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In the financial accelerator literature pioneered by Bernanke et al. (1999) entrepreneurs 
are myopic and risk-neutral, and loans have a predetermined rate of return by assumption. 
We relax these assumptions and derive the optimal state-dependent loan contract for 
forward-looking risk-averse entrepreneurs. We show that financial frictions deliver less 
amplification under the optimal state-dependent contract.
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1. Introduction

In one of the foundational papers in the literature on financial frictions in macroeconomic models, Bernanke et al.
(1999) — hereafter BGG — derive a contract between risk-averse lenders and risk-neutral borrowers in the costly state 
verification (CSV) framework of Townsend (1979).1 The BGG model is widely used because of its ability to generate a 
financial accelerator which amplifies and propagates the impact of technology and monetary shocks in a dynamic New 
Keynesian framework. The underlying loan contract in BGG, which has become the standard contract for CSV models of 
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financial frictions, assumes returns for lenders are predetermined and borrowers are risk-neutral and myopic, such that they 
maximize expected consumption in the next period only, without considering consumption in subsequent periods.2

We relax these assumptions and derive the optimal history-independent loan contract in the CSV model, which we call 
the optimal contract for simplicity.3 Following early criticism of BGG by Chari (2003), we allow returns to the lender to vary 
with the aggregate state of the economy. Second, we introduce forward-looking entrepreneurs who maximize the present 
discounted value of all future consumption instead of next period expected consumption. Third, we consider a more general 
constant relative risk aversion (CRRA) preference specification for entrepreneurs that nests risk neutrality, which is assumed 
in BGG, as a special case.

We embed the optimal loan contract in a standard dynamic New Keynesian model, similar in all respects to the model 
in BGG, and derive three main conclusions. First, under the optimal contract, regardless of the degree of entrepreneurial risk 
aversion, business cycle amplification is smaller than under the BGG contract. Second, shocks to the cross-sectional variance 
of entrepreneurs’ idiosyncratic productivity — so-called “risk” shocks — have little to no impact on the real economy when 
loan contracts are optimal, in contrast with the BGG contract. While recent work by Christiano et al. (2013) emphasizes 
the importance of risk shocks in driving business cycles, we demonstrate that risk shocks provide amplification only when 
the loan contract is non-contingent, regardless of the degree of lender’s risk aversion. Third, we show that the financial 
accelerator in the CSV framework is dependent on three key characteristics: a predetermined lending rate, loose monetary 
policy and extremely persistent technology shocks. We conduct a number of robustness tests in the online appendix and 
find that the removal of any one of these characteristics weakens or eliminates the financial accelerator.

1.1. Overview of the model and intuition

Our model consists of entrepreneurs who borrow money from a representative household and purchase capital to use in 
production. Entrepreneurs are identical ex ante but differ depending on the ex post realization of an idiosyncratic produc-
tivity shock. Both agents have full information about the distribution of idiosyncratic shocks ex ante. Borrowers observe the 
realization of their idiosyncratic shock, but lenders do not: they must pay monitoring costs to observe it.

In the BGG contract, risk-neutral borrowers guarantee a predetermined safe rate of return to lenders in order to maximize 
returns on their equity. As a result, borrowers absorb all risk in the economy. It should be noted that this is an assumption 
and not an equilibrium condition. Because of this assumption, negative shocks decrease entrepreneurs’ net worth which 
tightens financial constraints during recessions. The fall in output from a negative shock is further exacerbated by the 
decline in entrepreneurial net worth, which raises the cost of borrowing and creates a vicious circle of further declines in 
capital prices, net worth and investment. This results in the financial accelerator: the BGG contract amplifies macroeconomic 
fluctuations in a dynamic stochastic general equilibrium (DSGE) model.

As we mentioned previously, three key assumptions underpin the BGG contract and the subsequent literature that uti-
lizes CSV frictions to generate a financial accelerator effect: (1) lenders returns are predetermined; (2) entrepreneurs are 
myopic — they maximize their expected next period consumption, rather than the expected discounted stream of all future
consumption; and (3) entrepreneurs are risk-neutral. To gain deeper understanding of the mechanisms at play in generating 
the financial accelerator, we first relax the above assumptions in isolation and discuss the implications. We then relax all 
three assumptions simultaneously to construct the optimal contract.

When lenders’ returns are predetermined as in BGG, we find that to a first order approximation the equilibrium loan 
contract is robust to alternative assumptions on entrepreneurial myopia or risk aversion. Because the predetermined lending 
rate is chosen in period t to satisfy the lender’s Euler equation in that specific period without the possibility of revisions 
in period t + 1, the lender’s stochastic discount factor — which is invariant to the degree of entrepreneurial myopia or risk 
aversion — determines the rate of return. Thus, under a predetermined lending rate the equilibrium contract is identical 
regardless of whether entrepreneurs are forward-looking or myopic, risk-neutral or risk-averse, and the financial accelerator 
remains intact.

In contrast, when lenders’ returns can vary with the aggregate state of the economy as Chari (2003) argued they should, 
the degree of entrepreneurial myopia and risk aversion matters a great deal. For example, when entrepreneurs are myopic 
and risk-neutral, the financial accelerator is stronger under a state-contingent lending rate than under a predetermined 
lending rate. Why is this so? Myopic risk-neutral entrepreneurs sell as much insurance to the representative household as 
they can because insurance does not affect their expected next period consumption. Risk-averse households prefer a state-
contingent rate of return that is negatively correlated with household consumption. In recessions, households desire a higher 
rate of return because their marginal utility of consumption is high, and vice versa in booms. A state-contingent lending 
rate thus insulates households from fluctuations in consumption but exposes myopic entrepreneurs to larger swings in net 
worth. During a recession, the provision of insurance leads to very tight financial constraints for myopic entrepreneurs, 

2 Note that the BGG contract is optimal given the assumptions of a predetermined lending rate and entrepreneurs who maximize next period’s expected 
consumption.

3 To be precise, we derive the optimal one-period contract with deterministic monitoring. An excellent list of references for partial equilibrium multi-
period contracts includes Monnet and Quintin (2005) for stochastic monitoring, Wang (2005) for deterministic monitoring, Cole (2013) for self-enforcing 
stochastic monitoring, and Popov (2014, 2016) who studies the impact of enforcement frictions on optimal loan contracts as well as optimal dynamic 
contracts under costly state verification.
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even tighter than under a predetermined lending rate, as they must pay a higher lending rate due to the fall in household 
consumption. During a boom the opposite occurs. Thus, when entrepreneurs are risk-neutral and myopic, state-contingent 
lending rates actually strengthen the financial accelerator, leading to larger amplification of technology and monetary shocks. 
Myopic risk-neutral entrepreneurs miss good investment opportunities on a consistent basis because they do not take the 
future flow of capital returns into account when making investment decisions.

On the other hand, in a state-dependent loan contract forward-looking risk-neutral entrepreneurs sell less insurance to 
households because they are concerned not only about next period expected consumption but expected consumption in all 
future periods, which is affected by insurance claims. Forward-looking entrepreneurs desire high net worth in states of the 
world where the financial premium is high because capital returns are higher and borrowing is more costly. For instance, 
suppose that ex post there is a shock which suddenly decreases entrepreneurial net worth. Lower net worth today means 
that the financial premium is higher today and in the future. Forward-looking entrepreneurs thus find it profitable to enter 
into an ex ante loan contract that stipulates a lower lending rate in low net worth states, and a higher lending rate in 
high net worth states. This interplay between movements in net worth and the financial premium leads forward-looking 
risk-neutral entrepreneurs to behave in a “risk-averse” manner because they want to avoid borrowing in states with a high 
financial premium. This diminishes fluctuations in net worth that result from technology, monetary and risk shocks and 
thus dampens the financial accelerator. The degree to which forward-looking entrepreneurs dampen the financial accelerator 
depends in part on the strength of the CSV frictions and the persistence of the shocks in question. If there is no costly state 
verification so that financial frictions are absent, forward-looking entrepreneurs will ignore concerns about the financial 
premium and provide as much insurance as possible, generating large amplification.

What happens when we relax the assumption that entrepreneurs are risk-neutral? Under a state-contingent lending 
rate, higher entrepreneurial risk aversion dampens the financial accelerator. As entrepreneurial risk aversion approaches 
one (logarithmic CRRA utility), the distinction between myopic and forward-looking entrepreneurs matters less and less 
for determining the optimal state-contingent loan contract. Risk-averse entrepreneurs, whether myopic or forward-looking, 
effectively buy insurance from households by agreeing to large repayments in a boom and small repayments in a recession. 
When entrepreneurial risk aversion is equal to one, we prove that the state-contingent loan contract is mathematically 
identical for forward-looking and myopic entrepreneurs. The optimal loan contract with risk-averse entrepreneurs delivers 
smaller amplification for all shocks — technology, monetary and risk shocks — than the BGG contract. Ultimately then, 
we show that the optimal contract, which considers a state-contingent lending rate and forward-looking risk-averse en-
trepreneurs, dampens the financial accelerator.

We also find that risk shocks have little effect on the real economy and give the wrong comovement between macroe-
conomic aggregates when contracts are optimal. This contrasts with Christiano et al. (2013), who employ the BGG contract 
and emphasize the importance of risk shocks in generating business cycle fluctuations. Under the BGG contract, higher 
cross-sectional variance of entrepreneurs’ idiosyncratic productivity causes an increase in defaults leading to a decline in 
the price of capital and consequently net worth. However, if returns to lenders are not predetermined and entrepreneurs 
are forward-looking, they realize that lower net worth implies higher financial premiums and more costly borrowing in the 
future. Therefore, forward-looking entrepreneurs desire more net worth in these states and thus negotiate lower returns 
to lenders, which stabilizes the response of net worth to the shock. As a result, under the optimal contract the financial 
accelerator is severely dampened for risk shocks.

1.2. Related literature

The CSV framework remains one of the most widely used methods for embedding financial frictions in DSGE models. 
The bulk of the literature follows the BGG framework and employs myopic entrepreneurs with fixed rate lending contracts. 
A non-exhaustive survey of recent work in this area includes Christiano et al. (2013), Christensen and Dib (2008), Ottonello
(2015), Fernandez-Villaverde (2010), and Fernandez-Villaverde and Ohanian (2010).

In a related paper, Candian and Dmitriev (2016) study the behavior of risk-averse entrepreneurs that do not have access 
to risk-sharing technology within the entrepreneurial family and are thus exposed to both idiosyncratic and aggregate risk. 
They find that risk shocks do not generate strong amplification even when interest rates are predetermined as in BGG. Chugh
(2013) also studies risk shocks in the BGG environment and concludes that cross-sectional firm level evidence provides little 
empirical support for the presence of large risk shocks.

Recent work by Carlstrom et al. (2016), hereafter CFP, simultaneously and independently derives the dynamically optimal 
contract for forward-looking, risk-neutral entrepreneurs, which is one of the cases we present here. CFP focus on the social 
planner’s problem and the relative social efficiency of the optimal contract vis-a-vis the BGG contract for technology and 
monetary shocks, while we focus on the following question: do optimal contracts mitigate the financial accelerator or not? 
In contrast with CFP, we compare the model with frictions against a frictionless benchmark to examine the role of optimal 
contracts in amplifying and propagating business cycle fluctuations. We also study the impact of risk shocks, which are 
absent in CFP. Finally, we consider varying degrees of entrepreneurial risk aversion, while CFP focus on the risk-neutral case.

The CSV approach is not the only way to model financial frictions. In a related paper (Dmitriev and Hoddenbagh, 2014)
we investigate the effect of optimal state-contingent contracts in a model with costly state enforcement frictions a la Kiy-
otaki and Moore (1997). In this alternative environment, we find that optimal state-contingent contracts severely dampen 
the amplification response from technology and monetary shocks. Again, our results demonstrate that amplification in the 
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costly state enforcement literature is generated via the assumption of a predetermined lending rate (as in Gertler and Kiy-
otaki, 2010 and Gertler and Karadi, 2011). Cao and Nie (2016) also find that market incompleteness is more important 
than the underlying financial frictions in generating a financial amplification channel. An exception is presented by Jermann 
and Quadrini (2012), who allow both debt and equity contracts and achieve amplification by introducing adjustment costs 
between these instruments and ruling out other instruments. In the adverse selection framework, House (2006) extends 
Stiglitz and Weiss (1981) and also shows that financial frictions amplify business cycles only when returns for lenders are 
predetermined. When contracts are contingent or allow both debt and equity, financial frictions actually stabilize business 
cycles.

In contrast to macroeconomic models with agency costs, Di Tella (2015) investigates the role of optimal state-contingent 
contracts in a model with no labor and flexible prices, and finds that risk shocks do generate amplification. Risk shocks in 
Di Tella (2015) decrease the capital stock which leads to lower output and a recession. In models with agency costs, the 
aggregate capital stock moves slowly over the business cycle, so that risk shocks affect the economy only through changes 
in hours worked resulting from markup fluctuations. As a result, the mechanism delivering amplification from risk shocks is 
very different in agency cost models relative to Di Tella’s model. In our framework households use labor supply adjustments 
to smooth consumption, and thus are more willing to take risk upon themselves — particularly when entrepreneurs are 
forward-looking and want to smooth their net worth. In equilibrium the optimal contract dampens negative risk shocks 
overall due to higher hours worked by lenders, who receive lower returns on loans which also stabilizes borrowers’ net 
worth. If the labor supply becomes less elastic, households find it more difficult to use their labor supply to smooth con-
sumption and are less willing to sell insurance to entrepreneurs. Since amplification in agency cost models works through 
fluctuations in hours worked, risk shocks and monetary shocks have almost no impact on the economy when labor supply 
is inelastic.

In summary, the bulk of the evidence suggests that the ability of financial frictions to amplify business cycle fluctuations 
is dependent on non-contingent loan contracts across a wide class of models, including the CSV, costly state enforcement 
and adverse selection frameworks common in the literature.

2. The optimal loan contract in partial equilibrium

Our main theoretical contribution in this paper is to introduce forward-looking risk-averse entrepreneurs into an oth-
erwise standard CSV model of financial frictions. In this section we outline the key differences between the dynamically 
optimal loan contract chosen by forward-looking entrepreneurs and the contingent and non-contingent loan contracts cho-
sen by myopic entrepreneurs in a partial equilibrium setting. Here we assume that entrepreneurs take the price of capital 
and the expected return to capital as given. In Section 3 we endogenize these variables in general equilibrium.

At time t , entrepreneur j purchases capital Kt( j) at a unit price of Q t . At time t + 1, the entrepreneur rents this capital 
to perfectly competitive wholesale goods producers. The entrepreneur uses his net worth Nt( j) and a loan Bt( j) from the 
representative lender to purchase capital:

Q t Kt( j) = Nt( j) + Bt( j).

After buying capital, the entrepreneur is hit with an idiosyncratic shock ωt+1( j), a log-normal random variable with dis-
tribution log(ω( j)) ∼ N (− 1

2 σ 2
ω, σ 2

ω) and mean of one. Capital returns, Rk,t+1, are exogenous here in partial equilibrium, 
but will be endogenous in general equilibrium and subject to aggregate shocks. The entrepreneur j is able to deliver 
Q t Kt( j)Rk,t+1ωt+1( j) units of assets.

Following BGG, we assume entrepreneurs die with constant probability 1 −γ . Different from BGG we allow entrepreneurs 
to have positive risk aversion σe . To make the framework tractable, we allow for complete insurance markets between 
entrepreneurs. Each entrepreneur works only in the first period and earns a wage W e

t , which is invested in a common 
mutual fund with a family of other entrepreneurs to protect members of the family from idiosyncratic risk. Entrepreneurial 
net worth thus depends only on aggregate returns and the initial invested wage. Dying entrepreneurs consume all of their 
operational equities. If entrepreneurs survive they do not consume anything and reinvest their net worth. The entrepreneur’s 
intertemporal utility function is

V e
t ( j) = (1 − γ )

1 − σe
Et

{ ∞∑
s=1

γ s(Nt+s( j)
)1−σe

}
(1)

where Nt( j) is entrepreneur j’s net worth. Risk neutrality is attained by setting σe = 0. The timeline for entrepreneurs is 
plotted in Fig. 1.

2.1. Borrower and lender payoffs

The contract between the lender and borrower follows the familiar CSV framework. We assume that the lender cannot 
observe the realization of idiosyncratic shocks to entrepreneurs unless he pays monitoring costs μ which are a fixed per-
centage of total assets. Given this friction, the borrower offers the lender a contract with a state-contingent interest rate 
Zt+1 subject to macroeconomic conditions.
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Fig. 1. Timeline for entrepreneurs.

The entrepreneur repays the loan only when it is profitable for the family to do so. In particular, the entrepreneur will 
repay the loan only if, after repayment, he has more assets than liabilities. We define the cutoff productivity level ω̄t+1 , also 
known as the bankruptcy threshold, as the minimum level of productivity necessary for an entrepreneur to repay the loan:

Bt( j)Zt+1( j)︸ ︷︷ ︸
Cost of loan repayment

= ω̄t+1 Rk,t+1 Q t Kt( j).︸ ︷︷ ︸
Minimum revenue for loan repayment

If ωt+1( j) < ω̄t+1 the entrepreneur defaults and enters bankruptcy; if ωt+1( j) ≥ ω̄t+1 he repays the loan. The cutoff pro-
ductivity level allows us to express the dynamics of aggregate net worth for the entrepreneurial family:

Nt+1 = Q t Kt Rk,t+1

[ ∞∫
ω̄t+1

ω f (ω)dω − ω̄t+1(1 − F (ω̄t+1))

]
+ W e

t+1, (2)

where f is the probability density function and F is the cumulative distribution function of the log-normal distribution of 
idiosyncratic productivity. Note that for a particular entrepreneur j, net worth does not include the wages of entrepreneurs 
joining the family mutual fund for the first time. Net worth for entrepreneur j can thus be expressed as

Nt+1( j) = Q t Kt( j)Rk,t+1(1 − �t+1), (3)

where

�t+1 =
ω̄t+1∫
0

ω f (ω,σω,t)dω + ω̄t+1

[
1 − F (ω̄t+1,σω,t)

]

is the gross share of revenue that goes to lenders before they pay monitoring costs, and σω is the standard deviation of 
the logarithm of idiosyncratic productivity. We define leverage, κt , as the value of the entrepreneur’s existing capital stock 
divided by current net worth:

κt( j) ≡ Q t Kt( j)

Nt( j)
. (4)

Using individual net worth dynamics (3), we can express the objective function for forward-looking entrepreneurs (1)
recursively4:

V e
t ( j) = 1 − γ

1 − σe
(Nt( j))1−σe (�t − 1), (5)

where

�t = 1 + γEt

{
κ1−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe �t+1

}
. (6)

�t is the entrepreneur’s normalized utility per unit of net worth following the idiosyncratic productivity draw in period t
(and before entrepreneurial life or death), while �t − 1 is the entrepreneur’s normalized utility per unit of net worth prior 
to the idiosyncratic productivity draw in period t .

The gross rate of return for the lender, Rt+1, also depends on the productivity cutoff. For idiosyncratic realizations above 
the cutoff, the lender will be repaid the full amount of the loan Bt( j)Zt+1( j). For idiosyncratic realizations below the cutoff, 
the entrepreneur will enter bankruptcy and the lender will pay monitoring costs μ and take over the entrepreneur’s assets, 
ending up with [1 − μ)Kt( j)Rk,t+1h(ωt+1( j)]. More formally, the lender’s ex post return is

4 We derive the recursive expression for the entrepreneur’s objective function in Appendix A.
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Bt( j)Rt+1( j) =
{

Bt( j)Zt+1( j) if ωt+1( j) ≥ ω̄t+1,

(1 − μ)Kt( j)Rk,t+1ωt+1( j) if ωt+1( j) < ω̄t+1.

Taking into account that loans to entrepreneurs are perfectly diversifiable, the lender’s aggregate return on loans Rt+1 is 
defined as

(Kt Q t − Nt)Rt+1 ≡ Q t Kt Rk,t+1(�t+1 − μGt+1), (7)

where Gt+1 = ∫ ω̄t+1
0 ω f (ω)dω is the share of total entrepreneurial assets under default. We define the financial premium as 

the ratio of the rental rate on capital to the lender’s rate of return:

Financial Premium ≡ Rk,t+1

Rt+1
.

2.2. Solving for the loan contracts: the BGG contract, the Myopic Contingent Contract (MCC) and the optimal contract

We solve for three loan contracts: the BGG contract, the myopic contingent contract (hereafter denoted MCC), and the 
optimal contract. The BGG contract assumes the lending rate is predetermined and entrepreneurs are myopic. The MCC 
allows for a state-contingent lending rate but maintains the assumption that entrepreneurs are myopic rather than forward-
looking. We solve for the MCC as it isolates the impact of introducing a state-contingent lending rate on the financial 
accelerator. The optimal contract allows for a state-contingent lending rate and assumes entrepreneurs are forward-looking.

Our solution for all three contracts nests entrepreneurial risk aversion as well as the risk-neutral case. To attain risk neu-
trality we simply set σe = 0, while σe > 0 signals risk aversion, with larger positive values denoting stronger risk aversion. 
We also show solutions for the frictionless benchmark, which sets monitoring costs equal to zero (μ = 0). In each of the 
propositions below we explicitly solve for each contract in the most general case, followed by the risk-neutral case and the 
frictionless benchmark with zero monitoring costs.

The differences between the three loan contracts arise from two sources: the lender’s participation constraint and the 
borrower’s objective function. First, the lender’s participation constraint in BGG differs from the participation constraint in 
the MCC and the optimal contract. The participation constraint arises from the household Euler equation and stipulates the 
minimum rate of return that entrepreneurs must offer to lenders to receive a loan. In BGG, the participation constraint has 
the following form:

Et

{
�t,t+1

}
Rt+1 = 1, (8)

where

�t,s ≡ βs UC,t+s

UC,t
(9)

is the household (i.e. shareholder) intertemporal marginal rate of substitution, also known as the household stochastic 
discount factor. Under this participation constraint, entrepreneurs pay a constant safe rate of return to the lenders, Rt+1, 
which ignores the risk-averse representative household’s desire for consumption insurance. In contrast, the participation 
constraint for the MCC and the optimal contract is

Et

{
�t,t+1 Rt+1

}
= 1. (10)

The above expression implies that households prefer a state-contingent rate of return that is negatively correlated with 
household consumption. Quite simply, households like consumption insurance. In recessions, households desire a higher 
rate of return because their marginal utility of consumption is high, and vice versa in booms.

Second, the borrower’s objective function in BGG and MCC differs from the objective function which gives rise to the 
optimal contract. Entrepreneurs in BGG and MCC maximize next period net worth, defined in equation (2). If we substitute 
the expression for leverage from (4) into (2), we have the entrepreneur’s objective function in BGG and MCC:

max
κt ,ω̄t+1

Et

{[
κt Nt( j)Rk,t+1

( ∞∫
ω̄t+1

ω f (ω)dω − ω̄t+1(1 − F (ω̄t+1))

)]1−σe}
. (11)

In contrast, under the dynamically optimal contract entrepreneurs maximize utility, given by (1). As we have mentioned 
before, utility maximizing entrepreneurs are concerned not only about current capital returns but also future capital returns 
and future financial premiums.

We now have all of the ingredients necessary to set up the entrepreneur’s optimization problem and solve for the three 
different loan contracts: (1) the BGG contract; (2) the MCC contract; and, (3) the optimal contract.
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Proposition 1. To solve for the BGG contract, entrepreneurs choose their state contingent cutoff ω̄t+1 and leverage κt( j) to maximize 
next period net worth (11) subject to (3), (7) and (8). The solution to this problem is given by

Et

{
(1 − �t+1)

1−σe R1−σe
k,t+1

}
= Et

{
(1 − �t+1)

−σe �ω,t+1

Et{�t,t+1}κt(�ω,t+1 − μGω,t+1)
R−σe

k,t+1

}
. (12)

Under log utility (σe = 1) equation (12) simplifies to

1 = Et

{
�ω,t+1

Et{�t,t+1}κt(�ω,t+1 − μGω,t+1)Rk,t+1(1 − �t+1)

}
.

Under the frictionless model with zero monitoring costs (μ = 0) equation (12) simplifies to

Et

{
(1 − �t+1)

1−σe R1−σe
k,t+1

}
= Et

{
(1 − �t+1)

−σe

Et{�t,t+1}κt
R−σe

k,t+1

}
.

Proof. See Appendix B.1. �
Corollary 1. Log-linearization of the BGG optimality condition (12) and the BGG participation constraint (8) gives

Et R̂k,t+1 −Et R̂t+1 = νκ κ̂t + νσ σ̂ω,t, (13)

R̂t+1 −Et R̂t+1 = 0, (14)

where νκ =
�ωω
�ω

− �ωω−μGωω
�ω−μGω

�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

+ �ω−μGω
�−μG

1
κ−1 and νσ =

− �σ −μGσ
�−μG

(
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

)
+ �ω−μGω

�−μG

(
�ωσ
�ω

− �ωσ −μGωσ
�ω−μGω

+ �σ
1−�

)
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

+ �ω−μGω
�−μG

.

Proof. See Appendix C.1 and Appendix C.2. �
Equation (13) shows that in the BGG contract the entrepreneur’s leverage depends on next period’s expected financial 

premium, defined in log deviations from steady state as expected returns to capital (Et{R̂k,t+1}) minus expected returns 
to the household (Et{R̂t+1}). Equation (14) shows that lenders returns (deposit rate) are predetermined. We prove in Ap-
pendix B.4 that when lenders’ returns are predetermined, to a first order approximation the loan contract is identical 
regardless of whether entrepreneurs are forward-looking or myopic, risk-neutral or risk-averse.5

Proposition 2. To solve for the MCC contract, entrepreneurs choose their state contingent cutoff ω̄t+1 and leverage κt( j) to maximize 
(11) subject to (3), (7) and (10). The solution to this problem is given by

κt�t,t+1Et

{
R1−σe

k,t+1(1 − �t+1)
1−σe

}
R−σe

k,t+1(1 − �t+1)−σe
= �ω,t+1

�ω,t+1 − μGω,t+1
. (15)

Under log utility (σe = 1) equation (15) simplifies to

�t,t+1κt Rk,t+1(1 − �t+1) = �ω,t+1

�ω,t+1 − μGω,t+1
.

Under the frictionless model with zero monitoring costs (μ = 0) equation (15) simplifies to

κt�t,t+1Et

{
R1−σe

k,t+1(1 − �t+1)
1−σe

}
R−σe

k,t+1(1 − �t+1)−σe
= 1.

Proof. See Appendix B.2. �
Corollary 2. Log-linearization of the MCC optimality condition (15) and the MCC participation constraint (10) gives

Et R̂k,t+1 −Et R̂t+1 = νκ κ̂t + νσ σ̂ω,t, (16)

R̂t+1 −Et R̂t+1 = R̂k,t+1 −Et R̂k,t+1 + α̃

[
− σe(R̂k,t+1 −Et R̂k,t+1) + �̂t,t+1 −Et�̂t,t+1

]
, (17)

5 This is also true when the lending rate (Z ) is predetermined, rather than the lender’s return (R). The general equilibrium behavior of the model under 
predetermined R and predetermined Z is similar, so we only report results for predetermined R .
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where α̃ =
�ω−μGω

�−μG
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

.

Proof. See Appendix C.1 and Appendix C.3. �
Corollary 2 clearly illustrates the differences between the BGG contract and the MCC contract. In equation (17), lender’s 

returns depend on capital returns and household consumption, both elements which are missing in the BGG contract. For 
standard calibrations, α̃ takes a value between five and six and the entrepreneurial risk aversion parameter σe is equal to 
one, so that lender’s returns are very sensitive to the consumption level and the consumption insurance channel dominates 
the response to capital returns. When consumption is high, the lending rate declines; when consumption is low the lending 
rate increases. The negative covariance between the lender’s consumption and the lender’s returns reflects the nature of 
insurance, which amplifies the impact of shocks to the economy. Note that as entrepreneurs become more risk-averse (as 
σe increases), the impact of the consumption insurance channel declines.

Now that we have described the BGG and MCC contracts in detail, we turn our attention to the optimal contract. As 
discussed above, the optimal contract takes the consumption insurance channel from MCC and adds forward-looking en-
trepreneurs.

Proposition 3. To solve for the optimal contract, entrepreneurs choose their state contingent cutoff ω̄t+1 and leverage κt( j) to maxi-
mize (1) subject to (3), (7) and (10). The solution to this problem is given by

κt�t,t+1Et

{
R1−σe

k,t+1(1 − �t+1)
1−σe �t+1

}
�t+1 R−σe

k,t+1(1 − �t+1)−σe
= �ω,t+1

�ω,t+1 − μGω,t+1
. (18)

Under log utility (σe = 1) equation (18) simplifies to

�t,t+1κt Rk,t+1(1 − �t+1) = �ω,t+1

�ω,t+1 − μGω,t+1
.

Under the frictionless model with zero monitoring costs (μ = 0) equation (18) simplifies to

κt�t,t+1Et

{
R1−σe

k,t+1(1 − �t+1)
1−σe �t+1

}
�t+1 R−σe

k,t+1(1 − �t+1)−σe
= 1.

Proof. See Appendix B.3. �
Corollary 3. Log-linearization of the optimal contract, (18), and the participation constraint (10) gives

Et R̂k,t+1 −Et R̂t+1 = νκ κ̂t + νσ σ̂ω,t, (19)

R̂t+1 −Et R̂t+1 = R̂k,t+1 −Et R̂k,t+1 − α̃

[
σe(R̂k,t+1 −Et R̂k,t+1) − (�̂t,t+1 −Et�̂t,t+1) + �̂t+1 −Et�̂t+1

]
,

(20)

�̂t = εNEt

{
(1 − σe)[(κ − 1)(R̂k,t+1 − R̂t+1) + R̂k,t+1 + ν�σ̂ω,t] + �̂t+1

}
, (21)

where ν� = (�σ −μGσ ) �ω
�ω−μGω

−�σ

1−�
σω and εN = γ κ1−σe (1 − �)1−σe R1−σe

k .

Proof. See Appendix C.1 and Appendix C.4. �
We see from (20) that under the optimal contract with risk-aversion less than one, the surprise to lender’s returns 

depends not only on surprises to capital returns and consumption, as in the MCC contract, but future capital returns and 
future financial premiums as well. If entrepreneurs are more optimistic about expected future financial premiums or future 
returns to capital, they prefer to pay the lender a lower interest rate because one unit of net worth becomes more valuable. 
Corollary 3 thus illustrates the strong stabilizing mechanism of the optimal contract. When a crisis hits and decreases 
entrepreneur’s net worth, expected future financial premiums will rise. But entrepreneurs will also pay lenders a smaller 
deposit rate, which stabilizes their net worth. As a result, the main channel for the financial accelerator — volatility in 
net worth — is diminished when entrepreneurs are forward-looking. As risk-aversion increases, lenders’ returns become 
less sensitive to future capital returns and future financial premiums. Under log utility for entrepreneurs (σe = 1), future 
capital returns and financial premiums have no effect on lender’s returns as �̂t = 0. This is why the optimal contract is 
identical for forward-looking and myopic entrepreneurs when σe = 1. However, under higher entrepreneurial risk-aversion 
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Fig. 2. Overview of the model.

(σe > 1), increases in capital returns have a less positive effect on lenders’ returns, as the insurance motive for entrepreneurs 
dominates that for households in the standard calibration with household risk aversion σ = 1.

Although we have taken a partial equilibrium view here, Corollaries 1–3 remain unchanged in the general equilibrium 
setting. In both partial and general equilibrium, leverage and the deposit rate are determined by the paths of capital returns 
and consumption. Therefore, the intuition provided by Corollaries 1–3 holds in general equilibrium.

3. The model in general equilibrium

We now embed the three loan contracts in a standard dynamic New Keynesian model. There are six agents in our model: 
households, entrepreneurs, financial intermediaries, capital producers, wholesalers and retailers. Entrepreneurs buy capital 
from capital producers and rent it to perfectly competitive wholesalers, who sell their goods to monopolistically competitive 
retailers. Retailers costlessly differentiate the wholesale goods and sell them to households at a markup over marginal cost. 
Retailers have price-setting power and are subject to Calvo (1983) price rigidities. Households bundle the retail goods in 
CES fashion into a final consumption good. A graphical overview of the model is provided in Fig. 2. The dotted lines denote 
financial flows, while the solid lines denote real flows (goods, labor, and capital).

3.1. Households

The representative household maximizes its utility by choosing the optimal path of consumption, labor and money:

maxEt

{ ∞∑
s=0

βs

[
C1−σ

t+s

1 − σ
+ ζ log

(
Mt+s

Pt+s

)
− χ

H1+η
t+s

1 + η

]}
, (22)

where Ct is household consumption, Mt/Pt denotes real money balances, and Ht is household labor effort. The budget 
constraint of the representative household is

Ct = Wt Ht − Tt + �t + Rt
Dt

Pt
− Dt+1

Pt
+ Mt−1 − Mt

Pt
+ Bt−1 Rn

t − Bt

Pt
, (23)

where Wt is the real wage, Tt is lump-sum taxes, �t is profit received from household ownership of final goods firms 
distributed in lump-sum fashion, Dt are deposits in financial intermediaries (banks) that pay a contingent nominal gross 
interest rate Rt , and Bt are nominal bonds that pay a gross nominal non-contingent interest rate Rn

t .
Households maximize their utility (22) subject to the budget constraint (23) with respect to deposits, labor, nominal 

bonds and money, yielding four first order conditions:
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UC,t = βEt

{
Rt+1UC,t+1

}
, (24)

UC,t = βRn
t Et

{
UC,t+1

πt+1

}
, (25)

Wt UC,t = χ Hη
t , (26)

UC,t = ζ
1

mt
+ βEt

{
UC,t+1

πt+1

}
. (27)

We define the gross rate of inflation as πt+1 = Pt+1/Pt , and real money balances as mt = Mt/Pt .

3.2. Retailers

The final consumption good is made up of a basket of intermediate retail goods which are aggregated together in CES 
fashion by the representative household:

Ct =
⎛
⎝ 1∫

0

c
ε−1
ε

it di

⎞
⎠

ε
ε−1

.

Demand for retailer i’s unique variety is

cit =
(

pit

Pt

)−ε

Ct,

where pit is the price charged by retail firm i. The aggregate price index is defined as

Pt =
⎛
⎝ 1∫

0

p1−ε
it

⎞
⎠

1
1−ε

.

Each retail firm chooses its price according to Calvo (1983) in order to maximize net discounted profit. With probability 
1 − θ each retailer is able to change its price in a particular period t . Retailer i’s objective function is

max
p∗

it

∞∑
s=0

θ s
Et

{
�t+s

p∗
it − P w

t+s

Pt+s

(
p∗

it

Pt+s

)−ε

Yt+s

}
,

where P w
t is the wholesale goods price. The first order condition with respect to the retailer’s price p∗

it is

∞∑
s=0

θ s
Et

{
�t,s(p∗

it/Pt+s)
−εYt+s

[
p∗

it − ε

ε − 1
P w

t+s

]}
= 0. (28)

From this condition it is clear that all retailers which are able to reset their prices in period t will choose the same price 
p∗

it = P∗
t ∀i. The price level will evolve according to

Pt =
[
θ P 1−ε

t−1 + (1 − θ)(P∗
t )1−ε

] 1
1−ε

. (29)

Dividing the left and right hand side of (29) by the price level gives

1 =
[
θπε−1

t−1 + (1 − θ)(p∗
t )1−ε

] 1
1−ε

, (30)

where p∗
t = P∗

t /Pt . Using the same logic, we can normalize (28) and obtain

p∗
t = ε

ε − 1

∑∞
s=0 θ s

Et−1
{
�t,s(1/pt+s)

−εYt+s pw
t+s

}∑∞
s=0 θ sEt−1

{
�t,s(1/pt+s)−εYt+s

} , (31)

where pw
t+s = P w

t+s and pt+s = Pt+s/Pt .
Pt
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3.3. Wholesalers

Wholesale goods are produced by perfectly competitive firms and then sold to monopolistically competitive retailers who 
costlessly differentiate them. Wholesalers hire labor from households and entrepreneurs in a competitive labor market at 
real wage Wt and W e

t and rent capital from entrepreneurs at rental rate Rr
t . Note that capital purchased in period t is used 

in period t + 1. Following BGG, the production function of the representative wholesaler is given by

Yt = At K α
t−1(Ht)

(1−α)�(He
t )

(1−α)(1−�),

where At denotes aggregate technology, Kt is capital, Ht is household labor, He
t is entrepreneurial labor, and � defines 

the relative importance of household labor and entrepreneurial labor in the production process. Entrepreneurs inelastically 
supply one unit of labor, so that the production function simplifies to

Yt = At K α
t−1 H (1−α)�

t . (32)

We can express the price of the wholesale good in terms of the price of the final good. In this case, the price of the 
wholesale good will be

P w
t

Pt
= 1

Xt
, (33)

where Xt is the variable markup charged by final goods producers. The objective function for wholesalers is then given by

max
Ht ,He

t ,Kt−1

1

Xt
At K α

t−1(Ht)
(1−α)�(He

t )
(1−α)(1−�) − Wt Ht − W e

t He
t − Rr

t Kt−1.

Here wages and the rental price of capital are in real terms. The first order conditions with respect to capital, household 
labor and entrepreneurial labor are

1

Xt
α

Yt

Kt−1
= Rr

t , (34)

�

Xt
(1 − α)

Yt

Ht
= Wt , (35)

�

Xt
(1 − α)

Yt

He
t

= W e
t . (36)

3.4. Capital producers

The perfectly competitive capital producer transforms final consumption goods into capital. Capital production is subject 
to adjustment costs, according to

Kt = It + (1 − δ)Kt−1 − φK

2

(
It

Kt−1
− δ

)2

Kt−1, (37)

where It is investment in period t , δ is the rate of depreciation and φK is a parameter that governs the magnitude of the 
adjustment cost. The capital producer’s objective function is

max
It

Kt Q t − It,

where Q t denotes the price of capital. The first order condition of the capital producer’s optimization problem is

1

Q t
= 1 − φK

(
It

Kt−1
− δ

)
. (38)

3.5. Lenders

One can think of the representative lender in the model as a perfectly competitive bank which costlessly interme-
diates between households and borrowers. The role of the lender is to diversify the household’s funds among various 
entrepreneurs. The bank takes nominal household deposits Dt and loans out nominal amount Bt to entrepreneurs. In equi-
librium, deposits will equal loanable funds (Dt = Bt ). Households, as owners of the bank, receive a state contingent real rate 
of return Rt+1 on their “deposits” — which equals the rate of return on loans to entrepreneurs.6 Households choose the 
optimal lending rate according to their first order condition with respect to deposits:

6 Note that lenders are not necessary in the model, but we follow BGG and MCC in positing a perfectly competitive financial intermediary between 
households and borrowers.
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βEt

{
UC,t+1

UC,t
Rt+1

}
= Et

{
�t,t+1 Rt+1

}
= 1.

As we discussed above, the lender prefers a return that co-varies negatively with household consumption in order to smooth 
consumption.

3.6. Entrepreneurs

We described the entrepreneur’s maximization problem in detail in Section 2. Entrepreneurs choose their cutoff produc-
tivity level and leverage according to: (12) for the BGG contract; (15) for the MCC contract; and (18) for the dynamically 
optimal contract.

Wholesale firms rent capital at rate Rr
t+1 = αYt

Xt Kt−1
from entrepreneurs. After production takes place entrepreneurs sell 

undepreciated capital back to capital goods producers for the unit price Q t+1. Aggregate returns to capital are then given 
by

Rk,t+1 =
1
Xt

αYt+1
Kt

+ Q t+1(1 − δ)

Q t
. (39)

Consistent with the partial equilibrium specification, entrepreneurs die with probability 1 −γ , which implies the follow-
ing dynamics for aggregate net worth:

Nt+1 = γ Ntκt Rk,t+1 g(ω̄t+1,σω,t) + W e
t+1. (40)

3.7. Goods market clearing

We have goods market clearing:

Yt = Ct + It + Gt + Ce
t + μG(ω̄t,σω,t−1)Rk

t Q t−1 Kt−1, (41)

where μG(ω̄) = ∫ ω̄
0 μ f (ω)ωdω is the fraction of capital returns that go to monitoring costs, paid by lenders.

3.8. Monetary policy

The central bank conducts monetary policy by choosing the nominal interest rate Rn
t . In Section 4 we employ the nominal 

interest rate rule used in BGG:

log(Rn
t ) − log(Rn) = ρRn

(
log(Rn

t−1) − log(R)
)

+ ξπt−1 + εRn

t (42)

where ρRn
and ξ determine the relative importance of the past interest rate and past inflation in the central bank’s interest 

rate rule. Shocks to the nominal interest rate are given by εRn
.

The monetary policy rule in BGG targets past inflation, unlike the conventional Taylor rule which targets current infla-
tion:

log(Rn
t ) − log(Rn) = ρRn

(
log(Rn

t−1) − log(R)
)

+ ξπt + ρY
(

log(Yt) − log(Yt−1)
)

+ εRn

t . (43)

We consider the conventional Taylor rule in the online appendix to examine the robustness of the financial accelerator 
to more hawkish monetary policy. The conventional Taylor rule is more aggressive in eliminating markup fluctuations and 
moving the economy toward the flexible price allocation than the BGG policy rule.

3.9. Shocks

The shocks in the model follow a standard AR(1) process. The AR(1) processes for technology, government spending and 
idiosyncratic volatility are given by

log(At) =ρ A log(At−1) + ε A
t , (44)

log(Gt/Yt) =(1 − ρG) log(Gss/Yss) + ρG log(Gt−1/Yt−1) + εG
t , (45)

log(σω,t) =(1 − ρσω) log(σω,ss) + ρσω log(σω,t−1) + εσω
t , (46)

where ε A , εG and εσω denote exogenous shocks to technology, government spending and idiosyncratic volatility, and Gss

and σω,ss denote the steady state values for government spending and idiosyncratic volatility respectively. Recall that σ 2
ω

is the variance of idiosyncratic productivity, and σω is thus the standard deviation of idiosyncratic productivity. Nominal 
interest rate shocks are defined by the BGG Rule in (42) or the Taylor rule in (43).
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3.10. Equilibrium

The model has 20 endogenous variables and 20 equations. The endogenous variables are: Y , H , C , �, Ce , W , W e , I , 
Q , K , Rn , Rk , R , p∗ , X , π , N , ω̄, κ and Z . The equations defining these endogenous variables are: (4), (7), (9), (18), (24), 
(25), (26), (27), (30), (31), (32), (33), (35), (36), (37), (38), (39), (40), (41) and (42). The exogenous processes for technology, 
government spending and idiosyncratic volatility follow (44), (45) and (46) respectively. Nominal interest rate shocks are 
defined by the monetary policy rule in (42) or (43).

4. Quantitative analysis

In the impulse response analysis that follows we employ a first-order approximation of the model. As a robustness check 
we considered a second-order approximation of the model and found that the amplification response following risk shocks 
was identical to the first-order approximation. Log-linearization of the model does not result in certainty equivalence be-
cause the steady state, even though deterministic in the aggregate sense, still features non-zero volatility of idiosyncratic 
productivity. Every entrepreneur is still exposed to significant idiosyncratic risk in the steady state, and changes in idiosyn-
cratic risk therefore have a first-order effect. Because first-order effects are present, second-order effects are of marginal 
importance. Researchers focus on second-order effects in cases where there is no first-order effect, which would be the case 
in a standard Real Business Cycle model.

4.1. Calibration

Our baseline calibration largely follows BGG. We set the discount factor β = 0.99, the household risk aversion parameter 
σ = 1 so that utility is logarithmic in consumption, and the elasticity of labor equal to 3 (η = 1/3). The share of capital in 
the Cobb–Douglas production function is α = 0.35. Investment adjustment costs are φk = 10 to generate an elasticity of the 
price of capital with respect to the investment capital ratio of 0.25. Quarterly depreciation is δ = 0.025. Monitoring costs are 
μ = 0.12. The death rate of entrepreneurs is 1 − γ = 0.0272, yielding an annualized business failure rate of three percent. 
The idiosyncratic productivity term, log(ω( j)), is assumed to be log-normally distributed with variance of 0.28. The weight 
of household labor relative to entrepreneurial labor in the production function is � = 0.99.

For price-setting, we assume the Calvo parameter θ = 0.75, so that only 25% of firms can reset their prices in each 
quarter, meaning the average length of time between price adjustments is four quarters. As our baseline, we follow the BGG 
monetary policy rule and set the autoregressive parameter on the nominal interest rate to ρRn = 0.9 and the parameter 
on past inflation to ξ = 0.11. Note that in the online appendix we also consider a conventional Taylor rule where the 
central bank targets current inflation rather than past inflation. For the conventional Taylor rule, we set ρRn = 0, ξ = 1.5
and ρY = 0.5. We follow BGG and set the persistence of the shocks to technology and government spending at ρ A = 0.999
and ρG = 0.95. For risk shocks, we follow Christiano et al. (2013) and set the persistence of idiosyncratic volatility at 
ρσω = 0.9706 and the distribution of the shocks equal to εσω

t ∼ N(0, 0.0283). In our standard calibration, we consider two 
settings for entrepreneurial risk aversion: risk neutrality (σe = 0) and log risk aversion (σe = 1). In the online appendix we 
study household and entrepreneurial risk aversion below one (σ = σe = 0.5) and above one (σ = σe = 2).

Following BGG, we consider a one percent technology shock and a 25 basis point shock (in annualized terms) to the 
nominal interest rate. For the risk shock, we allow the standard deviation of idiosyncratic productivity to increase by one 
percentage point, from 0.28 to 0.29.

4.2. Quantitative comparison: BGG and the optimal contract

In our quantitative analysis we compare three allocations: the competitive equilibrium under the BGG contract; the com-
petitive equilibrium under the optimal contract with risk-neutral entrepreneurs (σe = 0); and the competitive equilibrium 
under the optimal contract with risk-averse entrepreneurs (σe = 1). We plot impulse responses for shocks to technology, the 
nominal interest rate and idiosyncratic volatility and explain the results in this section. Although we do not plot impulse 
responses for the MCC case, note that the financial accelerator is strengthened for technology and monetary shocks relative 
to the BGG case when the lending rate is state-contingent and entrepreneurs are myopic and risk-neutral.

Fig. 3 shows impulse responses for an extremely persistent one percent technology shock when prices are sticky. 
Forward-looking risk-neutral entrepreneurs “look through” the initial negative returns to capital that last for roughly 18 
quarters (extending beyond the time scale of the impulse responses shown) and become positive thereafter, ensuring the 
present discounted value of capital accumulation is more profitable, which drives investment up. The stabilizing influence 
of forward-looking entrepreneurs cancels out the consumption insurance channel under this calibration, such that the out-
put response under the optimal contract with risk neutrality and the BGG contract coincide almost exactly. In general, 
this coincidence does not hold outside of the particular calibration employed here. When the shock is less persistent, the 
optimal risk-neutral contract dampens the financial accelerator relative to the BGG contract. When entrepreneurs are risk-
averse, the optimal contract dampens the impact of technology shocks relative to the risk-neutral case and the BGG contract. 
Risk-averse entrepreneurs want to stabilize net worth as much as possible in order to smooth their consumption flows, an 
insurance motive which is lacking when entrepreneurs are risk-neutral. If there were no capital adjustment costs, returns 
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Fig. 3. Technology shock.

to capital would always be positive following a positive productivity shock, which would significantly raise the present dis-
counted value of capital and lead entrepreneurs to accumulate more net worth in these states, pushing up investment and 
amplification.

The difference between the three allocations is quite acute in Fig. 4, which plots impulse responses for a one percent 
shock to the nominal interest rate when prices are sticky. Because the impact of the monetary shock is less persistent than 
the impact of the technology shock, the price of capital depreciates back to its steady state value relatively quickly after an 
initial rise. Accumulating capital after a positive monetary shock is thus more costly, since capital returns are positive in the 
first period but negative thereafter. Under the BGG contract the deposit rate does not respond to the shock at all because 
it is predetermined, which drives up net worth on impact because returns to capital increase, pushing down the financial 
premium and reducing the cost of borrowing. Relative to the BGG contract, low capital returns and low borrowing costs 
create a strong incentive for forward-looking entrepreneurs under the optimal contract to borrow more and repay lenders 
at a higher rate, which pushes up the financial premium until it reaches zero. Since net worth is already quite stable for 
forward-looking risk-neutral entrepreneurs, higher risk aversion has little impact on the dynamic response of the economy 
to monetary shocks. Forward-looking risk-neutral and risk-averse entrepreneurs thus stabilize consumption and output to a 
similar magnitude under the optimal contract, leading to small amplification in both cases.

In Fig. 5 we plot impulse responses for a one standard deviation increase in unobserved idiosyncratic volatility σω , 
what we defined earlier as a risk shock. Accumulating capital after a risk shock is more profitable than in the steady 
state, since capital returns are negative in the first period but positive thereafter. Under the BGG contract the deposit rate 
does not respond to the shock at all because it is predetermined; coupled with negative returns to capital on impact, this 
drives down net worth, pushes up the financial premium and increases the cost of borrowing. These recessionary effects 
are much more muted under the optimal contract. Relative to the BGG contract, high capital returns and high borrowing 
costs create a strong incentive for forward-looking entrepreneurs under the optimal contract to borrow less and repay 
lenders at a lower rate, which pushes down the financial premium. Since net worth is relatively stable for forward-looking 
risk-neutral entrepreneurs, higher risk aversion has little impact on the dynamic response of the economy to risk shocks. 
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Fig. 4. Monetary policy shock.

Forward-looking entrepreneurs, whether risk-neutral or risk-averse, stabilize consumption and output to a similar magnitude 
under the optimal contract, diminishing amplification in both cases.

5. Conclusion

Three key assumptions underpin the benchmark loan contract in the literature on CSV frictions in macroeconomic mod-
els: (1) returns to lenders are predetermined, and entrepreneurs are (2) myopic and (3) risk-neutral. We contribute to this 
literature by relaxing all three assumptions and allowing for a state-contingent lending rate with forward-looking risk-averse 
entrepreneurs. The resulting equilibrium loan contract, which we call the optimal contract, generates smaller amplification 
than the standard predetermined loan contract for technology shocks, monetary shocks and risk shocks. The financial accel-
erator is thus dampened under the optimal contract.

In the online appendix we show that even under the fixed rate loan contract of BGG, the strength of the financial 
accelerator depends on extremely persistent shocks and loose monetary policy. Stationary shocks or hawkish monetary 
policy dampen the financial accelerator considerably and in some cases reverse the accelerator such that financial frictions 
stabilize macroeconomic fluctuations. The financial accelerator works primarily through the demand channel by amplifying 
markup fluctuations. Increased net worth leads to lower financial premiums, cheaper borrowing, and more investment. 
As a result, the capital price rises which further increases net worth, inducing even higher investment that facilitates a 
further decline in markups, which ultimately raises output. This virtuous circle is undercut by hawkish monetary policy, 
which stabilizes markups, dampening the output response to technology and monetary shocks. Similarly, in models with 
nominal rigidities stationary technology shocks increase markups. Higher markups decrease returns to capital and shrink 
net worth, thereby reversing the financial accelerator. Thus, when central banks fight inflation aggressively or when shocks 
are stationary, financial frictions actually stabilize business cycle fluctuations.

These results reveal the fragility of the financial accelerator to alternative assumptions on the lending rate, en-
trepreneurial preferences, shock persistence and monetary policy. The most important takeaway is that CSV frictions do 
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not always generate a financial accelerator and may in some cases generate a financial decelerator which stabilizes the 
economy’s output response to technology, monetary and risk shocks.

Fig. 5. Idiosyncratic volatility shock.

Appendix A. Recursive formulation of the entrepreneur’s objective function

Our goal in this section is to prove that (5) is the recursive formulation of the entrepreneur’s objective function (1). We 
begin by substituting the expression for �t from (6) into (5), which yields:

V e
t ( j) = 1 − γ

1 − σe
(N1−σe

t ( j))γEt

{
κ1−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe �t+1

}
. (A.1)

Rolling (6) one period forward gives an expression for �t+1:

�t+1 = 1 + γEt+1

{
κ1−σe

t+1 R1−σe
k,t+2(1 − �t+2)

1−σe �t+2

}
. (A.2)

Substitute (A.2) into (A.1) to obtain:

V e
t ( j) = 1 − γ

1 − σe
N1−σe

t ( j)γEt

(
κ1−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe

[
1 + γEt+1

{
κ1−σe

t+1 R1−σe
k,t+2(1 − �t+2)

1−σe �t+2

}])
.

(A.3)

Substitute the expression for net worth in period t + 1,

Nt+1( j) = Nt( j)κt Rk,t+1(1 − �t+1) (A.4)

into (A.3) to obtain:
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V e
t ( j) = γ (1 − γ )

1 − σe
Et
{

N1−σe
t+1 ( j)

}+ γ (1 − γ )

1 − σe
Et

[
N1−σe

t+1 ( j)γEt+1

{
κ1−σe

t+1 R1−σe
k,t+2(1 − �t+2)

1−σe �t+2

}]
. (A.5)

Substitute (A.2) into (A.5) to further simplify:

V e
t ( j) = γ (1 − γ )

1 − σe
Et
{

N1−σe
t+1 ( j)

}+ γ (1 − γ )

1 − σe
Et

{
N1−σe

t+1 ( j)(�t+1 − 1)

}
. (A.6)

Now substitute V e
t+1( j) = 1−γ

1−σe
Et
{

N1−σe
t+1 ( j)(�t+1 − 1)

}
into (A.6) to derive the expression below and complete the proof:

V e
t ( j) = 1 − γ

1 − σe
γEt

{
N1−σe

t+1 ( j)
}+ γEt V e

t+1( j). (A.7)

Equation (A.7) is the recursive formula for the original value function given in equation (1).

Appendix B. Solving the optimization problem for each loan contract

B.1. Proof of Proposition 1: the BGG contract

In the BGG contract, the lender is guaranteed a predetermined rate of return. In this case, the entrepreneur’s Lagrangian 
will be

LBGG = Et

{Nt( j)1−σeκ1−σe
t R1−σe

k,t+1(1 − �t+1)
1−σe

1 − σe
+ λt+1

[
βEt Uc,t+1κt Rk,t+1(�t+1 − μGt+1) − (κt − 1)Uc,t

]}
.

The entrepreneur’s first order conditions with respect to leverage κt and the productivity cutoff ω̄t+1 are:

∂LBGG

∂κt
= Nt( j)1−σeEt

{
κ−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe

}
−Et

{
λt+1

}UC,t

κt
= 0,

∂LBGG

∂ω̄t+1
= −Nt( j)1−σeκ1−σe

t R1−σe
k,t+1(1 − �t+1)

−σe �ω,t+1 + λt+1βEt

{
UC,t+1

}
κt Rk,t+1(�ω,t+1 − μGω,t+1) = 0.

If we separate λt+1 on the right hand side from ∂LBGG

∂ω̄t+1
, take expectations and then combine with ∂LBGG

∂κt
, we find:

Nt( j)1−σeEt

{
κ−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe

}
Uc,t
κt

= Et

⎧⎪⎨
⎪⎩

Nt( j)1−σeκ1−σe
t R1−σe

k,t+1(1 − �t+1)
−σe �ω,t+1

βEt

{
UC,t+1

}
κt Rk,t+1(�ω,t+1 − μGω,t+1)

⎫⎪⎬
⎪⎭ . (B.1)

Rearranging, simplifying and substituting in the stochastic discount factor yields

Et

{
(1 − �t+1)

1−σe R1−σe
k,t+1

}
= Et

{
(1 − �t+1)

−σe �ω,t+1

Et{�t,t+1}κt(�ω,t+1 − μGω,t+1)
R−σe

k,t+1

}
. (B.2)

B.2. Proof of Proposition 2: the MCC contract

In the MCC contract, the entrepreneur’s Lagrangian is

LMCC = Et

{
(1 − γ )Nt( j)1−σeκ1−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe

1 − σe

}
+ λtEt

{
βUc,t+1κt Rk,t+1(�t+1 − μGt+1) − (κt − 1)Uc,t

}
.

The entrepreneur’s first order conditions with respect to κt and ω̄t+1 are:

∂LMCC

∂κt
= (1 − γ )Et

{
Nt( j)1−σeκ−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe
}

+ λt
(
Et

{
βUC,t+1 Rk,t+1(�t+1 − μGt+1) − UC,t

})= 0,

∂LMCC

∂ω̄t+1
= (1 − γ )

[
−Nt( j)1−σ κ−σe

t R1−σe
k,t+1�ω(1 − �t+1)

−σe + λtβUC,t+1κt Rk,t+1(�ω,t+1 − μGω,t+1)
]

= 0.

Rearranging these first order conditions, solving in terms of λt and setting them equal to each other yields

κ1−σe
t Et

{
R1−σe

k,t+1(1 − �t+1)
1−σe

}
κ−σe R−σe (1 − �t+1)−σe

= �ω

�ω,t+1 − μGω,t+1

1

�t,t+1
. (B.3)
t k,t+1
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In the frictionless model monitoring costs are set to zero (μ = 0), so that the optimality condition becomes

κtEt

{
R1−σe

k,t+1(1 − �t+1)
1−σe

}
R−σe

k,t+1(1 − �t+1)−σe
= 1

�t,t+1
. (B.4)

B.3. Proof of Proposition 3: the optimal contract with forward-looking entrepreneurs

Under the optimal contract, the forward-looking entrepreneur’s Lagrangian has the following form (if we divide the value 
function by (1 − γ )Nt( j) as a scaling factor):

LOpt = (1 − γ )

1 − σe
Et

{
Nt( j)(�t − 1) +

∞∑
i=0

λt+i

[
βUc,t+i+1κt+i Rk,t+i+1(�t+1 − μGt+1) − (κt+i − 1)Uc,t+i

]}
,

where �t is defined in (6). The entrepreneur’s first order condition with respect to leverage κt is

∂LOpt
t

∂κt
=0

=(1 − γ )Et

{
Nt( j)1−σeγ κ−σe

t R1−σe
k,t+1(1 − �t+1)

1−σe �t+1 + λt

(
βUC,t+1 Rk,t+1(�t+1 − μGt+1) − UC,t

)}
.

The entrepreneur’s first order condition with respect to the productivity cutoff ω̄t+1 is

∂LOpt
t

∂ω̄t+1
=0

=(1 − γ )Et

{
− Nt( j)1−σeγ κ1−σe

t R1−σe
k,t+1(1 − �t+1)

−σe �ω,t+1�t+1

+ λt

[
βUC,t+1κt Rk,t+1(�ω,t+1 − μGω,t+1)

]}
.

We then move λt to the right hand side of both first order conditions and divide the equations by each other to obtain

−κt R−σe
k,t+1(1 − �t+1)

−σe �ω,t+1Et+1�t+1

Et

{
R1−σe

k,t+1(1 − �t+1)1−σe �t+1

} = βκt UC,t+1(�ω,t+1 − μGω,t+1)

βEt

{
UC,t+1κt R1−σe

k,t+1(�t+1 − μGt+1)

}
− κt UC,t

We use the participation constraint for lenders to simplify the denominator of the right hand side. After rearranging and 
simplifying, we get

κtEt

{
R1−σe

k,t+1(1 − �t+1)
1−σe �t+1

}
R−σe

k,t+1(1 − �t+1)−σe
= − �ω,t+1

�ω,t+1 − μGω,t+1

�t+1

�t,t+1
. (B.5)

In the frictionless model monitoring costs are set to zero (μ = 0), such that − gω
hω

= 1 and the optimality condition becomes

κtEt

{
�t+1 R1−σe

k,t+1(1 − �t+1)
1−σe

}
�t+1 R−σe

k,t+1(1 − �t+1)−σe
= 1

�t,t+1
. (B.6)

B.4. The BGG contract with forward-looking entrepreneurs

For a predetermined lending rate, the non-myopic entrepreneur’s Lagrangian has the following form if we divide the value 
function by (1 − γ )Nt( j) as a scaling factor:

L = 1 − γ

1 − σe
Et

{
Nt( j)1−σe (�t − 1) +

∞∑
i=0

λt+i+1

[
βEt

{
Uc,t+i+1

}
κt+i Rk,t+i+1(�t+1 − μGt+1) − (κt+i − 1)Uc,t+i

]}
.

The entrepreneur’s first order condition with respect to leverage κt is
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∂Lt

∂κt
=0

=(1 − γ )Et

{
Nt( j)1−σeγ κ−σe

t (1 − �t+1)
1−σe R1−σe

k,t+1�t+1

+ λt+1

(
βEt{UC,t+1}Rk,t+1(�t+1 − μGt+1) − UC,t

)}
, (B.7)

where we have used the fact that ∂�t
∂κt

= Et

{
γ κ−σe

t (1 − �t+1)
1−σe R1−σe

k,t+1�t+1

}
and ∂�t+i

∂κt
= 0 for i = 1, 2, . . . The en-

trepreneur’s first order condition with respect to the productivity cutoff ω̄t+1 is

∂Lt

∂ω̄t+1
=(1 − γ )Et

{
− Nt( j)1−σeγ κ1−σe

t (1 − �t+1)
−σe �ω,t+1 R1−σe

k,t+1�t+1

+ λt+1

[
βEt

{
UC,t+1

}
κt Rk,t+1(�ω,t+1 − μGω,t+1)

]}
= 0,

where we have used the fact that ∂�t
∂ω̄t+1

= −κ1−σe
t (1 − �t+1)

−σe �ω,t+1 R1−σe
k,t+1�t+1 and ∂�t+i

∂ω̄t+1
= 0 for i = 1, 2 . . . One can 

express λt+1 in the equation ∂L
∂ω̄t+1

= 0 as a function of other variables, and substitute the result into ∂L
∂κt

= 0. Then, using 
the participation constraint to simplify, we obtain

κtEt

{
�t+1 R1−σe

k,t+1(1 − �t+1)
1−σe

}
= Et

{
(1 − �t+1)

−σe �ω,t+1 R−σe
k,t+1

�ω,t+1 − μGω,t+1

�t+1

Et�t,t+1

}
. (B.8)

It is trivial to show that log-linearization of the BGG contract with myopic or non-myopic, risk-neutral or risk-averse, en-
trepreneurs gives an identical optimality condition. However, this identity does not hold for higher order approximations. 
Under the frictionless model monitoring costs equal zero (μ = 0), and the optimality condition simplifies to:

κtEt

{
(1 − �t+1)

1−σe R1−σe
k,t+1�t+1

}

Et

{
(1 − �t+1)−σe R−σe

k,t+1�t+1

} = 1

Et�t,t+1
. (B.9)

Appendix C. Log-linearization of the lending contracts

C.1. Log-linearization of the common optimality condition

We begin by log-linearizing the common optimality condition for each contract. The non-linear participation constraint and 
FOC are, respectively:

βEt

{
UC,t+1

}
κt Rk,t+1(�t+1 − μGt+1) − (κt − 1)UC,t = 0, (C.1)

Et

[
(1 − �t+1)

1−σe R1−σe
k,t+1

]
= Et

[
(1 − �t+1)

−σe �ω,t+1

Et�t,t+1κt(�ω,t+1 − μGω,t+1)
R−σe

k,t+1

]
. (C.2)

In their linearized form, these become:

−σ
(
Et Ĉt+1 − Ĉt

)
+ R̂k,t+1 + �ω − μGω

� − μG
ω̄ω̂t+1 + �σ − μGσ

� − μG
σωσ̂ω,t = 1

κ − 1
κ̂t, (C.3)

κ̂t +Et Rk,t+1 − �ω

1 − �
ω̄Etω̂t+1 − �σ

1 − �
σωσ̂ω,t = −Et�̂t,t+1 +

(
�ωω

�ω
− �ωω − μGωω

�ω − μGω

)
ω̄Etω̂t+1

+
(

�ωσ

�ω
− �ωσ − μGω

�ω − μGω

)
σωσ̂ω,t . (C.4)

Now we take the expected value of the participation constraint (C.3) and obtain:

Et�̂t,t+1 +Et R̂k,t+1 + �ω − μGω

� − μG
ω̄Etω̂t+1 + �σ − μGσ

� − μG
σωσ̂ω,t = 1

κ − 1
κ̂t . (C.5)

Define �̂t = R̂k,t − R̂t , and rewrite the system as:
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1

κ − 1
κ̂t − �σ − μGσ

� − μG
σωσ̂ω,t −Et�̂t+1 = �ω − μGω

� − μG
ω̄Etω̂t+1,

κ̂t +Et�̂t+1 −
(

�ωσ

�ω
− �ωσ − μGωσ

�ω − μGω
+ �σω

1 − �

)
σωσ̂ω,t =

(
�ωω

�ω
− �ωω − μGωω

�ω − μGω
+ �ω

1 − �

)
ω̄Etω̂t+1. (C.6)

Now we can set these two equations equal to each other and eliminate ω:

κ̂t +Et�̂t+1 −
(

�ωσ

�ω
− �ωσ − μGωσ

�ω − μGω
+ �σ

1 − �

)
σωσ̂ω,t =

�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

�ω−μGω
�−μG

(
1

κ − 1
κ̂t − �σ − μGσ

� − μG
σωσ̂ω,t −Et�̂t+1

)
. (C.7)

We can rearrange this to obtain:

Et�̂t+1 = Et
{

R̂k,t+1 − R̂t+1
}= νκ κ̂t + νσ σωσ̂ω,t (C.8)

where νκ =
�ωω
�ω

− �ωω−μGωω
�ω−μGω

�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

+ �ω−μGω
�−μG

1
κ−1 , νσ =

− �σ −μGσ
�−μG

(
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

)
+ �ω−μGω

�−μG

(
�ωσ
�ω

− �ωσ −μGωσ
�ω−μGω

+ �σ
1−�

)
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

+ �ω−μGω
�−μG

.

C.2. Corollary 1: log-linearization of the BGG lending rate

The log-linear lending rate in BGG is given by:

R̂t+1 −Et R̂t+1 = 0. (C.9)

C.3. Corollary 2: log-linearization of the MCC contract

The log-linearized MCC contract is obtained by setting �̂t+1 = 0 in the optimal contract equation below (C.16).

C.4. Corollary 3: log-linearization of the optimal contract

In their linearized form, the participation constraint and FOC for the optimal contract become:

R̂t+1 = − 1

κ − 1
κ̂t + �ω − μGω

� − μG
ω̄ω̂t+1 + �σ − μGσ

� − μG
σωσ̂ω,t + R̂k,t+1, (C.10)

κ̂t + (1 − σe)(Et Rk,t+1 − �ω

1 − �
ω̄Etω̄t+1) + σe(R̂k,t+1 − �ω

1 − �
ω̄ω̂t+1) − �σ σω

1 − �
σ̂ω,t = (C.11)

− �̂t,t+1 +
(

�ωω

�ω
− �ωω − μGωω

�ω − μGω

)
ω̄ω̂t+1 +

(
�ωσ

�ω
− �ωσ − μGωσ

�ω − μGω

)
σωσ̂ω,t + �̂t+1 −Et�̂t+1.

Now we substitute the participation constraint into the optimality condition and obtain:

κ̂t + (1 − σe)Et Rk,t+1 + σe R̂k,t+1 + �̂t,t+1 −
(

�ωσ

�ω
− �ωσ − μGωσ

�ω − μGω
+ �σ

1 − �

)
σωσ̂ω,t =

(1 − σe)

�ω
1−�

�ω−μGω
�−μG

(
Et R̂t+1 + 1

κ − 1
κ̂t − �σ − μGσ

� − μG
σωσ̂ω,t −Et R̂k,t+1

)

+
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

�ω−μGω
�−μG

(
R̂t+1 + 1

κ − 1
κ̂t − �σ − μGσ

� − μG
σωσ̂ω,t − R̂k,t+1

)
+ �̂t+1 −Et�̂t+1. (C.12)

Using 
�ω

1−�
�ω−μGω

�−μG

= κ − 1, we can simplify the previous expression to:

(1 − σe)Et Rk,t+1 + σe R̂k,t+1 + �̂t,t+1 −
(

�ωσ

�ω
− �ωσ − μGωσ

�ω − μGω
+ �σ

1 − �

)
σωσ̂ω,t =

+ (1 − σe)(κ − 1)

(
Et R̂t+1 − �σ − μGσ

σωσ̂ω,t −Et R̂k,t+1

)

� − μG
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+
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

�ω−μGω
�−μG

(
R̂t+1 − �σ − μGσ

� − μG
σωσ̂ω,t − R̂k,t+1

)

+
�ωω
�ω

− �ωω−μGωω
�ω−μGω

�ω−μGω
�−μG

1

κ − 1
κ̂t + �̂t+1 −Et�̂t+1. (C.13)

We use the expression for leverage to obtain:

(1 − σe)Et Rk,t+1 + σe R̂k,t+1 + �̂t,t+1 −
(

�ωσ

�ω
− �ωσ − μGωσ

�ω − μGω
+ �σ

1 − �

)
σωσ̂ω,t − (�̂t+1 −Et�̂t+1) =

(1 − σe)(κ − 1)

(
Et R̂t+1 − �σ − μGσ

� − μG
σωσ̂ω,t −Et R̂k,t+1

)
+

�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

�ω−μGω
�−μG

(
R̂t+1 − �σ − μGσ

� − μG
σωσ̂ω,t − R̂k,t+1

)
+

�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

+ �ω−μGω
�−μG

�ω−μGω
�−μG

Et�̂t+1

−
−�σ −μGσ

�−μG

(
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ �ω
1−�

)
+ �ω−μGω

�−μG

(
�ωσ
�ω

− �ωσ −μGωσ
�ω−μGω

+ �σ
1−�

)
�ω−μGω
�−μG

σωσ̂ω,t (C.14)

We can simplify this expression to obtain:

− σe(Rk,t+1 −Et Rk,t+1) + �̂t,t+1 −Et�̂t,t+1 − (�̂t+1 −Et�̂t+1) =
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

�ω−μGω
�−μG

(R̂t+1 − R̂k,t+1) +
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

�ω−μGω
�−μG

Et�̂t+1 (C.15)

We set α̃ =
�ω−μGω

�−μG
�ωω
�ω

− �ωω−μGωω
�ω−μGω

+ σe�ω
1−�

, and simplify the above expression to the following:

Rt+1 −Et Rt+1 = Rk,t+1 −Et Rk,t+1 − α̃

[
σe(Rk,t+1 −Et Rk,t+1) − (�̂t,t+1 −Et�̂t,t+1) + �̂t+1 −Et�̂t+1

]
(C.16)

Finally we solve for the dynamics of �̂t :

�

� − 1
�̂t = (1 − σe)(κ̂t − �ω

1 − �
ωEtω̂t+1 − �σ

1 − �
σωσ̂ω,t +Et R̂k,t+1) +Et�̂t+1. (C.17)

Using the participation constraint we eliminate ω in the expression for �̂t :

�

� − 1
�̂t =(1 − σe)

[
κ̂t −

�ω
1−�

�ω−μGω
�−μG

(
1

κ − 1
κ̂t −Et R̂k,t+1 +Et R̂t+1 − �σ − μGσ

� − μG
σωσ̂ω,t

)

+ �σ − μGσ

� − μG
σωσ̂ω,t +Et R̂k,t+1

]
+Et�̂t+1. (C.18)

We can rearrange this expression to match Corollary 3 in the text:

�̂t = εNEt

{
(1 − σe)[(κ − 1)(R̂k,t+1 − R̂t+1) + R̂k,t+1 + ν�σ̂ω,t] + �̂t+1

}
, (C.19)

where ν� = (�σ −μGσ ) �ω
�ω−μGω

−�σ

1−�
σω .

Appendix D. The complete log-linearized model

In this section we review the whole model in its log-linearized form.
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D.1. New Keynesian components

We begin with the set of equations characterizing the standard New Keynesian components of the model. Equation (D.1)
gives the Euler equation for state-contingent assets from the FOC for deposits, while (D.2) is the Euler equation for nom-
inal bonds. The labor market clearing condition is given by (D.3), (D.4) is the New Keynesian Phillips curve, (D.5) is the 
production function, (D.6) gives the evolution of capital, (D.7) refers to the dynamics of the price of capital, (D.8) gives 
returns to capital, and (D.9) refers to goods market clearing. Shocks to technology, monetary policy, government spending 
and idiosyncratic risk are defined by (D.10), (D.11), (D.12) and (D.13).

− σ
(
Et Ĉt+1 − Ĉt

)
+Et R̂t+1 = 0, (D.1)

R̂n
t = Et R̂t+1 +Etπ̂t+1 (D.2)

Ŷt − Ĥt − X̂t − σ Ĉt = ηĤt, (D.3)

π̂t = − (1 − θ)(1 − θβ)

θ
X̂t + βEtπ̂t+1. (D.4)

Ŷt = Ât + α K̂t−1 + (1 − α)(1 − �)Ĥt . (D.5)

K̂t = δ Ît + (1 − δ)K̂t−1, (D.6)

Q̂ t = δφK ( Ît − K̂t−1), (D.7)

R̂k,t+1 = (1 − ε)(Ŷt+1 − K̂t − X̂t+1) + ε Q̂ t+1 − Q̂ t (D.8)

Y Ŷt = CĈt + I Ît + GĜt + CeĈe
t + φμφ̂μ,t, (D.9)

Â = ρ A Ât−1 + ε A
t (D.10)

R̂n
t = ρRn

R̂n
t−1 + ξπ̂t + ρY Ŷt + εRn

t (D.11)

Ĝt = ρG Ĝt−1 + εG
t (D.12)

σ̂ω,t = ρσω σ̂ω,t−1 + εσω
t (D.13)

D.2. Entrepreneurial consumption and net worth

The evolution of entrepreneurial net worth is given by (D.14), where (D.15) defines leverage. Entrepreneurial consumption 
is defined by (D.16) and the financial premium is given by (D.17).

N̂t+1 = εN (N̂t + R̂t+1 + κ(R̂k,t+1 − R̂t+1) + ν�σ̂ω,t) + (1 − εN)(Ŷt − X̂t), (D.14)

κ̂t = K̂t + Q̂ t − N̂t (D.15)

Ĉ e
t+1 = N̂t + R̂t+1 + κ(R̂k,t+1 − R̂t+1) + ν�σ̂ω,t (D.16)

Et R̂k,t+1 −Et R̂t+1 = νκ κ̂t + νσ σ̂ω,t (D.17)

D.3. Dynamics of the lending rate

The BGG lending rate is defined as (D.18a), the MCC lending rate is defined as (D.18b) and the optimal lending rate is 
defined as (D.18c). These log-linear expressions are derived in Appendix C.

R̂t+1 −Et R̂t+1 =

⎧⎪⎨
⎪⎩

0 (a)
R̂k,t+1 −Et Rk,t+1 − α̃σ (Ĉt+1 −Et Ĉt+1) (b)

R̂k,t+1 −Et Rk,t+1 − α̃
[
σ(Ĉt+1 −Et Ĉt+1) + �̂t+1 −Et�̂t+1

]
(c)

(D.18)

�̂t+1 = εNEt+1

{
(κ − 1)(R̂k,t+2 − R̂t+2) + R̂k,t+2 + ν�σ̂ω,t+1 + �̂t+2

}
(D.19)

D.4. Monitoring costs

φ̂μt = Ĉ e
t+1 + νμ

(
1

κ − 1
κ̂t − (R̂k,t+1 − R̂t+1)

)
+ νσ ,μσ̂ω,t (D.20)
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Appendix E. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.red.2016.12.003.
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