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Abstract 

The common-factor hypothesis is one possible explanation for the housing wealth effect. 
Under this hypothesis, house price appreciation is related to changes in consumption as 
long as the available proxies for the common driver of housing and non-housing demand 
are noisy and housing supply is not perfectly elastic. We simulate a model in which a 
common factor drives the relation between house prices and consumption to examine the 
extent to which the common-factor hypothesis can explain the housing wealth effect. Our 
results indicate that the common-factor hypothesis can easily explain the strong housing 
wealth effect estimated with US state-level data. 

Bank topics: Economic models; Housing 
JEL codes: E21; R31 
 

Résumé 

L’hypothèse du facteur commun offre une piste pour comprendre l’effet de richesse 
immobilière. Selon cette hypothèse, l’appréciation du prix des logements est corrélée à 
l’évolution de la consommation tant que les variables d’approximation du facteur 
commun à la demande de logements et à la demande hors logements sont mesurées de 
manière imprécise et que l’offre de logement n’est pas parfaitement élastique. Nous 
procédons à une modélisation afin d’évaluer la validité de l’hypothèse du facteur 
commun. Dans le modèle, la relation entre les prix des logements et la consommation est 
déterminée par un facteur commun. D’après les résultats, l’hypothèse du facteur commun 
permet de bien expliquer l’importance de l’effet de richesse immobilière estimé à partir 
de données des États américains. 

Sujets : Modèles économiques; Logement 
Codes JEL : E21; R31 

 

 

 
 



Non-Technical Summary

The relation between growth in non-housing consumption and growth in house prices is

large and positive, which has led some economists to argue for the existence of a housing

wealth effect. Standard economic theory suggests that the elasticity of consumption to

housing wealth should be close to zero because increases in housing wealth are offset by an

equivalent increase in the costs of housing services.

One explanation that has been proposed for the estimated housing wealth effect is the

common-factor hypothesis. Under this hypothesis, shocks to a common unobservable factor,

such as expected future income, simultaneously affect both house prices and non-housing

consumption. In this paper, we analyze the extent to which the common-factor hypothesis

can explain the magnitude of the observed housing wealth effect.

To do so, we follow a three-step procedure. First, we calibrate Kogan’s (2001) two-sector

general equilibrium model to match the observed moments of consumption and house price

growth in each US state and the District of Columbia. In this model, one underlying variable

drives both consumption and house prices, which vary since housing supply is inelastic.

Second, we simulate the model to generate panels of consumption growth, housing price

appreciation and changes in non-housing capital. In our simulations, we assume that these

variables are observed with measurement errors. Hence, we mimic the assumption embedded

in the common-factor hypothesis; that is, we do not perfectly observe the common driver of

consumption and housing prices. Third, we estimate panel models analogous to those used in

the housing wealth effect literature with simulated data to gauge the amount of measurement

error necessary to achieve the same level of elasticity of consumption to housing wealth that

we observe in the US state-level data.

Our results indicate that the common-factor hypothesis can easily explain the large elas-

ticity of consumption to housing wealth estimated with US state-level data. Specifically, we

find that small errors (as low as 3%) in the proxy for the common factor could plausibly

drive the estimate of the housing wealth effect. We obtain this result despite the fact that

our model does not consider many effects recognized in the literature (e.g., the use of housing

as collateral) that might affect consumption through changes in house prices. Our contribu-
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tion is therefore to show that the large observed elasticity of consumption to housing wealth

is not puzzling once properly benchmarked against a model that takes the common-factor

hypothesis into account.
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1 Introduction

For years, economists have been puzzled by the strong housing wealth effect, that is, the

positive relation between growth in non-housing consumption and growth in house prices as

reflected in available data. Empirical estimates of the elasticity of consumption to housing

wealth are usually large and positive (e.g., Case et al. [2005]). However, standard economic

theory suggests that the elasticity of consumption to housing wealth should be close to zero

because increases in housing wealth offset increases in the costs of housing services (e.g.,

Sinai and Souleles [2005] and Buiter [2010]).

One explanation for the estimated housing wealth effect is the common-factor hypothesis

(Attanasio et al. [2009]). Under this hypothesis, shocks to a common unobservable fac-

tor, such as expected future income, simultaneously affect the demand for housing services

(which, with an inelastic supply, in turn affects house prices) and non-housing consump-

tion. Therefore, house price appreciation is statistically related to changes in consumption

as long as the available proxies for the unobservable underlying driver of consumption are

noisy. Interestingly, economists agree on the empirical validity of the building blocks of the

common-factor hypothesis. That is, it is well-known that the supply of housing is some-

what inelastic (e.g., Gyourko et al. [2008] and Saiz [2010]) and that data on wealth as well

as income growth are plagued with noise and hence do not fully capture the effect of the

underlying drivers of consumption growth, such as shocks to expected income (e.g., Muell-

bauer [2007] and Calomiris et al. [2012]). We do not know, however, the extent to which the

common-factor hypothesis can explain the magnitude of the observed housing wealth effect.

In this paper, we address this question.

To do so, we benchmark the housing wealth effect with a model in which one underlying

variable drives both consumption and house prices. The model is an application of Kogan’s

(2001, 2004) general equilibrium model to housing. The representative agent in the model

has utility for housing services and consumption goods. There are two types of capital in

this model, housing capital and non-housing capital. Non-housing capital is used to fund

consumption and invest in housing, while housing capital is needed to produce housing

services. Housing supply is inelastic in this model, and, as a consequence, shocks to non-
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housing capital drive shocks to both consumption and house prices.

We use this model to gauge the extent to which the common-factor hypothesis can explain

the large elasticity of consumer spending to housing wealth as estimated in the literature.

Specifically, we follow a three-step procedure. First, we calibrate the model to match the

observed moments of consumption and house price growth in each US state and the District of

Columbia. Second, we simulate the model to generate panels of consumption growth, house

price appreciation, and changes in non-housing capital. In our simulations, we assume that

these variables are observed with measurement errors. By doing so, we mimic the assumption

embedded in the common-factor hypothesis; that is, we do not perfectly observe the common

driver of consumption and house prices. Third, we estimate panel models analogous to those

used in the housing wealth effect literature with simulated data to gauge the amount of

measurement error necessary to achieve the same level of elasticity of consumption to housing

wealth that we observe in the US state-level data.

We find fairly large housing wealth effects in our simulated panels for a wide range of

measurement errors, thus indicating that the large empirical housing wealth effect is consis-

tent with the calibrated model.1 With measurement errors making a negligible contribution

to the variance of the underlying variables, the magnitude of the wealth effect that we obtain

from our model-simulated panels is similar to the effect we find in the actual data. For in-

stance, when 5% of the variance in the observed non-housing capital and house price growth

is due to noise (i.e., a noise-to-signal ratio of 5%), the elasticity of consumption to housing

wealth is about 15%. This is close to the 13% level of elasticity of consumption to housing

wealth that we estimate using state-level actual data and is within the range of 2% to 19%

in the literature.2 With noise-to-signal ratios large enough to match the T-statistics and R2s

that we observe in the actual data panels, the elasticity to housing wealth is about 30%,

which is larger than findings in the empirical literature. For all (non-zero) noise-to-signal

1Many papers estimated the size of measurement errors in the variables used in the housing wealth
effect literature. We briefly review this literature in Section 5. We obtain large housing wealth effects for
measurement errors that are within the range of measurement errors described in this literature.

2Using US and non-US data, many studies find a positive elasticity of consumption to housing wealth
that is larger than the elasticity to financial wealth. See, for instance, Benjamin et al. [2004], Bostic et al.
[2009], Calomiris et al. [2012], Case et al. [2005, 2013], Carroll et al. [2011], Dvornak and Kohler [2007],
Labhard et al. [2005], and Ludwig and Sløk [2002]. See Mishkin [2007] and Paiella [2009] for reviews of this
literature.
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ratios that we analyze, the minimum elasticity to housing wealth that we find is about 8%.

This minimum occurs when the noise-to-signal ratios of non-housing capital growth and

house price growth are 5% and 30%, respectively. That is, even when house price growth is

six times noisier (30% versus 5%) than non-housing capital growth, the simulated elasticity

of consumption to housing wealth is well within the range of elasticities estimated in the lit-

erature. Hence, when benchmarked with Kogan’s (2001) model, the large observed elasticity

of consumption to housing wealth at the state level is not puzzling.

Our results are not due to an exogenously specified elasticity of housing supply. In fact,

elasticity of housing supply is endogenous in Kogan’s (2001) model. In addition, housing

supply can be inelastic even in large geographical units, such as states and countries, where

the supply of land is effectively unconstrained. Housing supply is inelastic in the simulated

model because investment in housing is irreversible; that is, housing stock cannot be con-

verted into non-housing capital. Therefore, situations in which there is “too much” housing

can exist in this model. In these states of the world, house prices are lower than housing

replacement costs, and new housing is not built.3 Housing supply in the model is inelastic

up to the point that house prices equal housing replacement costs and is perfectly elastic

when house prices are equal to housing replacement costs. As a result, the model creates a

housing supply curve that resembles the “kinked” real estate supply common in real estate

textbooks (e.g., Geltner et al. [2013]).

Our simulated model is fairly simple and does not consider many effects that might af-

fect house prices and consumption. Because of its simplicity, the simulated model is ideal

for gauging the extent to which the common-factor hypothesis explains the housing wealth

effect. The simulated model does not include many potentially important features of the

housing sector. For instance, it does not consider that non-separable preferences between

non-housing and housing consumption can lead to composition risk (Piazzesi et al. [2007]).

Moreover, the simulated model does not include labour income, which has long been rec-

ognized as an important determinant of consumption (Iacoviello [2012]). In fact, the only

mechanism by which the simulated model can generate housing wealth effects is through

3Since irreversibility of housing investment is the cornerstone of this model, it is perhaps natural to
question the empirical validity of this assumption. Note, however, that it is always the case that, in aggregate,
housing is not reversible since we cannot convert housing into non-housing consumption.
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a common factor: shocks to non-housing wealth explain shocks to both consumption and

housing wealth. This happens because our simulated model relies on two generally accepted

premises: first, that housing cannot be converted into non-housing consumption in aggregate;

and second, that econometricians can only observe noisy proxies of the variables affecting

consumption. Therefore, any housing wealth effect that we find in our simulations cannot

be confounded by effects unrelated to the common-factor hypothesis.4

Our analysis is not designed to test the common-factor hypothesis against alternative

explanations for the housing wealth effect. We aim instead to determine the extent to which

a common factor can explain the large magnitude of the estimated elasticity of consumption

to housing wealth in the literature. In addition to the common-factor hypothesis, two other

explanations for the large housing wealth effect are prominent in the literature. One hy-

pothesis is the direct housing wealth effect, which posits that an increase in housing wealth

has a direct causal effect on increases in consumption (Gan [2010]). Another explanation is

related to the role of housing as collateral for loans (Hurst and Stafford [2004], Aoki et al.

[2004], Iacoviello [2004, 2005], Lustig and Van Nieuwerburgh [2005], Leth-Petersen [2010],

Abdallah and Lastrapes [2012], Agarwal and Qian [2016], and Berger et al. [2016]). Under

this explanation, as house prices increase, credit-constrained homeowners use their homes as

collateral to borrow more to increase non-housing consumption.

We contribute to the literature because we show that our simulated model can easily

generate housing wealth effects that are consistent with, or even larger than, those observed

in the data despite omitting mechanisms suggested in the literature, such as the relaxation

of collateral constraints or direct housing wealth effects. In fact, our simulated model relies

only on generally accepted premises, that is, the irreversibility of housing investment and

measurement errors, to generate housing wealth effects through a common factor. Naturally,

our paper is not the first to suggest that the common-factor hypothesis is a possible expla-

4In the model we calibrate, the common factor is the growth in the log of non-housing capital. However,
we do not make any statements about the economic nature of the common factor that drives the housing
wealth effects in the actual data. For instance, in reality, this common factor could be shocks to expected
income (e.g., Attanasio et al. [2009] and Calomiris et al. [2009]), general confidence in the economy (e.g.,
Case et al. [2005, 2013]), or changes in the non-housing wealth. Our econometric results do not rely on
the economic nature of the common factor; instead, they rely on two assumptions. First, the common
factor affects consumption as well as house prices. Second, a proxy for the common factor is observed with
measurement errors.
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nation for the observed housing wealth effect (e.g., Attanasio et al. [2009] and Calomiris

et al. [2009]). To the best of our knowledge, however, our paper is the first to actually gauge

the extent to which the common-factor hypothesis can explain the strong observed housing

wealth effect. Therefore, our contribution is to show that the large observed elasticity of

consumption to housing wealth is not puzzling once properly benchmarked against a model

that takes the common-factor hypothesis into account.

Many papers empirically analyze the possible mechanisms behind the housing wealth

effect. The majority of these papers, with the exception of Mian et al. [2013], do not account

for the elasticity of housing supply. Mian et al. [2013] use variation of elasticity of supply

across metropolitan statistical areas (MSAs) as a means to identify exogenous shocks to house

prices and address the omitted variable problem underlying the common-factor hypothesis.

Their results are direct evidence of a strong collateral effect during the 2002 to 2006 period.

Since our results do not rule out the existence of collateral effects, we do not contradict Mian

et al. [2013]. In fact, our work extends this study in two ways: First, we show that elasticity

of housing supply matters for the study of housing wealth effects even when the empirical

analysis uses data aggregated over large geographical units (i.e., states and countries) in

which land and regulatory constraints play a smaller role. Second, our results show the

importance of controlling for common factors driving consumption and housing wealth, as

Mian et al. [2013] do. A number of papers analyze how the housing wealth effect varies with

household age or wealth (e.g., Lehnert [2004], Campbell and Cocco [2007], Attanasio et al.

[2009] and Calomiris et al. [2012]). Our results concern aggregate housing wealth effects and

do not have any implications for the housing wealth effects within household groups. In fact,

using a life-cycle model, Li and Yao [2007] find significant wealth effects within household

groups that cancel out in aggregated data. Our results, however, indicate that controlling

for housing supply effects can be important. Hence, to the extent that elasticity of housing

supply is correlated with household age or wealth, the results in this literature can be driven

by heterogeneity of the elasticity of supply, and not by the heterogeneity of the households.

Iacoviello and Neri [2010] is perhaps the closest study to ours in the literature. The au-

thors develop a dynamic stochastic general equilibrium model with housing and non-housing

sectors, nominal rigidities, and financial frictions in the household sector. They calibrate
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their model using data from 1965 to 2006. Using simulated data from their model, they

regress consumption growth on lagged house price appreciation without controlling for other

macroeconomic variables such as income growth, and assuming that both consumption and

house price growth are observed without measurement error. They conclude from this re-

gression that about 2.5% out of a 13.5% elasticity of consumption to housing wealth is due

to the housing collateral effect. Our study differs from theirs in important ways. Unlike Ia-

coviello and Neri [2010], we aim to gauge the extent to which the common-factor hypothesis

can explain the elasticity of consumption to housing wealth estimated in the empirical liter-

ature. To address this question, we include in our regressions a noisy proxy for the common

factor driving both consumption growth and housing wealth in our model. By doing so, we

mimic the panel regressions used in the empirical literature (e.g., Case et al. [2005]), which

always include variables such as income growth that are possibly correlated with the macroe-

conomic factors driving consumption growth and house prices. Iacoviello and Neri [2010],

on the other hand, focus only on the extent to which spillover effects related to the housing

collateral hypothesis drive the elasticity of consumption to housing wealth, and hence they

do not address the common-factor hypothesis.5 Taking our results together with those in

Iacoviello and Neri [2010], we conclude that the majority of the estimated housing wealth

effect during the 1976–2012 period can be attributed to the common-factor hypothesis and

that about 2.5% of the estimated elasticity of consumption to housing wealth is due to a

causal relation between housing wealth and consumption.

Empirical studies that use microdata to analyze wealth effects have addressed the atten-

uation bias.6 Our paper contributes to this literature because we show that measurement

errors have consequences for the wealth effects literature that go beyond the attenuation

bias. The attenuation bias is a result related to measurement error in one independent vari-

able (see Wooldridge [2010]), while, in a multivariable context, the measurement errors of

two different types of wealth may result in a stronger estimated wealth effect for one type

of wealth. For instance, our results show that if there is a non-housing wealth effect and

5To see this, note that Iacoviello and Neri [2010] do not include income growth or assume measurement
errors in their regression.

6The bias of the regression coefficient towards zero is caused by errors in the independent variable. See
for instance Brunnermeier and Nagel [2008], Juster et al. [2006] and Filmer and Pritchett [2001].
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housing wealth is correlated to non-housing wealth, an increase in the measurement error of

non-housing wealth will increase the estimated housing wealth effect.

The rest of this paper is organized as follows. Section 2 describes our data and shows

estimates of the housing wealth effect at the state level. Section 3 explains the simulated

model. Section 4 describes the results of the model calibration at the state level. Section 5

shows the estimation of the housing wealth effect in the simulated data. Section 6 concludes.

2 Data and estimation of housing wealth effects

We describe the data used in this paper in Section 2.1. Section 2.2 shows the presence of

housing wealth effects in our data by estimating panel regressions similar to those used in

Case et al. [2005].

2.1 Data description

Table 1 describes the variables used in our empirical work. Our empirical analysis relies

on four data series: annual growth in real housing wealth (∆wH), annual growth in real

aggregate income (∆y), annual growth in real non-housing tradable wealth (∆wTR), and

annual growth in real log-consumption (∆c). We build the ∆wH series based on the Federal

Housing Finance Agency (FHFA) house price index at the state level. Since FHFA-index

data start in 1975, our state-level growth data set starts in 1976 and ends in 2012. We

build the ∆y series from Bureau of Economic Analysis (BEA) total nominal income data.

We build the ∆wTR data series from total nominal tradable assets in the United States

(TotalTR) and the growth of cumulative disposable income (CDI) in each state between

1960 and year t. Specifically, the total real tradable wealth (wTRi,t ) for state i at year t is

TotalTR × CDIi,t/
∑50

i=1CDIi,t deflated by CPI. CDI is calculated from 1960 because this

is the first year for which we have disposable income data for all states.

We use a different procedure from that in Case et al. [2005] to calculate wTRi,t . Case et al.

[2005] use mutual fund holdings by state from the Investment Company Institute to allocate

national tradable wealth data to states. Their working assumption is that the total financial

assets in a state as a proportion of nationwide financial assets is equal to the mutual fund

assets in the state divided by total mutual fund assets in the United States. They recognize
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that this is clearly a strong assumption. Our procedure, on the other hand, is based on

the working assumption that cumulative disposable income from 1960 to year t is a proxy

for accumulated savings in state i. This is also a strong assumption, but if our procedure is

materially different from that of Case et al. [2005], then we would expect to find different

wealth effects than they did. As we show in Section 2.2, our estimated wealth effects are

similar to those in the literature.

We use state-level consumption growth estimates from Zhou [2010] and Zhou and Carroll

[2012]. The consumption growth data start in 1971 for all but six states (Alaska, Delaware,

Montana, Nevada, New Hampshire and Oregon), whose consumption growth data are avail-

able only from 1998 onward.

Table 2 displays summary statistics, and Table 3 shows the correlations among the con-

sumption growth of different states. We use these summary statistics and correlations to

calibrate the model at the state level in Section 4. Consumption growth in different states

tends to be positively correlated, with the exception of Hawaii, where it is negatively corre-

lated with that of most of the other states. These correlations are somewhat noisy because

they are based on a sample of consumption growth that starts in 1998 due to the six states

that had available data starting only that year. In fact, if we estimate the correlation of

consumption growth in Hawaii with that in other states using the entire sample, we find

that the consumption growth in Hawaii is not as negatively correlated with that of the rest

of the United States as Table 3 suggests.

2.2 Housing wealth effect

Following the prior literature on housing wealth effects (e.g., Case et al. [2005]), we test for

the presence and magnitude of the housing wealth effect in panel regressions of the type

∆cit = αi + βwH∆wHit + βwTR∆wTRit + βy∆yit + εit, (1)

where i is the state index and t is the time at which the variables are being measured. ∆cit,

∆wHit , ∆wTRit and ∆yit are, respectively, the log growth in aggregate consumption, housing

wealth, tradable wealth, and income in geographic area i from t − 1 to t. All regressions

include state fixed effects.
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Table 4 reports the results of the regression in equation 1. The results in specification (5)

show an economically and statistically significant wealth effect.7 The estimated elasticity of

consumption with respect to housing wealth is 13%. Moreover, there is no significant relation

between growth in tradable wealth and consumption growth. It is possible that the weak

relation between changes in tradable wealth and consumption growth stem from the fact that

measures of changes in tradable wealth are noisy. Indeed, Case et al. [2013] point out that

staff from the Federal Reserve maintain that data from the Survey of Consumer Finances are

not appropriate to estimate the stock-market wealth effect at the state level. Of the three

estimated elasticities of consumption, the elasticity of consumption with respect to income

is the largest at 64%. Income growth also explains a relatively large portion of the variation

in consumption growth. Indeed, the R2 in specification (2) is approximately 15%; when we

add housing wealth, this R2 increases to 17%, indicating that housing wealth explains only

a small part of the variation in consumption growth after accounting for income growth.

Overall, our results are consistent with those in the literature that uses state-level data.

The housing wealth and the income elasticities in specification (5) are in line with those in

Case et al. [2013]. Moreover, even though our estimated tradable wealth elasticity is low

compared with that of other studies, the results are in accordance with the finding that

housing elasticity is larger than stock elasticity (e.g., Bostic et al. [2009]).

The common-factor hypothesis is one possible explanation for the strong elasticity of

consumption with respect to housing wealth that we observe in the data. This hypothesis

states that an omitted variable drives both house prices and consumption in regression 1.

Instrument variables (IVs) can be used to deal with omitted variables in equation 1. For

example, Calomiris et al. [2009], Calomiris et al. [2012] and Case et al. [2013] use lagged

variables as instruments. Their objective is to address the common-factor hypothesis under

the premise that the permanent-income hypothesis (PIH) holds.8 This IV approach does

not rule out that a common factor drives the strong observed wealth effect for at least two

7Results with T-statistics based on standard errors clustered by geographical region are qualitatively
similar to those in Table 4 and are available upon request.

8The PIH states that consumption at a point in time is function not only of current income but also of
expected future income (permanent income). As a result, under the PIH, changes in consumption behave as
a random walk because only unexpected changes in permanent income drive changes in consumption (Hall
[1988]). Moreover, under the PIH, changes in consumption are uncorrelated with lagged changes in housing
wealth.

11



reasons. First, the choice of lagged variables as instruments rules out the common-factor

hypothesis only if the PIH holds, and there is plenty of empirical evidence that the PIH does

not hold (e.g., Campbell and Deaton [1989] and Campbell and Mankiw [1990]). Second,

the common factor that drives demand for housing and non-housing consumption does not

need to be permanent income. For instance, Case et al. [2005, 2013] point out that general

confidence in the economy can be the common factor driving non-housing consumption and

housing wealth. Another example of the IV approach is Mian et al. [2013]. They use variation

of elasticity of supply across MSAs as a means to identify exogenous shocks to house prices

during the 2002 to 2006 period. Naturally, the challenge of using IV to estimate equation 1

is to find instruments that are related to house prices and are unrelated to omitted variables

driving consumption growth. We show that our results are robust to using lagged variables

as instruments in Appendix D. However, our main focus is to analyze the estimation of

regression 1 without IVs since the analysis of an IV estimation boils down to the quality of

the instruments.

3 A model with inelastic housing supply

To gauge the extent to which the common-factor hypothesis can explain the housing wealth

effect at the state level, we use the general equilibrium model of a two-sector production

economy developed in Kogan [2001, 2004], where we interpret the durable goods sector with

irreversible capital stock as housing. We do not claim that this model explains consump-

tion growth well, as it does not include labour income, which is an important driver of

consumption decisions. However, this model is well suited to examining the common-factor

hypothesis because it allows consumption and house prices to be driven by a common factor

(non-housing capital). Next, we briefly describe this model.9

In Kogan’s (2001) model, there are two productive sectors, each with the specialized

capital input required to produce the two types of consumption goods or services in the

economy. Capital in sector H (the housing sector) can only produce housing services. Capital

in sector K (the non-housing sector) can be either used to produce the consumption good,

C, or converted into housing stock, H. Investment in the housing sector is irreversible; that

9See Kogan [2001, 2004] for a detailed description of the model.
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is, houses cannot be liquidated into consumption goods or transformed into non-housing

capital.

The stock of non-housing capital (Kt) follows the equation of motion:

dKt = (αKt − Ct)dt+ σKtdWt − dIt, (2)

where α and σ are, respectively, the mean and the volatility of shocks to growth in non-

housing capital, and dW is an increment of a standard Brownian motion. Changes in the

housing stock are given by

dHt = −δHtdt+ dIt, (3)

where δ is the rate of depreciation. The choice variables are consumption (Ct) and investment

in the housing sector in each period (dIt), both of which are non-negative. We follow Kogan

[2001] and set the housing replacement cost to unity.10

Households maximize their expected lifetime utility:

max
{Ct,It}0≤t<∞

E0

[∫ ∞
0

e−ρtU(Ct, XHt)dt

]
, (4)

where ρ is the parameter that specifies household impatience. Households have separable

utility over consumption good, Ct, and housing services, XHt, given by

U (Ct, XHt) =
1

1− γ
(Ct)

1−γ +
b

1− γ
(XHt)

1−γ , γ > 0, γ 6= 1, (5)

where γ is the curvature of the utility function, b can be interpreted as the parameter that

captures the size of the housing sector as a fraction of the whole economy, and X represents

the productivity of the housing sector.

Kogan [2001] shows that an equilibrium exists in which the process for Kt, Ht, Ct and It

are equivalent to the solution of a central planner problem that chooses Ct and It to solve

equation 4 subject to equations 2 and 3. Appendix A provides details about this equilibrium.

Because housing investment is irreversible, the central planner wants to avoid an excess

of housing. Therefore, in this model, no increase in housing supply inheres unless the level

of housing capital relative to non-housing capital is below a certain threshold. In fact, the

central planner’s choice of the control variables depends only on the state variable ωt =

10One unit of non-housing capital builds one unit of housing.
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ln(Ωt) = ln(Ht/Kt), and the optimum housing investment policy is such that investment in

housing only happens if ω is smaller than or equal to an endogenously determined threshold,

ω∗. Formally, the agent chooses It = 0 at t when ωt > ω∗ and It > 0 otherwise. When

ωt = ω∗, the agent invests “just enough” to revert to ω∗. That is, ωt can never be below its

corresponding ω∗; thus, investment occurs when ωt = ω∗, and the inelasticity of the housing

supply is driven only by the irreversibility of housing investments.11

The Tobin’s q of housing (i.e., the ratio of the market value of housing to its replacement

value) is equal to the market value of housing because the replacement value of housing is

assumed to be one. Tobin’s q of housing is smaller than or equal to one. The market value of

housing cannot exceed its replacement value because as soon as the two are equal, housing

supply increases and applies downward pressure on the market value of housing.

In the absence of a known analytical characterization, we solve the model numerically

to better explain its inner workings. Table 5 reports the parameters used in the numerical

solution of the model: b, δ, ρ, γ and X. Recall that b parameterizes the size of the housing

sector as a fraction of the total economy. To choose this parameter, we begin by partitioning

total wealth into housing wealth, tradable asset wealth and human capital. In the United

States, the ratio of human capital to total wealth is estimated to be between 0.75 and 0.92

(see Lustig et al. [2013]; Palacios [2015]; Di Giovanni and Matsumoto [2011]; Jorgenson and

Fraumeni [1989]). Assuming that the ratio of housing to tradable asset wealth is between

0.67 and 1.50, we calculate that b should be between 0.03 and 0.15. We set b = 0.1, close to

the midpoint of this range. The value of the time-discounting parameter that considers both

housing and consumption, ρ, lies between 0.01 and 0.05 (see Flavin and Nakagawa [2008];

Piazzesi et al. [2007]; Cocco [2005]; Lustig and Van Nieuwerburgh [2005]). We set ρ = 0.02.

The parameter δ is the rate of depreciation of housing stock. We assume a value of δ = 1.3%,

which falls within the range of estimates produced in the literature. Harding et al. [2007],

Knight and Sirmans [1996], Shilling et al. [1991], Leigh [1980] and Malpezzi et al. [1987],

using data at various levels of aggregation and for different time periods, estimate that the

11Kogan [2004] also extends this model in which investment is bounded below an exogenously specified
bound. In this extension, housing supply is not perfectly elastic when house prices are equal to housing
replacement costs. This upper bound on housing supply can potentially be important to match house price
dynamics in areas with restricted land availability, such as geographically constrained cities. We do not use
the extended model in our simulations because we focus on state-level data.

14



rate of housing stock depreciation is between 0.43% and 2.18%. For the curvature of the

utility function parameter γ, we use a value of 1.2 and set the productivity of the housing

sector parameter X equal to 1/30.

It is natural to assume that the parameters in Table 5 are constant across different US

states. These parameters are related to the utility function of the households in the model;

hence, we should not expect major variation in these parameters across different states. On

the other hand, the rate of growth (α) and volatility (σ) of non-housing capital as well as

the initial value of the state variable (ω0) may have some variation across different states,

for example because the economies in different states are based on different industries. For

the example solution of the model in Figure 1, we set α, σ and ω0 equal to 4.05%, 6.18%

and 1.58%, respectively.12

Panel A of Figure 1 plots price per unit of housing and the ratio of consumption to

non-housing capital (C/K) as a function of ω (the logarithm of the ratio of housing to non-

housing capital). The fact that the agent is always able to transfer an unlimited amount

from non-housing capital to housing stock ensures that ω never falls below ω∗, which means

that the investment region is the point ω = ω∗ and the non-investment region is the entire

region to the right of ω∗ in Panel A. Note that the ratio of consumption to non-housing

capital decreases slightly as ω gets closer to ω∗; essentially, households consume less non-

housing capital, anticipating the possibility of investment in housing. Moreover, since the

housing sector is perfectly competitive, the ability to invest without limits ensures that the

market value of housing stock never rises above its replacement value, and Tobin’s q reaches

its maximum value of one when the agent invests in housing. Within the no-investment

region, as ω increases, house prices drop. There is “too much” housing in the non-investment

regions and house prices adjust, since housing capital cannot be transformed into non-housing

consumption.

Indeed, the non-linearity in C/K and Tobin’s q with respect to ω is due to the irreversibil-

ity of housing investment. If housing capital were fully reversible to non-housing capital, then

12As we show in Section 4, these parameter values allow us to match the model mean consumption
growth, volatility and mean housing wealth growth to those observed in Minnesota from 1987 to 2010. We
use Minnesota as an example because its mean consumption and housing wealth growth are close to the
mean across all 50 states and the District of Columbia in our sample.
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the house price would be equal to the replacement cost (which is a constant in this model).

Further, consumption would be a constant fraction of non-housing wealth. Thus, if housing

investment were perfectly reversible, consumption would be a linear function of non-housing

capital, and would be unrelated to house price, which would be constant.

Panel B of Figure 1 plots the log of house price (p) and the log of consumption (c)

as functions of the log of non-housing capital (k) under the assumption of a fixed housing

capital (H).13 Panel B shows that c is very close to a linear function of k in this model,

given that the variation in C/K is small. Moreover, except for when investment in housing

is proximate, p is also close to a linear function of k. Housing wealth increases with non-

housing capital due to the irreversibility of housing capital. Indeed, if investment in housing

were completely reversible, its price would be a constant in this model and would not covary

with consumption.

To understand the extent to which the common-factor hypothesis can explain the hous-

ing wealth effect observed in the state-level data, we calibrate this model and estimate a

regression analogous to regression 1 with simulated data.

4 Model calibration

Table 5 reports the values we use in the simulation exercise for the parameters common

across all states. We assume that non-housing capital shocks (dW ) are correlated across

states to match the correlation of consumption growth across states shown in Table 3. The

parameters αi, σi and ω0,i vary across states. Specifically, we choose αi and σi to match the

mean and volatility of consumption growth in state i in our sample (see Table 2). We have

two different procedures to calibrate ω0,i.
14

In our first calibration procedure, we choose ω0,i for each state i to match the mean

growth in housing stock in Table 2. Panel A of Table 6 displays the average of the mean and

volatility of log consumption growth as well as of the mean and volatility of log house price

growth across 500 simulations of the model. Panel A of Table 6 also displays the parameters

αi, σi and ω0,i calibrated at the state level. This calibration shows that the model matches

13Appendix A gives details about the procedure to plot this figure.
14See Appendix B for details about this simulation. Appendix C gives details about the calibration.
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the moments of log-consumption growth and the growth in house prices quite well.15 The

calibration, however, generates house price volatility that is smaller than that observed in

the actual data. This result is not unexpected since none of the parameters in the calibration

are chosen to match the volatility of house prices.

Because our first calibration procedure results in house price volatilities smaller than those

observed in the data, we need to assess the robustness of our conclusion to this calibration

shortcoming. To do so, we implement a second calibration procedure in which we choose the

parameter ω0,i for each state i to match the volatility—as opposed to the mean—in housing

wealth. Panel B of Table 2 displays the results of this calibration. This calibration still

matches the moments of consumption growth quite well; however, the mean housing wealth

growth in the simulated data is about 1.43% larger than that in the historical data (2.60%

versus 1.17%). This worse fit for mean housing wealth growth is the cost of having a better

fit for the volatility of housing wealth. The mean volatility in housing wealth growth across

all states in the second calibration procedure is 4.05%, which is almost twice as large as that

in the first calibration procedure (2.20%) and closer to the mean volatility in the actual data

(6.54%).

5 Housing wealth effects in the calibrated model

We use the model calibrated in Section 4 to simulate 500 panels composed by a time series

of {ct, kt, wHt }t∈{1,2,··· ,T} for each state i. We set T equal to 30 years and assume that we

observe annual consumption growth measured with error (∆c̃i,t = ∆ci,t + εc̃i,t), growth in

non-housing capital measured with error (∆k̃i,t = ∆ki,t + εk̃i,t), and growth in housing wealth

measured with error (∆w̃Hi,t = ∆wHi,t + εw̃
H

i,t ). The noise terms (εc̃i,t, ε
k̃
i,t and εw̃

H

i,t ) are zero-

mean, normally distributed with variances σ2
i,c̃, σ

2
i,k̃

and σ2

i,w̃H
, respectively. The noise terms

are independent of each other and of the shocks to non-housing capital.

Using each simulated panel, we estimate panel regressions to assess the housing wealth

15To see this, note that the means across all states of the mean and volatility of consumption growth in
the simulated data are very close to the means in the real data in Table 2. Also note that the mean across
all states of mean growth in housing wealth is 1.13% in simulated data and is 1.17% in Table 2.
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effect in the simulated model. Specifically, we estimate the following panel models:

∆c̃i,t = αi + βwH∆w̃Hi,t + βk∆k̃i,t + εi,t. (6)

These panel regressions are analogous to the ones in Section 2.2. Recall that in the simulated

model, variations in the log of non-housing capital (k) drive variations in both the log of

non-housing consumption (c) and the log of housing wealth (wH). Besides, if observed

without any measurement errors, the common factor (k) would explain the variation in

non-housing consumption perfectly. However, our goal is to use the simulations to gauge

the extent to which the common-factor hypothesis can explain the observed elasticity of

consumption to housing wealth. Thus, we assume that we observe only a noisy proxy for

∆k because the hypothesis posits that an unobservable common factor is driving both non-

housing consumption and real estate wealth.

Naturally, it is important to know the amount of noise in the variables to analyze the

results of our simulations. Even though there is long literature trying to gauge the level of

measurement errors in the variables used in the housing wealth effect literature, the noise-to-

signal ratios σ2
k̃
/σ2

k, σ
2

w̃H
/σ2

wH and σ2
c̃/σ

2
c are ultimately unknown. Because of this, we give

results for a wide range of noise-to-signal ratios, and we show that we obtain estimates for

βwH that are consistent with those observed in the actual data even when the noise-to-signal

ratios are small compared with those described in the literature.

There is a consensus in the literature about the existence of measurement errors in house

prices. Indeed, the literature documents that the overestimation of reported house values is

between −2% and 16%.16 There is no simple direct mapping between these estimates in the

literature and the noise-to-signal ratios in our simulations. However, under the following

assumptions we obtain that the standard deviation of measurement errors in housing wealth

return (σ
w̃H

) is equal to 3.67%: First, the observed housing wealth is W̃H
t = WH

t e
xt , where

WH
t is the true housing wealth and xt is a triangular distributed measurement error within

−2% and +16% and mean 7%. Second, the measurement errors xt are not autocorrelated. A

standard deviation of 3.67% for the noise component of house price changes (σ
w̃H

) is about

16See Kish and Lansing [1954], Kain and Quigley [1972], Robins and West [1977], Follain and Malpezzi
[1981], Ihlanfeldt and Martinez-Vazquez [1986], Goodman and Ittner [1992], Kiel and Zabel [1999], Agarwal
[2007], and Beńıtez-Silva et al. [2015].
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50% those in Table 2. This suggests that the estimates of house price biases in the literature

imply large noise-to-signal ratios in housing wealth return.

The magnitude of the measurement errors in income is possibly also sizeable. In our set-

ting, income growth is a potential proxy for the common variable (e.g., changes in expected

income) driving both consumption and housing wealth growth. Since changes in expected

income are not observed, we cannot possibly infer how well changes in actual income proxy

changes in expected income. We can, however, have an idea of the magnitude of measure-

ment errors by analyzing how the available data on income growth measure the actual change

in income growth. The income data normally used in housing wealth effect studies are from

the BEA. The BEA methodology for compiling income data involves surveys, state-level

records (tax filings, etc.) and further needs imputations of residential status. Moore et al.

[2000] provide a literature review of the quality of survey measures of income and report

measurement errors that range from 2% to above 50%. Therefore, the literature indicates

that the survey component in the BEA methodology may have sizeable errors.

Measurement error in wealth is a long-standing concern (see Ferber [1959] and Curtin

et al. [1989]). Juster and Smith [1997] quantify some of the magnitudes of measurement

errors in wealth due to survey techniques. They find that household surveys may understate

wealth in the pre-retirement years by 10% relative to the post-retirement years. Juster et al.

[1999] compare the wealth reported in two large American household surveys: the Panel

Study of Income Dynamics (PSID) and the Survey of Consumer Finances (SCF). They

find that PSID understates wealth in home equity, other real estate, stocks and mutual

funds, liquid assets, and other debts by 13.2%, 3.6%, 16.6%, 5.5% and 26.9%, respectively,

compared with SCF. However, PSID overstates wealth in vehicles by 38.5% compared with

SCF. Finally, they show that the differences in the estimation of wealth across surveys vary

over time. Their results suggest that the magnitude of the measurement error in wealth is

large and time-varying.

Table 7 displays the mean parameters of the estimated wealth effect regression across

the 500 simulated panels. Table 7 shows results for different noise-to-signal ratios σ2
k̃
/σ2

k,

σ2

w̃H
/σ2

wH and σ2
c̃/σ

2
c , where σ2

k, σ
2
wH and σ2

c are the variances of ∆k, ∆wH and ∆c, respec-

tively, without errors. To be parsimonious, we set the noise-to-signal ratios (σ2
k̃
/σ2

k, σ
2

w̃H
/σ2

wH
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and σ2
c̃/σ

2
c ) equal to each other. The results in this table allow us to infer the amount of

noise needed in all three variables to match the T-statistics and R2s in the simulated panels

with those in the actual data.

Panel A of Table 7 displays the results of the analysis when the noise-to-signal ratio is

zero, that is, when we observe the underlying variables without any measurement errors.

This panel shows the baseline of the housing wealth effects in the model.17 The first column

shows the results of the panel data regression of ∆wH on ∆k. This specification confirms

that changes in housing wealth are positively correlated with changes in non-housing capital

in this model. The R2 in this specification is about 61%, which indicates that even when

there are no measurement errors, variation in non-housing capital cannot perfectly explain

changes in housing wealth. This result is consistent with the fact that house prices are a

non-linear function of k in the model (Figure 1, Panel B). In specifications (1) to (3), ∆c is

the dependent variable. Specification (1) shows that ∆wH explains some of the variation in

∆c even when ∆k is not an independent variable. Specification (2) shows that ∆k explains

nearly all of the variation in ∆c. In fact, the R2 in specification (2) is almost one (99.74%).

Specification (3) shows that even though ∆k almost completely explains variations in ∆c,

∆wH plays a very small role in explaining such variations due to the fact that c is not a

perfectly linear function of k (see Figure 1, Panel A). However the incremental explanatory

power of ∆wH is very small. Indeed, the R2 in specification (3) is only 0.01% larger than

that in specification (2).

Panels B, C and D of Table 7 show the results of the simulated panel regressions with

noise-to-signal ratios of 50%, 100% and 150%, respectively. These results indicate that noise-

to-signal ratios of around 150% are required to match the R2s and T-statistics obtained using

historical data. While a noise-to-signal ratio of 150% could be considered implausibly high,

it is interesting to note that the housing wealth effects estimated when using such a large

level of noise are around 37%, which is much higher than the 13% observed in the data.

The results also indicate that for any of the considered non-zero noise-to-signal ratios, the

estimated elasticity of consumption to housing wealth effect (βwH ) is around 40%, which is

17In the following discussion, for convenience, we omit the tilde over the variables even when the variables
are measured with errors.
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much larger than that in the actual data.

It is interesting to note that the results in Table 7 are consistent with the attenuation

bias commonly described in the literature. To see this, note that the coefficients in the

univariate specifications decrease as the noise-to-signal ratio increases across the panels in

Table 7. At first glance, the only result that is not consistent with the classic attenuation

bias is the increase in the point estimate of βwH from Panel A to Panel B. To understand

this apparent inconsistency, note that the attenuation bias is a result related to measurement

error in one independent variable (see Wooldridge [2010]) while the measurement errors of

two independent variables change between Panels A and B of Table 7. The intuition for the

increase in βwH from Panel A to Panel B is in fact simple. In Panel A, growth in housing

wealth plays a very small role in explaining consumption growth because growth in non-

housing capital completely drives consumption growth in the model. On the other hand, in

Panel B, both ∆w̃H and ∆k̃ are noisy proxies for the true variation in non-housing capital,

and hence they both contribute to explaining consumption growth.

Figure 2 shows that a large, and statistically significant, housing wealth effect is estimated

in panel regressions even when measurement errors are fairly small. Figure 2 plots the

estimated elasticity of consumption to housing wealth (βwH ) as a function of the noise-to-

signal ratio of ∆c, ∆wH and ∆k. Interestingly, βwH increases very sharply when the errors

in variables are small (see the inset figure on the bottom-left part of the graph). An increase

from 0% to 1% in the noise-to-signal ratio of ∆c, ∆wH and ∆k increases βwH by 4%. The

mean estimate of βwH for a noise-to-signal ratio of 3% is 11.9%, close to the estimate in the

historical data (see Table 1).

Recall that our calibrations do not generate the same level of housing wealth volatility

as that in the actual data. The results in Table 8—which displays the results of simulations

based on the calibration of the model designed to match the volatility rather than the mean

of housing wealth (see Panel B of Table 6)—indicate that this calibration shortcoming does

not make a qualitative difference to the results. Even though the volatility of housing wealth

doubles from Table 7 to Table 8, the elasticity of consumption to housing wealth remains

high. In fact, the estimated elasticity is about 30% in Panel D of Table 8, which is much

larger than that observed in the empirical literature.
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It is plausible that some of the variables are better measured than others. To understand

the contribution of measurement errors in the different variables to the housing wealth effect,

we run regressions on panels generated with combinations of different noise-to-signal ratios

in the independent variables, ∆w̃H and ∆k̃.18 Specifically, we set the noise-to-signal ratios

of the dependent variables to values between 5% and 30%. The mean estimated coefficients,

T-statistics and R2s over 500 simulations are presented in Tables 9 and 10. The results in

Table 9 (Table 10) are based on simulations with ω0,i set to match the mean (volatility) of

house price growth in state i.

The results in Tables 9 and 10 are consistent with the attenuation bias in the presence

of measurement errors in the independent variables. For instance, the results indicate that

for a given value of σ2
k̃
/σ2

k, the coefficient on housing wealth decreases with σ2

w̃H
/σ2

wH . The

fact that these results are consistent with the attenuation bias is unsurprising since both log-

consumption growth and log-housing wealth growth are close to linear functions of the log of

non-housing wealth in the model (see Figure 1). The attenuation bias has received attention

in the wealth effects literature (e.g., Brunnermeier and Nagel [2008], Juster et al. [2006], and

Filmer and Pritchett [2001]). The results in Tables 9 and 10 point out another effect related

to measurement errors that has not received attention and is important. Specifically, notice

that for a given value of σ2

w̃H
/σ2

wH , the coefficient on housing wealth increases with σ2
k̃
/σ2

k.

That is, even if there is no causal relation between housing wealth and consumption growth,

we can estimate very large elasticities of consumption to housing wealth if our proxies of

non-housing wealth are noisy and there is a non-housing wealth effect.

The relation between ∆wH and ∆k in the calibrated model combined with even small

errors in ∆k are sufficient to generate housing wealth effects larger than those observed in

the data. Note in Table 9 that even with a noise-to-signal ratio of 5% in ∆k, the average

point estimate of βwH is around 15%. In other words, our simulation results indicate that

it is easy to generate economically large housing wealth effects when the common factor

that is the sole driver of house price and consumption growth is measured with error. Table

10, which presents results when ω0,i is chosen to match the volatility of house price growth,

18For these simulations, we do not add noise to consumption growth, since noise in the dependent variable
affects the T-statistics and the regression R2s but does not change the point estimates of the coefficients.
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shows that the above conclusions are not due to the model’s inability to generate sufficiently

volatile house price growth.

Overall, our results suggest that a large amount of the housing wealth effect estimated at

the state level can be explained by the common-factor hypothesis. It is perhaps surprising

that our structural model can generate wealth effects that are consistent with or even larger

than those in the data despite omitting other mechanisms suggested in the literature, such as

the relaxation of collateral constraints. Our structural model is a fairly simplified version of

reality, and a large literature examining the equity premium puzzle shows that consumption

models based on simple power utility normally do not match some of the asset returns

moments well. However, our results suggest that matching model-generated βwH with the

values that we observe in the actual data is not a problem for models based on simple

power utility as long as housing is inelastic and the common factor driving both non-housing

consumption and demand for housing is measured with errors.

6 Conclusion

The common-factor hypothesis is one possible explanation for the large housing wealth effect

that is commonly estimated in the literature. According to this hypothesis, shocks to a

common unobservable factor, such as expected future income, simultaneously affect the

demand for housing services and non-housing consumption. Even though the building blocks

of the common-factor hypothesis are well established in the literature (the supply of housing

is somewhat inelastic and consumption as well as wealth data are plagued with noise), it is

an open question how much of the large elasticity of consumption to housing wealth can be

explained by this hypothesis.

Our results indicate that the common-factor hypothesis possibly accounts for a large

portion of the estimated elasticity of consumption with respect to housing wealth. Naturally,

either our analysis or results can discard the other hypotheses that have been put forward

to explain the housing wealth effect. Our simulations, however, show that even when the

common variable driving consumption and housing wealth is observed with relatively small

measurement errors, we find quite large elasticities of consumption to housing wealth.

Our simulated model can easily generate housing wealth effects that are consistent with or
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even larger than those observed in the data despite omitting other mechanisms suggested in

the literature, such as the relaxation of collateral constraints or direct housing wealth effects.

In fact, the mechanism by which the model generates large housing wealth effects relies only

on two generally accepted premises: first, that housing cannot be converted into non-housing

consumption in aggregate; and second, that econometricians can only observe noisy proxies of

the variables affecting consumption. We therefore conclude that, once properly benchmarked

with a model that takes into account the common-factor hypothesis, the large elasticity of

consumption to housing wealth estimated with US state-level data is not puzzling.
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Appendix

A - Details about the model

Kogan’s (2001, 2004) model features two productive sectors, each with a specialized capital

input required to produce the two types of consumption goods or services in the economy.

Capital in sector H (the housing sector) can only produce housing services. Capital in

sector K (the non-housing sector) can either be used to produce the consumption good, C,

or converted into housing stock, H. Investment in the housing sector is irreversible; that is,

houses cannot be liquidated and turned into the consumption good.

The stock of non-housing capital (Kt) follows the equation of motion:

dKt = (αKt − Ct)dt+ σKtdWt − dIt, (7)

where α and σ are, respectively, the mean and volatility of shocks to growth in non-housing

capital, and dWt is an increment of a standard Brownian motion. dIt is the investment in

the housing sector at time t.

Identical, perfectly competitive firms own all of the capital in sectorH used to produce the

housing service XHt for consumption, with X representing the productivity of the housing

sector; firms rent out the houses that they own. Firms determine the level of investment at

each t to solve the maximization problem

max
{I}0≤t<∞

E0

[∫ ∞
0

η0tStXHtdt− η0tdIt

]
, (8)

where St is the rent for one unit of housing in units of the consumption good C at time t,

and η0t is the stochastic discount factor. The first term in the integral above is the present

value of all the rents that firms receive from housing. The second term is the present value

of all the investment in housing. Changes in the housing stock are given by

dHt = −δHtdt+ dIt, (9)

where δ is the rate of depreciation.

Households maximize their expected lifetime utility:

max
{Ct,It}0≤t<∞

E0

[∫ ∞
0

e−ρtU(Ct, XHt)dt

]
, (10)
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where ρ is the parameter that specifies household impatience. Households whose coefficient

of risk aversion is γ have utility separable over the consumption good, Ct, and housing

services, XHt, given by19

U (Ct, XHt) =
1

1− γ
(Ct)

1−γ +
b

1− γ
(XHt)

1−γ , γ > 0, γ 6= 1, (11)

where b can be interpreted as the parameter that captures the size of sector H as a fraction

of the whole economy.

Households also have access to two long-term financial assets. The value of the first asset

at time t is vt, and it follows the dynamic dvt = αvtdt+σvtdWt. The second asset is a claim

on all housing sector cash flows; in other words, the second claim is equivalent to the stock

in the housing sector firms. In addition, households have access to a short-term bond.

Kogan [2001] shows that an equilibrium exists in which the processes for Kt, Ht, Ct and

It are equivalent to the solution of a central planner problem that chooses Ct and It to solve

the maximization in equation 10, subject to equations 7 and 9. In fact, the central planner’s

choice of the control variables depends only on the state variable ωt = ln(Ωt) = ln(Ht/Kt).

In equilibrium, the optimal consumption policy is given by the following equation:

c̃(ωt) =
Ct
Kt

=

(
f(ωt)−

1

1− γ
f ′(ωt)

)− 1
γ

, (12)

where f is the function that satisfies the ordinary differential equation (ODE):

p2f
′′(ω) + p1f

′(ω) + p0f(ω) + γ

(
f(ω)− 1

1− γ
f ′(ω)

)1− 1
γ

= −be(1−γ)ω, (13)

subject to the boundary conditions

f ′(ω∗) (1 + Ω∗) = f(ω∗)Ω∗(1− γ) (14)

f ′′(ω∗) (1 + Ω∗) = f ′(ω∗) (1 + (1− γ)Ω∗) (15)

lim
ω→∞

f(ω) =

(
α
γ − 1

γ
− σ2

2
(γ − 1) +

ρ

γ

)−γ
, (16)

19Kogan [2001] also considers the case γ = 1; the qualitative relationships between the variables that we
investigate in our study—consumption, investment, and prices—do not change if we use γ = 1.
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and p0, p1, p2 are constants with the following values:

p0 = (1− γ)α− γ(1− γ)
σ2

2
− ρ (17)

p1 = −α− δ + (2γ − 1)
σ2

2
(18)

p2 =
σ2

2
. (19)

The optimal housing investment policy is such that investment in housing only happens if

ω is equal to an endogenously determined threshold, ω∗. Formally, the agent chooses It = 0

at t when ωt > ω∗ and It > 0 when ωt = ω∗. The variable ω follows the process:

dω = µω(ωt)dt− σdWt + dLt

µω(ωt) = −α− δ + c̃t(ωt) +
σ2

2

where dLt is zero when ωt > ω∗ and is larger than zero when ωt = ω∗. Consequently,

dLt is different from zero only when investment in the housing sector occurs. Specifically,

dLt = (1 + Ω∗)H−1
t dIt, and ω is a process with a reflexive boundary at ω∗.

The market value of one unit of housing is given by

P (ωt) =
f ′(ω)Ω−1

(1− γ) f(ω)− f ′(ω)
, (20)

which is bounded by the replacement cost. This market value is equal to the Tobin’s q of

housing since the replacement cost is assumed to be equal to one.

We use equations 12 and 20 to plot the consumption-to-capital ratio (C/K) and house

price (P ) as a function of ω in Panel A of Figure 1. For a fixed value of the housing stock, ω

is a linear transformation of lnK (k), and we can rewrite equations 12 and 20 to make C/K

and P functions of k. In Panel B of Figure 1, we set H arbitrarily equal to 10, and plot lnP

(p) and lnC (c) as functions of k using the parameters α and σ used to calibrate the model

to Minnesota. (See Appendix C for details about this calibration.)

B - Simulating the model

We simulate panels of house price appreciation, consumption growth and non-housing capital

following Kogan’s model. Each panel is composed of 30 annual observations of each variable
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of interest for each simulated state i. The model parameters are those in Table 5 along with

αi, σi, ω0,i and Σ (the correlation matrix of shocks in non-housing capital across states).

We choose the parameters based on the calibration procedure described in Appendix C. For

given values of the model parameters, we first solve the ODE in Appendix A to obtain the

functions f(ω), c̃(ωt), q(ωt) and ω∗ for each state. Once we have these functions, we simulate

the time series of ω using the following algorithm.

1. For a given ω0,i, obtain the values of c̃(ω0,i) and q(ω0,i).

2. Generate a random shock to the growth rate of non-housing capital ∆W∆t,i ∼ N (0, σ2∆t) .

The correlation of these random shocks across states is Σ. We set ∆t = 1/1000 in all

our simulations.

3. Find ω∆t,i with the discrete approximation ω∆t,i = ω0,i + µω(ω0,i)∆t− σi∆W∆t,i.

4. If ω∆t,i > ω∗i proceed to next point; otherwise, make ∆L0,i = ω∗i − ω∆t,i, and ω∆t,i =

ω∆t,i + ∆L0,i.

5. Calculate ∆I0,i as (1 + Ω∗i )
−1Ht,i∆L0,i, ∆H∆t,i and ∆K∆t,i with the Euler discrete

approximation of equations 9 and 7. Without loss of generality, we set K0,i equal to

one.

6. Repeat Step 1 with ω∆t,i instead of ω0,i until a time series with length T for the variables

of interest is obtained.

C - Model calibration

In the calibration, we choose the model parameters αi, σi, ω0,i for each state that match

the mean and volatility of consumption growth as well as the mean house price appreciation

displayed in Table 2.

We choose the parameters αi and σi to enable the mean and volatility of consumption

growth in the simulations to match the data from state i. We choose the parameter ω0,i to

match either the mean or the volatility of house price appreciation shown in Table 2. We

choose the correlation matrix Σ to match the correlations of consumption growth in Table

3.
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The starting point of our calibration is the observation that although c̃(ωt,i) is a non-linear

function (see Figure 1), the variation in c̃(ωt,i) is small, and c̃(ωt,i) is close to a constant. In

fact, c̃(ωt,i) is close to:

c̃i = lim
ωt,i→∞

c̃(ωt,i) =
γ − 1

γ
αi − σ2

i

γ − 1

2
+
ρ

γ
. (21)

As a result, in our calibration we choose the parameters αi, σi and Σ in which the amount

of housing capital is much larger than the amount of non-housing capital (ωt,i →∞). In this

economy, the investment in housing is zero, and the log of non-housing capital follows an

arithmetic Brownian motion

dkt,i =

(
αi − c̃i −

1

2
σ2
i

)
dt+ σidWt,i.

Because the level of consumption is Ct,i = c̃iKt,i, the log-consumption process has the same

drift and volatility as kt,i. We therefore set σi equal to the estimated volatility of consumption

growth in Table 2 for the state i. We set the correlation matrix Σ equal to the matrix in

Table 3. We use the parameter αi to solve the following equation:

(
αi − c̃i −

1

2
σ2
i

)
= ci,

where ci is the mean consumption growth in Table 2 for the state i.

Once the parameters αi and σi are set, we solve the ODE in Appendix A and then

simulate the model for each state as described in Appendix B using different starting values

ω0,i. We then search for the ω0,i that creates the mean or volatility of house price appreciation

closest to that displayed in Table 2 for state i.

D - Robustness of results using lagged variables as instruments

Under the PIH, current period consumption growth is driven by contemporaneous innova-

tions in the permanent income and is independent of lagged changes in permanent income.

Hence, one way to address the common-factor hypothesis under the assumption that the PIH

holds is to use lagged values of growth in consumption, income, housing, and non-housing

wealth as instruments in an IV estimation of equation 1.
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In this appendix we show that our results are robust to using lagged variables as instru-

ments. First, we verify that the results in Table 4 are robust to using the first four lags

of the growth of consumption, income, tradable wealth and housing wealth as instruments.

The estimate of the wealth effect, βwH , reported in Appendix Table 1 is 11.17% for the full

model, which is very similar to 12.66% obtained in fixed-effects regressions reported in Table

4. Second, we verify that our simulation results are not changed with this IV approach.

The results of the fixed-effects regressions using the first four lags of the growth of con-

sumption, housing wealth and non-housing wealth as instruments are shown in Appendix

Table 2. Comparing Appendix Table 2 with Table 9, we see no significant differences in the

magnitude of βWH estimated with or without IVs.
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Table 1: Variable Definitions. This table contains the description and sources of all data variables used in this paper.

Variable name Variable definition

TotalTR

Total nominal tradable assets in the United States. Obtained by adding the following item lines from

the Federal Reserve Flow of Accounts: corporate equities, mutual fund shares and private pension

fund reserves.

Source: http://www.federalreserve.gov/releases/z1/Current/data.htm

CPI
US-level consumer price index.

Source: http://www.bls.gov/cpi/#tables

CDI

Cummulative disposible income for each state between 1960 and year t. CDIi,t for state i at year t

is the sum of the total disposable income for state i for every year between 1960 and t. The CDIi,t

calculation starts in 1960 because this is the first year that income data are available for every state.

Sources: Historical series of disposable income for states are in Table SA51 of the US Bureau of

Economic Analysis.

http://www.bea.gov/itable/iTable.cfm?ReqID=70&step=1#reqid=70&step=1&isuri=1

∆c

Difference in the log of aggregate real non-housing consumption between years t − 1 and t. At

the state level, this is calculated by adding the log growth in population to the estimates of real

non-housing consumption growth in Zhou (2010), which are available since 1971 for most states

with the exception of Alaska, Delaware, Montana, Nevada, New Hampshire and Oregon, which have

consumption growth data available from 1998 onwards.

FHFA index

All-transactions FHFA house price index for US states. All-transactions indices augment purchase-

only data with appraisal data; see original data source for details.

Source: http://www.fhfa.gov/DataTools/Downloads/pages/house-price-index.aspx

∆wH

Difference in the logarithm of the aggregate house price index between years t − 1 and t. The

aggregate house price index is obtained by multiplying the FHFA index by the aggregate number

of households. The number of households in year t is obtained by dividing the total population in

a region in year t by the average household size in the region in year t. Data on the population and

average household size are both provided by the US Census Bureau. The aggregate nominal housing

index is then deflated by CPI.

Source: Population and persons per household available from

http://www.census.gov/geography.html.

∆wTR

Difference in the logarithm of real non-housing tradable wealth between years t − 1 and t. Real

per-capita non-housing wealth in state i in year t is obtained by TotalTR × CDIi,t/
∑50

i=1 CDIi,t

deflated by CPI.

∆y

Difference between the logarithm of real aggregate income at year t + 1 and at year t. Total real

income is obtained by deflating the estimate of the total nominal income (obtained from the Bureau

of Economic Analysis) by CPI.

Source: http://www.bea.gov/regional/downloadzip.cfm
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Table 2: Summary Statistics. This table contains the mean and standard deviation (Std. Dev.) of the annual real log
growth of aggregated non-housing consumption (∆c), housing wealth (∆wH), non-housing tradable wealth (∆wTR) and
income (∆y) for all US states and the District of Columbia. Details of variable construction are specified in Table 1. The
sample consists of annual observations from 1976–2012, with the exception that non-housing consumption growth data
begin in 1998 for Alaska, Delaware, Montana, Nevada, New Hampshire and Oregon.

∆c ∆wH ∆wTR ∆y
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

AL 1.25 2.69 0.57 3.80 5.01 12.98 1.49 1.90
AK 2.04 1.92 1.07 9.49 4.26 12.74 0.16 2.92
AZ 0.39 4.97 1.04 8.74 4.43 12.83 1.0 2.50
AR 1.06 3.62 0.50 4.63 5.01 12.97 1.53 2.26
CA 1.46 3.84 2.32 9.95 4.33 12.93 1.11 2.28
CO 1.61 4.40 1.50 5.10 4.66 12.95 1.35 2.14
CT 2.51 8.68 1.85 8.18 5.03 13.04 1.78 2.63
DE 1.49 1.39 1.43 6.02 4.43 12.90 1.13 1.99
DC 3.08 5.71 3.49 8.72 4.72 12.93 1.94 2.54
FL 1.13 3.52 0.59 7.98 4.84 13.00 1.24 2.33
GA 1.24 3.79 0.01 3.96 4.63 12.94 1.38 2.39
HI 2.24 5.27 3.70 16.79 4.36 13.04 0.78 2.09
ID 0.72 4.16 0.55 6.19 4.34 12.97 0.96 2.42
IL 0.47 3.78 0.68 5.67 4.63 12.93 1.16 2.17
IN 0.65 5.36 0.29 3.38 4.57 12.93 1.17 2.48
IA 0.93 4.39 0.27 4.44 4.71 12.93 1.37 3.04
KS 1.31 4.38 0.06 3.55 4.63 12.94 1.27 2.04
KY 2.43 4.36 0.63 3.49 4.88 12.95 1.40 1.98
LA 1.68 5.41 0.80 4.39 5.17 13.16 1.71 2.28
ME 2.17 4.51 2.02 7.27 5.00 13.13 1.63 2.14
MD 1.50 5.07 1.68 6.56 4.85 12.99 1.51 1.84
MA 3.23 6.39 2.70 8.14 5.02 13.04 1.91 2.43
MI 1.31 6.34 0.55 6.13 4.68 12.92 1.00 2.75
MN 1.55 6.18 1.07 5.19 4.78 12.96 1.55 2.44
MS 0.79 3.24 0.10 4.62 5.10 12.96 1.64 1.88
MO 0.37 4.02 0.48 4.22 4.63 12.95 1.23 1.88
MT 2.36 1.53 1.77 6.01 4.38 12.97 1.14 2.38
NE 1.10 6.51 0.13 3.68 4.72 12.95 1.41 2.68
NV 1.02 2.90 0.10 9.66 3.92 12.94 0.62 2.82
NH 1.89 1.47 2.10 9.39 5.24 13.14 1.90 2.56
NJ 1.59 3.79 2.09 7.74 4.92 12.98 1.61 2.22
NM 1.66 5.06 1.09 4.83 4.55 12.88 1.24 1.64
NY 1.29 3.02 1.96 6.97 4.68 12.98 1.58 2.31
NC 2.21 5.11 0.70 3.46 4.74 13.00 1.48 2.21
ND 1.74 5.18 1.17 7.32 4.64 12.94 2.06 6.97
OH 2.64 3.46 0.25 3.86 4.65 12.97 1.18 2.05
OK 1.52 4.52 0.14 4.57 4.73 12.90 1.45 2.61
OR 1.41 2.32 1.78 7.85 4.48 12.99 1.02 2.29
PA 2.00 3.99 1.13 4.99 4.84 12.99 1.45 1.62
RI 1.48 4.93 2.06 8.92 4.85 13.06 1.60 2.06
SC 1.75 6.14 0.90 3.21 4.83 12.99 1.40 1.91
SD 2.35 4.12 0.95 7.36 4.73 12.88 1.70 4.09
TN 1.24 4.04 0.46 3.54 4.95 12.98 1.58 2.24
TX 1.27 3.61 0.13 3.80 4.59 12.89 1.46 2.42
UT 3.02 9.56 0.92 6.19 4.24 12.98 1.25 2.27
VT 2.64 5.41 2.72 15.26 5.17 13.08 1.86 2.22
VA 1.31 3.46 1.48 5.49 4.86 13.02 1.57 1.79
WA 1.72 5.46 2.13 6.97 4.51 12.98 1.29 2.22
WV 1.32 8.02 0.13 7.56 4.94 13.01 1.38 1.70
WI 1.83 5.69 0.76 5.16 4.77 12.98 1.34 1.92
WY 1.09 7.03 1.06 6.21 4.82 13.05 1.58 3.76
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Table 3: Correlation of Consumption Growth. This table presents the correlation of annual real log growth of
aggregated non-housing consumption (∆c) between states in the United States. The sources and details of variable
construction are specified in Table 1. Data for the period 1998–2012 are used for estimating the sample correlations.

AL AK AZ AR CA CO CT DE DC FL GA HI ID IL IN IA KS

AK 0.54

AZ 0.80 0.40

AR 0.69 0.41 0.83

CA 0.77 0.51 0.95 0.84

CO 0.58 0.54 0.77 0.82 0.85

CT 0.82 0.42 0.90 0.69 0.90 0.77

DE 0.84 0.78 0.78 0.65 0.78 0.73 0.81

DC 0.51 0.45 0.45 0.14 0.52 0.27 0.52 0.44

FL 0.75 0.43 0.89 0.70 0.80 0.69 0.77 0.76 0.44

GA 0.77 0.49 0.89 0.91 0.93 0.91 0.85 0.76 0.27 0.75

HI -0.32 0.01 -0.31 -0.56 -0.44 -0.39 -0.37 -0.09 -0.22 -0.10 -0.46

ID 0.78 0.55 0.91 0.88 0.92 0.82 0.82 0.80 0.38 0.84 0.90 -0.41

IL 0.70 0.36 0.84 0.82 0.89 0.81 0.79 0.59 0.50 0.81 0.87 -0.60 0.86

IN 0.81 0.54 0.85 0.86 0.89 0.86 0.87 0.82 0.39 0.81 0.91 -0.50 0.87 0.88

IA 0.55 0.23 0.70 0.83 0.73 0.74 0.68 0.49 0.22 0.53 0.75 -0.78 0.71 0.80 0.79

KS 0.58 0.45 0.84 0.82 0.88 0.94 0.81 0.71 0.24 0.75 0.90 -0.40 0.83 0.84 0.86 0.80

KY 0.80 0.61 0.72 0.67 0.70 0.73 0.83 0.88 0.32 0.70 0.76 -0.30 0.77 0.65 0.82 0.62 0.73

LA 0.13 0.02 0.48 0.26 0.45 0.27 0.37 0.19 0.35 0.54 0.27 -0.18 0.54 0.50 0.29 0.32 0.42

ME 0.61 0.52 0.73 0.63 0.68 0.71 0.78 0.74 0.25 0.70 0.69 -0.11 0.64 0.59 0.74 0.55 0.75

MD 0.67 0.61 0.86 0.79 0.83 0.88 0.75 0.80 0.37 0.87 0.84 -0.11 0.82 0.77 0.80 0.60 0.85

MA 0.61 0.49 0.82 0.80 0.85 0.88 0.74 0.68 0.37 0.77 0.85 -0.28 0.82 0.82 0.83 0.65 0.82

MI 0.63 0.47 0.72 0.90 0.81 0.88 0.74 0.66 0.17 0.56 0.90 -0.67 0.84 0.80 0.88 0.87 0.85

MN 0.63 0.75 0.70 0.74 0.78 0.89 0.75 0.84 0.26 0.66 0.85 -0.26 0.80 0.69 0.84 0.59 0.86

MS 0.77 0.47 0.83 0.74 0.79 0.73 0.86 0.81 0.35 0.80 0.79 -0.37 0.91 0.76 0.82 0.68 0.78

MO 0.62 0.62 0.61 0.65 0.77 0.81 0.76 0.70 0.44 0.45 0.80 -0.56 0.68 0.71 0.79 0.67 0.78

MT 0.76 0.64 0.72 0.49 0.80 0.64 0.86 0.83 0.59 0.63 0.71 -0.25 0.72 0.64 0.73 0.48 0.71

NE 0.65 0.68 0.78 0.81 0.83 0.85 0.78 0.87 0.26 0.66 0.83 -0.33 0.87 0.67 0.86 0.70 0.85

NV 0.81 0.47 0.94 0.72 0.86 0.69 0.86 0.87 0.42 0.86 0.78 -0.08 0.84 0.65 0.77 0.53 0.73

NH 0.70 0.76 0.75 0.82 0.78 0.89 0.73 0.88 0.28 0.72 0.84 -0.25 0.83 0.70 0.86 0.67 0.83

NJ 0.70 0.65 0.85 0.64 0.90 0.79 0.82 0.77 0.65 0.81 0.81 -0.17 0.83 0.81 0.77 0.47 0.78

NM 0.58 0.50 0.78 0.58 0.79 0.65 0.72 0.70 0.47 0.72 0.66 -0.22 0.76 0.70 0.67 0.57 0.77

NY 0.79 0.48 0.88 0.85 0.87 0.87 0.89 0.80 0.35 0.86 0.91 -0.40 0.91 0.88 0.94 0.72 0.86

NC 0.69 0.33 0.86 0.90 0.89 0.89 0.84 0.66 0.27 0.74 0.93 -0.55 0.89 0.88 0.90 0.79 0.86

ND 0.28 0.09 0.06 0.32 0.21 0.13 0.12 0.15 -0.04 0.06 0.27 -0.59 0.25 0.31 0.41 0.34 0.18

OH 0.68 0.66 0.74 0.82 0.82 0.89 0.75 0.77 0.27 0.72 0.90 -0.35 0.82 0.80 0.90 0.63 0.86

OK 0.54 0.13 0.68 0.68 0.72 0.62 0.61 0.45 0.26 0.58 0.68 -0.56 0.72 0.76 0.69 0.75 0.69

OR 0.62 0.19 0.88 0.86 0.88 0.67 0.74 0.50 0.37 0.71 0.80 -0.59 0.83 0.86 0.78 0.82 0.76

PA 0.71 0.75 0.81 0.79 0.83 0.90 0.80 0.91 0.35 0.76 0.85 -0.20 0.86 0.72 0.86 0.62 0.86

RI 0.79 0.65 0.79 0.79 0.78 0.67 0.67 0.78 0.46 0.71 0.77 -0.30 0.84 0.70 0.73 0.52 0.62

SC 0.84 0.45 0.88 0.80 0.87 0.77 0.93 0.79 0.42 0.78 0.86 -0.46 0.90 0.83 0.89 0.74 0.78

SD 0.65 0.36 0.67 0.76 0.70 0.51 0.65 0.59 0.19 0.42 0.67 -0.63 0.70 0.58 0.68 0.76 0.61

TN 0.87 0.47 0.87 0.89 0.86 0.78 0.87 0.78 0.33 0.78 0.91 -0.54 0.90 0.86 0.92 0.80 0.80

TX 0.64 0.41 0.66 0.82 0.74 0.89 0.68 0.64 0.08 0.60 0.89 -0.50 0.75 0.79 0.86 0.76 0.84

UT 0.64 0.21 0.93 0.75 0.89 0.77 0.84 0.62 0.48 0.85 0.80 -0.40 0.81 0.88 0.79 0.73 0.86

VT 0.65 0.09 0.66 0.48 0.62 0.35 0.63 0.39 0.52 0.56 0.50 -0.37 0.54 0.62 0.53 0.57 0.39

VA 0.80 0.69 0.83 0.75 0.87 0.90 0.87 0.89 0.49 0.76 0.89 -0.29 0.85 0.78 0.86 0.62 0.83

WA 0.55 0.37 0.73 0.73 0.77 0.89 0.79 0.62 0.31 0.69 0.80 -0.49 0.71 0.84 0.86 0.82 0.92

WV 0.53 0.57 0.36 0.50 0.40 0.53 0.49 0.50 0.20 0.31 0.54 -0.44 0.50 0.49 0.53 0.55 0.49

WI 0.76 0.48 0.97 0.83 0.94 0.81 0.91 0.80 0.47 0.85 0.87 -0.36 0.92 0.84 0.85 0.75 0.87

WY 0.64 0.36 0.81 0.63 0.82 0.66 0.79 0.67 0.44 0.66 0.70 -0.36 0.80 0.71 0.69 0.70 0.75

Continued on next page
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Table 3 – Continued from previous page

KY LA ME MD MA MI MN MS MO MT NE NV NH NJ NM NY NC

LA 0.23

ME 0.84 0.20

MD 0.73 0.30 0.80

MA 0.57 0.28 0.64 0.88

MI 0.74 0.24 0.61 0.69 0.76

MN 0.86 0.23 0.80 0.82 0.71 0.81

MS 0.91 0.57 0.73 0.72 0.64 0.77 0.78

MO 0.76 0.15 0.64 0.62 0.57 0.82 0.87 0.67

MT 0.79 0.34 0.68 0.62 0.53 0.58 0.78 0.75 0.83

NE 0.80 0.29 0.75 0.78 0.80 0.86 0.88 0.81 0.75 0.72

NV 0.74 0.38 0.72 0.82 0.74 0.61 0.67 0.81 0.51 0.71 0.78

NH 0.85 0.18 0.79 0.90 0.80 0.84 0.92 0.78 0.75 0.65 0.91 0.76

NJ 0.66 0.47 0.68 0.85 0.80 0.62 0.80 0.72 0.73 0.83 0.73 0.78 0.74

NM 0.59 0.56 0.61 0.70 0.66 0.53 0.66 0.71 0.59 0.80 0.74 0.70 0.60 0.80

NY 0.88 0.40 0.82 0.85 0.83 0.84 0.85 0.91 0.74 0.72 0.83 0.80 0.85 0.81 0.69

NC 0.71 0.36 0.67 0.78 0.88 0.91 0.75 0.80 0.70 0.58 0.82 0.74 0.78 0.73 0.60 0.93

ND 0.18 0.03 -0.10 -0.12 0.05 0.39 0.22 0.21 0.36 0.24 0.23 -0.03 0.11 0.02 0.15 0.22 0.25

OH 0.80 0.21 0.79 0.84 0.80 0.83 0.95 0.74 0.84 0.73 0.84 0.65 0.88 0.81 0.66 0.90 0.83

OK 0.37 0.45 0.22 0.49 0.71 0.67 0.39 0.58 0.43 0.46 0.61 0.55 0.45 0.52 0.68 0.62 0.73

OR 0.47 0.53 0.51 0.67 0.77 0.75 0.50 0.67 0.52 0.50 0.67 0.72 0.59 0.67 0.66 0.75 0.85

PA 0.86 0.26 0.83 0.91 0.84 0.79 0.94 0.81 0.77 0.77 0.94 0.80 0.95 0.84 0.76 0.89 0.80

RI 0.70 0.22 0.63 0.79 0.74 0.65 0.70 0.71 0.61 0.66 0.76 0.75 0.75 0.78 0.72 0.78 0.72

SC 0.83 0.39 0.75 0.75 0.81 0.82 0.73 0.90 0.68 0.74 0.84 0.82 0.78 0.76 0.70 0.93 0.90

SD 0.61 0.23 0.53 0.44 0.48 0.73 0.55 0.67 0.62 0.62 0.75 0.58 0.56 0.45 0.67 0.62 0.65

TN 0.88 0.32 0.76 0.77 0.74 0.87 0.79 0.90 0.74 0.72 0.81 0.78 0.82 0.73 0.66 0.95 0.90

TX 0.67 0.08 0.53 0.70 0.79 0.89 0.77 0.64 0.73 0.54 0.75 0.55 0.78 0.59 0.52 0.81 0.85

UT 0.61 0.59 0.64 0.79 0.76 0.66 0.61 0.76 0.60 0.65 0.65 0.81 0.62 0.80 0.77 0.82 0.83

VT 0.32 0.30 0.25 0.44 0.57 0.43 0.14 0.46 0.22 0.35 0.36 0.60 0.35 0.45 0.37 0.48 0.55

VA 0.86 0.22 0.78 0.89 0.83 0.79 0.90 0.81 0.83 0.81 0.85 0.80 0.90 0.88 0.71 0.90 0.83

WA 0.75 0.32 0.80 0.78 0.76 0.79 0.80 0.73 0.78 0.66 0.75 0.59 0.76 0.69 0.70 0.86 0.82

WV 0.77 0.04 0.61 0.48 0.31 0.64 0.68 0.61 0.71 0.53 0.51 0.27 0.65 0.42 0.32 0.59 0.45

WI 0.78 0.52 0.80 0.87 0.82 0.78 0.76 0.87 0.68 0.76 0.85 0.91 0.81 0.85 0.80 0.89 0.86

WY 0.56 0.53 0.47 0.62 0.72 0.65 0.53 0.73 0.53 0.70 0.76 0.76 0.59 0.69 0.85 0.67 0.71

ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI

OH 0.31

OK 0.45 0.48

OR 0.24 0.61 0.80

PA 0.08 0.91 0.50 0.60

RI 0.13 0.77 0.50 0.65 0.84

SC 0.21 0.78 0.70 0.79 0.82 0.77

SD 0.47 0.58 0.63 0.73 0.61 0.69 0.74

TN 0.32 0.85 0.65 0.79 0.82 0.81 0.95 0.78

TX 0.43 0.83 0.73 0.64 0.75 0.57 0.74 0.56 0.79

UT 0.08 0.67 0.73 0.86 0.70 0.64 0.77 0.55 0.77 0.64

VT 0.03 0.22 0.67 0.73 0.30 0.39 0.67 0.42 0.57 0.41 0.60

VA 0.08 0.89 0.53 0.61 0.95 0.84 0.85 0.56 0.85 0.77 0.75 0.41

WA 0.19 0.84 0.60 0.67 0.80 0.57 0.77 0.56 0.79 0.80 0.81 0.35 0.81

WV 0.13 0.63 0.11 0.25 0.60 0.51 0.56 0.47 0.68 0.51 0.27 0.13 0.63 0.58

WI 0.03 0.77 0.64 0.87 0.86 0.79 0.91 0.71 0.89 0.65 0.90 0.63 0.85 0.78 0.48

WY 0.16 0.52 0.87 0.78 0.68 0.61 0.81 0.70 0.70 0.61 0.78 0.70 0.68 0.62 0.24 0.83
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Table 4: The Housing Wealth Effect in Historical Data. This table presents the results of panel data regressions
of annual aggregated non-housing log-consumption growth (∆c) on the growth of log-housing wealth (∆wH), log of non-
housing tradable wealth (∆wTR), and log income (∆y). State-level fixed effects are included in all models. βwH , βwTR

and βy are the coefficients of the terms ∆wH , ∆wTR and ∆y, respectively. α is the average of the fixed effect. The value
in parentheses below the coefficient is its T-statistic. Overall R2 (in %) values are reported in the last row. The sample
contains observations at annual frequency for the period 1976–2012.

(1) (2) (3) (4) (5)

βwH 0.2077 0.1258 0.1266
(12.16) (7.27) (7.28)

βy 0.7603 0.6416 0.6406
(16.99) (13.65) (13.61)

βwTR 0.0007 -0.0040
(0.07) (-0.47)

α 0.0137 0.0053 0.0160 0.0055 0.0057
(11.75) (4.11) (12.52) (4.40) (4.33)

R2 8.26 14.50 0.00 17.25 17.26
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Table 5: Model Parameters Common to All States. This table presents the parameters common to all states in the
model calibration.

Parameter Symbol Value

House flow services b 0.100
Rate of depreciation of housing stock δ 0.013
Time preference ρ 0.020
Curvature of the utility function γ 1.200
Productivity of the housing sector X 0.033
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Table 6: Simulated Data Mean and Standard Deviation. This table contains the means and standard deviations
(Std. Dev.) of the log growth of annual aggregate consumption (∆c) and of housing wealth (∆wH) averaged over 500
simulations of these variables. For each state in each simulation, the numerical solution to the structural model with the
parameters α, σ and ω0 appropriate to that state is used to generate the evolution of ∆c and ∆wH over 30 years. The
correlation of shocks to K between states is set equal to the correlation of consumption growth between the corresponding
states observed in historical data. The parameters α and σ for each state i are chosen to match the historical mean and
volatility of ∆ci. The parameter ω0 in Panel A (B) is chosen for each state i to match the historical mean (volatility) of
∆wH

i .

Panel A: ω0 to match mean housing wealth growth Panel B: ω0 to match housing wealth volatility

∆c ∆wH

α σ ω0
∆c ∆wH

α σ ω0Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
AL 1.25 2.56 0.57 1.03 3.53 2.69 1.34 1.27 2.64 2.56 2.64 3.53 2.69 -0.60
AK 2.04 1.82 1.04 1.22 4.47 1.92 1.48 2.04 1.88 3.17 1.81 4.47 1.92 -0.55
AZ 0.50 4.61 1.05 3.19 2.59 4.97 1.70 0.39 4.83 1.80 5.18 2.59 4.97 -0.56
AR 1.08 3.37 0.47 1.20 3.34 3.62 1.29 1.04 3.53 2.36 3.58 3.34 3.62 -0.60
CA 1.54 3.75 2.33 3.19 3.82 3.84 2.27 1.47 3.79 2.72 3.76 3.82 3.84 -0.56
CO 1.63 4.15 1.50 2.62 4.02 4.40 1.76 1.62 4.28 2.82 4.17 4.02 4.40 -0.57
CT 2.89 8.34 1.85 5.10 5.38 8.68 1.91 2.61 8.38 3.33 7.58 5.38 8.68 -0.60
DE 1.52 1.33 1.41 1.07 3.79 1.39 1.70 1.49 1.36 2.75 1.35 3.79 1.39 -0.56
DC 2.96 5.52 3.47 4.71 5.85 5.71 2.67 3.06 5.53 3.72 4.91 5.85 5.71 -0.59
FL 1.06 3.38 0.58 1.35 3.41 3.52 1.34 1.11 3.44 2.42 3.48 3.41 3.52 -0.58
GA 1.16 3.45 0.01 0.21 3.55 3.79 0.81 1.20 3.67 2.49 3.69 3.55 3.79 -0.58
HI 2.28 5.11 3.29 4.78 4.82 5.27 2.86 2.21 5.10 3.23 4.78 4.82 5.27 -0.56
ID 0.78 3.89 0.57 1.62 2.95 4.16 1.34 0.77 4.02 2.14 4.20 2.95 4.16 -0.55
IL 0.47 3.51 0.71 1.80 2.64 3.78 1.48 0.49 3.70 1.90 3.94 2.64 3.78 -0.58
IN 0.49 5.11 0.31 1.75 2.92 5.36 1.21 0.62 5.11 1.07 3.43 2.92 5.36 -1.73
IA 1.05 4.08 0.29 1.13 3.21 4.39 1.18 0.98 4.33 2.31 4.42 3.21 4.39 -0.58
KS 1.41 4.01 0.05 0.42 3.66 4.38 0.89 1.38 4.17 2.19 3.56 3.66 4.38 -1.17
KY 2.40 4.19 0.66 1.51 5.01 4.36 1.29 2.41 4.21 2.83 3.43 5.01 4.36 -1.06
LA 1.63 5.13 0.77 2.20 4.15 5.41 1.43 1.66 5.19 2.42 4.45 4.15 5.41 -1.07
ME 2.16 4.28 2.01 2.95 4.70 4.51 1.98 2.16 4.37 3.19 4.09 4.70 4.51 -0.59
MD 1.54 4.88 1.70 3.36 3.92 5.07 1.91 1.47 4.94 2.68 4.84 3.92 5.07 -0.59
MA 3.21 6.07 2.74 4.45 6.07 6.39 2.27 3.29 6.12 3.79 5.34 6.07 6.39 -0.60
MI 1.29 5.95 0.52 2.25 3.77 6.34 1.29 1.28 6.17 2.51 6.11 3.77 6.34 -0.58
MN 1.62 5.86 1.10 3.08 4.05 6.18 1.58 1.61 5.97 2.39 5.14 4.05 6.18 -1.06
MS 0.80 3.03 0.10 0.41 3.00 3.24 1.04 0.81 3.14 2.17 3.25 3.00 3.24 -0.60
MO 0.33 3.76 0.45 1.55 2.52 4.02 1.34 0.34 3.95 1.75 4.25 2.52 4.02 -0.58
MT 2.33 1.46 1.82 1.37 4.85 1.53 1.83 2.36 1.47 3.39 1.41 4.85 1.53 -0.56
NE 1.01 6.13 0.13 1.50 3.53 6.51 1.04 1.04 6.16 1.07 3.71 3.53 6.51 -1.80
NV 0.93 2.71 0.10 0.36 3.27 2.90 0.95 1.00 2.85 2.36 2.93 3.27 2.90 -0.52
NH 1.92 1.39 2.18 1.19 4.28 1.47 2.07 1.91 1.42 3.04 1.37 4.28 1.47 -0.60
NJ 1.59 3.57 2.02 2.73 3.98 3.79 2.07 1.59 3.66 2.79 3.56 3.98 3.79 -0.60
NM 1.56 4.79 1.04 2.47 4.12 5.06 1.53 1.67 4.90 2.84 4.77 4.12 5.06 -0.56
NY 1.36 2.84 1.99 2.24 3.59 3.02 2.07 1.29 2.92 2.57 2.92 3.59 3.02 -0.58
NC 2.17 4.87 0.72 1.88 4.78 5.11 1.34 2.21 4.87 2.20 3.54 4.78 5.11 -1.37
ND 1.80 4.86 1.12 2.53 4.21 5.18 1.58 1.74 5.03 2.89 4.84 4.21 5.18 -0.59
OH 2.65 3.18 0.26 0.70 5.22 3.46 1.01 2.65 3.35 3.54 3.07 5.22 3.46 -0.58
OK 1.57 4.11 0.13 0.63 3.93 4.52 0.98 1.52 4.36 2.74 4.28 3.93 4.52 -0.58
OR 1.32 2.21 1.76 1.64 3.72 2.32 1.91 1.38 2.25 2.65 2.24 3.72 2.32 -0.57
PA 2.10 3.80 1.16 2.03 4.48 3.99 1.58 2.01 3.87 3.10 3.67 4.48 3.99 -0.59
RI 1.45 4.69 2.08 3.78 3.89 4.93 2.17 1.46 4.75 2.68 4.67 3.89 4.93 -0.59
SC 1.85 5.85 0.94 2.77 4.29 6.14 1.48 1.70 5.82 1.23 3.27 4.29 6.14 -1.81
SD 2.40 3.92 0.99 1.85 4.90 4.12 1.48 2.37 3.99 3.34 3.70 4.90 4.12 -0.59
TN 1.32 3.82 0.43 1.22 3.56 4.04 1.25 1.27 3.91 2.24 3.49 3.56 4.04 -1.06
TX 1.31 3.45 0.11 0.50 3.59 3.61 0.98 1.27 3.52 2.55 3.53 3.59 3.61 -0.57
UT 2.72 9.17 0.90 4.01 6.06 9.56 1.38 3.02 9.11 2.31 6.19 6.06 9.56 -1.33
VT 2.61 5.25 2.69 3.95 5.30 5.41 2.27 2.62 5.25 3.47 4.75 5.30 5.41 -0.60
VA 1.27 3.33 1.51 2.30 3.62 3.46 1.83 1.30 3.37 2.57 3.36 3.62 3.46 -0.59
WA 1.63 5.25 2.16 4.20 4.20 5.46 2.17 1.78 5.34 2.93 5.17 4.20 5.46 -0.57
WV 1.22 7.48 0.15 2.01 3.90 8.02 1.04 1.26 7.80 2.45 7.70 3.90 8.02 -0.59
WI 1.86 5.43 0.78 2.23 4.35 5.69 1.38 1.85 5.55 2.83 5.11 4.35 5.69 -0.77
WY 1.03 6.68 1.05 3.97 3.55 7.03 1.64 1.12 6.83 2.05 6.14 3.55 7.03 -1.05
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Table 7: Wealth Effect Regressions in Data Simulated to Match the Mean Housing Wealth Growth. This
table displays the results of regressions estimated on 500 panels of simulated data. For each state in each simulation,
30 years of data are generated using the calibrated theoretical model. The data are simulated with the theoretical
model calibrated to match the mean of housing wealth growth in each state. Panel A of Table 6 presents details of this
calibration. The dependent variable of the regressions under the column labeled “Dep. var. ∆wH” is the log growth of
housing wealth (∆wH). The dependent variable of the regressions under the column labeled “Dep. var. ∆c” is the log
growth of non-housing consumption. The independent variables are ∆wH and the log growth of non-housing capital (∆k).
All the variables are assumed to have mean-zero normally distributed measurement errors that are independent of each
other and independent of the shocks to non-housing capital. The results in Panels A, B, C and D are based on different
levels of the noise-to-signal ratio. That is, in Panel A (B, C, D), for each state in each simulation, the variance of the
measurement error is equal to 0% (50%, 100%, 150%) of the variance of each of the error-free simulated variables—∆c,
∆wH and ∆k—obtained in that simulation. All panels have state-level fixed effects. βwH , βk and α are the average across
all simulated panels of the estimated coefficients on ∆wH , ∆k and state-level fixed effects. The value in parentheses below
the coefficient is the average T-statistic. The last row of each panel contains the average of the overall R2 (in %) of the
simulated regressions.

Dep var Dep var ∆c
∆wH (1) (2) (3)

Panel A: No measurement errors

βwH 1.3842 0.0120
(55.10) (6.15)

βk 0.4547 0.9606 0.9541
(18.87) (759.89) (761.88)

α 0.0057 -0.0018 -0.0002 -0.0003
(0.52) (-0.24) (-0.83) (-0.91)

R2 60.96 60.94 99.74 99.75

Panel B: 50% noise-to-signal ratio

βwH 0.9204 0.4370
(24.27) (13.61)

βk 0.3044 0.6389 0.5043
(8.19) (33.64) (27.74)

α 0.0081 0.0042 0.0053 0.0017
(0.74) (0.34) (0.67) (0.20)

R2 28.01 27.92 44.28 48.71

Panel C: 100% noise-to-signal ratio

βwH 0.6901 0.4145
(16.71) (10.97)

βk 0.2286 0.4783 0.3830
(5.64) (21.69) (17.97)

α 0.0093 0.0072 0.0080 0.0042
(0.78) (0.57) (0.76) (0.39)

R2 16.07 15.98 24.86 29.71

Panel D: 150% noise-to-signal ratio

βwH 0.5521 0.3712
(12.91) (9.20)

βk 0.1831 0.3819 0.3137
(4.36) (16.37) (13.80)

α 0.0101 0.0090 0.0097 0.0059
(0.76) (0.66) (0.78) (0.48)

R2 10.44 10.36 15.89 20.12

45



Table 8: Wealth Effect Regressions in Data Simulated to Match the Volatility of Housing Wealth Growth.
This table displays the results of regressions estimated on 500 panels of simulated data. For each state in each simulation,
30 years of data are generated using the calibrated theoretical model. The data are simulated with the theoretical model
calibrated to match the volatility of housing wealth growth in each state. Panel B of Table 6 presents details of this
calibration. The dependent variable of the regressions under the column labeled “Dep. var. ∆wH” is the log growth of
housing wealth (∆wH). The dependent variable of the regressions under the column labeled “Dep. var. ∆c” is the log
growth of non-housing consumption. The independent variables are ∆wH and the log growth of non-housing capital (∆k).
All the variables are assumed to have mean-zero normally distributed measurement errors that are independent of each
other and independent of the shocks to non-housing capital. The results in Panels A, B, C and D are based on different
levels of the noise-to-signal ratio. That is, in Panel A (B, C, D), for each state in each simulation, the variance of the
measurement error is equal to 0% (50%, 100%, 150%) of the variance of each of the error-free simulated variables—∆c,
∆wH and ∆k—obtained in that simulation. All panels have state-level fixed effects. βwH , βk and α are the average across
all simulated panels of the estimated coefficients on ∆wH , ∆k and state-level fixed effects. The value in parentheses below
the coefficient is the average T-statistic. The last row of each panel contains the average of the overall R2 (in %) of the
simulated regressions.

Dep var Dep var ∆c
∆wH (1) (2) (3)

Panel A: No measurement errors

βwH 1.0512 0.1104
(211.58) (95.20)

βk 0.8858 0.9758 0.8759
(182.96) (822.45) (813.66)

α 0.0124 -0.0123 -0.0002 -0.0016
(3.96) (-4.03) (-1.24) (-7.86)

R2 94.04 94.61 99.78 99.82

Panel B: 50% noise-to-signal ratio

βwH 0.6996 0.4078
(32.49) (20.87)

βk 0.5924 0.6490 0.4074
(27.62) (33.66) (22.91)

α 0.0173 -0.0028 0.0053 -0.0018
(1.94) (-0.35) (0.67) (-0.24)

R2 41.94 42.06 44.29 52.51

Panel C: 100% noise-to-signal ratio

βwH 0.5246 0.3461
(21.18) (14.87)

βk 0.4449 0.4859 0.3320
(18.03) (21.70) (15.68)

α 0.0197 0.0020 0.0080 0.0012
(1.75) (0.16) (0.75) (0.11)

R2 23.68 23.68 24.86 32.72

Panel D: 150% noise-to-signal ratio

βwH 0.4196 0.2983
(16.06) (11.93)

βk 0.3563 0.3880 0.2818
(13.69) (16.37) (12.39)

α 0.0212 0.0048 0.0097 0.0033
(1.62) (0.36) (0.77) (0.27)

R2 15.22 15.18 15.89 22.41
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Table 9: Wealth Effect Regressions in Data Simulated to Match the Mean Housing Wealth Growth and with
Errors in Independent Variables. This table displays the results of regressions estimated on 500 panels of simulated
data. For each state in each simulation, 30 years of data are generated using the calibrated theoretical model. The data
are simulated with the theoretical model calibrated to match the mean housing wealth growth in each state. Panel A
of Table 6 presents details of this calibration. The dependent variable of the panels is the log growth of non-housing
consumption (∆c). The independent variables in these panels are the log growth of housing wealth (∆wH) and the log
growth of non-housing capital (∆k). The independent variables are assumed to have mean-zero normally distributed
measurement errors that are independent of each other and independent of the shocks to non-housing capital. Each model
and panel displays results with different noise-to-signal ratios in ∆wH and ∆k. Each model contains the results when
the variance of the measurement error of ∆wH is equal to 5%, 10% or 30% of the variance of the error-free ∆wH in that
simulation. Panel A (B and C) contains the results when the variance of the measurement error of ∆k is equal to 5% (10%
and 30%) of the variance of the error-free series of ∆k obtained in that simulation. All estimated models have state-level
fixed effects. βwH , βk and α are the average across all simulated panels of the estimated coefficients on ∆wH , ∆k and
state-level fixed effects. The value in parentheses below the coefficient is the average T-statisic. The last row of each panel
contains the average of the overall R2 (in %) of the simulated regressions.

Noise-to-signal ratio in ∆wH

5% 10% 30%
(1) (2) (3) (1) (2) (3) (1) (2) (3)

Panel A: Noise-to-signal ratio in ∆k equals 5%

βwH 1.2576 0.1513 1.0640 0.1035 0.9222 0.0790
(47.40) (16.74) (38.71) (12.17) (33.61) (9.87)

βk 0.9151 0.8466 0.9151 0.8687 0.9151 0.8799
(164.86) (158.62) (164.86) (160.65) (164.86) (161.68)

α -0.0002 0.0006 -0.0004 0.0023 0.0006 -0.0001 0.0041 0.0006 0.0001
(-0.10) (0.29) (-0.18) (0.16) (0.29) (-0.05) (0.38) (0.29) (0.03)

R2 55.84 95.02 95.33 47.85 95.02 95.24 41.88 95.02 95.19

Panel B: Noise-to-signal ratio in ∆k equals 10%

βwH 1.3177 0.2961 1.2576 0.2640 1.0640 0.1851
(50.77) (24.55) (47.40) (22.07) (38.71) (16.27)

βk 0.8736 0.7462 0.8736 0.7604 0.8736 0.7949
(118.04) (109.07) (118.04) (110.11) (118.04) (112.60)

α -0.0010 0.0013 -0.0007 -0.0002 0.0013 -0.0004 0.0023 0.0013 0.0001
(-0.17) (0.48) (-0.20) (-0.10) (0.48) (-0.15) (0.16) (0.48) (0.01)

R2 58.28 90.72 91.85 55.84 90.72 91.75 47.85 90.72 91.47

Panel C: Noise-to-signal ratio in ∆k equals 30%

βwH 1.3177 0.6015 1.2576 0.5487 1.0640 0.4071
(50.77) (34.80) (47.40) (31.68) (38.71) (24.09)

βk 0.7395 0.5233 0.7395 0.5426 0.7395 0.5942
(68.74) (57.70) (68.74) (58.78) (68.74) (61.57)

α -0.0010 0.0035 -0.0009 -0.0002 0.0035 -0.0005 0.0023 0.0035 0.0005
(-0.17) (0.86) (-0.18) (-0.10) (0.86) (-0.12) (0.16) (0.86) (0.09)

R2 58.28 76.81 82.71 55.84 76.81 82.26 47.85 76.81 80.98
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Table 10: Wealth Effect Regressions in Data Simulated to Match the Volatility of Housing Wealth Growth
and with Errors in Independent Variables. This table displays the results of regressions estimated on 500 panels of
simulated data. For each state in each simulation, 30 years of data are generated using the calibrated theoretical model.
The data are simulated with the theoretical model calibrated to match the volatility of housing wealth growth in each
state. Panel B of Table 6 presents details of this calibration. The dependent variable of the panels is the log growth of
non-housing consumption (∆c). The independent variables in these panels are the log growth of housing wealth (∆wH)
and the log growth of non-housing capital (∆k). The independent variables are assumed to have mean-zero normally
distributed measurement errors that are independent of each other and independent of the shocks to non-housing capital.
Each model and panel displays results with different noise-to-signal ratios in ∆wH and ∆k. Each model contains the
results when the variance of the measurement error of ∆wH is equal to 5%, 10% or 30% of the variance of the error-free
∆wH in that simulation. Panel A (B and C) contains the results when the variance of the measurement error of ∆k is
equal to 5% (10% and 30%) of the variance of the error-free series of ∆k obtained in that simulation. All estimated models
have state-level fixed effects. βwH , βk and α are the average across all simulated panels of the estimated coefficients on
∆wH , ∆k and state-level fixed effects. The value in parentheses below the coefficient is the average T-statisic. The last
row of each panel contains the average of the overall R2 (in %) of the simulated regressions.

Noise-to-Signal ratio in ∆wH

5% 10% 30%
(1) (2) (3) (1) (2) (3) (1) (2) (3)

Panel A: Noise-to-signal ratio in ∆k equals 5%

βwH 1.0010 0.3834 0.9555 0.2807 0.8085 0.1365
(124.62) (79.13) (98.79) (54.65) (63.19) (26.38)

βk 0.9295 0.6033 0.9295 0.6912 0.9295 0.8139
(165.51) (134.27) (165.51) (143.44) (165.51) (155.23)

α -0.0110 0.0006 -0.0045 -0.0098 0.0006 -0.0031 -0.0058 0.0006 -0.0012
(-2.81) (0.30) (-2.42) (-2.24) (0.30) (-1.72) (-1.09) (0.30) (-0.69)

R2 90.11 95.06 96.76 86.01 95.06 96.32 72.78 95.06 95.68

Panel B: Noise-to-signal ratio in ∆k equals 10%

βwH 1.0010 0.5421 0.9555 0.4241 0.8085 0.2276
(124.62) (93.26) (98.79) (66.65) (63.19) (33.81)

βk 0.8874 0.4478 0.8874 0.5439 0.8874 0.7035
(118.30) (84.45) (118.30) (93.01) (118.30) (105.55)

α -0.0110 0.0013 -0.0062 -0.0098 0.0013 -0.0046 -0.0058 0.0013 -0.0019
(-2.81) (0.49) (-2.57) (-2.24) (0.49) (-1.89) (-1.09) (0.49) (-0.77)

R2 90.11 90.76 95.23 86.01 90.76 94.27 72.78 90.76 92.66

Panel C: Noise-to-signal ratio in ∆k equals 30%

βwH 1.0010 0.7726 0.9555 0.6671 0.8085 0.4316
(124.62) (110.36) (98.79) (83.03) (63.19) (46.33)

βk 0.7513 0.2225 0.7513 0.2949 0.7513 0.4562
(68.80) (37.46) (68.80) (43.20) (68.80) (53.70)

α -0.0110 0.0035 -0.0086 -0.0098 0.0035 -0.0069 -0.0058 0.0035 -0.0033
(-2.81) (0.86) (-2.72) (-2.24) (0.86) (-2.09) (-1.09) (0.86) (-0.92)

R2 90.11 76.85 92.81 86.01 76.85 90.65 72.78 76.85 85.82
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Figure 1: Illustration of the model. This figure presents the model solution using the parameter values in Table 5 as
well as α = 4.05%, σ = 6.18%, and ω0 = 1.58%. Panel A shows house prices (P ) and consumption to non-housing capital
ratio (C/K) as functions of the log of the ratio of housing to non-housing capital (ω). Panel B shows the log of house
prices (p) and of consumption (c) as functions of the log of non-housing capital (k).
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Figure 2: Housing wealth effect as a function of errors in variables. This figure plots the mean estimated housing
wealth effect βwH in fixed-effect regressions across 500 panels of data simulated for each level of the noise-to-signal ratio
in the dependent and independent variables. The dependent variable of the panels is the log growth of non-housing
consumption (∆c). The independent variables in these panels are the log growth of housing wealth (∆wH) and the log
growth of non-housing capital (∆k). For each state in each simulation, 30 years of data are generated using the calibrated
theoretical model. The data are simulated with the theoretical model calibrated to match the mean of housing wealth
growth in each state. All the variables are assumed to have mean-zero normally distributed measurement errors that are
independent of each other and independent of the shocks to non-housing capital. 500 simulations are generated for each
of the chosen levels of the noise-to-signal ratio between 1% and 300%. For example, for the case of a noise-to-signal ratio
of 10%, for each state in each simulation, the variance of the measurement error is equal to 10% of the variance of each of
the error-free simulated variables ∆c, ∆wH and ∆k obtained in that simulation. All panels have state-level fixed effects.
The dotted lines indicate the 95% confidence interval bands for the parameter estimates. The inset figure magnifies the
section of the graph between 0% and 5% noise-to-signal ratio.
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