Every cloud has a silver lining: Fast trading, microwave connectivity and trading costs

Andriy Shkilko & Konstantin Sokolov Wilfrid Laurier University

Bank of Canada Market Structure Workshop Ottawa 2017

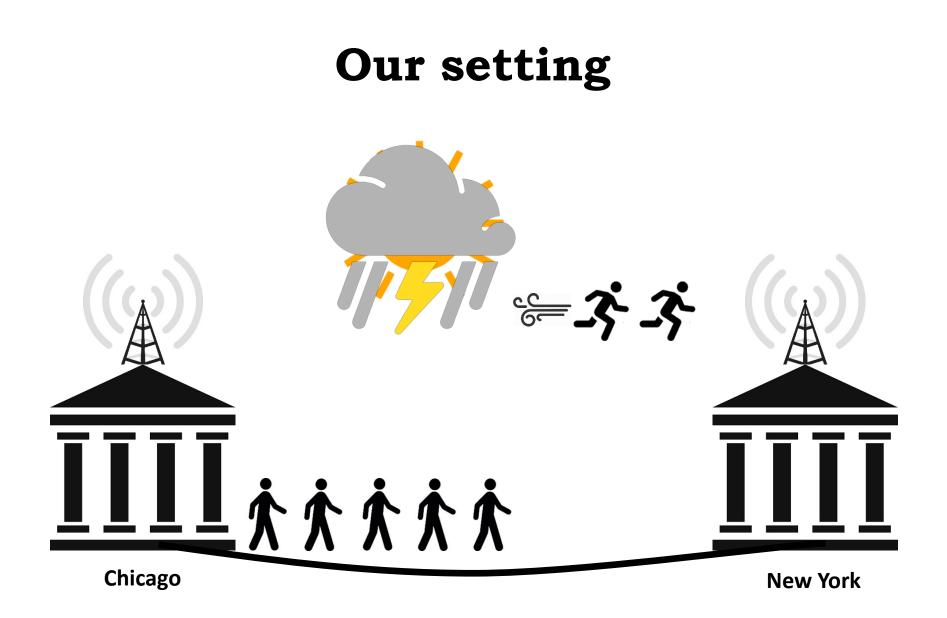
What we do, in a nutshell

A speed race in modern markets leads to speed differentials among traders

What is the effect of these differentials on liquidity?

In our setting, the effect is negative

Speed differentials: theory


- The effect of speed differentials on market quality may be positive or negative
 - Positive:
 - Hoffmann (2014)
 - Jovanovic and Menkveld (2015)
 - Roşu (2015)
 - Aït-Sahalia and Sağlam (2017)
 - Negative:
 - Biais, Foucault and Moinas (2015)
 - Foucault, Hombert and Roşu (2016)
 - Menkveld and Zoican (2016)

What we do, in a nutshell

A speed race in modern markets leads to speed differentials among traders

What is the effect of these differentials on liquidity?

In our setting, the effect is negative

Speed differentials: theory

- The effect of speed differentials on market quality may be positive or negative
 - Positive:
 - Hoffmann (2014)
 - Jovanovic and Menkveld (2015)
 - Roşu (2015)
 - Aït-Sahalia and Sağlam (2017)
 - Negative:
 - Biais, Foucault and Moinas (2015)
 - Foucault, Hombert and Roşu (2016)
 - Menkveld and Zoican (2016)

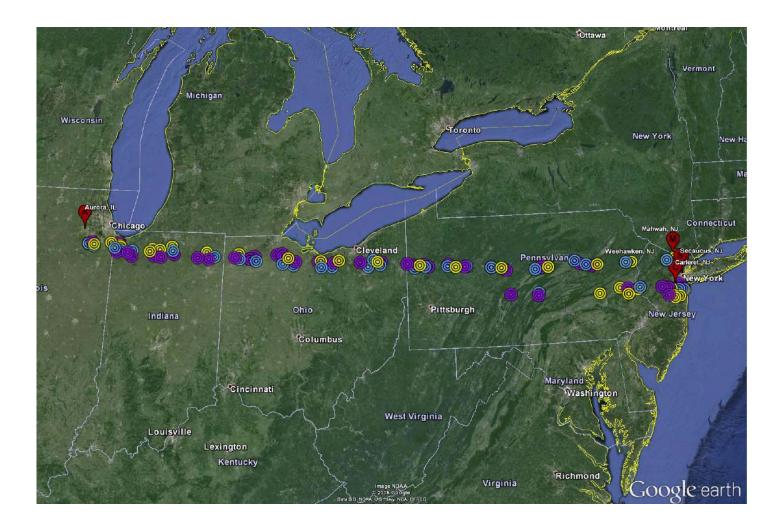
Speed differentials: empirics

- Liquidity suppliers try to stay on top of the latest technology to maintain a speed advantage
 - Brogaard, Hagströmer, Nordén and Riordan (2015)

Speed differentials: empirics

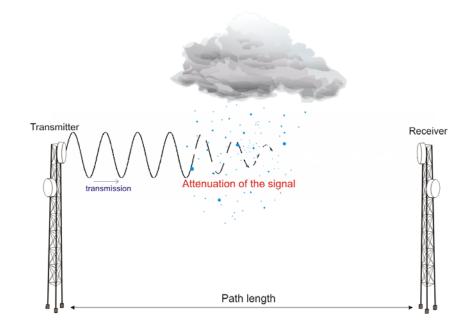
- Liquidity suppliers try to stay on top of the latest technology to maintain a speed advantage
 - Brogaard, Hagströmer, Nordén and Riordan (2015)
- Fast traders often provide liquidity
 - O'Hara (2015)
 - Yao and Ye (2015)
 - Brogaard, Hendershott and Riordan (2016)
 - Chordia, Green and Kottimukkalur (2016)
- Yet certain fast strategies are based on liquidity demand
 - Baron, Brogaard, Hagströmer and Kirilenko (2016)
 - Foucault, Kozhan and Tham (2016)

Information transmission between Chicago and New York

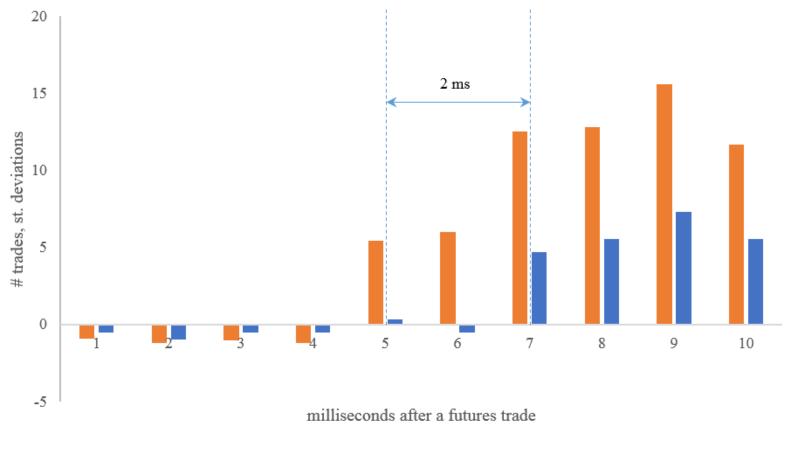


The race to zero in the Chicago-New York corridor

- Signal transmission speed:
 - Legacy fiber-optic cable: 8 ms
 - Spread Networks cable: 6.5 ms
 - Microwave networks: 4.5 ms
 - Speed of light: 4 ms



Microwave networks (MWNs)



MWN characteristics

- In 2011-2012, accessible by a small number of trading firms
 - limited number of FCC licenses
 - low bandwidth
- Fast, but not always reliable due to rain and snow fade

Equity reaction to futures trades

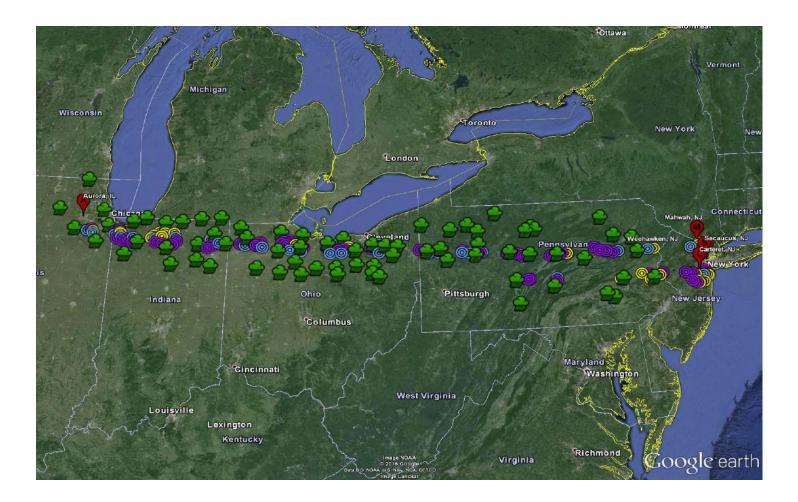
low precipitation
heavy precipitation

What we find

- When speed differentials are eliminated due to precipitation
 - price impacts decline
 - trading costs decline, in part due to the emergence of latent liquidity
 - volatility declines

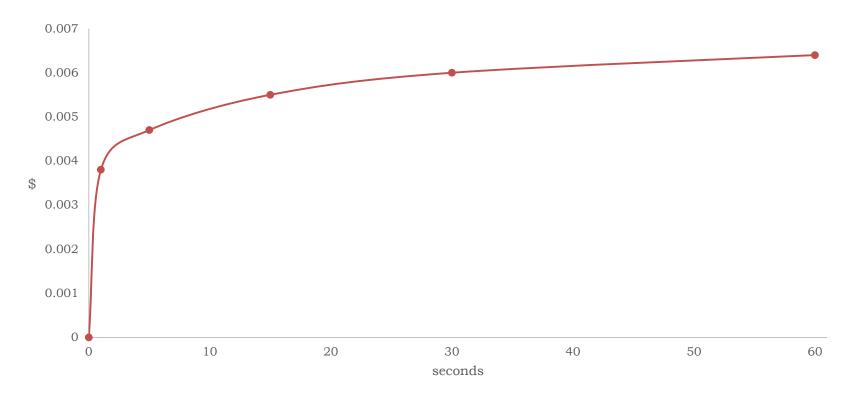
2013 democratization

- In early 2013, Quincy Data starts selling futures pricing information to everyone on a subscription basis


 effectively democratizing information transmission
- The results of this move are similar to those of precipitation disruptions

Data and samples

- Trade and quote data for equities (DTAQ)
- Order book data for select futures from the CME
- Order book data from Nasdaq's ITCH
- Precipitation data from the National Oceanic and Atmospheric Administration (NOAA)
- Sample period I: 2011-2012
- Sample period II: 2013-2014
- Sample: 100 ETFs


Precipitation along the MWN paths (www.noaa.gov)

Data and samples

- Trade and quote data for equities (DTAQ)
- Order book data for select futures from the CME
- Order book data from Nasdaq's ITCH
- Precipitation data from the National Oceanic and Atmospheric Administration (NOAA)
- Sample period I: 2011-2012
- Sample period II: 2013-2014
- Sample: 100 ETFs

Price impacts

- Price impact are 30-40% of effective spreads
 - Chakrabarty et al. (2016) find a similar share for a recent sample of equities

Price impacts during MWN disruptions

PRECIP	010***		
	(.004)		
PRECIP1		035***	
		(.012)	
PRECIP2			047***
			(.013)
VIX	.035***	.035***	.035***
	(.009)	(.009)	(.009)

 $DEPVAR_{it} = \alpha_0 + \beta_1 PRECIP_t + \beta_2 VIX_t + \varepsilon_{it}$

Price impacts decline by 0.047 standard deviations (or 7%) during heavy precipitation

This effect is most pronounced in assets with narrow spreads

Effective and realized spreads

		effective spread			realized spread	
PRECIP	010***	-		005**	_	
	(.003)			(.002)		
PRECIP1		041***			024***	
		(.010)			(.007)	
PRECIP2			043***			021***
			(.011)			(.008)
VIX	.057***	.058***	.057***	.036***	.036***	.036***
	(.008)	(.008)	(.008)	(.006)	(.006)	(.006)

Effective and realized spreads decline by, respectively, 7% and 5%

Order aggressiveness

	Panel A: NBBO match			Panel B: NBBO match or improve		
	full sample most constr. least constr.		full sample	most constr.	least constr.	
	(1)	(2)	(3)	(4)	(5)	(6)
PRECIP	.017***	.025***	.038***	.006	.008	.041***
	(.004)	(.004)	(.006)	(.004)	(.005)	(.006)
PRECIP1	.054***	.080***	.095***	.028***	.006	.107***
	(.007)	(.008)	(.011)	(.006)	(.010)	(.010)
PRECIP2	.040***	.068***	.113***	.063***	.010	.126***
	(.012)	(.013)	(.013)	(.012)	(.015)	(.013)

Limit order aggressiveness increases by 2-3%

What happens to futures?

Hasbrouck (1995) methodology suggests that the futures market leads price discovery, CME information share is [0.64; 0.82]

Given that microwave bandwidth is a constrained resource, it should be used along the most profitable transfer channel: Chicago to New York

Indeed, price impacts do not change when the MWNs are disrupted

	Panel A: futures			Р	Panel B: equities		
	(1)	(2)	(3)	(4)	(5)	(6)	
PRECIP	004			037***			
	(.009)			(.006)			
PRECIP1		003			078***		
		(.022)			(.018)		
PRECIP2			014			079***	
			(.031)			(.022)	

Event study: 2013 democratization

- In early 2013, McKay Brothers begins selling latest price information at both ends of the Chicago-New York corridor
 - this move effectively removes advantages of the fastest traders

We find no precipitation effects in 2013-2014

The Quincy offering is associated with declines in price impacts, effective and realized spreads, and volatility

	PIMP	ESP	RSP	trades	volume	volatility	price
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
full sample	484***	711***	546***	071	.045	836***	.319***
_	(.122)	(.127)	(.125)	(.129)	(.125)	(.244)	(.083)
most constr.	590***	454**	190	475***	174	-1.09***	.496***
	(.185)	(.179)	(.184)	(.171)	(.177)	(.254)	(.135)
least constr.	448***	965***	905***	.084	.095	542**	.284**
	(.100)	(.181)	(.178)	(.120)	(.123)	(.222)	(.129)

Conclusions

- In our setting, speed differentials lead to higher adverse selection, trading costs and volatility as the fastest traders choose to take liquidity
- Elimination of speed differentials not only reduces trading costs via the adverse selection channel, but also by strengthening liquidity supply

Thank you

Trading activity and volatility

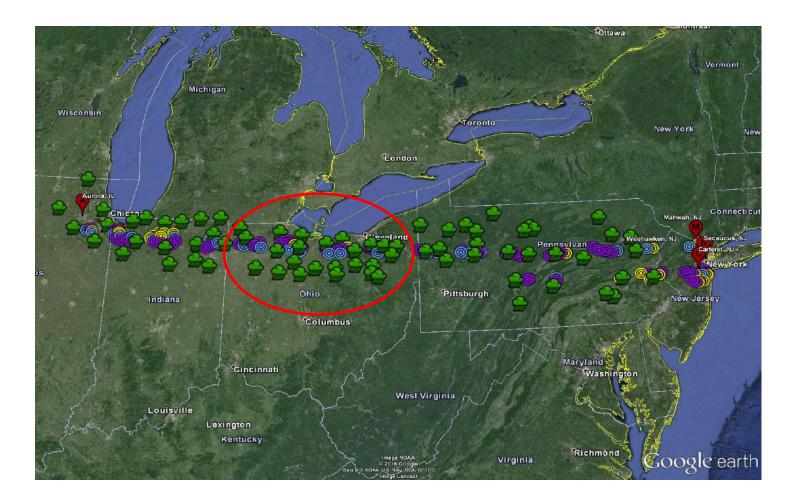
		trades			volatility	
PRECIP	021***			025**		
	(.006)			(.010)		
PRECIP1		070***			103***	
		(.020)			(.032)	
PRECIP2			072***			118***
			(.023)			(.036)
VIX	.079***	.079***	.079***	.185***	.186***	.185***
	(.015)	(.015)	(.015)	(.024)	(.024)	(.024)

The number of trades declines by 17.8%. Expectedly, this decline is observed only in the most constrained ETFs

Volatility declines by 5.8%

Robustness

	price impact	effective spread	realized spread	trades	volatility
mood control	060***	061***	026***	094***	166***
	(.013)	(.012)	(.009)	(.024)	(.035)
expanded area	034***	040***	020**	055**	087**
-	(.013)	(.012)	(.008)	(.023)	(.039)
placebo area	.006	012	001	.015	036
-	(.016)	(.025)	(.019)	(.024)	(.038)
afternoon only	061***	063***	028***	080***	147***
-	(.015)	(.014)	(.010)	(.026)	(.040)
intraday FE	054***	060***	028***	067***	141***
-	(.012)	(.012)	(.008)	(.021)	(.035)


Intraday patterns

A weather front

Behavioral explanation

