 conveniently
summarizes average estimates of θt, denoted by θ̄, standard deviation and average values
of the estimated standard errors, denoted by Std. Dev. and ASE, respectively, for
(10, 30)× (10, 30) sample sizes. The full set of estimation results can be found in Appendix
C. In all cases, parameter estimates are precise and the standard deviations of the
estimated coefficients are consistent with the mean values of the standard errors. As
expected, the estimates become more accurate as the number of firms and/or the number
of time-series observations increases. Monte Carlo simulations suggest that a longer panel
(larger T ) provides more precise parameter estimates than a wider panel (larger N). We
believe that this is because an increased number of time periods contributes to both the
demand- and supply-side moment conditions, whereas an increased number of firms affects
only the supply-side set of moment conditions.

6 Application: The Joint Executive Committee

In order to illustrate how our method works with real data, we apply our methodology to
the Joint Executive Committee (JEC) railroad cartel data from Porter (1983) and Ellison
(1994). The JEC was a legal cartel that controlled freight shipments from Chicago to
the Atlantic seaboard in the 1880s. The cartel was created in 1879 – that is prior to the
Sherman Act of 1880. The data contains firm-level information on prices and shipment
volumes for grain and flour. Moreover, information about the availability of alternative
transportation routes through the Great Lakes is observed in the data, which serves
as one of the demand shifters. In each year, the shipping industry could operate only
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several months during summer and it substituted railroad transportation. As a result, the
demand for railroad transportation was substantially affected and thus it can serve as
a demand shifter. A detailed description of the data can be found in Porter (1983) and
Ellison (1994). It is worth noting that we provide this application primarily for illustrative
purposes and the estimation results could be improved, if more detailed information were
available, in particular on the individual firms’ cost shifters.

Before discussing our empirical specification, it might be interesting to test whether
the JEC data is consistent with the PR assumption. As mentioned in Subsection 3.3,
two recent papers, Cherchye et al. (2013) and Carvajal et al. (2013), develop such a test.
Unfortunately Cherchye et al. (2013) cannot be applied to our data because we do not
have a continuous demand shifter to use in reduced form functions. However, we can
apply the test developed by Carvajal et al. (2013) as it imposes virtually no functional
form restrictions except for monotone cost functions. While we clearly understand that
the monotone cost assumption is unlikely to be satisfied in our settings (this should be
apparent because we employ cost shifters in our estimation), we can apply the test to two
adjacent time periods where change in the cost function is unlikely to be dramatic. With
this caveat in mind we briefly summarize results of the test.

The test identifies the set of marginal costs that rationalizes the data. In practice,
the algorithm constructs an upper and lower bounds on the marginal costs. No shifts
or twists of the demand (or cost) function are required. The test relies on the Common
Ratio property

Pt −mc1t

q1t

=
Pt −mc2t

q2t

= · · · = Pt −mcNt
qNt

,

and Co-monotone property stated as

(mcit′ −mcit)(qit′ − qit) ≥ 0.

For conjectural variation models, the authors suggest an extension of the Common Ratio
property to Generalized Common Ratio property,

Pt −mc1t

θ1q1t

=
Pt −mc2t

θ2q2t

= · · · = Pt −mcNt
θNqNt

.

Note that the test cannot be used to recover the level of collusion because if the property
is satisfied for some θ, it would be satisfied for λθ for any λ > 0.

We implemented the test by using data from t ∈ [1, 327] to t+ 1 for five major firms –
continuous establishments that stayed in the cartel for the entire sample, which covers 328
weeks. Our results suggest that the same level of collusion cannot be rejected in 90% of
cases (295 out of 327). Hence, 90% of observations in our data are consistent with PR.16

6.1 Empirical Specification and Estimation

Let θ, α and β denote vectors of PR parameters, demand and cost function parameters,
respectively. In reality, the JEC railroad cartel used market share allocation, which

16It is worth noting that the test requires substantial variation in prices because larger variation will
produce tighter bounds on the rationalizable levels of monotone marginal costs. In the case of JEC data,
prices may stay constant over several periods thus adversely affecting the power of the test.

23



includes PR as a special case and can generate the similar output-level to PR, as discussed
in Section 4.1. Moreover, each firm in the JEC cartel held at least 10% of the market share,
which makes us believe that PR is a sensible assumption. Therefore, we assume that the
cartel members of the JEC railroad use PR collusive technology here with parameter θt.
Assume that the per-period profits of the firms within the JEC are given by

π(qit, zit, ν
d
t , ν

s
it; θ, α, β) = P (θtQt, Yt, ν

d
t ;α)θtqit − Ci(θtqit, zit, νsit; β),

where Qt =
∑Nt

i=1 qit, Nt is the number of firms in period t, Yt is a vector of observed
demand shifters, zit is a vector of individual cost shifters, and (νdt , ν

s
it) is a pair of demand

and supply-side shocks, respectively. We assume the following functional forms:

P (Qt, Yt, ν
d
t ;α) = α0 + α1Qt + α2Yt + νdt ,

Ci(qit, zit, ν
s
it; β) = Fi + (β0i + β1zit + νsit) qit.

When reporting estimation results, the case where β0i 6= β0j is referenced as “fixed effect”
(FE), and the restriction of β0i = β0, ∀i is denoted as “levels” (LE). In the data, we observe
shipment volumes for both grain and flour. Because of the potential (dis-)economies
of scope, we define flour shipments to be an observable cost shifter zit when evaluating
collusion in the market for grain.17

Under our assumption of PR collusive technology, static Cournot first-order conditions
are given by (3). In order to estimate parameters of the model, we estimate the demand
and supply relations jointly. In particular, for any given vector of parameters, we isolate
demand and supply shocks using the following system of equations:{

νdt = Pt − α0 − α1Qt − α2Yt,

νsit = β0i + β1zit − (α1θtq
PR
it + α1 (θt − 1)QPR

t + P PR
t ).

Our estimation is based on the orthogonality restrictions following from the conditional
independence assumptions,

E[νdt |Yt, Zt] = E[νsit|Yt, zit, z−it] = 0,

where Zt =
∑Nt

i=1 zit and z−it =
∑

j 6=i zjt. In practice, we interact z−it with a set of dummy
variables, one for each of the collusive regimes. We construct sample analogs of the
population moment conditions, GN

d (Yt, Zt;α) and GN
s (Yt, zit, z−it;α, β, θ):

GN(Yt, Zt, zit, z−it;α, β, θ) =

[
GN
d (Yt, Zt;α)

GN
s (Yt, zit, z−it;α, β, θ)

]
,

and estimate parameters using the following GMM criterion function:

(α∗, β∗, θ∗) = arg min
(α,β,θ)

{
GN (Yt, Zt, zit, z−it;α, β, θ)

′ ·W ·GN (Yt, Zt, zit, z−it;α, β, θ)
}
,

with a block-diagonal weighting matrix W .18

17We admit potential caveats related to the assumption of exogenous flour shipment volumes; however,
available data do not provide us with better instrumental variables.

18In the first stage, the weighting matrix is obtained as the inner product of the instrumental variables
matrices, which would be optimal for linear model. In the second (and consecutive) stage(s), we compute
the optimal weighting matrix using empirical variance of the moment conditions.
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6.2 Estimation Results

In 6.2.1, for the sake of increasing accuracy of the estimates for the degree of collusion,
we first use all available information, including the cartel indicator. As mentioned earlier,
the cartel was formed prior to the passage of the Sherman Act and the cartel was legal.
Thus, the industry publication documented whether they successfully colluded or failed
to do so for each month. This information is very helpful to divide the periods into the
non-collusive and collusive periods, which should generate different values of θt. On the
other hand, the next subsection 6.2.2 assumes that econometricians do not observe whether
or not the cartel members engaged in collusion and estimate the degree of collusion to
examine whether our methodology can detect the cartel.

6.2.1 Overall results

As our main focus is again on the degree of collusion, Table 4 lists the inverse of the
estimated degree of collusion (1/θ̂) in the FE specification. The full set of estimation
results are documented in Appendix A. Parameter estimates obtained from the LE
specification are similar and can be also found in Tables 7, 9, 11, and 13 in Appendix A.

Table 4: Summary of the Monopolization Parameter Estimates using FE Specifications

Model (i) Model (ii) Model (iii) Model (iv)
Table 8 Table 10 Table 12 Table 14

C = 0 C = 1 C=0 C=1 C=0 C=0 C=1 C=1
N L=0 L=1 L=0 L=1
5

1.31 1.51 0.71

− 0.40 − − 0.44 0.54
6 1.46 0.55 0.91 − 0.65 0.66
7 0.68 0.64 − 0.93 0.75 0.82
8 1.36 0.81 1.42 − 0.92 1.17

Note: N, C, and L denote the number of firms, the cartel indicator, and the Great Lake operation dummy, respec-
tively. Parameter estimates for the cases (N=6,C=0,L=1) and (N=8,C=0,L=1) are not statistically significant at
any reasonable significance levels and therefore are not reported.

Model (i) assumes that θ is constant for the entire sample period, regardless of the
number of firms or other observables (see the results in the first column in Table 4). The
detailed estimation results for this specification are documented in Table 8. According to
the results, firms produced on average 31% more output than they would produce under
the Cournot scenario.19 Similarly, Model (ii) (in the second and third columns) assumes
that the cartel is maintained at the same level of θ1 during all collusive periods and that
the firms produce (1/θ0-1)% more in competitive periods than they would do in Cournot.
The estimates imply that, in the collusive period, the output was reduced to about 71%
of hypothetical Cournot quantity. During price wars, on the other hand, firms produced
51% more than they would do in Cournot.

19Interestingly, this result is consistent with the findings in Porter (1983), where for constant θ the
firms’ behavior in collusive periods was roughly consistent with Cournot equilibrium (pp. 309-310).
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Estimation results become more plausible when the conduct regimes are defined as
unique combinations of the number of firms and the indicator of collusion, because it is
possible that these firms would target a different level of reductions, depending on the
number of member firms. The results from Model (iii) under the fourth and fifth columns
in Table 8 indicate that whenever the cartel indicator is equal to one, these firms produced
40% to 81% of the Cournot quantity. In the meantime, when the cartel broke down and
the firms were involved in price wars, firms produce more than they would do in the
Cournot equilibrium, except for the case of seven firms. Interestingly, the estimated degree
of monopolization monotonically declines in the number of firms, which is consistent with
the presumption that larger cartels are less sustainable.

It is natural to believe that the firms collude on different levels depending on the
existence of a competitor to the cartel, the Great Lakes, and thus we further use finer
categorization in Model (iv). This specification assumes that the degree of monopolization
depends on the number of firms, collusive indicator and the state of demand, i.e., whether
the Great Lakes were open for navigation. The estimation results for this case are
summarized in the last four columns of Table 4. Our estimates suggest that the degree
of monopolization declines in the number of firms and is generally lower at lower states
of demand. The latter speaks against the counter-cyclical cartel pricing patterns as in
the model by Rotemberg and Saloner (1986). According to their predictions, a cartel
would reduce the degree of monopolization at high states of demand to reduce incentives
for cheating. Instead, we find that when facing competition from the Great Lakes
transportation routes, JEC members reduce their level of collusion.20

Since estimated parameter values imply a relatively high degree of collusion compared
with a hypothetical Cournot equilibrium, we conducted the following experiment. Given
our estimates of the cost function parameters, we calculated optimal monopoly and
perfectly competitive quantity levels for each firm. The smallest optimal monopoly output
among the colluding firms defines a lower bound on the total quantity of the cartel, while
the largest (Bertrand) competitive quantity among the participating firms would impose
an upper bound consistent with rational behavior. Figure 1 summarizes the results for
the firm fixed-effect specification. Figure 3 in Appendix A presents same statistics for
the specification in levels. As is apparent from the top panel of the figure, in most cases
observed quantities stay in-between the upper and lower bounds. In particular, for the
FE specification, in 202 out of 328 weeks (62%) JEC produces more than the standalone
monopoly quantity for the least efficient firm in a given week, and for the specification in
levels this occurs 205 out of 328 times. The same observation can be made when output
levels are averaged for each of the potential collusive regimes (bottom panel).

To further confirm our estimation results, the own price elasticity of the demand
is calculated and presented in Table 5. As expected, the degree of monopolization is
positively related to the absolute value of price elasticity, i.e., the higher the degree of
monopolization the larger price elasticity of demand with a correlation coefficient of 0.77.
On average, during collusive regimes the price elasticity of demand is -5.11, which is
almost twice the elasticity during non-collusive regimes of -2.75.

20Again, this finding is similar to the one in Ellison (1994), where no evidence of the countercyclical
pricing was found.
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Figure 1: Upper and Low Bounds on the Total Output by Week (top panel) and by
Regime (bottom panel) for Estimates with Firm FE’s (Table 14)
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Table 5: Estimated Parameters versus Price Elasticity across Regimes

Regime θ % of Cournot p−Elasticity

N=5, C=1, L=0 2.29 0.44 -6.00
N=5, C=1, L=1 1.85 0.54 -6.34
N=6, C=0, L=0 1.10 0.91 -3.17
N=6, C=1, L=0 1.54 0.65 -4.31
N=6, C=1, L=1 1.51 0.66 -6.75
N=7, C=0, L=1 1.07 0.93 -4.52
N=7, C=1, L=0 1.33 0.75 -4.98
N=7, C=1, L=1 1.21 0.82 -5.23
N=8, C=0, L=0 0.70 1.42 -2.72
N=8, C=1, L=0 1.09 0.92 -3.28
N=8, C=1, L=1 0.85 1.17 -3.88
Avg. 1.32 0.84 -4.65

Lastly, we conducted several robustness checks of our specifications. First, we excluded
observations with six and eight firms when the cartel indicator is zero and the Great
Lakes are open for navigation (see the note in Table 4). Estimation results do not change
qualitatively, as can be seen from Tables 15 and 16 in Appendix A. Second, we estimated
the model using two alternative specifications for the cost function. Namely, in Table 17
we report estimation results where the marginal cost function is given by either

mci(qit, zit; β) = β0i + β1zit + β2qit + νsit

or
mci(qit, zit; β) = β0i + β1zit + (β2 + 1)qβ2

it + νsit.

Columns 2 and 4 of Table 17 summarize the results. It turns out that including a linear
or non-linear term in quantity does not effect our estimates of the conduct parameter
substantially. Besides, the coefficients on the own quantity variable in the cost functions
are statistically not different from zero at any reasonable significance level. Unfortunately,
we do not have other instrumental variables to explore much richer specifications.

6.2.2 Absence of the cartel indicator

So far we have used the cartel indicator, reported in the data, to tabulate regimes with a
constant level of collusion. In practice, however, econometricians or competition authorities
do not know whether or not firms collude. Thus, we must be able to define regimes relying
only on observed variation in the output levels and market shares, not the cartel indicator.
Therefore, without using the cartel indicator, we conduct two final empirical exercises: (i)
we create our own index describing potential regimes of JEC operations and estimate the
model with the new index, and (ii) we estimate the model at the monthly-level assuming
that θt is constant within a month.

Our new indicator In order to create our own index of collusion, we inspect the data
for candidate collusive periods. Our criteria require a stable distribution of market shares
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and reduction in output relative to the adjacent time intervals. To test the stability of
market shares, we use a t-test for difference in means, which accounts for serial correlation.
In particular, the test compares sub-intervals within a given interval.21 We find nine such
intervals with 662 observations in total. Table 6 reports parameter estimates for each of
the collusive regimes with full estimation results listed in Table 18 in Appendix A.

Table 6: Estimation Results for 9 Selected Periods satisfying PR Assumption, 662 obs.

Regimes.
LE Specification FE Specification

Cartel
1st 2nd % Redu- 1st 2nd % Redu-

Index
Est. Est. ction Est. Est. ction

θ1 (N=6, 68-75) 1.548 1.531 0.65 1.534 1.522 0.66 0.71
(0.150) (0.144) (0.148) (0.145)

θ2 (N=6, 116-131) 1.447 1.418 0.71 1.423 1.394 0.72 1.00
(0.138) (0.131) (0.138) (0.132)

θ3 (N=6, 131-166) 1.650 1.616 0.62 1.630 1.600 0.63 0.97
(0.165) (0.156) (0.167) (0.160)

θ4 (N=7, 171-181, 324) 1.583 1.545 0.65 1.572 1.536 0.65 0.83
(0.168) (0.159) (0.171) (0.163)

θ5 (N=8, 184-189) 1.694 1.651 0.61 1.672 1.632 0.61 1.00
(0.185) (0.174) (0.187) (0.178)

θ6 (N=8, 191-196) 1.025 1.013 0.99 1.016 1.004 1.00 0.67
(0.058) (0.056) (0.058) (0.056)

θ7 (N=8, 254-259) 1.200 1.184 0.84 1.186 1.170 0.85 0.83
(0.070) (0.067) (0.072) (0.069)

θ8 (N=8, 258-263) 1.109 1.074 0.93 1.091 1.051 0.95 0.83
(0.063) (0.058) (0.065) (0.061)

θ9 (N=8, 313-318) 1.212 1.231 0.81 1.192 1.220 0.82 0.67
(0.127) (0.128) (0.128) (0.130)

Note: 1st and 2nd Est. report 1st and 2nd stage GMM esimates. % Reduction demonstrates the how much firms
reduce their output compared to the Cournot outcomes. Cartel Index is calculated the average value of the cartel
indicator during the sample periods.

For all regimes our estimates suggest at least some degree of collusion with the output
levels below static Cournot NE, as the percent reduction is almost always below one for
both LE and FE specifications. To check the validity of our method, we create a Cartel
Index, the average value of the reported cartel indicator during each period, expecting
that the percent reduction and the Cartel Index are negatively correlated. If the Cartel
Index is zero, for example, we must expect that the firms compete severely, yielding close
to the Cournot output. The correlation coefficient between the percent reduction and the
Cartel Index for the FE specification is -0.56, which indicates that the estimates are likely
to be able to detect the existence of the cartel.

21We assumed AR(1) process for serial correlation and computed equivalent sample size using approxima-
tion n̂e = n 1−ρ̂1

1+ρ̂1
. We then computed the statistic for H0 : E[HHI1] = E[HHI2] using t = µ1−µ2

(σ2
1/n

e
1+σ

2
2/n

e
2)

2

with significance level 0.05.
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Monthly-level As a last step, we estimate monthly-level θt to examine whether our
methodology can detect the cartel for each month.22 Figure 2 plots the estimated monthly-
level θt. The black solid line shows the estimated value, whereas the gray solid lines
indicate the confidence interval. To examine the performance of our methodology, the
gray dashed line records the Cartel Index, which is an average value of the cartel indicator
within a month. Whenever our estimated θ’s go below one, the firms indeed failed to
collude, indicated by the Cartel Index falling below one. Therefore, this observation
validates our methodology.

Figure 2: Monthly Level θ

7 Conclusions

In this paper we develop a method to estimate the time-varying degree of industry
monopolization. The methodology does not impose any restrictions on the objective
function of colluding firms. Instead, we impose an assumption on how collusion is
implemented. We believe that our method has several advantages over the traditional
empirical literature on collusion. First of all, proportional reduction would be a natural way
to implement collusion with symmetric firms. Therefore, most of the earlier literature on
estimating conduct parameters can be viewed as a special case of our model. Asymmetricity
in the firms’ cost functions provides useful variation that can be utilized to identify the
degree of industry monopolization conditional on observing firm-level cost shifters. Second,
the parameter measuring the degree of industry monopolization is a continuous measure
relating observed levels of output to the hypothetical stage game Nash equilibrium. As

22Although our methodology allows us to estimate θt for weekly-level in principle, the JEC had a
small number of firms, between five and eight, depending on the time period. Estimating one parameter
(weekly-level θt), relying on only five to eight observations, might not yield statistically significant results.
Therefore, we estimate the model with monthly-level θt for stacking at least 20 observations for estimating
θt for each period.
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a result, it has a simple interpretation as the percentage of output reduction relative to
a well-defined competitive equilibrium. Third, the fact that we do not require explicit
assumptions about the objective function of the cartel allows us to accommodate a
wide range of fairly complex models of collusion as long as the proportional reduction
assumption is satisfied. The latter fact can be empirically tested. Fourth, we show that
the variation in output levels across asymmetric firms allows time-varying estimates of the
degree of monopolization. This way one can address the critique by Corts (1999) of the
conjectural variation literature when the industry conduct is endogenous to the changing
demand and supply conditions. Finally, we believe that the simplicity of the method
is appealing to industry practitioners because estimation can be done using standard
statistical software. Perhaps the best application of our framework would be at the stage
of pre-screening procedures conducted by antitrust authorities when they are deciding
whether to thoroughly investigate a case or dismiss it.

Monte Carlo simulations illustrate finite-sample properties of the parameter estimates
and show that our method performs well even with medium sample sizes consisting of
100 to 300 data points. Thus, the parameter of interest can be estimated from relatively
short panels of firm-level observations. To further investigate the practicality of our
method, we use the Joint Executive Committee railroad cartel from the 19th century.
Our analysis using the available cartel indicator demonstrates that it strongly correlates
with the estimated degree of collusion. Finally, we estimate the time-varying degree of
monopolization at a monthly level. Estimation results imply substantial variability in
the degree of collusion over time, with the output levels during price wars sometimes
exceeding quantities predicted by the Cournot equilibrium.
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Appendix A Estimation Results

Table 7: Constant Conduct Parameter, mci = β0 + β1zit + νit (LE)

Param. 1st Stage %Cournot 2nd Stage %Cournot Cont.-Update %Cournot
α0 35847.846 36107.822 36100.903

(1846.092) (1851.162) (1851.018)
α1 -0.294 -0.302 -0.302

(0.052) (0.052) (0.052)
α2 -6510.624 -6604.251 -6601.853

(893.286) (895.631) (895.564)

θ 0.677 1.48 0.763 1.31 0.761 1.31
(0.078) (0.069) (0.069)

β0 25472.798 24388.318 24333.122
(452.696) (461.001) (461.278)

β1 0.381 0.371 0.367
(0.160) (0.162) (0.162)

f − val 2794.6981 277.2121 268.8319

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The column labeled % Cournot denotes how much firms reduce their output compared with
Cournot outcome. The last row reports the values of the objective function evaluated at the estimates.

Table 8: Constant Conduct Parameter, mci = β0i + β1zit + νit (FE)

Param. 1st Stage %Cournot 2nd Stage %Cournot Cont.-Update %Cournot
α0 35856.839 36429.472 36413.757

(1846.005) (1857.807) (1857.448)
α1 -0.294 -0.311 -0.311

(0.052) (.052) (0.052)
α2 -6512.883 -6719.050 -6713.762

(893.302) (898.722) (898.556)

θ 0.666 1.50 0.749 1.34 0.722 1.39
(0.083) (0.074) (0.077)

β1 0.496 0.587 0.815
(0.216) (0.224) (0.238)

f − val 2735.5657 281.4734 271.1445

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The column labeled % Cournot denotes how much firms reduce their output compared with
Cournot outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 9: Regimes Defined by the Cartel Indicator only, mci = β0 + β1zit + νit (LE)

Param. 1st Stage %Cournot 2nd Stage %Cournot Cont.-Update %Cournot
α0 35852.778 36396.104 36374.390

(1845.908) (1857.047) (1856.558)
α1 -0.294 -0.310 -0.310

(0.052) (0.052) (0.052)
α2 -6511.863 -6707.138 -6699.672

(893.259) (898.378) (898.154)
θ0 (C=0) 0.637 1.57 0.663 1.51 0.659 1.52

(0.076) (0.070) (0.071)
θ1 (C=1) 1.398 0.72 1.409 0.71 1.424 0.70

(0.099) (0.096) (0.098)
β0 22669.676 21900.779 21762.925

(413.988) (420.671) (423.670)
β1 0.051 -0.016 -0.054

(0.146) (0.147) (0.147)
f − val 1870.773 238.657 227.135

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The column labeled % Cournot denotes how much firms reduce their output compared with
Cournot outcome. The last row reports the values of the objective function evaluated at the estimates.

Table 10: Regimes Defined by the Cartel Indicator only, mci = β0i + β1zit + νit (FE)

Param. 1st Stage %Cournot 2nd Stage %Cournot Cont.-Update %Cournot
α0 35855.274 36602.543 36597.780

(1845.726) (1861.554) (1861.425)
α1 -0.294 -0.316 -0.316

(0.052) (0.052) (0.052)
α2 -6512.490 -6780.817 -6779.655

(893.222) (900.470) (900.409)
θ0 (C=0) 0.625 1.60 0.670 1.49 0.659 1.52

(0.078) (0.069) (0.070)
θ1 (C=1) 1.371 0.73 1.372 0.73 1.363 0.73

(0.108) (0.101) (0.100)
β1 0.156 0.196 0.281

(0.193) (0.197) (0.202)
f − val 1844.615 270.430 264.910

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The column labeled % Cournot denotes how much firms reduce their output compared with
Cournot outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 11: Regimes Defined by N and Cartel Indicator, mci = β0 + β1zit + νit (LE)

Param. 1st Stage % 2nd Stage % Cont.-Update %
α0 35834.452 35546.398 35545.746

(1845.755) (1840.689) (1840.681)
α1 -0.294 -0.285 -0.285

(0.052) (0.052) (0.052)
α2 -6507.259 -6403.890 -6403.764

(893.140) (890.764) (890.759)
θ1 (N=5, C=1) 2.550 0.39 2.346 0.43 2.304 0.43

(0.322) (0.291) (0.283)
θ2 (N=6, C=0) 0.907 1.10 0.629 1.59 0.401 2.49

(0.086) (0.106) (0.135)
θ3 (N=6, C=1) 2.023 0.49 1.840 0.54 1.817 0.55

(0.208) (0.183) (0.180)
θ4 (N=7, C=0) 1.648 0.61 1.565 0.64 1.516 0.66

(0.148) (0.138) (0.131)
θ5 (N=7, C=1) 1.686 0.59 1.651 0.61 1.619 0.62

(0.145 (0.142) (0.137)
θ6 (N=8, C=0) 0.876 1.14 0.772 1.30 0.743 1.35

(0.048) (0.057) (0.061)
θ7 (N=8, C=1) 1.364 0.73 1.297 0.77 1.262 0.79

(0.092) (0.085) (0.080)
β0 20294.021 20954.043 21236.366

(412.154) (405.708) (411.161)
β1 -0.321 -0.297 -0.263

(0.152) (0.149) (0.151)
f − val 1014.420 163.301 164.366

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The columns, labeled as %, report how much firms reduce their output compared with Cournot
outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 12: Regimes Defined by N and Cartel Indicator, mci = β0i + β1zit + νit (FE)

Param. 1st Stage % 2nd Stage % Cont.-Update %
α0 35837.177 35657.267 35645.881

(1845.907) (1842.674) (1842.474)
α1 -0.294 -0.288 -0.288

(0.052) (0.052) (0.052)
α2 -6507.943 -6443.455 -6439.437

(893.192) (891.680) (891.586)
θ1 (N=5, C=1) 2.471 0.40 2.488 0.40 2.511 0.40

(0.311) (0.319) (0.324)
θ2 (N=6, C=0) 0.817 1.22 0.687 1.46 0.589 1.70

(0.088) (0.096) (0.105)
θ3 (N=6, C=1) 1.904 0.53 1.802 0.55 1.778 0.56

(0.201) (0.187) (0.184)
θ4 (N=7, C=0) 1.546 0.65 1.467 0.68 1.431 0.70

(0.144) (0.134) (0.130)
θ5 (N=7, C=1) 1.595 0.63 1.572 0.64 1.551 0.64

(0.139) (0.138) (0.134)
θ6 (N=8, C=0) 0.799 1.25 0.738 1.36 0.723 1.38

(0.057) (0.062) (0.063)
θ7 (N=8, C=1) 1.274 0.78 1.240 0.81 1.221 0.82

(0.089) (0.086) (0.084)
β1 0.011 -0.003 0.006

(0.189) (0.186) (0.186)
f − val 1003.630 203.199 216.512

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The columns, labeled as %, report how much firms reduce their output compared with Cournot
outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 13: Regimes Defined by N , Cartel Indicator and State of Demand, mci = β0 +
β1zit + νit (LE)

Param. 1st Stage % 2nd Stage % Cont.-Update %
α0 35839.113 35739.791 35741.825

(1845.186) (1843.389) (1843.426)
α1 -0.294 -0.291 -0.291

(0.052) (0.052) (0.052)
α2 -6508.430 -6472.906 -6473.643

(893.011) (892.168) (892.186)
θ1 (N=5, C=1, L=0) 2.257 0.44 2.348 0.43 2.354 0.42

(0.279) (0.298) (0.299)
θ2 (N=5, C=1, L=1) 1.859 0.54 1.923 0.52 1.924 0.52

(0.185) (0.198) (0.198)
θ3 (N=6, C=0, L=0) 1.114 0.90 1.155 0.87 1.155 0.87

(0.114) (0.117) (0.117)
θ4 (N=6, C=0, L=1) 0.137 7.30 0.165 6.06 0.166 6.02

(0.152) (0.149) (0.149)
θ5 (N=6, C=1, L=0) 1.574 0.64 1.616 0.62 1.617 0.62

(0.132) (0.140) (0.140)
θ6 (N=6, C=1, L=1) 1.535 0.65 1.604 0.62 1.606 0.62

(0.136) (0.147) (0.147)
θ7 (N=7, C=0, L=1) 1.091 0.92 1.143 0.87 1.145 0.87

(0.077) (0.082) (0.082)
θ8 (N=7, C=1, L=0) 1.356 0.74 1.393 0.72 1.394 0.72

(0.088) (0.094) (0.094)
θ9 (N=7, C=1, L=1) 1.231 0.81 1.284 0.78 1.286 0.78

(0.100) (0.106) (0.106)
θ10 (N=8, C=0, L=0) 0.736 1.36 0.752 1.33 0.752 1.33

(0.057) (0.056) (0.056)
θ11 (N=8, C=0, L=1) 0.211 4.74 0.240 4.17 0.242 4.13

(0.141) (0.138) (0.137)
θ12 (N=8, C=1, L=0) 1.125 0.89 1.154 0.87 1.155 0.87

(0.062) (0.065) (0.065)
θ13 (N=8, C=1, L=1) 0.869 1.15 0.904 1.11 0.905 1.10

(0.057) (0.056) (0.056)
β0 23810.582 23529.588 23519.281

(409.084) (410.955) (411.084)
β1 -0.294 -0.338 -0.339

(0.130) (0.132) (0.132)
f − val 8.251 3.376 3.311

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The columns, labeled as %, report how much firms reduce their output compared with Cournot
outcome. The last row reports the values of the objective function evaluated at the estimates.

38



Table 14: Regimes Defined by N , Cartel Indicator and State of Demand, mci = βi0 +
β1zit + νit (FE)

Param. 1st Stage % 2nd Stage % Cont.-Update %
α0 35839.791 35831.157 35831.293

(1845.995) (1845.835) (1845.838)
α1 -0.294 -0.294 -0.294

(0.052) (0.052) (0.052)
α2 -6508.600 -6505.512 -6505.561

(893.227) (893.152) (893.153)
θ1 (N=5, C=1, L=0) 2.212 0.45 2.287 0.44 2.294 0.44

(0.274) (0.288) (0.290)
θ2 (N=5, C=1, L=1) 1.800 0.56 1.847 0.54 1.849 0.54

(0.184) (0.192) (0.193)
θ3 (N=6, C=0, L=0) 1.056 0.95 1.095 0.91 1.094 0.91

(0.112) (0.114) (0.114)
θ4 (N=6, C=0, L=1) 0.089 11.24 0.118 8.47 0.119 8.40

(0.155) (0.151) (0.150)
θ5 (N=6, C=1, L=0) 1.508 0.66 1.540 0.65 1.541 0.65

(0.135) (0.140) (0.140)
θ6 (N=6, C=1, L=1) 1.456 0.69 1.509 0.66 1.511 0.66

(0.140) (0.147) (0.147)
θ7 (N=7, C=0, L=1) 1.033 0.97 1.074 0.93 1.075 0.93

(0.082) (0.085) (0.085)
θ8 (N=7, C=1, L=0) 1.306 0.77 1.332 0.75 1.333 0.75

(0.090) (0.094) (0.094)
θ9 (N=7, C=1, L=1) 1.173 0.85 1.213 0.82 1.215 0.82

(0.103) (0.107) (0.107)
θ10 (N=8, C=0, L=0) 0.690 1.45 0.704 1.42 0.705 1.42

(0.062) (0.061) (0.061)
θ11 (N=8, C=0, L=1) 0.166 6.02 0.195 5.13 0.197 5.08

(0.143) (0.139) (0.139)
θ12 (N=8, C=1, L=0) 1.068 0.94 1.090 0.92 1.091 0.92

(0.067) (0.069) (0.069)
θ13 (N=8, C=1, L=1) 0.823 1.22 0.852 1.17 0.853 1.17

(0.060) (0.060) (0.060)
c1 -0.106 -0.143 -0.143

(0.163) (0.164) (0.164)
f − val 6.659 2.842 2.798

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The columns, labeled as %, report how much firms reduce their output compared with Cournot
outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 15: Reduced Sample, mci = β0 + β1zit + νit (LE)

Param. 1st Stage % 2nd Stage % Cont.-Update %
α0 33652.344 33480.469 33485.943

(2085.344) (2084.071) (2084.114)
α1 -0.220 -0.215 -0.215

(0.061) (0.061) (0.061)
α2 -3198.509 -3125.633 -3128.026

(1050.390) (1048.918) (1048.963)
θ1 (N=5, C=1, L=0) 2.678 0.37 2.846 0.35 2.853 0.35

(0.525) (0.585) (0.586)
θ2 (N=5, C=1, L=1) 2.122 0.47 2.265 0.44 2.265 0.44

(0.349) (0.398) (0.397)
θ3 (N=6, C=0, L=0) 1.139 0.88 1.221 0.82 1.221 0.82

(0.160) (0.174) (0.174)
θ4 (N=6, C=1, L=0) 1.747 0.57 1.842 0.54 1.843 0.54

(0.243) (0.274) (0.274)
θ5 (N=6, C=1, L=1) 1.661 0.60 1.801 0.56 1.803 0.55

(0.235) (0.274) (0.274)
θ6 (N=7, C=0, L=1) 1.080 0.93 1.191 0.84 1.193 0.84

(0.110) (0.127) (0.127)
θ7 (N=7, C=1, L=0) 1.463 0.68 1.542 0.65 1.543 0.65

(0.159) (0.184) (0.184)
θ8 (N=7, C=1, L=1) 1.265 0.79 1.378 0.73 1.379 0.73

(0.151) (0.176) (0.176)
θ9 (N=8, C=0, L=0) 0.639 1.56 0.676 1.48 0.677 1.48

(0.106) (0.100) (0.100)
θ10 (N=8, C=1, L=0) 1.145 0.87 1.212 0.83 1.213 0.82

(0.093) (0.108) (0.108)
θ11 (N=8, C=1, L=1) 0.804 1.24 0.874 1.14 0.875 1.14

(0.091) (0.087) (0.086)
β0 24175.641 23713.288 23705.834

(455.280) (461.587) (461.803)
β1 -0.249 -0.291 -0.291

(0.139) (0.142) (0.142)
f − val 9.710 3.550 3.439

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The columns, labeled as %, report how much firms reduce their output compared with Cournot
outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 16: Reduced Sample, mci = βi0 + β1zit + νit (FE)

Param. 1st Stage % 2nd Stage % Cont.-Update %
α0 33653.329 33664.271 33663.994

(2087.356) (2087.450) (2087.447)
α1 -0.220 -0.220 -0.220

(0.061) (0.061) (0.061)
α2 -3198.860 -3203.499 -3203.382

(1051.114) (1051.213) (1051.210)
θ1 (N=5, C=1, L=0) 2.619 0.38 2.734 0.37 2.744 0.36

(0.517) (0.549) (0.551)
θ2 (N=5, C=1, L=1) 2.044 0.49 2.129 0.47 2.130 0.47

(0.345) (0.368) (0.368)
θ3 (N=6, C=0, L=0) 1.061 0.94 1.134 0.88 1.131 0.88

(0.155) (0.163) (0.163)
θ4 (N=6, C=1, L=0) 1.658 0.60 1.716 0.58 1.717 0.58

(0.241) (0.255) (0.256)
θ5 (N=6, C=1, L=1) 1.559 0.64 1.645 0.61 1.647 0.61

(0.236) (0.255) (0.256)
θ6 (N=7, C=0, L=1) 0.995 1.01 1.071 0.93 1.072 0.93

(0.119) (0.126) (0.127)
θ7 (N=7, C=1, L=0) 1.391 0.72 1.435 0.70 1.436 0.70

(0.158) (0.169) (0.169)
θ8 (N=7, C=1, L=1) 1.180 0.85 1.253 0.80 1.255 0.80

(0.155) (0.166) (0.167)
θ9 (N=8, C=0, L=0) 0.573 1.75 0.602 1.66 0.602 1.66

(0.117) (0.111) (0.111)
θ10 (N=8, C=1, L=0) 1.062 0.94 1.103 0.91 1.104 0.91

(0.099) (0.105) (0.105)
θ11 (N=8, C=1, L=1) 0.735 1.36 0.786 1.27 0.787 1.27

(0.100) (0.095) (0.095)
β1 -0.056 -0.074 -0.075

(0.175) (0.177) (0.177)
f − val 6.764 2.630 2.564

Note: The second, fourth and sixth columns report the GMM estimates for 1st stage, 2nd stage and continuously
updated method. The columns, labeled as %, report how much firms reduce their output compared with Cournot
outcome. The last row reports the values of the objective function evaluated at the estimates.
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Table 17: Alternative Specifications for Marginal Cost Function, GMM 2nd Stage

Param.
mcit = βi0 + β1zit + β2qit mcit = βi0 + β1zit + (β2 + 1)qβ2

it

Coef/S.E. % Coef/S.E. %
α0 35805.207 35419.501

(1845.260) (1838.694)
α1 -0.293 -0.281

(0.052) (0.052)
α2 -6509.235 -6370.224

(892.857) (889.753)
θ1 (N=5, C=1, L=0) 2.609 0.38 2.117 0.47

(1.430) (1.118)
θ2 (N=5, C=1, L=1) 2.085 0.48 1.686 0.59

(1.063) (0.874)
θ3 (N=6, C=0, L=0) 1.193 0.84 0.981 1.02

(0.470) (0.427)
θ4 (N=6, C=0, L=1) 0.101 9.90 0.074 13.51

(0.175) (0.148)
θ5 (N=6, C=1, L=0) 1.689 0.59 1.411 0.71

(0.689) (0.620)
θ6 (N=6, C=1, L=1) 1.649 0.61 1.372 0.73

(0.642) (0.601)
θ7 (N=7, C=0, L=1) 1.152 0.87 0.975 1.03

(0.362) (0.366)
θ8 (N=7, C=1, L=0) 1.443 0.69 1.228 0.81

(0.501) (0.478)
θ9 (N=7, C=1, L=1) 1.307 0.77 1.107 0.90

(0.429) (0.427)
θ10 (N=8, C=0, L=0) 0.741 1.35 0.632 1.58

(0.194) (0.204)
θ11 (N=8, C=0, L=1) 0.187 5.35 0.148 6.76

(0.153) (0.138)
θ12 (N=8, C=1, L=0) 1.158 0.86 1.002 1.00

(0.322) (0.333)
θ13 (N=8, C=1, L=1) 0.906 1.10 0.772 1.30

(0.253) (0.263)
β1 -0.014 -0.115

(0.371) (0.343)
β2 -0.230 0.773

(0.880) (0.507)
f − val 3.735 2.339

Note: The second and fourth columns report GMM estimates under the assumption of mcit = βi0 + β1zit + β2qit
and mcit = βi0 + β1zit + (β2 + 1)qβ2

it , respectively. The numbers in the brackets are standard errors. The third
and fifth columns report how much firms reduce their outputs compared with the Cournot outcomes. The last row
reports the values of the GMM objective function, evaluated at the estimates.
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Table 18: Estimation Results for 9 Selected Periods Satisfying PR Assumption, 662 Obs.

Param.
Levels (LE) Firm Fixed-effects (FE)

1st 2nd % 1st 2nd %

α0 35329.948 35522.669 35326.973 35427.255
(2123.370) (2130.429) (2125.596) (2129.231)

α1 -0.281 -0.286 -0.281 -0.284
(0.058) (0.058) (0.058) (0.058)

α2 -6356.179 -6427.317 -6355.350 -6392.351
(1018.042) (1020.952) (1018.649) (1020.149)

θ1 (N=6, 68-75) 1.548 1.531 0.65 1.534 1.522 0.66
(0.150) (0.144) (0.148) (0.145)

θ2 (N=6, 116-131) 1.447 1.418 0.71 1.423 1.394 0.72
(0.138) (0.131) (0.138) (0.132)

θ3 (N=6, 131-166) 1.650 1.616 0.62 1.630 1.600 0.63
(0.165) (0.156) (0.167) (0.160)

θ4 (N=7, 171-181, 324) 1.583 1.545 0.65 1.572 1.536 0.65
(0.168) (0.159) (0.171) (0.163)

θ5 (N=8, 184-189) 1.694 1.651 0.61 1.672 1.632 0.61
(0.185) (0.174) (0.187) (0.178)

θ6 (N=8, 191-196) 1.025 1.013 0.99 1.016 1.004 1.00
(0.058) (0.056) (0.058) (0.056)

θ7 (N=8, 254-259) 1.200 1.184 0.84 1.186 1.170 0.85
(0.070) (0.067) (0.072) (0.069)

θ8 (N=8, 258-263) 1.109 1.074 0.93 1.091 1.051 0.95
(0.063) (0.058) (0.065) (0.061)

θ9 (N=8, 313-318) 1.212 1.231 0.81 1.192 1.220 0.82
(0.127) (0.128) (0.128) (0.130)

β0 22220.813 22305.381 -
(319.017) (317.656)

β1 -0.229 -0.214 -0.170 -0.150
(0.104) (0.104) (0.128) (0.127)

f − val 37.892 3.158 46.627 4.106

Note: The second, third, fifth and sixth columns report the estimates for the 1st and 2nd stage GMM. The fourth
and seventh columns, labeled as %, report how much firms reduce their output compared with Cournot outcome.
The last row shows the values of the objective function, evaluated at the estimates.

43



Figure 3: Upper and Lower Bounds on the Total Output by Week (Top Panel) and by
Regime (Bottom Panel) for Estimates in Levels (Table 13)
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Appendix B Profitability of PR Collusive Technology

Lemma 1 Proportional reduction collusive technology is profitable for all firms in the neighbor-
hood of Cournot equilibrium.

Proof A Cournot competitor first-order conditions are given by

P ′(Qt)qit + P (Qt)− C ′i(qit) = 0.

Consider a cartel, which sets overall industry output to Q̄t = QCournott and assigns market shares
such that Q̄tsit = qCournotit ,∀i = 1, . . . , n, where sit is the market share of firm i in period t.
Then, the profit of a cartel member is given by πm(sit, Q̄t) = P (Q̄t)Q̄tsit − Ci(Q̄tsit) and, by
construction, is identical to the non-cooperative Cournot outcome.

Consider a derivative of this profit function with respect to Q̄t,

∂πm(sit, Q̄t)
∂Q̄t

= P ′(Q̄t)Q̄tsit + P (Q̄t)sit − C ′i(Q̄tsit)sit

= C ′i(qit)− P (Q̄t) + P (Q̄t)sit − C ′i(Q̄tsit)sit

= (1− sit)
(
C ′i(qit)− P (Q̄t)

)
< 0,

where the second equality is obtained by replacing P ′(Q̄t)Q̄tsit with C ′i(qit) − P (Q̄t) and the
inequality follows from the fact that C ′i(qit)− P (Q̄t) = P ′(Qt)qit < 0.
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Appendix C MC Simulations

The data generating process for our Monte Carlo simulations is as follows. We assume the
following inverse demand and cost functions:

Pt = α0 + α1Qt + α2Yt + νdt ,

mci(qit, zit) = β0 + β1zit + νsit.

Table 19 summarizes parameter values and the distribution of the variables. We simulated data
10,000 times for each of the following combinations of (N,T ): (10, 10), (10, 20), (10, 30), (20, 10),
(20, 20), (20, 30), (30, 10), (30, 20), and (30, 30). Each time, parameters were estimated using
2-step optimal GMM.

Table 19: Summary of Parameter Values for Data-generating Process in MC-Simulations

Parameter / Variable Value / Distribution

α0 500

α1 -1.0

α2 1.0

β0 10.0

β1 1.0

Yt N(0,100)

νdt N(0,1)

zit N(1,4)

νsit N(0,0.04)

θ {1.0, 1.2, 1.4}

We present the summary statistics for a typical data set generated for N = 30, T = 30 in
Table 20.

Table 20: Summary Statistics for Simulated Data, N=30, T=30

Variable Mean P50 Min. Max. S.D.

qit 13.397 13.306 7.688 21.319 2.369

Qt 401.918 396.420 331.500 488.790 51.116

Pt 100.003 106.385 26.574 166.800 49.782

Y 1.944 1.789 -16.740 26.532 9.000

zit 1.102 1.107 -4.765 7.932 1.969

z−it 31.967 29.714 12.246 58.177 10.174

Regime 1 0.267 0.000 0.000 1.000 0.442

Regime 2 0.467 0.000 0.000 1.000 0.499

Regime 3 0.267 0.000 0.000 1.000 0.442

Yt 1.944 1.789 -16.740 26.532 9.000
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Appendix D Collusion in Differentiated Product Markets

Assume a differentiated product duopoly with marginal costs c1 and c2 and the following demand
system:

q1(p1, p2) = α1 − β1p1 + p2

q2(p1, p2) = α2 − β2p2 + p1.

• Nash solution:

pn1 =
2β1β2c1 + 2α1β2 + β2c2 + α2

4β1β2 − 1
, pn2 =

2β1β2c2 + 2α2β1 + β1c1 + α1

4β1β2 − 1

qn1 =
β1(−2β1β2c1 + 2α1β2 + β2c2 + α2 + c1)

4β1β2 − 1
, qn2 =

β2(−2β2β1c2 + 2α2β1 + β1c1 + α1 + c2)
4β1β2 − 1

• Perfect collusion solution:

pc1 =
1
2
β1β2c1 + α1β2 + α2 − c1

β1β2 − 1
, pc2 =

1
2
β1β2c2 + α2β1 + α1 − c2

β1β2 − 1

qc1 =
1
2

(−β1c1 + α1 + c2), qc2 =
1
2

(−β2c2 + α2 + c1).

If we are willing to assume that own and cross-price elasticities are the same for both firms,
i.e., β1 = β2 = β, we can conclude that if

c2 − c1 =
α2 − α1

β + 1
=⇒ qn1 = qn2 and qc1 = qc2, (10)

then the firms would reduce their output proportionally relative to the outputs under the
differentiated Bertrand solution.23

Table 21: Example: Collusion in Differentiated Product Markets
Parameter Values Nash Equilibrium Collusive Equilibrium

qc1/q
n
1 qc2/q

n
2α1 β1 α2 β2 c1 c2 pn1 pn2 qn1 qn2 pc1 pc2 qc1 qc2

30 3 30 3 5 5 9.00 9.00 12.00 12.00 10.00 10.00 10.00 10.00 0.83 0.83
30 3 30 3 10 10 12.00 12.00 6.00 6.00 12.50 12.50 5.00 5.00 0.83 0.83
50 3 30 3 10 5 15.00 10.00 15.00 15.00 16.25 11.25 12.50 12.50 0.83 0.83
50 2 50 2 5 5 20.00 20.00 30.00 30.00 27.50 27.50 22.50 22.50 0.75 0.75
50 4 50 4 5 5 10.00 10.00 20.00 20.00 10.83 10.83 17.50 17.50 0.88 0.88
50 3 50 3 5 3 12.83 11.97 23.49 26.91 15.00 14.00 19.00 23.00 0.81 0.85
50 3 50 3 5 4 12.91 12.49 23.74 25.46 15.00 14.50 19.50 21.50 0.82 0.84
50 3 50 3 5 5 13.00 13.00 24.00 24.00 15.00 15.00 20.00 20.00 0.83 0.83
50 3 50 3 5 6 13.09 13.51 24.26 22.54 15.00 15.50 20.50 18.50 0.85 0.82
50 3 50 3 5 7 13.17 14.03 24.51 21.09 15.00 16.00 21.00 17.00 0.86 0.81

The first five rows in Table 21 report demand and cost parameters that make collusive and
competitive output market shares equal. The last five rows fix demand-side parameters (at
symmetric values) and illustrate total industry maximizing output for various levels of marginal
cost parameters.

Note that differentiated product markets require additional restrictions for proportional
reduction collusive technology to make sense. At the same time, at least some of these restrictions

23In this case firms would have equal market shares under both regimes.
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are empirically testable. For example, demand parameters can be estimated without specifying
the equilibrium concept on the supply side. This way one may address the question about
firms’ symmetry on the demand side. Estimation of the cost functions, in turn, depends on the
assumptions about firms’ conduct. However, by specifying the null hypothesis about the firms’
behavior (collusion or competition), one can estimate marginal cost functions and then test
whether demand- and supply-side parameters satisfy the required restrictions (see condition 10).
When there is no information on which firms may be colluding, one can run tests in the spirit of
Bajari and Ye (2003) by estimating the parameter of interest for various subsets of the firms.
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