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Abstract 

The uncertainty around future changes to the Federal Reserve target rate varies over time. 
In our results, the main driver of uncertainty is a “path” factor signaling information 
about future policy actions, which is filtered from federal funds futures data. The 
uncertainty is highest when it signals a loosening cycle. The uncertainty raises the risk 
premium in a loosening cycle, reducing the transmission of target changes to longer 
maturities. Our results trace the information content of federal funds futures to hedging 
demand. 
 
Bank topics: Asset pricing; Financial markets; Interest rates 
JEL codes: E43; E44; E47; G12; G13  

Résumé 

L’incertitude entourant les changements à venir du taux cible de la Réserve fédérale 
évolue dans le temps. D’après les résultats, le principal facteur en cause est la 
« trajectoire» qui se dégage des contrats à terme sur les fonds fédéraux et qui renseigne 
sur les actions futures de l’autorité monétaire. L’incertitude est la plus élevée lorsque la 
trajectoire annonce un cycle d’assouplissement. L’incertitude fait augmenter la prime de 
risque lors d’un cycle d’assouplissement et atténue la transmission des changements du 
taux cible aux contrats de plus long terme. Les résultats donnent à penser que les 
informations contenues dans les contrats à terme sur les fonds fédéraux proviennent des 
opérations de couverture. 

Sujets de la Banque : Évaluation des actifs; Marchés financiers; Taux d’intérêt 
Codes JEL : E43, E44, E47, G12, G13 
  



 

 iii 

Non-Technical Summary 

Federal Reserve communications—statements and speeches—interact with economic 
conditions to shape the anticipation of investors in the federal funds futures market. 
Investors anticipate the path of future policy decisions as well as uncertainty surrounding 
future decisions. This paper measures uncertainty about the future path of policy that 
investors incorporate into futures prices. The results show that the uncertainty with 
respect to this path varies through expansions and recessions. In a sample between 1994 
and 2017, this uncertainty is lowest when the Federal Reserve is expected to tighten its 
policy rate and highest when it is expected to loosen its policy rate. Since policy surprises 
represent a risk to investors, the compensation for risk implicit in federal funds futures 
decreases because of the lower uncertainty when the Fed is expected to tighten policy. 
The results are consistent with evidence that forward guidance by the Fed reduced 
uncertainty when it was tightening its policy rate. This suggests that communication by 
the Federal Reserve affects both the anticipated path and the uncertainty regarding future 
policy decisions. 

 
  
 

 
 



Introduction

Policy decisions by the Federal Reserve regarding the overnight target rate influence

expectations about future decisions. However, little is known about the effects these decisions

have on the uncertainty surrounding future decisions. This paper sheds some light on this

uncertainty and on the response of the risk premium as the Fed manoeuvers the business

cycles. This response is important because both expectations and uncertainty can move

longer-term interest rates—but not necessarily in the same direction. The response of the

risk premium may affect the transmission of policy decisions throughout financial markets.

Measuring the uncertainty around future policy decisions also sheds some light on the

apparent gradualism in monetary policy.1 Gradualism has been interpreted as the endogenous

policy response of a central bank that does not want to “spook” the bond market (e.g., Stein

and Sunderam, 2015), but the apparent gradualism has also been interpreted as a sequence

of exogenous and unpredictable shocks that appear serially correlated after the fact (e.g.,

Rudebusch, 2002). These mechanisms for gradualism have different implications for the

correlation between expectations and uncertainty.

Conceptually, the approach in this paper exploits the well-established information content

of federal funds futures. Indeed, the most common way to identify policy surprises uses the

change of federal funds futures rates following Federal Open Market Committee (FOMC)

meetings (e.g., Cochrane and Piazzesi, 2002; Bernanke and Kuttner, 2005). These futures are

also widely used to measure expectations about future policy decisions (Krueger and Kuttner,

1996). But these futures can also provide information about the uncertainty surrounding

future decisions. This paper combines daily federal funds futures data with a dynamic term

structure model (DTSM) to identify the expectations and the distribution of future policy

decisions. This approach offers three main empirical contributions.2

1The benefits and rationale of forward-guidance and gradualism near the lower bound are well-understood;
see e.g., Krugman (1998); Eggertsson and Woodford (2003).

2Federal funds futures are short-term financial contracts linked to the overnight federal funds rate, which
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First, regarding the uncertainty about future decisions, we provide new evidence on

the distribution of possible changes to the target rate. The dispersion of this distribution,

measured by its volatility, is our proxy for uncertainty. Our findings reveal that the volatility

is highly cyclical and varies with the expected “path” of future target rates. This path factor

represents expectations about future target rates and is filtered jointly with volatility from

federal funds futures. The volatility of changes to the target rate is lowest in anticipation of

a higher path for target rates. Conversely, the volatility is highest in anticipation of a lower

path for target rates. The shape of the distribution of changes to the target rate also varies.

The distribution is skewed toward hikes in a tightening cycle (at a time when volatility is

low) but it is almost symmetric in a loosening cycle (at a time when volatility is high).

This new empirical result points out that the anticipations of market participants are

more certain when economic conditions indicate that the target rate will be rising. In other

words, market participants are more confident about the size and direction of policy changes

when the Fed is leaning against inflation risk in an expanding economy than when supporting

employment in a slowing economy. This cyclical pattern complements the existing evidence

of a downward trend in the uncertainty since the late 1980s (Swanson, 2006).

Second, the risk premium varies with the cyclical volatility of changes to the target rate.

The price of target rate risk is negative and significant. In other words, changes to the

FOMC target that are higher than expected are associated with states when marginal utility

is higher. This may reflect the oft-cited fears that the Fed will increase the target rate too

much (when tightening) or that it will not decrease it enough (when loosening). Therefore,

assets with payoffs that vary with the target rate are risky. This component of the risk

premium due to target rate risk rises mechanically when the target rate volatility increases.

This result emphasizes a different channel through which policy shocks affect interest

is targeted by the Federal Open Market Committee (FOMC). These futures provide accurate forecasts of
target rates (Gurkaynak, Sack, and Swanson, 2012). federal funds futures can identify the volatility of
future target rates because pricing short-term interest rates amounts to deciding on the probabilities of a
few combinations over a handful of future meetings.
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rates. The higher variance of policy shocks in the early stages of a loosening cycle raises the

risk premium and mutes the transmission of policy decisions to longer interest rates. This

channel is distinct from the effect of economic conditions on the risk premium. The model

also allows the price of risk associated with economic conditions to vary. In the results, this

component of the risk premium increases when the path variable declines.

Regarding gradualism, the endogenous mechanism in Stein and Sunderam (2015) predicts

that a gradual path for future target rates is associated with lower uncertainty, irrespective

of the direction of this path. The evidence supports this mechanism in expansion but not in

recession, where a gradual downward path is associated with higher volatility. Conversely,

the exogenous mechanism in Rudebusch (2002) is consistent with the higher volatility in

recession. Additional evidence in Cieslak (2016), based on survey data, shows large and

correlated forecast errors in the early stages of recession, suggesting that policy decisions were

gradual only in appearance. Overall, the evidence supports different causes for gradualism

in expansions or in recessions, which may explain why the debate endures.

Piazzesi and Swanson (2008) suggest that the additional information content of federal

funds futures is due to hedging demand pressures. Additional results confirm this interpre-

tation. Several diagnostic checks also support the results. Pricing errors are small. Forecasts

of the target rates are unbiased and accurate relative to standard benchmarks (Gurkaynak,

Sack, and Swanson, 2012). These checks show that the model correctly captures the his-

torical dynamics and the risk premium. The risk premium estimates contrast with results

from unrestricted predictive regressions. Predictive regressions over-fit excess returns early

in recessions and imply risk premiums that are too large and too volatile—these large excess

returns are due to unexpected recessionary shocks (Cieslak, 2016).

The important role played by the path factor throughout the results is consistent with

Sack (2004) and Gurkaynak, Sack, and Swanson (2005), showing that the unanticipated

component of FOMC statements can be described in terms of a shock to the current target
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rate as well as a shock to the path of future policy decisions (see also Swanson, 2016).

Estimates from the model reveal the same decomposition between the shocks to the current

target and to the path factor. The results show that the path is also the most significant

driver of uncertainty around future policy decisions.

The negative correlation between the path and the uncertainty of future target rates

complements Cieslak and Povala (2016). They find that short-rate expectations become

more volatile than risk premiums before recessions. This paper is distinct because of several

features identifying the volatility associated with future policy decisions.3

Changes in federal funds futures rates are widely used to measure the effect that unantic-

ipated changes to the target have on longer-term yields (Kuttner, 2001). However, Rigobon

and Sack (2004) show that the response of asset prices to policy shocks can also be identified

based on the increase in the variance on days of FOMC meetings. The approach in this

paper integrates both identification strategies.

Rudebusch (1998) shows that policy shocks obtained from recursive identification of

vector autoregression (VAR) residuals has a low correlation with shocks measured from

daily futures data. Faust, Swanson, and Wright (2003) show how to use shocks measured

from daily futures within VARs. They find that these two identification strategies—recursive

identification or using futures data—can have different implications (see also Rogers, Scotti,

and Wright, 2016, in the context of international markets). This is essentially the approach

taken here: the policy shocks are identified based on the changes in futures rates on days

with an FOMC meeting. The difference is that identification occurs within the model and

not in a preliminary step. Interestingly, the specification of the target rate in this paper has

a VAR representation amenable to implementations in a structural framework.

The model is a discrete-time variant of Piazzesi (2005a). These no-arbitrage term struc-

3These are (i) the sample is daily, (ii) the model is adapted to the observed discrete changes to the target
rate and (iii) the estimation exploits the information content of futures (instead of yields with more than
two years to maturity).
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ture models are designed to match the properties of the target rate. The target rate exhibits

a step-like path with changes taking only a small number of values and occurring follow-

ing infrequent FOMC meetings.4 Piazzesi (2005a) documents significant improvements over

standard dynamic term structure models at short maturities. This paper relies on a few key

extensions relative to Piazzesi (2005a). First, the price of target rate risk is not restricted

to zero and, therefore, the risk premium may vary with the volatility of target rate changes.

Second, the volatility of changes to the target rate is not constant. Third, the sample in-

cludes data on federal funds futures. There are several classes of DTSMs that generate

time-varying volatility in yields, but they do not identify the volatility of policy shocks (Cox

et al., 1985; Bansal and Zhou, 2004; Ang et al., 2011).

The analysis covers the period between 1994 and 2008. This choice of sample period

consciously ignores several important but confounding issues present in the data since 2008.

Interest rates reached a lower bound around zero in the United States. Since then, the com-

pression of volatility due to the lower bound has a dominant role in the data. In addition,

the Fed introduced long-term asset purchases and changed its communication of forward

guidance in a few instances, complicating the relationship between expectations and un-

certainty. The results in a pre-2008 sample are useful since they highlight the relationship

between expectation and uncertainty in “normal” times. The conclusion discusses potential

extensions of the model to incorporate the effects of the lower bound.

The rest of the paper is organized as follows. Section I details the discrete-time dynamic

term structure model. Section II summarizes the data as well as the specification and esti-

mation of the model. Section III documents the cyclical variations of target rate uncertainty,

discusses the impact on the risk premium and analyzes the effect of hedging demand on the

information content of forward-to-futures spreads. Section IV concludes.

4Fontaine (2014) considers a simpler variant that is identical to a benchmark Gaussian term structure
model but with discrete target rate changes. Using a Gaussian distribution yields misleading estimates of
policy rule coefficients.
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I Model

A A Model of Discrete Target Changes

The effective overnight rate refft can be decomposed into the Fed target rate and a spread:

refft = rt + st.
5 The specification of the effective spread st will be discussed in Section C.

Target changes can be written as

rt+1 − rt = ∆nt+1,

where ∆ is a 0.25 percent increment and where nt is distributed over a discrete integer

support n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. Except for a discrete support, this representation is

general. In practice, most FOMC meetings result in changes 0 or 1 increment with a few

exceptions where the FOMC changes its target by 2 or 3 increments. This suggests a simple

representation:

rt+1 − rt = ∆
(

nu
t+1 − nd

t+1

)

, (1)

where nu
t+1 ∼ P(λu

t+1) and nd
t+1 ∼ P(λd

t+1) are independent random variables with Poisson

distribution conditional on time-t information. The u and d superscripts identify nu
t+1 and

nd
t+1 with up and down Poisson components of the distribution, respectively. The intensity

parameters depend on the occurrence of a scheduled FOMC meeting at date t+ 1.6 If there

is a scheduled FOMC meeting, the intensity parameters λu
t+1 and λd

t+1 depend on the state

5See Hamilton (1996) for detailed discussions of the overnight federal funds market.
6The FOMC schedule is available publicly at least one year in advance. Piazzesi (2005b) discusses

jumps with time-varying intensities but with deterministic jump time in continuous time. A discrete-time
specification offers tractability gains over a continuous-time specification. First, federal funds futures rates
are not affine. Second, the schedule of FOMC meeting is not time homogenous. These complications lead to
non-standard and intractable differential equations in continuous time. By contrast, a discrete-time model
yields recursions that are easily implemented.

6



variables X∗
t+1:

λu
t+1 = λ+ λ⊤

u

(

X∗
t+1 − X̄

)

and λd
t+1 = λ− λ⊤

d

(

X∗
t+1 − X̄

)

, (2)

where X̄ ≡ E[X∗
t ]. The FOMC may change its target rate following an unscheduled meeting.

The intensities for these rare changes are constant λu
0 and λd

0.
7

B Properties of the Target Rate

Equation 1 specifies the conditional distribution of target rate changes. Conditional on

X∗
t+1, the distribution of target rate changes is affine (i.e., its conditional Laplace transform is

exponential-affine). Its conditional mean, variance and skewness are given by affine function

of the state variables. This follows from existing results for the difference between two

independent Poisson processes (see Appendix A.1).

Consider dates where an FOMC meeting is scheduled. In the stationary state X∗
t+1 = X̄

the distribution of a target change is symmetric with mean zero and variance 2λ∆2. Oth-

erwise, the conditional mean, variance and asymmetry depend on the states. The expected

target change is given by

E[rt+1 − rt|X
∗
t+1] = ∆(λu + λd)

⊤(X∗
t+1 − X̄). (3)

This specification embodies a wide range of policy rules with different state variables or

parametric restrictions. Note that λu and λd cannot be identified separately based on the

conditional mean equation only. For instance, these parameters cannot be estimated sepa-

rately by regressing target rate changes on some state variables. The conditional variance of

7Balduzzi, Bertola, and Foresi (1997) and Balduzzi et al. (1997) investigate the implications of discrete
target changes for the term structure of interest rates. Johannes (2004) provides conclusive evidence that the
persistent policy jumps in the target are the key drivers of other short-term rates. In a forecasting context,
Hamilton and Jordà (2002) combine an ordered response function with a conditional hazard rate but do not
impose no-arbitrage restrictions (see also Grammig and Kehrle, 2008).
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a target rate change is given by

V art[rt+1 − rt|X
∗
t+1] = ∆2(2λ+ (λu − λd)

⊤(X∗
t+1 − X̄)). (4)

The variance of a target change is different around scheduled FOMC meetings. Rigobon

and Sack (2004) use this feature to identify monetary policy from high-frequency data. In

addition, the variance of a target change changes with the state of the economy at FOMC

meetings. The conditional mean depends on λu + λd but the variance depends on λu − λd.

The conditional variance can be used to identify λu and λd. In fact, the model could be

re-parameterized with λu + λd and λu − λd.

It is useful to see how the difference of two Poisson innovations can generate separate

time variations in the mean and variance. Take one element k of the state vector X∗
k,t that is

positively correlated with the conditional mean: λu,k + λd,k > 0. If λu,k − λd,k < 0, then the

increase in the variance of nu
t+1 is smaller than the decrease in the variance of nd

t+1 when X∗
k,t

increases. Since nu
t+1 and nd

t+1 are (conditionally) independent, the variance of nu
t+1 − nd

t+1

decreases. In this example, the mean is positively correlated with Xk,t, but the variance is

negatively correlated. The empirical section pays special attention to the cyclical behavior

in the variance of FOMC shocks.

Finally, the conditional skewness of target changes is given by

Skew[rt+1 − rt|X
∗
t+1] = (λu + λd)

⊤(X∗
t+1 − X̄)/((2λ+ (λu − λd)

⊤(X∗
t+1 − X̄)))3/2. (5)

The relationship with X∗
t+1 is similar to that of the conditional mean whenever λu = λd.

More generally, the relationship is not linear and depends on the magnitude of λu + λd

relative to λu − λd.
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C State Variables

The following state variables summarize the information set available to the FOMC

immediately before a policy decision:

X∗
t+1 ≡ [rt st+1 zt+1 lt+1]

⊤ , (6)

where zt+1 and lt+1 represent public macroeconomic or financial information. In contrast,

the information set relevant to investors at the end of a day with an FOMC meeting is

summarized by

Xt+1 ≡ [rt+1 st+1 zt+1 lt+1]
⊤ . (7)

The variables rt and st are observed directly. The latent factor zt and lt will be filtered from

the data.8

It will be useful to provide some intuition about the role of zt and lt. The state zt will

play the role of a generic latent factor. The results will show that this role is that of a “path”

factor capturing the information relevant for future target changes. By contrast, the role of

lt is distinct from zt by construction because of its role for pricing LIBOR loans. Specifically,

the price Dl(t,m) of a LIBOR loan with maturity m is given by

Dl(t,m) ≡ Et

[

Mt,t+m exp

(

−
m−1
∑

i=0

lt+i

)]

, (8)

for some stochastic discount factor (SDF) Mt. This SDF will be specified in Section E. The

reduced-form approach for pricing LIBOR loans in Equation 8 borrows from Grinblatt (2003)

and Duffie and Singleton (1997). To interpret the role of lt, compare with the price of a risk-

free loan, Drf(t,m) ≡ Et [Mt,t+m]. It follows, that lt determines the marginal compensation

8This specification implies that the information set of investors corresponds to that of the FOMC at the
time of the meeting. In other words, the intra-day variations following the announcement are negligible or
can be attributed to information from the FOMC meeting being slowly incorporated into prices. Finally,
including st+1 in X∗

t+1 is an abuse of notation, but this is irrelevant for the results.
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offered to investors by LIBOR loans, which may be due to a combination of funding risk,

default risk or market power. The state lt is a “spread” factor capturing the information in

the cross-section of forward-to-futures spreads.

D Historical Dynamics

The latent path and spread factor zt+1 and lt+1 follow VAR(1) dynamics,







zt+1

lt+1






=







µz

µl






+







φz φz,l

φl,z φl













zt

lt






+







ǫzt+1

ǫlt+1






(9)

where ǫzt and ǫlt are i.i.d Gaussian innovations with variance σ2
z and σ2

l and covariance σzl.

The effective spread has autoregressive dynamics with order one,

st+1 = µs + φsst + ǫst+1 + Js
t+1, (10)

where ǫst ∼ N(0, σ2
s) and where Js

t+1 follows a compound Poisson distribution with the

number of jumps ns
t+1 ∼ P (λs) and jump size νs

t+1 ∼ N(νs, ω
2
s). This specification allows

for the documented leptokurtic distribution of the effective spread (Hamilton, 1996; Das,

2002).9

The process for Xt has the following VAR representation:

Xt+1 = µ(It+1) + Φ(It+1)Xt + ξt+1, (11)

where the indicator It+1 is equal to 1 if a FOMC meeting is scheduled at date t+1 and zero

otherwise.10 The process for Xt belongs to the family of affine processes (see Appendix A.2-

A.3) but does not belong to the compound autoregressive family of Darolles, Gourieroux,

9Note that st+1 does not respond to zt and lt. This is consistent with the Fed’s explicit actions to
counteract any predictable deviations of the effective rate from its target in this sample.

10Equation 11 can be estimated via Maximum Likelihood when Xt is observed.

10



and Jasiak (2006) because of the deterministic dependence on the meeting schedule. The

conditional distribution of ξt+1 is known. Its variance is constant except for its first element.

E Stochastic Discount Factor

The model is set in discrete time and markets are incomplete. In the absence of arbitrage

opportunities, the risk-neutral measure exists but it is not unique. Consider the family of

exponential-affine SDF Mt+1:

Mt+1 = exp
(

−refft

) exp(δ⊤t Xt+1)

Et

[

exp
(

δ⊤t Xt+1

)] , (12)

where δt is the vector of prices of risk. The compensation for risk is determined by the prices

of risk δt,

δt = δ0 + δ1Xt. (13)

This family nests a wide range of equilibrium-based SDFs (Gourieroux and Monfort, 2007).

The effective rate refft is the relevant overnight rate for money market participants: the

target rate is only a target and most transactions occur at the effective rate.

F Risk-Neutral Dynamics

The price of target risk is constant. Target rate risk will still generate significant risk

premium variations since variance and skewness are time-varying (see Section D). The

dynamics for Xt are affine under the risk-neutral measure (Appendix A.4). In fact, the

dynamics for Xt have the same form under the historical and risk-neutral measures. The

target rate has the same conditional distribution, with intensity parameters given by

λQ
0,u = λ0,u exp(δ0,r∆) λQ

0,d = λ0 exp(−δ0,r∆), (14)
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when there is no FOMC meeting and

λQ
u = λu exp(δ0,r∆) λQ

d = λd exp(−δ0,r∆), (15)

when there is a FOMC meeting.

G Asset Pricing

Consider a federal funds futures contract that settles at the end of a reference calendar

month n. This contract pays off the difference between the contract rate and the average

overnight federal funds rate in the reference month r̄n. With no loss of generality, the notional

of the contract is 1. Futures contracts require no investment at inception. The futures rate

F (t, n) is equal to the discounted value of its payoff:

F (t, n) = Et [Mt,t+Tn
r̄n] = Et

[

Mt,t+Tn
D−1

n

Tn
∑

i=Tn−Dn

rt+i

]

= D−1
n

Tn
∑

i=Tn−Dn

Et [Mt,t+T rt+i]

= D−1
n

Tn
∑

i=Tn−Dn

f(t, i, Tn), (16)

where Tn is the number of days between t and the end of month n and Dn is the number of

days in month n.11 Proposition 1 shows that the rate of a singleton futures contract f(t, i, T ∗
n)

is not linear. This will be accounted for at estimation.

LIBOR loans are short-term, unsecured interbank loans and investors require an extra

11The quoted price of this contract, P (t, n), is given by P (t, n) = 100−F (t, n)×3600. Because of weekends
or holidays, the settlement date t+T ∗

n may not coincide with the last day of the month t+Tn. Proposition 1
uses T ∗ = T for simplicity but estimation accounts for this difference.
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Proposition 1 Price of a Singleton Futures Contract

Take 0 ≤ t ≤ h ≤ T . The rate at time-t of a singleton futures contract f(t, h, T ) for the
reference day t + h and that settles at date t+ T is

f(t, h, T ) ≡Et [Mt,t+T rt+h] =
∂

∂u
Et [Mt,t+T exp(urt+h)]

∣

∣

∣

u=0
(17)

= exp
(

drf0 (t + h, T − h) + c0 (u
∗, t, h)) + c (u∗, t, h)⊤ Xt

)

×
[

c
′

0 (u
∗, t, h)Cr +X⊤

t c
′

(u∗, t, h)Cr

]

. (18)

See Appendix B.4 for the proof and details of the coefficients.

yield to hold them. From Equation 8, the price of a LIBOR loan is given by

Dl(t,m) ≡ Et

[

Mt,t+m exp

(

−
m−1
∑

i=0

lt+i

)]

= exp
(

dL0 (t,m) + dL(t,m)⊤Xt

)

, (19)

with coefficients given in Appendix B.3. Figure 1 compares futures and forward LIBOR

rates. It shows that LIBOR rates on loans initiated in 1999 jumped upward when their

maturity first extended into 2000. Drossos and Hilton (2000) document the impact of Y2K

fears on LIBOR rates (see also Sundaresan and Wang, 2009). Banks placed a greater value

on being liquid or charged more for counterparty risk on the last day of the 20th century. A

dummy variable is introduced to capture this effect. The Millennium premium l∗ is defined

through the following modification of the LIBOR loan equation:

DL(t,m) = Et

[

Mt,t+m exp

(

−

m−1
∑

i=0

lt+i + l∗I(t+ i,m)

)]

,

where the indicator I(t,m) is equal to 1 if t < t∗ ≤ t+m and 0 otherwise and t∗ is the last

business day of 1999.
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II Data and Estimation

A Data and Summary Statistics

The sample includes daily data on the target and effective overnight funds rate at the

Fed; daily data on federal funds futures contracts with horizons from 1 to 6 months; and

daily data on LIBOR loans with maturities of 1 to 12 months. Daily changes in futures rates

around FOMC decisions identify policy shocks during estimation. LIBOR rates provide a

natural term structure associated with the overnight market since they correspond to the

rates at which large banks are prepared to lend to each other on an unsecured basis. I

exclude futures contracts with horizons beyond 6 months since they are relatively illiquid for

most of the sample. More details on the data are provided in Appendix C.1.

The sample starts at the beginning of 1994 when the Fed first used discrete 0.25 percent

increments explicitly. The sample ends in July 2007. The analysis consciously ignores several

important but confounding issues present in the data starting in 2008. The Fed introduced

a structural change to the effective overnight rate market since 2008. Allowing the effective

rate to move in a range between 0 and 0.25 percent implies a structural break in the equation

for the effective spread st. More importantly, the target rate reached a zero lower bound in

the United States. Finally, the Fed introduced long-term asset purchases and changed its

communication of forward guidance in a few instances. Restricting the sample to the pre-

crisis period highlights the relationship between anticipations and uncertainty about future

policy decisions in a “normal” sample.

Table 1 presents summary statistics. The average term structures of LIBOR and forward

rates are upward sloping but the forward curve is steeper. The term structure of LIBOR

volatilities is almost flat, with a slight humped shape at intermediate maturities. The term

structure of futures is lower and flatter than that of the LIBOR rates. Table 1(d) pro-

vides summary statistics for the spreads between LIBOR forward rates and futures rates.
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The forward-to-futures spreads vary substantially and contain significant information about

future excess returns.

B The Information Content of Forward-to-Futures Spreads

Combining futures and LIBOR forward rates generates information about future excess

returns. This information can be summarized with two components. Table 2 reports results

from a principal components analysis of forward-to-futures spreads across maturities.12 The

first two components explain 66 percent of the total variance. The pattern of loadings

on each of these components indicates that they signal changes in the level and slope of

the spreads across maturities, respectively. Higher-order components reflect idiosyncratic

variations around specific points along the term structure.

I use predictability regressions to measure the information content of forward-to-futures

spreads for excess returns from holding a futures contract.13 Excess returns from holding the

futures contract for calendar month n during one month are given by

xrt,n = F (t, n)− F (t+m,n). (20)

The predictive regressions combine the level and slope components of forward-to-futures

spreads:

xrt,n = γ0,n + γlvl levelt + γslp slopet + ut,n. (21)

Table 3 presents the results.14 The level is never significant, but the slope is significant for

12The analysis excludes the last nine months of 1999 owing to fear of the Millennium change in the
interbank market (See Section G above).

13Piazzesi and Swanson (2008) show that accounting for variation margins due to marking positions to
market prices produces near-identical excess returns (see the working paper version of their article).

14The monthly returns do not overlap. Standard asymptotic inference remains valid (Richardson and
Stock, 1989; Valkanos, 2002; Diez de los Rios and Sentana, 2011). Moreover, the regressors’ persistence
cannot be driving the results along the lines in Stambaugh (1999). Assuming that the level and slope factors
follow AR(1) processes, estimates of the persistence coefficients are 0.66 and 0.50, respectively, and estimates
of the correlations between AR(1) innovations and residuals from predictive regressions range between -0.10
and -0.35 for the level factor and -0.06 and 0.20 for the slope factor. On the other hand, the results are
conservative, since short-horizon returns are noisy relative to the ex-ante risk premium.
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contract maturities of three months or more. Increasing the slope by one standard deviation

increases expected monthly excess returns by 5 to 7 basis points (bps), annualized. This is

economically significant relative to average excess returns of 2 and 4 bps. Table 3(b) shows

similar results for excess returns on forward rates. Hence, forward-to-futures spreads predict

excess returns and can be used to improve policy rate forecasts. This justifies combining

forwards and futures in a dynamic term structure model.

There are several reasons why futures and LIBOR markets may not be fully integrated

and reveal different information. LIBOR loans are fully funded while futures contracts

require no exchange of principal. In addition, LIBOR loans are uncollateralized, while futures

contracts are cleared via a central counterparty where variation in margins minimizes the

default exposures of each participant. Finally, participation in the LIBOR market is limited

to large banks and LIBOR positions cannot be reversed as easily when funding conditions

worsen.

C Estimation

The model is estimated using its state-space representation. A brief description is given

here and details of the estimation procedure are provided in Appendix C. The VAR rep-

resentation in Equation 11 provides the transition equation for the state vector Xt, which

includes the two latent states zt and lt. The latent states are filtered based on observed LI-

BOR rates and futures rates, stacked in vector Yt. The vector Yt is combined with observed

target and effective overnight rates in the measurement vector Ỹt = [rt st Y
⊤
t ]⊤. The history

of observable variables for t = 1, . . . , t is summarized by Ỹt (with Ỹ0 an empty set).

All futures and LIBOR rates are measured with i.i.d. Gaussian errors. The Unscented

Kalman Filter (UKF) is used to recover estimates of the latent variables. The UKF is an

approximate filter that matches the first two moments of the state distribution. This filter

accounts for nonlinearities in the measurement equations due to futures rates. Conditional

on filtered estimates of the latent variables, the joint conditional likelihood of the data is
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given by

L(Θ; YT ) =
T
∑

t=1

log
(

f
(

Ỹt|Ỹt−1, It; Θ
))

=

T
∑

t=1

log
(

f(Yt|Ỹt−1, It)f(rt|Ỹt−1, st, It)f(st|st−1)
)

,

where all model parameters are grouped in the vector Θ. The likelihoods of Yt and rt depend

on the deterministic FOMC schedule via the indicator It.

D Specification

Standard identification and stationarity assumptions are discussed in Appendix C.4. The

following additional restrictions are implemented at estimation for parsimony and simplicity.

The parameters λu
0 and λd

0 are poorly estimated because of the lack of policy changes outside

of scheduled FOMC meetings. These are calibrated such that the distribution of target

changes is symmetrical outside of scheduled FOMC meetings and that the variance of target

changes matches the sample variance. Results are robust to the choice of calibration strategy.

This approach is similar to the calibration in Piazzesi (2005a). In addition, the FOMC does

not respond to the current spread when deciding its target for the overnight rate (λu,s =

λd,s = 0). Then, the marginal likelihood of st can be separated so that its parameters can

be estimated separately in a first stage.15

The following restrictions on the parameters of the prices of risk make interpretation of the

results easier. First, the price of risk for zt is left unrestricted. The empirical results attribute

all variations in the price of risk to the cyclical path factor, which captures information about

future target rate changes. The price of target rate risk is constant. This helps disentangle

the effect of varying quantities of risk on the risk premium from the effect of varying the

15Results are essentially unchanged if we proceed via joint estimation. On the other hand, a separate
estimation lightens the computation burden, improves numerical optimization and leads to a more accurate
Hessian matrix because of the weak link between st and yields in the data.
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price of target rate risk (see Equation 22 in the Results). The price of risk for lt is constant.

This restriction enforces the identification of that factor with the forward-to-futures spreads,

which is usually directly interpreted as a risk premium. The price of risk for st is also

constant. In other words, the vector δ0 is left unrestricted but the matrix δ1 has zeros

everywhere except on the third row (which corresponds to the position of zt).

III Results

A Pricing Errors

Table 4 presents mean pricing errors (MPE) and root mean squared pricing errors

(RMSE) in Panel (a) and Panel (b), respectively. The model provides a good fit with

little bias if any. Average errors are typically less than 1 bps and often less than one-tenth

of 1 bps across maturities. LIBOR RMSE is 4.3 bps across all maturities. Piazzesi (2005a)

reports average absolute errors of 12.5, 7.5 and 6.8 bps for LIBOR rates at maturities of 1,

3 and 12 months, respectively. This compares with 6, 4 and less than 1 bps here. Futures

RMSE is 8.8 bps overall and increases with maturity, from 3 to 12 bps.16

B The Path Factor

Figure 2(a) reports filtered estimates of the path factor along with the target rate. The

path factor filtered from the cross-section of federal funds futures captures forward-looking

information about future FOMC decisions. To give a sense of how target rate forecasts

change from the model change with the path factor, consider varying the path factor but

keeping other variables constant. At the median value of the path factor, the change forecast

is essentially 0. At the average value in the lower tercile, the change forecast is around -10

bps, but at the average value in the higher tercile, the change forecast is around +15 bps.

The Fed’s dual mandate suggests that the path factor aggregates information about real

activity and inflation. To see the relationship with real activity, Figure 2(b) compares the

16Estimates of pricing error variance parameters (unreported) are consistent with sample RMSEs.
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path factor with the Aruoba-Diebold-Scotti (ADS) index of US real activity.17 The positive

relationship is visually apparent. The path factor is strongly cyclical. In addition, the path

factor leads the ADS index for several months ahead but the ADS index and the path factors

diverge in a few instances. As one example, the ADS index declined sharply in 2000 but the

path factor did not.

These divergences occur because the path factor zt aggregates additional relevant infor-

mation. For a start, the FOMC must also consider information related to inflation. Indeed,

the divergence in 2000 provides a case in point where zt contains key conditioning related

to inflation. To show this, we can use the FOMC statements and transcripts to analyze the

narratives of the events.

The path factor rose and diverged from the ADS index to signal that the FOMC would

raise its target rate. Indeed, the target rose to a high of 6.5 percent at the FOMC meeting

on 16 May 2000. The FOMC statement for that meeting emphasized inflation risk over

unemployment. As late as 15 November, the FOMC noted that “the risks continue to

be weighted mainly toward conditions that may generate heightened inflation pressures in

the foreseeable future.” They emphasized inflation pressures even if they also noted that

“softening in business and household demand and tightening conditions in financial markets

over recent months suggest that the economy could expand for a time at a pace below [...]

its potential to produce.”

Later on, between November and December, the path factor fell rapidly, anticipating a

change of tone. Indeed, the statement on 19 December 2000 shifted the risk assessment. The

FOMC left inflation aside but stated that “the risks are weighted mainly toward conditions

that may generate economic weakness in the foreseeable future.”18 On 3 January 2001, the

17The Philadelphia Fed publishes the index daily and describes it as “designed to track real business
conditions at high frequency. Its underlying economic indicators (weekly initial jobless claims; monthly
payroll employment, industrial production, personal income less transfer payments, manufacturing and trade
sales; and quarterly real GDP) blend high- and low-frequency information and stock and flow data.”

18The FOMC also noted that “rising energy costs, as well as eroding consumer confidence, reports of
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FOMC finally lowered its target for the federal funds rate by 50 bps, following an unscheduled

conference call.19 The path factor filtered from futures anticipated this change of direction.

For completeness, Figure 2(c) compares the path factor zt and the forward-to-futures

spreads factor lt. The spread and path factors are strongly negatively correlated. By con-

struction, filtered estimates of lt are closely connected to the spreads between futures and

LIBOR forward rates. The LIBOR spread and other credit spreads are generally are counter-

cyclical. Unsurprisingly, we find that lt rises when zt falls; that is, when economic conditions

deteriorate. Section G discusses the information content of the forward-to-futures spread lt

in greater detail.

C Time-Varying Volatility of Unexpected Target Changes

From Equation 4, the state variables Xt drive the volatility of unexpected FOMC target

changes. The sign and strength of this relationship are determined by the λu−λd parameters.

Looking at the estimates in Table 5, one can see that λz,u ≪ λz,d but that λr,u ≈ λr,d, and

λl,u ≈ λl,d. In the results, the path factor zt drives the volatility of unexpected FOMC target

changes.

To see this, the sample was first split into three terciles of the path factor and then each

subsample was split using terciles of the target rate within each macro tercile. This produces

nine subsamples accounting for the observed comovements of the path factor and the target

rate. For example, the three subsamples (Low, Low), (Low, Median) and (Low, High) vary

the target rate from low to high values, conditional on the path factor being low.

Panel (a) of Figure 3 reports the average conditional volatility in each subsample. Each

line corresponds to a tercile of the path factor. The results show large variations. The

substantial shortfalls in sales and earnings, and stress in some segments of the financial markets suggest that
economic growth may be slowing further.” Interestingly, the path factor reached a low point on the day of
the meeting and rose in the following weeks.

19The tightening episode in 2003–2004 offers another case. The path factor again lagged behind the
ADS index for some time when FOMC cited low inflation and delayed its response to improving economic
conditions.
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volatility of unexpected FOMC target changes is highest when the path factor signals a

loosening cycle, ranging from 30 to 25 percent for different levels of the target rate. Volatility

declines to around 20 percent for median values of the path factor and to 10 percent for

the highest values of the path factor, respectively. Raising the target rate also lowers the

volatility, but the effect is much smaller.

Panel (b) shows the average conditional skewness of unexpected FOMC target change in

each sub-sample. Skewness is high and positive, between 4 and 5.25, when the path factor

is high. Otherwise, skewness is close to 0 when the path factor is low or close to its median

value .20 Therefore, a high value of the path factor signals a distribution of potential changes

that is narrow and clearly skewed toward an increase. In contract, a low value of the path

factor signals a wide distribution with a slight skew toward a decrease.

Do the risk premiums respond to as the volatility moves from low to high? To answer

this question, I first divide the sample based on terciles of the target rate and then based

on tercile of conditional volatility. Panel (c) shows the risk premium on a 6-month futures

contract in different subsamples, where the average risk premium is substracted. Panel (c)

shows that raising the target rate lowers the risk premium for every level of volatility. Fixing

the conditional volatility to its median value, the risk premium decreases by around 10 bps

between low and high levels of the target rate (on average). By contrast, varying the volatility

only affects the risk premium for when the target rate is high. Fixing the level of the target

at its top tercile value, the risk premium increases by more than 10 bps between low and

high volatility (on average). Hence the transmission from volatility to the risk premium

arises mostly in the early stages of a recession.

Changes in the expected path of the target rates affect variance and skewness in the

opposite direction (i.e., high variance but low skewness). To see the net effect, Figure 4 shows

the conditional distribution of unexpected FOMC target changes. Three panels report the

20Note that the model inherits from the Poisson distribution that excess kurtosis is inversely related to
variance (and strictly positive).
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distribution given different economic conditions. Panel 4(a) reports the distribution in the

(Low, Low) subsample, conditioning the distribution on the average value of the target and

path variables in this sample. Similarly, Panel 4(b) and Panel 4(c) report the distribution

in the (Median, Median) and the (High, High) subsamples. These panels tell a simple story.

A downward path for future target rates is associated with greater uncertainty surrounding

upcoming FOMC decisions. An upward path is associated with lower variance primarily by

shutting down the probability of a target cut. The asymmetrical effect generates positive

skewness. It is a smaller left side of the distribution that is driving skewness higher (not a

larger right side of the distribution).

D Compensation for Risk

The signal from the path factor affects the risk premium via two mechanisms. The first

mechanism is common. Innovations to the path factor signal rising interest rates and the

effect on the risk premium depends on variations in the prices of risk, which represents

changes in marginal utilities. The second mechanism is different. The path factor signals

lower uncertainty around future changes to the target rate. This also affects the risk premium

even if the price of target rate risk is constant.

To understand the compensation for risk associated with the SDF in Equation 12, con-

sider a portfolio with payoff exp(−c⊤Xt+1) where c is the vector of risk exposures. The

expected excess return (continuously compounded) on this portfolio is

EP
t

[

log
exp(−c⊤Xt+1)

Et[exp(−rt − c⊤Xt+1)]

]

= −c⊤V arPt [Xt+1]δt + o(c) + o(δt). (22)

(See Le, Singleton, and Dai, 2010, p.2199.) The compensation for risk is affected by changes

in the prices of risk δt or changes in the quantity of risk −c⊤V arPt [Xt+1], where only the first

row in the variance term varies over time. Consider the compensation for exposures to target

rate risk: c⊤ = [1 0 0 0]. The compensation for target risk is driven by −V arPt [rt+1] × δ0,r
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and −CovPt [rt+1, zt+1]× δz,t.
21

Consider the first term −V arPt [rt+1]×δ0,r . The price of target rate risk δ0,r is negative and

significant. Changes to the FOMC target that are higher than expected are associated with

higher marginal utility states. This may reflect the oft-cited fears that the Fed will either

increase the target rate too much (when tightening) or not decrease it enough (when loos-

ening). In the model, this channel shifts the dynamics of rt under the risk-neutral measure

Q relative to the P measure. This shift is given by Equation 15, in which the multiplying

factors are exp(δ0,r∆) ≈ 0.95 and exp(−δ0,r∆) ≈ 1.05.22 Therefore, the compensation for

target rate risk pulls the components of λu closer to 0 and pushes the components of λd away

from 0. Since λd > λu and the adjustments exp(δ0,r∆) and exp(−δ0,r∆) are multiplicative,

this channel works mainly through an increase in the response of the target rate to the path

factor under the risk-neutral measure. Then, shifting the path signal also drives the futures

contract rates away from the Expectation Hypothesis, generating risk premium variations.

Consider the second channel affecting compensation for target rate risk, −CovPt [rt+1, zt+1]×

δz,t. This channel is standard, working via the price of path risk δz,t and the covariance be-

tween level and path. This covariance is positive. Table 5(d) reports parameters for the

price of risk δz,t. The price of path risk is positive, on average, implying that an unexpected

upward shift to the path of future target rates is associated with high marginal utility states,

on average. All the components of δ1,z are statistically significant. Economically, zt and lt

are the significant drivers. The price of risk increases when the path itself declines, which

is consistent with the interpretation of a path decline signaling worsening economic condi-

tions. In addition, the price of path risk increases with an increase in the spread between

the LIBOR forward rate and futures spreads. The price of path risk also increases when the

21This is an approximation because higher-order moments of target changes also vary. Fontaine (2014)
shows that a constant price of target risk can generate significant risk premium variations in a case with
constant variance because of the changing skewness in target rate changes. Polimenis (2006) discusses the
effect of skewness on the risk premium in economies with power utilities.

22That is, exp(±7.47× 103 × 0.25/36000).
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target rate is lower, but this effect is small.

E Forecasting Target Rates

This section assesses the accuracy of the target rate forecasts as a check of the ability

of the model to disentangle the risk premium. The excess returns obtained from holding a

futures contract referencing month n from time-t until its maturity are given by

xrt,n = F (t, n)− r̄n = F (t, n)−Et[r̄n]− ǫt,n, (23)

where xrt,n are the excess returns. Equation 23 shows that the combination of the low futures

pricing errors and accurate target rate forecasts implies an accurate description of the risk

premium in futures rates. The next section discusses this risk premium.

A time-t forecast of the effective overnight rate at date t + h with h > 0 is given by

E[rt+h + st+h|Xt] = ar+s(It+1, h) + br+s(It+1, h)
⊤Xt, (24)

with coefficients ar+s(·) and br+s(·) given in Appendix D.2. For comparability with existing

results, I focus on forecasts of the average rate in calendar month n. The predicted average

overnight rate for calendar month r̄n is given by E[r̄n|Xt] = D−1
n

∑Dn

i=1 (rt+h + st+h), where

Dn is the number of days in month n.

As benchmark models, I use predictive regressions based on futures and LIBOR forward

rates. Krueger and Kuttner (1996) use futures rates to forecast target rates. Gurkaynak,

Sack, and Swanson (2012) show that futures deliver the best (lowest RMSE) market-based

forecasts of r̄n up to six months ahead. Similarly, LIBOR rates deliver the best forecasts

at longer horizons, up to a year. Chun (2011) shows that futures deliver the best forecasts

relative to surveys of professional forecasters and time-series models. Benchmark forecast
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models are given by

E[r̄n|Xt] =ā(t, n) + b̄(t, n)⊤Xt (25)

Efut[r̄n|Xt] =αfut
h + βfut

h F (t, n)

Elib[r̄n|Xt] =αlib
h + βlib

h Flib(t, n),

where F (t, n) and Flib(t, n) are the futures and forward LIBOR rates for calendar month n.

Coefficients ā(t, n) and b̄(t, n) are obtained from the estimation results above. Coefficients of

the predictive regressions can be estimated via ordinary least squares (OLS). The time-series

of monthly averages r̄n is regressed on a forward or futures rate observed h days before the

beginning of each month.23 I consider horizons h = 1, 2, . . . , 178 days when using futures rates

and h = 1, 2, . . . , 360 days when using forward rates. There are no overlapping observations.

The regression estimates minimize forecasting errors for each horizon separately and may

suffer from in-sample over-fitting. On the other hand, predictive coefficients from the term

structure model are computed from parameter estimates obtained from fitting the cross-

section of futures and forward rates. This mitigates the impact of over-fitting on no-arbitrage

forecasts.

Figure 5(a) compares forecast RMSEs. Figure 5(b) compares the corresponding R2s.

Both figures also report results from random walk forecasts. Every predictor improves RM-

SEs substantially relative to random walk forecasts. Futures outperform other forecasts at

short horizons. At a horizon of 50 days, RMSEs are 10 bps for futures-based forecasts and

15 bps in the case of forward or model-based forecasts. In all cases, R2s are very close to

1. However, the advantage of futures deteriorates at longer horizons. At a horizon of six

months, RMSEs are slightly above 45 bps for each predictor. At longer horizons, model-

23Model-based and futures-based forecasts exactly match the calendar month for any horizon h. On the
other hand, the reference periods underlying forward rates have small variations in overlap for different h.
This induces small RMSE variations across horizons. However, the overlap is constant for a given horizon
(regression) and the match is exact for a subset of horizons.
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based forecasts provide improvements over forward-based forecasts. One year ahead, R2s

are 63 and 60 percent, respectively.24

Figure 6 reports the time series of forecasting errors averaged across a range of horizons.

Averaging across horizons removes some of the noise in regression-based forecasts due to

daily idiosyncratic variations in individual futures and forward rates. Panel (a) compares

errors over horizons between 3 and 6 months. Consistent with the results in Figure 5, futures

offer small benefits at these horizons. Panel (b) covers horizons between 6 and 9 months and

Panel (c) covers horizons between 9 months and 1 year. Model-based forecasts are generally

lower and less cyclical. The mean absolute errors of model forecasts are 17 bps lower than

forward-based forecasts at horizons between 6 and 9 months and 22 bps lower at horizons

between 9 and 12 months. This significant improvement is of the same magnitude as the

typical target rate change.

Forecast errors can be large and persistent for every model. Any forecasting model is

bound to produce cyclical errors at horizons several months ahead, since some of the target

rate changes were truly unpredictable six months or one year in advance. Nonetheless,

forecasts from the model are unbiased. Average forecasting errors range between -2.4 and

2.7 bps across horizons and the associated t-statistics for the null of unbiased forecasts,

accounting for autocorrelation up to 12 lags, are always far from the usual significance levels.

The only exceptions are for horizons of a few days, in which economically tiny average errors,

around 0.2 bps, appear statistically significant.

F Risk Premium

The results provide an accurate description of the forecast and risk premium components

in Equation 23. It provides accurate and unbiased target rate forecasts, capturing properties

of the historical dynamics. It delivers low pricing errors, capturing properties of the risk-

24Results using futures and forward rates are comparable with those of Gurkaynak et al. (2012) in a shorter
sample period and a longer quarterly sampling frequency.
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neutral dynamics. Therefore, the model provides a credible measure of the risk premium

implied in futures rates.25 Figure 7 compares the conditional risk premium with ex-post

realized returns from holding the 6-month-ahead contract (i.e., Et[xrt,6] and xrt,6).

Figure 7 also shows a few instances of large and persistent gaps. These gaps between

realized excess returns and the risk premium are the unexpected component in r̄n (ǫt,n in

Equation 23). These cases with large returns in excess of the risk premium do not provide

evidence against the model risk premium. For example, large excess returns toward the end of

1994 can be attributed to the Mexican peso crisis, which contributed to an unexpected pause

in Fed’s tightening cycle and to the subsequent target rate cuts. Moreover, large returns in

1998 can be attributed to the unforeseen collapse of Long-Term Capital Management and

the subsequent response by the Fed. A few gaps appear to be associated with unforeseen

developments in the real economy, for example, target cuts during the 2001 recession and

following the terrorist attacks of September 2001.26

In terms of magnitude, the risk premium on the 6-month contracts (which is shown in

Figure 7) can vary substantially. The risk premium can spend long periods close to zero, but

the risk premium often stays around 25 bps for extended periods and even reaches 50 bps

on a few occasions. In other words, the risk premium can vary by one or two rate changes

over the course of the monetary cycle. This is economically significant.

G The Information Content in the Spread Factor

The spread factor lt captures the information contained in the spreads between LIBOR

forward rates and federal funds futures rates. The parameter estimates imply that the spread

factor influences the price of path risk δz,t. Therefore, the spread factor also influences the

risk premium in futures rates. The information content in the spread factor originates in the

25Ferrero and Nobili (2008) use surveys of professional forecasters to compute the ex-ante premium and
ex-post forecast errors. However, these forecasts appear biased. See their Table 4).

26Hamilton and Okimoto (2011) identify two regimes in futures excess returns. The episodes discussed
here correspond to periods with high probabilities of a regime with higher mean and volatility of returns.
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exchange-traded futures market or in the interbank LIBOR market. The spread can widen

because of worsening credit or funding conditions on the interbank market. The spread can

also widen if transaction costs or limits to arbitrage in the futures market allow predictable

price pressures. Both channels are consistent with a negative correlation of the spread factor

with future target rates. Higher LIBOR rates today may predict lower target rates because

of the future FOMC’s response to funding risk. Lower futures rates today may predict

lower target rates because hedging demand pressures on futures rates reveal lower investors’

forecasts.

However, these two channels can be differentiated empirically based on their opposite

implications for excess returns. Hedging demand pressure also predicts lower excess returns

on the futures markets. Funding risk in LIBOR rates that predicts lower target rates also

predicts higher excess returns on the LIBOR market. I test the first hypothesis via predictive

regressions for futures excess returns:

xrFut
t,n = γ0,n + γl,nlt + ut,n, (26)

where lt is the spread factor and we should have γl,n < 0. I test the second hypothesis via

similar predictive regressions but for forward rates returns:

xrFor
t,n = γ0,n + γl,nlt + ut,n, (27)

where we should have γl,n > 0. As in Section B, excess holding returns are computed at a

monthly frequency without overlapping observations. Table 6 displays the results.

Panel (a) reports results for futures excess returns. Monthly excess returns averaged

between 2 and 4 bps (annualized) across maturities. These are consistent with results in

Hamilton (2009). The information content of liquidity is significant and large. Coefficients

have the expected sign. A one standard deviation increase in the spread factor decreases
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excess returns between 3 and 6 bps for maturities beyond two months. The R2 ranges from 5

to 7 percent. Panel (b) reports results for forward excess returns. Results show no evidence

of predictability from the spread factor. Coefficients typically have the wrong sign. The

evidence points toward transitory hedging demand pressures on the futures market as the

main channel to explain the information content of the spread.

H The Role of Hedging Demand

Piazzesi and Swanson (2008) show that futures excess returns can be predicted using

net long positions of non-commercial participants on the futures market. They argue that

“hedgers–primarily banks–essentially paid an insurance premium to non-commercial partic-

ipants for providing hedging services.” An important question is whether the information

content of the spread factor is shared with variations in the net long positions of non-

commercial hedgers (NLPt).
27

Table 7 reports results from predictive regressions of futures excess returns on different

combinations of the spread factor lt, the path factor zt and NLPt. Panel (a) shows that the

predictive content of NLPt is similar to that of lt, with R2 ranging between 2 and 6 percent.

Consistent with Piazzesi and Swanson (2008), NLPt is positively correlated with excess

returns. A one standard deviation increase predicts increases in returns of between 2 and 6

bps across maturities. Panel (b) presents results from regressions combining lt and NLPt.

The R2s are higher, ranging between 7 and 9 percent between maturities of three and six

months but less than the sum of the univariate R2s. Similarly, coefficient estimates are lower

relative to univariate regressions. This suggests that these predictors overlap substantially.

Finally, Panel (c) presents results from regressions combining lt and zt and NLPt. Strikingly,

combining macro conditions and hedging demand captures the information content of the

spread factor. This is significant. Conditional on the path of future target changes, hedging

27I follow Piazzesi and Swanson (2008) and use eurodollar futures position data. The position data are
published weekly with a three-day lag by the US CFTC. I match the daily data with the weekly CFTC
mandatory reporting date to construct a weekly sample of factors, returns and positions.

29



demand captures the information content of the spread factor.

For comparison with existing results in Piazzesi and Swanson (2008), Table 7 reports

results using hold-to-maturity excess returns. Our key message remains: hedging demand

captures the information content of the spread factor. However, R2s and the estimated

coefficients are substantially higher, which is partly due to the overlapping structure in

hold-to-maturity returns.

The evidence shows that hedging demand plays a predominant role in the information

content of futures rates. Of course, the results do not preclude that funding risk in LIBOR

rates affect the spread factor. Figure 2(c) clearly shows that the spread factor exhibits peaks

at dates when financial markets were in turmoil. What the predictability results show is

that variations of forward-to-futures spreads, which are informative for future target rates

originated in the futures market in this sample.

IV Conclusion

This paper identifies the distribution of policy shocks using federal funds futures. This

distribution is driven by a “path” factor signaling information about future target rates.

These changes add substantial risk premium variations in money markets. The analysis

consciously ignored several important but confounding issues, restricting the sample to the

period between 1994 and 2007. First, extending the sample beyond 2007 requires a mod-

ification restricting the distribution of the target rate above a (possibly non-zero) lower

bound. This could be achieved, for instance, via the function max(0, rt) or by a quadratic

specification of the change intensities λu
t and λd

t . Second, the Fed introduced a break in the

behavior of the effective spread in 2009 when it announced that the overnight rate could

move within a 0 to 0.25 percent range. Finally, the Fed combined forward guidance with

long-term asset purchases in that period. We leave for future research whether and how these

changes affect the level of uncertainty surrounding future FOMC decisions during recessions

and expansions.
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Appendix

A Conditional Laplace Transform

A.1 Skellam Distribution

The dynamics of state variables are summarized by Equations 1, 9 and 10. Although the process
for rt is novel, its Laplace transform and its density are known in closed form. Conditional on the
state, changes in the target rate follow a Skellam distribution (Skellam, 1946; Johnson et al., 1997).
Consider two univariate Poisson variables N1 and N2 with parameters λ1 and λ2, respectively. The
Laplace transform of their difference Z ≡ N1 −N2 is

T (u,Z) = exp
(

λ1(e
u − 1) + λ2(e

−u − 1)
)

, u ∈ R,

while its probability mass function is

f(Z = z) = exp(−(λ1 + λ2))

(

λ1

λ2

)z/2

Iz

(

2
√

λ1λ2

)

,

where Iz(·) is the modified Bessel function of the first kind. In our context, the coefficients of
the conditional Laplace transform vary through time because of the evolution of the underlying
state variables and because of the deterministic variation in the FOMC meeting schedule. Hence,
computation of the transform depends on the occurrence of an FOMC meeting in the next period,
and the two cases must be treated separately.

A.2 No FOMC Meeting

The joint conditional transform when no meeting is scheduled to occur is given by

T (u,Xt+1|It+1 = 0) ≡ Et

[

exp
(

u⊤Xt+1

)

|It+1 = 0
]

= exp
(

A(It+1 = 0, u) +B(It+1 = 0, u)⊤Xt

)

,

where It is equal to 1 if a meeting occurs at time-t and 0 otherwise. Coefficients are given by

A(It = 0, u) = g0(ur) + u⊤µ(It+1 = 0) +
1

2
u⊤Ωu+ λs

(

T (us, Y
s
t+1)− 1

)

B(It = 0, z) = Φ(It+1 = 0)u,

where µ(It+1 = 0) and Φ(It+1 = 0) are defined in the text, and g0(x) ≡ λu
0(e

∆x−1)+λd
0(e

−∆x−1),
and

Ω =









0 0 0 0
0 σ2

s 0 0
0 0 σ2

z σz,l
0 0 σz,l σ2

l









.

A.3 FOMC Meeting

The joint conditional Laplace transform in the case when an FOMC meeting is scheduled to occur,
and conditional on the realization of st+1, zt+1 and lt+1, is given by

T (u,Xt+1|It+1 = 1) ≡Et

[

exp
(

u⊤Xt+1

)

|It+1 = 1
]

= Et

[

Est+1,zt+1,lt+1

[

exp
(

u⊤Xt+1

)

|It+1 = 1
]]

= Et

[

exp
(

−G(ur)
⊤X̄ + λ(e∆ur + e−∆ur − 2) +G(ur)

⊤X∗
t+1 + u⊤X∗

t+1

)]

,

35



where X∗
t+1 = [rt st+1 zt+1 lt+1], the function G(x) is given by

G(x) = [gr(x) gr(x) gz(x) gl(x)]
⊤, x ∈ R,

and the functions gk(y) for k = r, s, z are defined as

gk(x) ≡
(

λu,k(e
x∆ − 1)− λd,k(e

−x∆ − 1)
)

.

We then have that

T (u,Xt+1|It+1 = 1) = exp
(

A(It = 1, u) +B(It = 1, u)⊤Xt

)

,

with coefficients

A(1, u) =−G(ur)
⊤X̄ + h1(ur) + (G(ur) + u)⊤ µ(It+1 = 1) +

1

2
(G(ur) + u)⊤Ω (G(ur) + u)

+ λs

(

T (gs(ur) + us, Y
s
t+1)− 1

)

B(1, u) =Φ(It+1 = 0) (G(ur) + u) ,

where h1(x) ≡ λ(e∆x − 1) + λ(e−∆x − 1).

A.4 Risk-Neutral Distribution

The joint conditional Laplace transform under Q is given by

TQ(u,Xt+1) = Et

[

Mt,t+1 exp
(

u⊤Xt+1

)]

= exp
(

AQ(It+1, u) + (BQ(It+1, u)− Cr)
⊤Xt

)

,

where Cr = [1 1 0 0]⊤ and where coefficients are given by

AQ(0, u) =g0(ur + δ0,r)− g0(δ0,r) + u⊤(µ(It+1 = 0) + Ωδ0) +
1

2
u⊤Ωu

+ λs

(

T (us + δ0,s, Y
s
t+1)− T (δ0,s, Y

s
t+1)

)

AQ(1, u) =g1(ur + δ0,r)− g1(δ0,r)− (G(ur + δ0,r)−G(δ0,r))
⊤ X̄

−
1

2
G(δ0,r)

⊤ΩG(δ0,r) +
1

2
(G(ur + δ0,r) + u)⊤Ω (G(ur + δ0,r) + u)

+ (G(ur + δ0,r) + u)⊤ (µ(It+1 = 1) + Ωδ0)

+ λs

(

T (gs(ur + δ0,r) + δ0,s + us, Y
s
t+1)− T (gs(δ0,r) + δ0,s, Y

s
t+1)

)

and

BQ(0, u) = (Φ(It+1 = 0) + Ωδ1)u

BQ(1, u) = (Φ(It+1 = 1) + Ωδ1) (G(ur + δ0,r)−G(δ0,r) + u) .

Moreover, the shift between risk-neutral and historical parameters is given by

µQ(0) = µ(0) + Σδ0 µQ(1) = µ(1) + Σ(δ0 +G(δ0,r))

ΦQ(0) = Φ(0) + Σδ1 ΦQ(1) = Φ(1) + Σδ1. (28)
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B Asset Prices

B.1 Generating Function for Prices

Proposition 2 provides the solution of the price-generating function Γ(u, t,m) obtained from com-
puting the time-t price of the generating payoff, exp(u⊤Xt+m). Following Duffie et al. (2000), asset
prices can be derived from Γ(u, t,m). When m = 1, Γ(u, t, 1) corresponds to the joint conditional
Laplace transform of Xt+1 under Q.

Proposition 2 Price-Generating Function

In the absence of arbitrage opportunities, the time-t discounted value of the generating payoff
exp(u⊤Xt+m) at time t+m is given by the price-generating function, Γ(u, t,m),

Γ(u, t,m) = Et

[

Mt,t+m exp
(

u⊤Xt+m

)]

= Et [Mt+1Γ(u, t+ 1,m− 1)] ,

for u ∈ R4, where Mt,t+i ≡ Mt+1 · · ·Mt+i, Mt,t+1 = Mt+1 and by convention Mt,t = 1. The
price-generating function has the following exponential-affine solution,

Γ(u, t,m) = exp
(

c0(u, t,m) + c(u, t,m)⊤Xt

)

, (29)

where coefficients satisfy

c0(u, t,m) = c0(u, t+ 1,m− 1) +AQ(It+1, c(u, t + 1,m− 1)))

c(u, t,m) = BQ(It+1, c(u, t + 1,m− 1)), (30)

and It is an indicator function equal to 1 if an FOMC meeting is scheduled at t+1 and 0 otherwise.
Initial conditions c0(u, t, 0) = 0 and c(u, t, 0) = u are given by Γ(u, t, 0) = exp(u⊤Xt).

Consider the price at time-t of the payoff exp(u⊤Xt+m) at maturity m,

Γ(u, t,m) = Et

[

Mt,t+m exp
(

u⊤Xt+m

)]

= Et [Mt+1Γ (u, t+ 1,m− 1)] .

Substituting the guess Γ(u, t,m) = exp
(

c0(u, t,m) + c(u, t,m)⊤Xt

)

gives

Γ(u, t,m) =Et

[

Mt+1 exp
(

c0(u, t+ 1,m− 1) + c(u, t+ 1,m− 1)⊤Xt+1

)]

=exp
(

c0(u, t+ 1,m− 1) +AQ(It+1, c(u, t+ 1,m− 1))
)

× exp
(

[

BQ(It+1, c(u, t + 1,m− 1))− Cr

]⊤
Xt

)

,

which implies the following recursion that coefficients must solve:

c0(u, t, h) = c0(u, t+ 1, h− 1) +AQ(It+1, c(u, t + 1, h− 1))

c(u, t, h) = BQ(It+1, c(u, t+ 1, h − 1))− Cr,

37



for 0 ≤ h ≤ m. Note that Γ(u, t, 0) = exp(u⊤Xt) implies c0(u, t, 0) = 0 and c(u, t, 0) = u for
arbitrary t ≥ 1 and u.

B.2 Discount Bonds

The case u = 0 corresponds to the price D(t,m) of a risk-free discount bond with maturity m,

Drf (t,m) ≡ Γ(0, t,m) = Et[Mt,t+m] = exp
(

drf0 (t,m) + drf (t,m)⊤Xt

)

,

where drf0 (t,m) ≡ c0(0, t,m) and drf (t,m) ≡ c(0, t,m).

B.3 LIBOR loan

A LIBOR loan is an asset with unit payoff that is further discounted at the rate lt to offer compen-
sation for illiquidity or counterparty risk. The price of a LIBOR loan can also be obtained from
the price-generating function by noting that

DL(t,m) = Et

[

Mt,t+m exp

(

−
m−1
∑

i=0

lt+i

)]

= Et

[

ML
t,t+m

]

,

with ML
t+i = Mt+i exp(−lt+1). I guess and verify that the solution is exponential-affine, DL(t,m) =

exp
(

dL0 (t,m) + dL(t,m)⊤Xt

)

with solution

dL0 (t,m) = dL0 (t+ 1,m− 1) +AQ
(

It+1, d
L(t+ 1,m− 1)

)

dL(t,m) = BQ
(

It+1, d
L(t+ 1,m− 1)

)

− CL,

where CL = [1 1 0 1]⊤. Finally, note that DL(t, 0) = 1 implies that dL0 (t, 0) = 0 and dL(t, 0) = 0
for any t ≥ 1.

B.4 Singleton Futures Price

A difficulty arises when computing a singleton futures rate because the reference date t + m, at
which the payoff is determined, is not generally the same as the settlement date t + T , at which
the payment is made. That is, we have

f(t,m, T ) = Et[Mt,t+T rt+m] =

=
∂

∂u
Et [Mt,T exp(urt+m)]

∣

∣

∣

u=0
≡

∂

∂u
Γf (u, t,m, T )

∣

∣

∣

u=0
,

where m ≤ T and u ∈ R. However, we can use the law of iterated expectations to obtain

Γf (u, t,m, T ) = Et [Mt,t+m exp(urt+m)Et+m [Mt+m,t+T ]]

= Et [Mt,t+m exp(urt+m)D(t+m,T −m)]

= exp(drf0 (t+m,T −m))Γ(drf (t+m,T −m) + uCr, t,m).

We can then use the results above to obtain

Γf (u, t,m, T ) = exp
(

drf0 (t+m,T −m)
)

× exp
(

c0(d
rf (t+m,T −m) + uCr, t,m) + c(drf (t+m,T −m) + uCr, t,m)⊤Xt

)

.
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Taking the partial derivatives with respect to u and evaluating at u = 0, the singleton futures rate
is

f(t,m, T ) = exp
(

drf0 (t+m,T −m) + c0 (u
∗, t,m) + c (u∗, t,m)⊤Xt

)

×
[

c
′

0 (u
∗, t,m) +X⊤

t c
′

(u∗, t,m)
]

Cr,

where u∗ = drf (t+m,T −m). The differentiated coefficients, c
′

0(·) and c
′

(·), can be computed by
taking derivatives with respect to u on both sides of Equation 30,

c
′

0(u, t, h) = c
′

0(u, t+ 1, h− 1) +A
′Q (It+1, c(u, t+ 1, h− 1) + δ) c

′

(u, t+ 1, h − 1)

c
′

(u, t, h) = B
′Q (It+1, c(u, t + 1, h− 1)) c

′

(u, t+ 1, h− 1)

for any u, t and any h > 0. Initial conditions for these differentiated recursions can be found by
differentiation of the corresponding initial conditions or by noting that we must have f(t, 0, T ) =
D(t, T )rt. This yields c

′

0 (u, t, 0) = 0 and c
′

(u, t, 0) is the identity matrix for any t. Finally, the
derivatives of Laplace coefficients A

′Q(·) and B
′Q(·) can be computed directly.

B.5 Computing Recursions

The recursions in Equation 30 have time and maturity dimensions because the FOMC meeting
schedule changes over time. Future meetings get closer by one day every day. At first, it would
seem that a different recursion must be computed to match each (t,m) pair, implying a dramatic
increase in computing costs. Fortunately, there is a way around this. The key is to note that
future meeting dates are known in advance and, therefore, that coefficients A(·) and B(·) are not
stochastic. Then, for a given date, and for given parameter values, we can compute coefficients for
the price of an asset maturing on this date but also for past observation dates28 since the recursions
are increasing in m but decreasing in t. As an example, consider the price, at some date t+ h, of
an asset maturing on that day. Its price is exp(u⊤Xt+h), and the coefficients, c0(u, t + h, 0) and
c(u, t+h, 0) correspond to the initial values in the recursions. Next, consider the price of that asset
on the previous day. Its maturity is now 1 and the coefficients, c0(u, t+h−1, 1) and c(u, t+h−1, 1),
are given directly from the recursions above. We can then work our way back until we reach t, the
first date in the sample where an asset matures at time t+h. Finally, varying the maturity date, t,
provides us with all the needed coefficients.29 In the case of the singleton futures rates, u∗ is only
a function of the reference date for the singleton futures, t+ h, and the length of time between the
reference date and the settlement date, which will not change as we vary t or m in the coefficient
recursions. That is, for a given set of risk-free zero coupon coefficients, we can apply the same
strategy as for simple interest rates to compute futures coefficients.

28Another approach that reduces computing cost is to assume a constant time interval between meetings
beyond the nearest schedule meeting date, as in Piazzesi (2005a). However, the use of federal funds futures
contracts makes this approximation problematic as it may place some future meetings in the wrong month,
implying severe mispricing of the corresponding futures contracts.

29This implies that some recursions must be started for some date t + h beyond the end of the sample.
Coefficients are discarded as we proceed backward in time until we reach the last observation date of the
sample.
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C Estimation

C.1 Data

The Fed targets the overnight fed funds rate. The effective rate is published by the Board of
Governors of the Federal Reserve System (see statistical release H.15). It is the weighted average
of rates on brokered unsecured federal funds overnight loans between large banks. The payoff of a
futures contract depends on the effective rates in a given reference period. Quoted LIBOR rates are
annualized (actual/360) but not compounded. I compute the actual day count to maturity using
the British banker’s association (BBA) Modified ISDA Business Days convention. Futures rates are
computed from quoted prices as F (t, n) = (100 − P (t, n))/3600 following the Chicago Mercantile
Exchange (CME) convention. Each rate is converted to a continuously compounded daily rate.
I use the CME “Following Business Days” convention to determine the monthly settlement date.
I use end-of-the-day target and effective overnight rates from the Federal Reserve Bank of New
York and futures rates from Datastream. LIBOR rates are published around 11h30 by the BBA in
London. I match LIBOR data with federal funds and futures rates from the previous day.

C.2 State-Space Representation

The model can be written as a state-space system for the purpose of estimation. The transition
equation is given by the VAR representation in Equation 11. The VAR parameters are given by

µ(0)⊤ =
[

λu
0 − λd

0 µs µz µl

]

µ(1)⊤ =
[

0 µs µz µl

]

Φ(0) =









1 0 0 0
φs,r φs φs,z φs,l

φz,r φz,s φz φz,l

φl,r φl,s φl, z φl









Φ(1) =









φr(1) φr,s(1) φr,z(1) φr,l(1)
φs,r φs φs,z φs,l

φz,r φz,s φz φz,l

φl,r φl,s φl, z φl









,

where the first row in Φ(1) can be read from Equation 3.

The measurement equations include LIBOR rates and futures rates, stacked in vector Yt, and
is given by

Yt = Υ(t,Xt) + ǫt, (31)

where Υ(·, ·) is the model-implied rates and ǫi,t are i.i.d. mean zero Gaussian pricing errors with
standard deviation ωi. The measurement equations Υ(t,Xt) combine the solution for LIBOR rates
− 1

m log(Dl(t,m)) with Dl(t,m) given in Equation 8. The measurement equations also include
futures rates given in Proposition 1, as well as the target rate and the effective spread, stacked
together with yields in the vector Ỹt = [rt st Yt]

⊤.

C.3 Unscented Kalman Filter

The state variables zt and lt are latent and are filtered from the data using the UKF. The Kalman
filter is not applicable since futures rates are nonlinear functions of the states and, moreover, the
optimal filter is not available in closed form. The UKF provides an approximation to nonlinear
transformations of a probability distribution. It has a Monte Carlo flavor but the sample is drawn
according to a deterministic algorithm. It reduces the computational burden considerably, relative
to simulation-based methods, but provides greater accuracy than linearization (Christoffersen et al.,
2014). The UKF has been introduced in Julier et al. (1995) and Julier and Uhlmann (1996) (see
Wan and der Merwe 2001, for textbook treatment) and was first imported to finance by Leippold
and Wu (2003).
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Given X̂t+1|t a time-t forecast of Xt+1, and its associated RMSE, Q̂t+1|t, the filter selects a set
of sigma points in the distribution of Xt+1|t such that

x̄ =
∑

i

w(i)x(i) = X̂t+1|t and Qx =
∑

i

w(i)(x(i) − x̄)(x(i) − x̄)′ = Q̂t+1|t.

Julier et al. (1995) proposed the following set of sigma points and weights:

x(i) =



















x̄ i = 0

x̄+
(√

Nx

1−w(0)

∑

x

)

(i)
i = 1, . . . ,K

x̄−
(√

Nx

1−w(0)

∑

x

)

(i−K)
i = K + 1, . . . , 2K

w(i) =











w(0) i = 0
1−w(0)

2K i = 1, . . . ,K
1−w(0)

2K i = K + 1, . . . , 2K

,

where
(√

Nx

1−w(0)

∑

x

)

(i)
is the i -th row or column of the matrix square root. Julier and Uhlmann

(1996) use a Taylor expansion to evaluate the approximation’s accuracy. The expansion of y = g(x)
around x̄ is

ȳ = E [g(x̄ +∆x)] = g(x̄) + E

[

D∆x(g) +
D2

∆x(g)

2!
+

D3
∆x(g)

3!
+ · · ·

]

,

where the Di
∆x(g) operator evaluates the total differential of g(·) when perturbed by ∆x, and

evaluated at x̄. A useful representation of this operator in our context is

Di
∆x(g)

i!
=

1

i!





n
∑

j=1

∆xj
∂

∂xj





i

g(x)

∣

∣

∣

∣

∣

x=x̄

.

Different approximation strategies for ȳ will differ by either the number of terms used in the
expansion or the set of perturbations ∆x. If the distribution of ∆x is symmetric, all odd-ordered
terms are 0 and we can rewrite the second term as a function of the covariance matrix Pxx of ∆x,

ȳ = g(x̄) +
(

∇⊤Pxx∇
)

g(x̄) + E

[

D4
∆x(g)

4!
+ · · ·

]

.

Linearization leads to the approximation ˆ̄ylin = g(x̄), while the unscented approximation is exact
up to the third-order term. In the Gaussian case, Julier and Uhlmann (1996) show that same-
variable fourth moments agree as well and that all other moments are lower than the true moments
of ∆x. Then, approximation errors of higher-order terms are necessarily smaller for the UKF
than for the extended Kalman filter. Using a similar argument, Julier and Uhlmann (1996) show
that linearization and the unscented transformation agree with the Taylor expansion up to the
second-order term and that approximation errors in higher-order terms are smaller for the UKF.

C.4 Identification Assumption

The following identification restrictions were imposed on the parameter space. First, µz = 0 to
identify the level of zt+1 separately from that of λz,u and λz,d. Second, λz,u > 0 and λz,d > 0 to
identify the sign of zt+1. The following restrictions are imposed for stationarity. The eigenvalues of
the matrix Φ(It+1 = 1) must lie within the unit circle. First, λu,r < 0 and λd,r < 0 so that φr(1) < 1
and the policy function induces reversion to the mean, since φs,r = φz,r = φl,r = 0. Intuitively, if
st, zt and lt are jointly stationary, then mean-reversion follows if the intensity of an “up” change
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decreases and the intensity of a “down” change increases when the target rate increases. Table 5
reports all parameter estimates. Joint stationarity follows if st, zt and lt are jointly stationary. The
following re-parameterization is used:

φ̃ = [I − φ]−1 =

[

I −

[

φz φz,l

φl,z φl

]]−1

, (32)

where φ̃ must be invertible. Finally, |φs| < 1.

The jump component of the effective rate is well defined only if λJ,s ≥ 0. I impose that λz,d ≥ 0
and λz,u ≥ 0 to identify the sign of zt. More importantly, λu

t and λd
t must remain non-negative

so that the distribution of target jumps remains well defined. These constraints cannot be easily
imposed on the parameter space as they can be checked recursively as we filter the state variables.
In practice I impose that λ̂i

t = max
(

0, λi
t

)

. This leaves state variables unrestricted but constrains
the policy function. The restriction is reasonable. As λi

t approaches 0, the probability distribution
of the corresponding jump ni

t approaches the trivial distribution with a unit mass at 0. When
it reaches 0, the policy function becomes one-sided and can then be summarized as a Poisson
distribution. The constrained quasi maximum likelihood estimator is given by

Θ̂QML = argmax
Θ

L(θ;Y ) s.t. Θ ∈ S

where S ⊆ RKand we have Θ̂ ∼ N(Θ0, T
−1Ω) for some true parameter value, Θ0, in the interior of

the parameter space. Optimization of the log-likelihood is carried out using the active-set algorithm

from the IMSL Fortran optimization library. I report estimates for φ̂ = I − ˆ̃Φ−1 and the p-values
associated with Wald statistics computed for the nulls that each individual coefficient is 0.

D Predictability Coefficients

D.1 Multi-Horizon Laplace Transform

The distribution of future state variables can be characterized explicitly from the multi-horizon
conditional Laplace transform,

TX(u, t, h) ≡ Et

[

exp(u⊤Xt+h)
]

,

for any u ∈ RK and h ≥ 1. The solution is exponential affine,

TX(u, t, h) ≡Et [TX(u, t+ 1, h − 1)] = exp
(

A(It+1, z, h) +B(It+1, z, h)
⊤Xt

)

,

with coefficients given by

A(It, z, h+ 1) =A(It+1, z, h) +A(It, B(It+1, z, h))

B(It, z, h+ 1) =B(It, B(It+1, z, h)),

for any h ≥ 1 with initial conditions A(It+1, z, 1) = A(It+1, z) and B(It+1, z, 1) = B(It+1, z).
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D.2 Conditional Expectations

The conditional expectation of linear combinations of the state variables C⊤Xt can be derived at
any horizon from the following partial derivative with respect to u,

Et

[

C⊤Xt+h

]

=

[

∂

∂u
TX(uC, t, h)

]

u=0

=
[

TX(uC, t, h)
(

A
′

2(It+1, uC, h) +X⊤
t B

′

2(It+1, uC, h))
)

C
]

u=0

=
(

A
′

2(It+1, 0, h) +X
′

tB
⊤
2 (It+1, 0, h))

)

C,

where, as before, the derivatives of the multi-horizon coefficients can be obtained by differentiating
their respective recursions and

A⊤
2 (It+1, 0, h) =A⊤

2 (It+2, 0, h − 1) +A⊤
2 (It+1, B(It+2, 0, h − 1))B⊤

2 (It+2, 0, h − 1))

B⊤
2 (It+1, 0, h)) =B⊤

2 (It+2, B(It+2, 0, h − 1))B⊤
2 (It+2, 0, h − 1)),

with initial conditions A⊤
2 (It+1, 0, 1) = A⊤

2 (It+1, 0) and B⊤
2 (It+1, 0, 1) = B⊤

2 (It+1, 0).

D.3 Forecasting Federal Funds Rates

The forecasts of target and effective overnight federal funds rates can by computed by setting
C = Cr = [1 0 0 0]⊤ and C = Cr+s = [1 1 0 0]⊤, respectively. We have,

E[rt+h|Xt = x] =ar(It+1, h) + br(It+1, h)
⊤Xt

E[rt+h|Xt = x] =ar+s(It+1, h) + br+s(It+1, h)
⊤Xt.
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Figure 1: Forward LIBOR and Futures Rates

LIBOR forward rates and futures rates at maturities of two, four and six months. Daily data from January
1994 to July 2007.
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Figure 2: Target Rate, the Path Factor and Economic Conditions

Target rate, the path factor, the spread factor and the ADS index of real activity. Panel (a) displays the path
factor and the target rate. Panel (b) displays the ADS index and the target rate. Panel (c) displays the path
and spread factors. Factors are from QML estimation of the model. ADS index is from the Philadelphia
Federal Reserve Bank’s website.
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Figure 3: Conditional Moments of Target Rate Changes and State Variables

Variations of the target rate conditional distribution across values of state variables. In Panels (a) and (b), the sample is divided in three subsample
along the terciles of the path factor. Each subsample is then divided along its own target rate tercile. There are nine subsamples. Panel (a) displays
conditional variance in each subsample, Panel (b) displays conditional skewness. In Panel (c) the risk premium for a 6-month federal funds futures.
In this case, the sample is divided into 9 subsamples using the target rate and the level of conditional volatility. Moments are computed using
Equation (a)-(b) and reflect the distribution of the FOMC decision measured on a day preceding a scheduled FOMC meeting. Conditional volatility
is measured in annualized percentage, skewness is unitless and the risk premium is measured in bps (annualized).
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Figure 4: Conditional Distribution of Target Rate Changes

The target rate conditional distributions across values of state variables. The sample is divided along the terciles of the path factor. Each subsample
is then divided along its own target rate terciles. There are nine subsamples. Panel 4(a) displays the conditional distribution of target changes for the
average values of state variables in the (low, low) subsample, Panel 4(b) in the (med, med) subsample and Panel 4(c) in the (high, high) subsample.
Conditional probabilities reflect the distribution measured on a day preceding a scheduled FOMC meeting.
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Figure 5: Forecasting Target Rates: RMSE and R2s

RMSE and R2 from predictive regressions of monthly target rate average, r̄n at daily horizons up to 12 months. The predictive regressions are given
by

Et[r̄n] =ā(t, n) + b̄(t, n)TXt

Efut
t [r̄n] =αfut

h + βfut
h F (t, n)

Elib
t [r̄n] =αlib

h + βlib
h Flib(t, n),

where ā(t, n) and b̄(t, n) are model-implied coefficients for a time-t forecast of the average effective rate in calendar month n, r̄n, so that h is the
number of days between t and the end of month n. F (t, n) and Flib(t, n) are the observed futures and forward LIBOR rates corresponding to calendar
month n at time-t. Panel (a) compares the RMSE in percentage (annualized) and the x-axis is the horizon, h, from 1 to 360 days ahead. Panel (b)
compares R2.
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Figure 6: Forecasting Target Rates: Forecast Errors

Forecast errors from predictive regressions of monthly target rate average, r̄n at daily horizons up to 12 months. The predictive regressions are given
by

Et[r̄n] =ā(t, n) + b̄(t, n)TXt

Efut
t [r̄n] =αfut

h + βfut
h F (t, n)

Elib
t [r̄n] =αlib

h + βlib
h Flib(t, n),

where ā(t, n) and b̄(t, n) are model-implied coefficients for a time-t forecast of the average effective rate in calendar month n, r̄n, so that h is the
number of days between t and the end of month n. F (t, n) and Flib(t, n) are the observed futures and forward LIBOR rates corresponding to calendar
month n at time-t. For each observation day, Panel (a) shows the average forecast errors at horizons between 90 and 180 days, Panel (b) at horizons
between 180 and 270 days and Panel (c) at horizons between 180 and 270 days.
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(b) Horizons from 180 to 270 days
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Figure 7: Risk Premium

Panel (a) compares the risk premium predicted by the model for the six-month-ahead contract with the
subsequent realized returns on that contract.
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Table 1: LIBOR Rates Summary Statistics

Means µi and standard deviations σi of simple annualized LIBOR rates. Panel 1(a): LIBOR rates. Panel (b):
forward LIBOR rates. Panel (c): futures rates. Panel (d): spreads between futures and forward rates. LIBOR
and forward rates with maturities from 1 to 12 months. Futures for horizons of 1 to 6 months. Daily data
from 3 January 1994 to 31 July 2007.

(a) LIBOR Rates

Maturity (month)
1 2 3 4 5 6 7 8 9 10 11 12

µLib 4.33 4.37 4.41 4.44 4.47 4.50 4.54 4.57 4.60 4.63 4.67 4.70
σLib 1.76 1.77 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.77 1.77 1.77

(b) Forward Rates

Maturity (month)
1 2 3 4 5 6 7 8 9 10 11 12

µFor 4.33 4.41 4.49 4.54 4.61 4.66 4.73 4.79 4.84 4.95 5.01 5.07
σFor 1.76 1.78 1.80 1.80 1.80 1.80 1.79 1.79 1.79 1.78 1.77 1.74

(c) Futures Rates

Maturity (month)
1 2 3 4 5 6

µFut 4.18 4.21 4.25 4.28 4.33 4.37
σFut 1.74 1.75 1.75 1.76 1.76 1.75

(d) Forward-to-Futures Spreads

Maturity (month)
1 2 3 4 5 6

µdiff 0.14 0.20 0.24 0.25 0.28 0.29
σdiff 0.14 0.15 0.18 0.17 0.17 0.14
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Table 2: Principal Component Analysis of Forward-Futures Spreads

Principal component analysis of forward-to-futures spreads at monthly maturities from 1 to 6 months.
Each column displays the loading across maturities and the contribution to the variance explained for each
component. Daily data from 3 January 1994 to 31 July 2007, but excluding the last nine months of 1999.

Components Loadings
Maturity PC1 PC2 PC3 PC4 PC5 PC6
1 0.44 0.77 -0.05 -0.10 0.29 0.31
2 0.38 0.13 -0.02 0.14 -0.90 -0.00
3 0.42 0.04 0.08 0.24 0.23 -0.83
4 0.37 -0.28 0.18 -0.85 -0.02 -0.06
5 0.37 -0.32 0.65 0.37 0.15 0.39
6 0.43 -0.43 -0.72 0.16 0.16 0.21

R2 0.53 0.13 0.12 0.09 0.07 0.06
Cum.R2 0.53 0.66 0.77 0.88 0.94 1
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Table 3: Excess Returns and Components from Forward-to-Futures Spreads

Results from predictive regressions of monthly futures excess returns (Panel (a)) and monthly forward excess
returns (Panel (b)):

xrt,n = γ0,n + γlvl levelt + γslp slopet + ut,n,

where levelt and slopet are the first two components extracted from forward-to-futures spreads. Regressors
are centered on 0 and normalized by their standard deviations. Excess returns are in bps (annualized).
I include t-statistics based on Newey–West standard errors (six lags) in parentheses and R2 in brackets.
Monthly data from January 1994 to June 2007.

(a) Futures Excess Returns

Maturity (month)
2 3 4 5 6

γ0 0.02 0.02 0.03 0.03 0.04
(2.35) (1.99) (2.14) (1.99) (1.94)

γlvl 0.00 -0.03 -0.02 -0.03 -0.02
(0.15) (-1.04) (-1.05) (-1.15) (-1.03)

γslp 0.03 0.05 0.06 0.07 0.07
(1.41) (2.78) (2.84) (2.93) (2.83)

R2 [2.8] [8.3] [7.4] [6.5] [5.6]

(b) Forward Excess Returns

Maturity (month)
2 3 4 5 6 7 8 9 10 11 12

γ0 0.08 0.06 0.04 0.08 0.05 0.08 0.07 0.07 0.12 0.07 0.07
(6.54) (4.29) (2.23) (4.39) (2.59) (2.80) (2.98) (2.29) (3.34) (2.07) (1.79)

γlvl 0.03 0.01 -0.02 0.01 -0.00 0.02 0.03 0.04 0.04 0.03 0.01
(0.91) (0.55) (-0.63) (0.41) (-0.02) (0.65) (1.27) (1.24) (1.09) (0.92) (0.13)

γslp 0.05 0.05 0.07 0.09 0.10 0.11 0.10 0.09 0.14 0.11 0.07
(2.37) (2.14) (2.84) (3.18) (3.55) (3.04) (2.86) (2.73) (3.39) (2.58) (1.75)

R2 [5.7] [3.5] [6.6] [5.8] [7.3] [6.4] [4.8] [4.1] [5.4] [4.3] [1.5]
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Table 4: Pricing Error Statistics

Mean pricing errors (MPE) and root mean squared pricing errors (RMSE). The sample ranges from January
1994 to July 2007. Results are reported in percentage (annualized), for LIBOR rates and futures rates at
maturities of 1 to 12 months and 1 to 6 months, respectively.

(a) MSE (bps ×10−2)

Maturity (month)
1 2 3 4 5 6 7 8 9 10 11 12

LIBOR -1.35 -0.48 0.27 0.12 0.19 0.05 0.03 -0.03 -0.20 -0.02 0.07 -0.08
Futures -0.09 0.06 0.23 0.55 0.54 0.09

(b) RMSE (bps)

Maturity (month)
1 2 3 4 5 6 7 8 9 10 11 12

LIBOR 0.10 0.07 0.06 0.04 0.03 0.01 0.01 0.01 0.01 0.01 0.00 0.01
Futures 0.03 0.06 0.08 0.10 0.11 0.12
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Table 5: Parameter Estimates

Parameter estimates from daily data (January 1994 to July 2007). Panel (a) and (b) display parameters for the latent variables and effective spread
dynamics, respectively. Panel (c) displays parameter estimates for the policy function. Panel (d) displays price of risk parameters. In each case,
standard errors are provided in parenthesis. The estimate for λ is 0.3293 and its standard error is (0.0054). In panel (a), the symbols ** indicates
statistical significance at the one percent level, respectively, corresponding to the Wald statistics that individual coefficients are different from 0.

(a) Latent Factor Dynamics

µ φi,i φi,j σ ρl,z
zt 0 0.998∗∗ 1.89× 10−3∗∗ 7.91∗∗ −0.11∗∗

lt 1.03× 10−3∗∗ 0.992∗∗ −2.18× 10−6 8.14× 10−2∗∗ -

(b) Effective Spread Dynamics

µ× 10−3 φ σ νs ωs λs

st −3.54 0.20 0.05 0.69 0.27 0.23
(0.53) (0.012) (0.001) (0.005) (0.013) (0.022)

(c) Policy Function

r × 103 s z × 10−3 l
λu −104.04 0 4.63 9.05

(0.055) - (0.034) (0.069)
λd −98.95 0 9.14 8.50

(0.060) - (0.089) (0.058)

(d) Prices of Risk

r × 103 s× 103 z × 10−3 l × 10−2

δ −7.47 8.90 7.24 4.42
(0.078) (0.069) (0.056) (0.093)

r × 10−2 s z × 10−6 l × 10−3

δ1,z −2.52 0 −2.91 6.25
(0.059) - (0.080) (0.054)
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Table 6: Predictive Regressions: Forward vs Futures Excess Returns

Results from predictive regressions of monthly futures and forward excess returns on the spread factor, lt.
Excess returns are in bps (annualized). Coefficient estimates provide the change in expected excess returns
due to a change of one standard deviation in lt. Newey–West t-statistics (six lags) in parentheses and R2 in
brackets.

(a) xrFut
t,n = γ0,n + γl,nlt + ut,n

Maturity (month)
2 3 4 5 6

γ0 2.20 2.16 2.75 3.02 3.52
(2.27) (1.71) (1.80) (1.69) (1.77)

γl -1.38 -3.22 -3.98 -4.94 -5.93
(-1.03) (-1.93) (-1.93) (-2.16) (-2.42)

R2 [1.4] [5.3] [5.2] [5.9] [6.5]

(b) xrFor
t,n = γ0,n + γl,nlt + ut,n

Maturity (month)
2 3 4 5 6 7 8 9 10 11 12

γ0 9.97 7.65 5.71 8.15 3.90 11.03 6.91 6.12 15.71 8.14 7.41
(6.26) (5.08) (2.50) (3.80) (1.61) (3.42) (2.50) (1.84) (4.36) (2.04) (1.92)

γl -2.80 -1.25 0.05 -0.90 1.92 -1.66 -1.72 1.87 -1.24 -0.65 1.59
(-2.15) (-1.03) (0.03) (-0.53) (0.81) (-0.58) (-0.72) (0.69) (-0.43) (-0.20) (0.51)

R2 [2.3] [0.4] [0.0] [0.1] [0.6] [0.3] [0.4] [0.3] [0.1] [0.0] [0.1]
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Table 7: Predictive Regressions: The Role of Hedging Demand

Results from predictive regressions of monthly futures excess returns on different combinations of spread
factor, lt, the path factor, zt and the net long position by non-commercial investors, NLPt. Excess returns
are in bps (annualized). Coefficient estimates provide the change in expected excess returns due to a change
of one standard deviation in the regressors. Newey–West t-statistics (six lags) in parentheses and R2 in
brackets.

(a) xrFut
t,n = γ0,n + γnlpNLPt + ut,n

Maturity (month)
2 3 4 5 6

γ0 2.20 2.16 2.75 3.02 3.52
(2.20) (1.59) (1.70) (1.61) (1.71)

γnlp 1.60 2.84 3.88 4.66 5.64
(1.17) (1.61) (1.96) (2.13) (2.43)

R2 [1.9] [4.1] [5.0] [5.3] [5.9]

(b) xrFut
t,n = γ0,n ++γllt + γnlpNLPtut,n

Maturity (month)
2 3 4 5 6

γ0 2.20 2.16 2.75 3.02 3.52
(2.30) (1.76) (1.88) (1.79) (1.92)

γl -0.90 -2.50 -2.92 -3.69 -4.41
(-0.81) (-1.80) (-1.57) (-1.77) (-1.95)

γnlp 1.26 1.88 2.75 3.24 3.94
(1.10) (1.35) (1.66) (1.74) (1.94)

R2 [2.4] [6.8] [7.4] [8.1] [9.0]

(c) xrFut
t,n = γ0,n + γzzt + γllt + γnlpNLPt + ut,n

Maturity (month)
2 3 4 5 6

γ0 2.20 2.16 2.75 3.02 3.52
(2.40) (1.82) (1.93) (1.84) (1.96)

γz 2.30 3.07 3.93 4.77 5.41
(1.83) (1.86) (1.72) (1.83) (1.97)

γl 0.16 -1.08 -1.11 -1.50 -1.92
(0.12) (-0.63) (-0.47) (-0.57) (-0.73)

γnlp 2.77 3.91 5.35 6.38 7.51
(2.07) (2.18) (2.40) (2.52) (2.86)

R2 [4.7] [9.7] [10.4] [11.3] [12.2]
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Table 8: Predictive Regressions: Excess Holding Returns

Results from predictive regressions of futures excess holding returns. Predictors include the path factor, zt,
the spread factor, lt, and the net position of non-commercial participants, NLPt. Regressors are centered on
0 and normalized by their standard deviations. Excess returns are in bps (annualized). Coefficient estimates
provide the change in expected excess returns due to a change of one standard deviation in the regressors.
I include t-statistics based on Newey–West standard errors (six lags) in parentheses and R2 in brackets.

(a) xrt,n = γ0,n + γl,nlt + ut,n

Maturity (month)
2 3 4 5 6

γ0,n 0.78 2.91 5.25 8.52 12.32 16.40
(2.28) (3.58) (3.69) (4.00) (4.36) (4.55)

γl,n -0.11 -1.39 -4.25 -8.08 -14.38 -20.33
(-0.34) (-1.45) (-2.58) (-3.30) (-4.55) (-5.12)

R2 [0.0] [1.5] [5.3] [9.1] [15.9] [19.0]

(b) xrt,n = γ0,n + γnlp,nNLPt + ut,n

Maturity (month)
2 3 4 5 6

γ0,n 0.78 2.91 5.25 8.52 12.32 16.40
(2.27) (3.57) (3.62) (3.89) (4.12) (4.23)

γnlp,n -0.07 1.33 3.88 7.22 11.06 15.55
(-0.18) (1.18) (1.91) (2.48) (2.93) (3.38)

R2 [0.0] [1.4] [4.4] [7.3] [9.4] [11.1]

(c) xrt,n = γ0,n + γz,nzt + γl,nlt + γnlp,nNLPt + ut,n

Maturity (month)
2 3 4 5 6

γ0,n 0.78 2.91 5.25 8.52 12.32 16.40
(2.33) (3.66) (3.83) (4.24) (4.71) (5.04)

γz,n 1.08 2.38 5.77 10.12 15.38 22.09
(2.00) (2.13) (3.06) (3.40) (3.86) (4.28)

γl,n 0.39 0.17 -0.32 -1.12 -4.10 -5.65
(0.93) (0.18) (-0.21) (-0.45) (-1.23) (-1.25)

γnlp,n 0.60 2.54 6.55 11.69 16.96 24.11
(1.44) (2.10) (2.83) (3.36) (3.89) (4.44)

R2 [1.2] [4.5] [12.5] [19.7] [28.7] [34.7]
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