

Monetary shocks at high-frequency and their changing FX transmission around the globe

Massimo Ferrari Bank for International Settlements, UCSC Jonathan Kearns Bank for International Settlements Andreas Schrimpf Bank for International Settlements

Bank of Canada conference – November, 2016 Unconventional Monetary Policies: A Small Open Economy Perspective

Disclaimer: These views presented are those of the authors and do not necessarily reflect those of the BIS.

The FX channel matters

Has the transmission of monetary policy through the exchange rate changed?

The FX channel matters

Has the transmission of monetary policy through the exchange rate changed?

- Unconventional policies have different transmission channels.
- How do we measure unconventional monetary policy shocks?

The FX channel matters

Has the transmission of monetary policy through the exchange rate changed?

- Unconventional policies have different transmission channels.
- How do we measure unconventional monetary policy shocks?
- Many changes in past decade: liquidity, market vol, asset supply, regulation etc.
- Are central banks relying more on international channels?

Introduction	Data	UMP	Time Varying	Conclusions

Methodology

What is the FX respose to a monetary policy announcement?

We use a high-frequency event study:

What is the FX respose to a monetary policy announcement?

We use a high-frequency event study:

- Abstracts from endogeneity.
- Isolates impact from other news in either country during the day.
- Enables estimation of time-varying sensitivity.
- Enables estimation of the impact of different types of news.
- Well established technique: eg Faust et al 2003, Kearns & Manners 2006, Rosa 2011, Glick & Leduc 2013, Gürkaynak & Wright 2013, Rogers et al 2014, etc

Introduction	Data	UMP	Time Varying	Conclusions
Event st	udy			

Regress the FX change on indicators of MP news in a narrow window

$$\Delta s_{t} = \alpha + \beta_{target} MPS_{t}^{OIS} + \beta_{path} MPS_{t}^{Bond - OIS} + \epsilon_{t}$$

Where, for event *t*:

- $MPS_t^{OIS} =$ 'target' shock = the change in the 1-month OIS interest rate
- *MPS*^{Bond OIS} = **'path' shock** = the change in the slope of the yield curve (the yield on 2-year bonds less the 1 month OIS interest rate)

Introduction	Data	UMP	Time Varying	Conclusions
Event st	udy			

Regress the FX change on indicators of MP news in a narrow window

$$\Delta s_t = lpha + eta_{target} MPS_t^{OIS} + eta_{path} MPS_t^{Bond - OIS} + \epsilon_t$$

Where, for event *t*:

- MPS_t^{OIS} = 'target' shock = the change in the 1-month OIS interest rate
- *MPS*^{Bond OIS} = **'path' shock** = the change in the slope of the yield curve (the yield on 2-year bonds less the 1 month OIS interest rate)
- Δs_t = basis point change in the FX rate around the event (log change)
- Quotes are 15 min averages, eg $\Delta s_t = \overline{s_{t+20min \rightarrow t+5min}} \overline{s_{t-20min \rightarrow t-5min}}$

Events and data

- Exact date and time of monetary policy announcements.
- Type of announcement:
 - Monetary Policy Decisions (MPD)
 - **2** Unconventional Monetary Policy (UMP; inc Forward Guidance, FG)

3 Minutes

- Central banks of seven most traded currencies.
- Minute by minute quotes from Thomson Reuters:
 - USD bilateral exchange rates, 1m OIS, 2- & 10-year bonds
 - Extensive data and event cleaning

Data	UMP	Time Varying	Conclusions

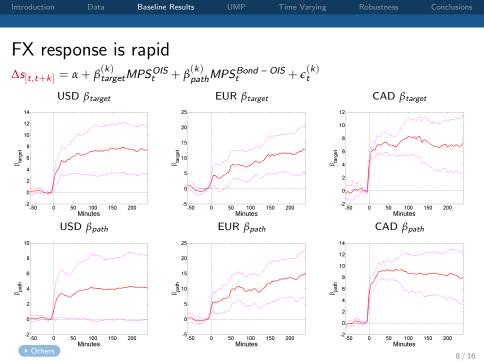
Number of monetary policy events

		MPD	UMP	(o/w FG)	Minutes	Total
U.S.	05.2004-12.2015	59	25	(10)	47	131
Euro Area	04.2004-11.2015	115	32	(8)	_	188
Japan	12.2009-11.2015	17	6	(1)	40	73
U.K.	09.2007-11.2015	74	16	(11)	89	205
Australia	07.2006-15.2015	92	_	-	58	150
Switzerland	09.2010-09.2015	23	_	-	-	23
Canada	01.2007-12.2015	51	_	-	_	51

Notes: MPD = Monetary Policy Decisions

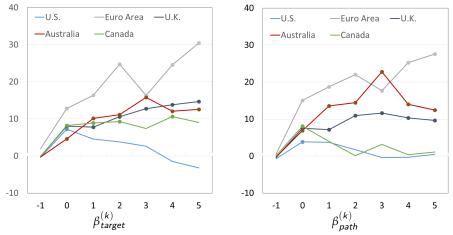
UMP = Unconventional Monetary Policy (of which FG = Forward Guidance)

 $\mathsf{Minutes} = \mathsf{minutes} \text{ of monetary policy meeting}$



Data	Baseline Results	UMP	Time Varying	Conclusions

Baseline results


$$\Delta s_{t} = \alpha + \beta_{target} MPS_{t}^{OIS} + \beta_{path} MPS_{t}^{Bond - OIS} + \epsilon_{t}$$

	U.S.	Euro area	Japan	U.K.	Australia	Switzerland	Canada
β_{target}	4.27	4.03	27.34	6.13	5.63	25.23	6.33
<i>p</i> -val.	(0.00)	(0.03)	(0.04)	(0.00)	(0.00)	(0.00)	(0.00)
β_{path}	2.93	5.63	11.58	6.64	4.78	7.07	7.49
<i>p</i> -val.	(0.04)	(0.00)	(0.20)	(0.00)	(0.00)	(0.07)	(0.00)
R^2	0.21	0.14	0.17	0.45	0.70	0.40	0.72

FX response is mostly persistent

 $\Delta s_{[day \ t \ to \ day \ t+k]} = \alpha + \beta_{target}^{(k)} MPS_t^{OIS} + \beta_{path}^{(k)} MPS_t^{Bond \ -OIS} + \epsilon_t^{(k)}$

Note: Dots indicate statistically different from zero.

Introduction Data Baseline Results UMP Time Varying Robustness Conclusions

UMP events don't seem that different

$$\Delta s_t = \alpha + (\beta_{target} + \beta_{target}^{UMP} \mathbb{1}^{UMP}) MPS_t^{OIS} + (\beta_{path} + \beta_{path}^{UMP} \mathbb{1}^{UMP}) MPS^{Bond - OIS_t} + \epsilon_t$$

UMP events don't seem that different

$$\Delta s_{t} = \alpha + (\beta_{target} + \beta_{target}^{UMP} \mathbb{1}^{UMP}) MPS_{t}^{OIS} + (\beta_{path} + \beta_{path}^{UMP} \mathbb{1}^{UMP}) MPS^{Bond - OIS_{t}} + \epsilon_{t}$$

UMP

	<u>U.S.</u>	Euro Area	<u>U.K.</u>
β_{target}	3.19	4.57	6.91
<i>p</i> -val.	(0.00)	(0.10)	(0.00)
β_{path}	1.63	6.56	8.29
<i>p</i> -val.	(0.01)	(0.02)	(0.00)
β_{target}^{UMP}	9.76	0.46	-0.35
<i>p</i> -val.	(0.22)	(0.96)	(0.87)
$\beta_{\it path}^{\it UMP}$	10.92	-1.95	-0.97
<i>p</i> -val.	(0.00)	(0.61)	(0.76)
R^2	0.52	0.22	0.51

Has the sensitivity of the exchange rate to MP changed?

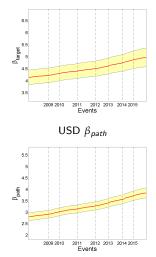
Changes in market conditions and operation:

- ZLB, safe asset supply, liquidity, volatility, risk premia.
- QE, high-speed and algo trading.

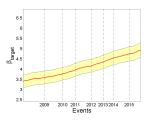
Has the sensitivity of the exchange rate to MP changed?

Changes in market conditions and operation:

- ZLB, safe asset supply, liquidity, volatility, risk premia.
- QE, high-speed and algo trading.

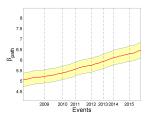

Estimate time-varying coefficients:

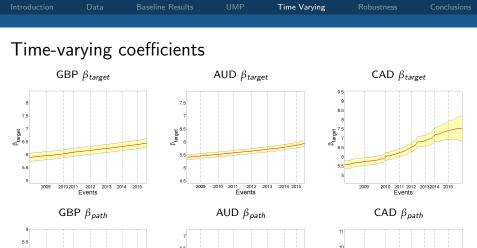
- Non-parametric estimation (Ang & Kristensen 2012).
- Coefficient estimates downweight more distant observations.

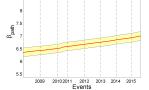

$$\Delta s_t = \alpha_t + \beta_{target,t} \cdot MPS_t^{OIS} + \beta_{path,t} \cdot MPS_t^{Bond - OIS} + \epsilon_t,$$

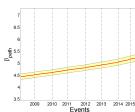
where $\beta_{target,t}$ and $\beta_{path,t}$ are time-varying coefficients

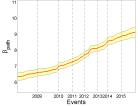
Time-varying coefficients


USD β_{target}




EUR β_{target}





Introduction Data Baseline Results UMP **Time Varying** Robustness Conclusions

Why is monetary policy having a larger effect on FX?

Mostly it's easier to rule out explanations.

- Not UMP:
 - Increase for Australia and Canada despite no/little UMP.
 - UMP doesn't have a larger impact in Europe or UK.
- The monotonic increase over the sample is inconsistent with:
 - FX risk premia participants demand greater return for risk.
 - Market liquidity higher inventory risk when more news.
- Other possible explanations are harder to assess:
 - More information on long-run exchange rate in CB announcements.
 - Changes in market structure high-frequency and algorithmic trading.
- It could alternatively relate to the low level of interest rates.

Rolling window OLS with just 2-year bond to measure MPS <a>more

Conclusions

- Monetary policy continues to have a significant effect on exchange rates.
 - Long interest rates are important for FX response.
 - Common framework using short and long rates can characterise MP shocks before and at ZLB.
 - Effect of UMP is mostly similar to conventional MP.

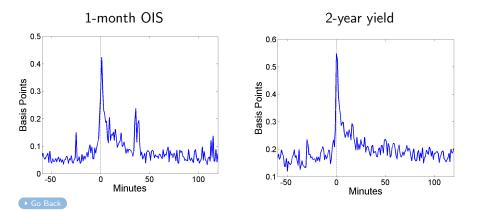
Conclusions

- Monetary policy continues to have a significant effect on exchange rates.
 - Long interest rates are important for FX response.
 - Common framework using short and long rates can characterise MP shocks before and at ZLB.
 - Effect of UMP is mostly similar to conventional MP.
- The impact of monetary policy on the exchange rate has increased over time.
 - Not driven by UMP.
 - Increase is broadly monotonic doesn't align with changes in liquidity, risk premia etc. changes in market conditions.

Extra slides

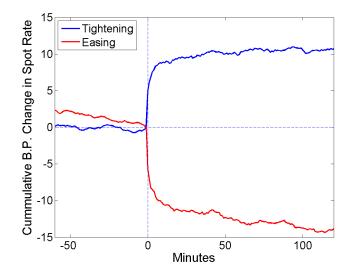
Magnitude of market responses around MP events

Absolute average changes in basis points


	Policy Rate	Target	Path	$\Delta y^{(2)}$	$\Delta y_{\perp}^{(10)}$	FX Spot
U.S.	7.8	1.0	2.2	1.7	1.8	17.4
Euro Area	5.5	0.9	1.1	0.8	0.7	12.6
Japan	0.0	0.2	0.3	0.3	0.9	10.3
U.K.	4.9	1.4	2.1	1.6	0.9	16.5
Australia	9.5	2.9	2.8	2.6	0.8	21.8
Switzerland	6.3	0.6	1.2	1.0	0.5	29.1
Canada	7.9	1.9	3.1	2.6	0.8	31.9

Notes: Target = Δ 1-month OIS; Path = Δ (2-year bonds minus 1-month OIS).

 $\Delta y_{\parallel}^{(10)}$ is the change in the 10-year bond yield orthogonal to that in the 2-year bond yield.


Interest rate variation around announcements

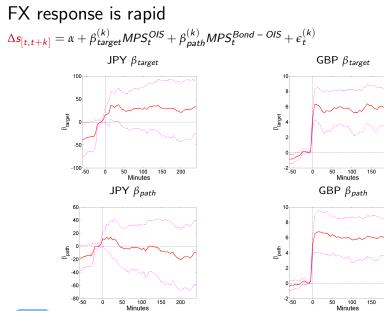
Absolute average change over all announcements

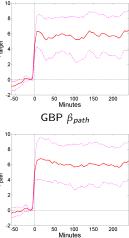
Cumulative FX change around announcements

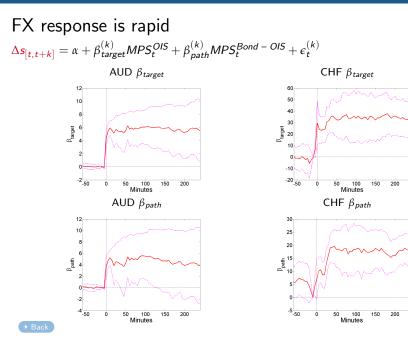
Average change for positive (tightening) and negative (easing) yield response

Robustness: Expectation and Term Premium shocks

$$\Delta s_t = lpha + eta_{exp} MPS_t^{2y} + eta_{tp} MPS_t^{10y\perp} + \epsilon_t$$


Where:


- MPS_t^{2y} = 'expectations' shock = the change in the 2-year bond yield
- MPS^{10y⊥}_t = 'term premium' shock = orthogonal component of changes in the 10-year bond yield


Robustness: Expectation and Term Premium shocks

$$\Delta s_t = \alpha + \beta_{exp} MPS_t^{2y} + \beta_{tp} MPS_t^{10y\perp} + \epsilon_t$$

	U.S.	Euro area	Japan	U.K.	Australia	Switzerland	Canada
β_{exp}	3.07	4.66	1.21	3.94	5.41	11.31	7.09
<i>p</i> -val.	(0.00)	(0.00)	(0.38)	(0.00)	(0.00)	(0.00)	(0.00)
β_{tp}	2.65	8.23	-0.10	4.12	4.56	24.33	-0.89
<i>p</i> -val.	(0.00)	(0.00)	(0.87)	(0.04)	(0.00)	(0.00)	(0.73)
R^2	0.36	0.35	0.00	0.45	0.68	0.39	0.67

Are UMP events different?

Expectation and Term Premium shocks

$$\Delta s_{t} = \alpha + (\beta_{exp} + \beta_{exp}^{UMP} \mathbb{1}^{UMP}) MPS_{t}^{2y} + (\beta_{tp} + \beta_{tp}^{UMP} \mathbb{1}^{UMP}) MPS_{t}^{10y\perp} + \epsilon_{t}$$

	U.S.	Euro Area	U.K.
β_{exp}	2.33	4.90	3.72
<i>p</i> -val.	(0.00)	(0.08)	(0.00)
β_{tp}	2.41	7.22	4.16
<i>p</i> -val.	(0.02)	(0.00)	(0.04)
β_{exp}^{UMP}	7.42	2.24	0.52
<i>p</i> -val.	(0.00)	(0.49)	(0.83)
β_{tp}^{UMP}	-0.58	0.06	-1.28
<i>p</i> -val.	(0.63)	(0.98)	(0.71)
R^2	0.55	0.38	0.45

Are Forward Guidance events different?

Target and Path shocks

$$\Delta s_t = \alpha + (\beta_{target} + \beta_{target}^{FG} \mathbb{1}^{FG}) MPS_t^{OIS} + (\beta_{path} + \beta_{path}^{FG} \mathbb{1}^{FG}) MPS^{Bond - OIS_t} + \epsilon_t$$

	U.S.	Euro Area	U.K.
β_{target}	4.21	4.94	6.28
<i>p</i> -val.	(0.00)	(0.06)	(0.00)
β_{path}	2.84	7.12	7.48
<i>p</i> -val.	(0.08)	(0.01)	(0.00)
β_{target}^{FG}	-3.63	2.83	4.02
<i>p</i> -val.	(0.46)	(0.48)	(0.20)
β_{path}^{FG}	1.91	2.38	1.81
<i>p</i> -val.	(0.37)	(0.39)	(0.46)
R^2	0.23	0.32	0.45

Are Forward Guidance events different?

Expectation and Term Premium shocks

$$\Delta s_{t} = \alpha + (\beta_{exp} + \beta_{exp}^{FG} \mathbb{1}^{FG}) MPS_{t}^{2y} + (\beta_{tp} + \beta_{tp}^{FG} \mathbb{1}^{FG}) MPS_{t}^{10y\perp} + \epsilon_{t}$$

	U.S.	Euro Area	U.K.
β_{exp}	2.88	5.35	3.62
<i>p</i> -val.	(0.00)	(0.05)	(0.00)
β_{tp}	3.59	7.47	4.01
<i>p</i> -val.	(0.00)	(0.00)	(0.03)
β_{exp}^{FG}	6.29	4.86	4.07
<i>p</i> -val.	(0.09)	(0.08)	(0.06)
β_{tp}^{FG}	3.36	3.50	3.15
<i>p</i> -val.	(0.54)	(0.51)	(0.44)
R^2	0.54	0.40	0.37

Spillovers

- Interest rate changes in large countries (eg US) may affect other countries' rates.
- The FX response then reflects both interest rate changes.
- To check the importance of spillovers we estimate with GMM the system of equations:

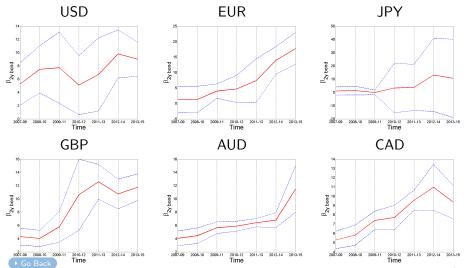
$$MPS_{c,t}^{j} = \delta MPS_{m,t}^{j} + \epsilon_{c,t}^{1}$$
(1)

$$\Delta s_{cm,t} = \alpha + \beta_1 MPS_{m,t}^j + \beta_2 MPS_{c,t}^j + \epsilon_{cm,t}^2$$
(2)

• We find spillovers a very small within our narrow window.

Robustness: Univariate regression results

		OIS 1-Month	OIS 6-Months	2-Year Bonds	10-Year Bonds
U.S.	β	2.36	4.20	3.07	3.26
	P-value	(0.00)	(0.00)	(0.01)	(0.00)
	R^2	0.04	0.10	0.19	0.30
Euro area	β	-0.04	0.04	4.67	8.74
	P-value	(0.62)	(0.93)	(0.01)	(0.00)
	R^2	0.00	0.00	0.11	0.35
Japan	β	15.27	-0.33	1.21	0.16
	P-value	(0.18)	(0.83)	(0.42)	(0.60)
	R^2	0.15	0.00	0.00	0.00



Robustness: Univariate regression results

		OIS 1-Month	OIS 6-Months	2-Year Bonds	10-Year Bonds
U.K.	β	0.57	1.15	3.95	5.38
	P-value	(0.00)	(0.03)	(0.01)	(0.00)
	R^2	0.02	0.03	0.29	0.41
Australia	β	3.62	3.47	5.41	11.25
	P-value	(0.00)	(0.00)	(0.00)	(0.00)
	R^2	0.38	0.50	0.65	0.57
Switzerland	β	2.39	4.67	11.31	23.68
	P-value	(0.09)	(0.05)	(0.00)	(0.00)
	R^2	0.04	0.07	0.26	0.38
Canada	β	2.66	6.35	7.09	13.10
	P-value	(0.10)	(0.00)	(0.00)	(0.00)
	R^2	0.08	0.48	0.68	0.39

Robustness: Simple rolling window regressions

Three-year windows, 2-year bond: $\Delta s_t = \alpha + \beta MPS_t^{2y \ bond} + \epsilon_t$

Robustness: Longer windows to measure MPS

	1m OIS and 2y bond					1m OIS and 10y bond			
Minutes:	20	45	75	105		20	45	75	105
U.S.									
β_{target}	3.95	4.00	4.06	4.08		6.24	5.66	6.13	6.39
<i>p</i> -val.	(0.00)	(0.00)	(0.00)	(0.00)		(0.00)	(0.00)	(0.00)	(0.00)
β_{path}	1.53	1.51	1.53	1.52		3.56	2.86	3.25	3.29
<i>p</i> -val.	(0.01)	(0.01)	(0.01)	(0.01)		(0.00)	(0.00)	(0.00)	(0.00)
β_{target}^{UMP}	14.21	16.45	17.65	18.75		8.94	20.65	17.55	14.57
<i>p</i> -val.	(0.27)	(0.22)	(0.18)	(0.14)		(0.41)	(0.04)	(0.00)	(0.09)
β_{path}^{UMP}	11.03	10.65	10.46	10.39		0.22	2.07	1.97	1.97
<i>p</i> -val.	(0.00)	(0.00)	(0.00)	(0.00)		(0.81)	(0.02)	(0.03)	(0.14)
R^2	0.53	0.54	0.56	0.57		0.56	0.62	0.64	0.57

Robustness: Longer windows to measure MPS

	1	1m OIS and 2y bond					1m OIS and 10y bond				
Minutes:	20	45	75	105		20	45	75	105		
Euro Area											
β_{target}	4.57	5.24	6.57	5.66		8.87	9.35	12.93	11.85		
<i>p</i> -val.	(0.10)	(0.04)	(0.00)	(0.00)		(0.03)	(0.00)	(0.00)	(0.00)		
$\beta_{\it path}$	6.56	6.44	6.79	6.39		8.49	8.86	11.32	10.48		
<i>p</i> -val.	(0.02)	(0.00)	(0.00)	(0.00)		(0.01)	(0.00)	(0.00)	(0.00)		
β_{target}^{UMP}	0.58	3.07	-3.54	-5.20		3.63	13.24	0.72	3.89		
<i>p</i> -val.	(0.94)	(0.67)	(0.21)	(0.13)		(0.63)	(0.01)	(0.80)	(0.27)		
β_{path}^{UMP}	-1.92	-0.21	0.89	1.99		-0.52	1.30	-2.07	0.74		
<i>p</i> -val.	(0.61)	(0.97)	(0.68)	(0.40)		(0.89)	(0.54)	(0.22)	(0.69)		
R^2	0.22	0.22	0.41	0.38		0.36	0.47	0.49	0.50		

Robustness: Longer windows to measure MPS

	1m OIS and 2y bond					1m OIS and 10y bond			
Minutes:	20	45	75	105		20	45	75	105
U.K.									
β_{target}	6.91	4.66	3.44	2.69		4.75	4.15	3.76	2.71
<i>p</i> -val.	(0.00)	(0.00)	(0.00)	(0.04)		(0.06)	(0.07)	(0.03)	(0.12)
β_{path}	8.29	6.84	4.32	3.88		4.59	4.73	3.55	2.82
<i>p</i> -val.	(0.00)	(0.00)	(0.01)	(0.04)		(0.09)	(0.04)	(0.05)	(0.12)
β_{target}^{UMP}	-0.35	-1.56	14.39	10.41		2.73	11.48	16.52	5.96
<i>p</i> -val.	(0.87)	(0.72)	(0.07)	(0.03)		(0.34)	(0.01)	(0.04)	(0.46)
β_{path}^{UMP}	-0.97	0.41	-0.50	3.07		-0.65	-0.33	-1.32	-1.18
<i>p</i> -val.	(0.76)	(0.89)	(0.84)	(0.22)		(0.82)	(0.89)	(0.47)	(0.52)
R^2	0.51	0.35	0.20	0.14		0.42	0.42	0.21	0.11

Robustness: path shocks based on 10-year yield

$$\Delta s_t = lpha + eta_{target} MPS_t^{1m \ OIS} + eta_{path} \left(MPS_t^{10y \ bond \ -1m \ OIS}
ight) + \epsilon_t$$

	U.S.	Euro area	Japan	U.K.	Australia	Switzerland	Canada
β_{target}	6.24	9.48	17.20	5.53	11.02	33.90	14.14
<i>p</i> -val.	(0.00)	(0.00)	(0.14)	(0.00)	(0.00)	(0.00)	(0.00)
β_{path}	3.53	9.00	1.67	5.23	9.27	16.98	14.39
<i>p</i> -val.	(0.00)	(0.00)	(0.76)	(0.00)	(0.00)	(0.00)	(0.00)
R^2	0.39	0.35	0.16	0.44	0.67	0.50	0.43

Robustness: M-estimator to control for outliers

	U.S.	Euro area	Japan	U.K.	Australia	Switzerland	Canada
OLS							
β_{target}	4.27	4.03	27.34	6.13	5.63	25.23	6.33
<i>p</i> -val.	(0.00)	(0.03)	(0.04)	(0.00)	(0.00)	(0.00)	(0.00)
β_{path}	2.93	5.63	11.58	6.64	4.78	7.07	7.49
<i>p</i> -val.	(0.04)	(0.00)	(0.20)	(0.00)	(0.00)	(0.07)	(0.00)
R^2	0.21	0.14	0.17	0.45	0.70	0.40	0.72
M-estimator							
β_{target}	4.44	4.32	6.21	6.76	5.64	19.43	6.07
P-Value	(0.00)	(0.03)	(0.32)	(0.00)	(0.00)	(0.01)	(0.00)
β_{path}	3.49	5.84	3.73	6.70	5.04	10.70	7.26
P-Value	(0.00)	(0.00)	(0.51)	(0.00)	(0.00)	(0.00)	(0.00)
R^2	0.21	0.14	0.04	0.45	0.70	0.36	0.72

Robustness: Other US dollar bilateral FX and index

	FUE				CUE	64 D					
	EUR	JPY	U.K.	AUD	CHF	CAD	USD Index	Long/Short			
Target and path											
β_{target}	4.27	2.19	3.71	5.78	3.69	3.16	2.23	2.15			
<i>p</i> -val.	(0.00)	(0.06)	(0.00)	(0.00)	(0.00)	(0.00)	(0.06)	(0.07)			
β_{path}	2.93	2.98	2.22	2.72	3.35	1.60	2.97	3.00			
<i>p</i> -val.	(0.04)	(0.05)	(0.04)	(0.10)	(0.04)	(0.07)	(0.05)	(0.04)			
R^2	0.21	0.24	0.22	0.15	0.24	0.26	0.24	0.24			
Expecta	tions an	d term	premia								
β_{exp}	3.07	2.96	2.37	2.96	3.41	1.76	2.96	2.99			
<i>p</i> -val.	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)			
β_{tp}	2.65	3.08	2.09	2.72	2.45	1.55	3.06	3.10			
<i>p</i> -val.	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)			
R^2	0.36	0.55	0.37	0.22	0.39	0.20	0.55	0.54			

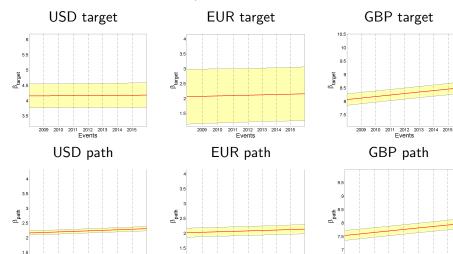
Robustness: Monetary Policy Committee Minutes

	Target and I	Path		Expectat	ions and Terr	n Premium	n Premium Shocks	
	Coefficient	P-Value	R^2		Coefficient	P-Value	R^2	
U.S.								
β_{target}	4.14	(0.00)	0.23	β_{exp}	2.79	(0.00)	0.52	
β_{path}	2.81	(0.08)		β_{tp}	3.61	(0.00)		
$\beta_{target}^{minutes}$	-3.53	(0.03)		$\beta_{exp}^{minutes}$	-0.41	(0.74)		
$\beta_{path}^{minutes}$	-1.33	(0.39)		$\beta_{tp}^{minutes}$	-2.79	(0.00)		
U.K.								
β_{target}	6.42	(0.00)	0.50	β_{exp}	3.65	(0.00)	0.47	
β_{path}	7.64	(0.00)		β_{tp}	4.10	(0.02)		
$\beta_{target}^{minutes}$	2.65	(0.06)		$\beta_{exp}^{minutes}$	1.22	(0.25)		
$\beta_{path}^{minutes}$	0.88	(0.66)		$\beta_{tp}^{minutes}$	4.20	(0.03)		
Australia								
β_{target}	5.67	(0.00)	0.70	β_{exp}	5.56	(0.00)	0.70	
β_{path}	4.86	(0.00)		β_{tp}	5.40	(0.04)		
$\beta_{target}^{minutes}$	-2.44	(0.01)		$\beta_{exp}^{minutes}$	-4.80	(0.00)		
$\beta_{path}^{minutes}$	-2.31	(0.03)		$\beta_{tp}^{minutes}$	-2.11	(0.48)		

Robustness: FX response to data releases

 $\Delta \textit{s}_{t} = \alpha + \beta_{\textit{target}}\textit{news shock}_{t}^{\textit{OIS}} + \beta_{\textit{path}}\textit{news shock}_{t}^{\textit{Bond}-\textit{OIS}} + \epsilon_{t}$

	U.S.	Euro area	Japan	U.K.	Australia	Switzerland	Canada
β_{target}	4.16	2.06	8.98	8.25	5.33	9.44	10.70
<i>p</i> -val.	(0.00)	(0.30)	(0.09)	(0.00)	(0.00)	(0.52)	(0.00)
β_{path}	2.22	2.04	7.92	7.72	6.87	11.43	6.52
<i>p</i> -val.	(0.00)	(0.06)	(0.14)	(0.00)	(0.00)	(0.45)	(0.00)
R^2	0.17	0.03	0.28	0.40	0.77	0.00	0.40



Robustness: FX response to data releases $\Delta s_t = \alpha + \beta_{target}$ news $shock_t^{OIS} + \beta_{path}$ news $shock_t^{Bond - OIS} + \epsilon_t$

2009 2010 2011

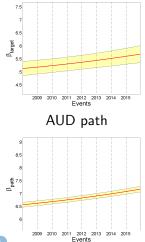
2012 2013 2014 2015

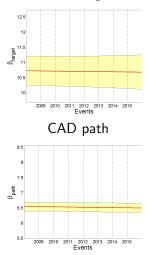
Events

2009 2010 2011 2012

2013 2014 2015

Events


2010 2011 2012 2013 2014 2015 Events 224 / 25


2009

Robustness: FX response to data releases $\Delta s_t = \alpha + \beta_{target}$ news $shock_t^{OIS} + \beta_{path}$ news $shock_t^{Bond - OIS} + \epsilon_t$

CAD target

